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Abstract
The electromagnetic scattering problem over a wide incident angle can be rapidly solved by
introducing the compressive sensing theory into the method of moments, whose main com-
putational complexity is comprised of two parts: a few calculations of matrix equations and the
recovery of original induced currents. To further improve the method, a novel construction
scheme of measurement matrix is proposed in this paper. With the help of the measurement
matrix, one can obtain a sparse sensing matrix, and consequently the computational cost for
recovery can be reduced by at least half. The scheme is described in detail, and the analy-
sis of computational complexity and numerical experiments are provided to demonstrate the
effectiveness.

Introduction

Method of moments (MoM) possesses the advantage of high accuracy in solving the electro-
magnetic (EM) scattering problems [1]. However, it will cost a huge computational amount
when the incident wave is from a wide-angle range, since the procedure needs to be repeatedly
implemented at every angle increment. To accelerate the solution process, many methods have
been proposed, such as asymptotic waveform evaluation [2], model-based parameter estima-
tion [3], etc., but these methods show some shortcomings [4]. Recently, a fast method based
on MoM conjunction with compressive sensing (CS) theory has been put forward [5]. In this
method, a kind of new excitation sources containing abundant information of different incident
angles is built firstly.Then, the induced currents over a wide-angle can be solved bymeans of the
sparse transform and the recovery algorithm from themeasurement results, which are obtained
by a few calculations of traditional MoM with the new sources. The computational complexity
of the fast method mainly consists of two parts: one is the measurement, i.e., the calculations of
MoM; the other is to acquire the projections of induced currents in sparse domain.

In order to further improve the fast method, much effort has been devoted to the research
on these two parts, and many effective schemes, such as Bayesian CS method [4], efficient basis
function [6], and two-dimensional CS method [7], have been devised. In this paper, a novel
scheme for designing the measurement matrix is raised, by which the sensing matrix shows
remarkable sparsity when the orthogonal basis is taken as the sparse transform. Accordingly,
the computational complexity for acquire the projections by using recovery algorithm can be
sharply decreased.The principle and the complexity analysis are presented, and the effectiveness
is validated by the numerical experiments, in which several typical orthogonal bases, such as
the fast Fourier transform (FFT) basis, are taken as the sparse transforms, respectively.

Theory

Fast method based on CS

The wide-angle EM scattering problem solving by the traditional MoM can be described as a
matrix equation with multiple right-hand sides

Z [I1I2 ⋅ ⋅ ⋅ In] = [V1V2 ⋅ ⋅ ⋅ Vn] , (1)

in which, Z is the impedance matrix, V1 to Vn are the excitation vectors at n different incident
angles, and I1 to In represent the n corresponding induced current vectors.
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In the fast method, M new excitation vectors based on CS
theory are constructed as

VCS
i = ci1V1 + ci2V2 + ⋅ ⋅ ⋅ + cinVn (i = 1, 2, ⋅ ⋅ ⋅,M), (2)

where cij is the element in the measurement matrix 𝚽. In CS the-
ory, a measurement matrix must satisfy the restricted isometry
property (RIP) [8], which ensures the accurate reconstruction of
original signal. In general, Gaussian random matrix is often used
as 𝚽.

Substituting equation (2) to equation (1), one can obtain M
current vectors under the new excitations by

Z [ICS1 ICS2 ⋅ ⋅ ⋅ ICSM ] = [VCS
1 VCS

2 ⋅ ⋅ ⋅ VCS
M ] . (3)

Due to the linearity of the problem, ICS1 to ICSM can be written as

ICSi = ci1I1 + ci2I2 + ⋅ ⋅ ⋅ + cinIn (i = 1, 2, ⋅ ⋅ ⋅,M). (4)

TheM current vectors can be regarded as the results ofMmeasure-
ments of the original induced current vectors I1 to In. If the original
induced current vectors have a sparse representation, equation (4)
can be described as

𝚽 [I1I2 ⋅ ⋅ ⋅ In]
T = 𝚽𝚿 [𝜶1𝜶2 ⋅ ⋅ ⋅ 𝜶N ] = [ICS1 ICS2 ⋅ ⋅ ⋅ ICSM ]T , (5)

in which 𝚿 is the sparse transform, N is the number of the basis
functions, and 𝛂1 to 𝛂N are the projections of each column of
[I1 I2 … In]T in sparse domain. In the wide-angle EM scattering
problems, FFT basis, Hermite basis, discrete wavelet transform
(DWT) [9] basis, or other orthogonal bases are often selected as
𝚿 [7, 10].

By utilizing the recovery algorithm (e.g., orthogonal matching
pursuit (OMP) [11]), the projections can be approximated by

[ ̂𝛼1 ̂𝛼2 ⋅ ⋅ ⋅ ̂𝛼N ] = argmin‖[ ̂𝛼1 ̂𝛼2 ⋅ ⋅ ⋅ ̂𝛼N ]‖L s.t. Θ [𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼N ]

= [ICS1 ICS2 ⋅ ⋅ ⋅ ICSM ]T , (6)

where 𝚯 is the sensing matrix and 𝚯=𝚽𝚿.
Then, the original induced current vectors are reconstructed by

[ ̂I1 ̂I2 ⋅ ⋅ ⋅ ̂In]
T

= Ψ [𝜶̂1𝜶̂2 ⋅ ⋅ ⋅ 𝜶̂N ] . (7)

The computational complexity for solving equation (6) byOMP
is O(nKMN), where K is the sparsity of original induced current
vectors in sparse domain, and the inner products of the columns
in sensing matrix and the measurement results are the dominant
computational cost.

Construction scheme of measurement matrix

To reduce the complexity of recovery, one can make the sens-
ing matrix sparse to decrease the cost of inner products. For the
purpose, a novel construction scheme of measurement matrix is
proposed as follows:

First, by randomly extracting P columns from the sparse trans-
form 𝚿, one can obtain 𝛙1 to 𝛙P, where 𝛙 represents the column
of 𝚿.

Afterward, to better satisfy RIP, a linear superposition of these
P vectors is implemented as

𝜑1 = d11Ψ1 + d12Ψ2 + ⋅ ⋅ ⋅ + d1PΨP. (8)

Finally, repeating the above two steps M times and a new
measurement matrix [𝛗1 𝛗2 … 𝛗M]T is established, in which

𝜑i = di1Ψ1 + di2Ψ2 + ⋅ ⋅ ⋅ + diPΨP (i = 1, 2, ⋅ ⋅ ⋅,M). (9)

Obviously, when an orthogonal basis is taken as 𝚿, the inner
products of 𝛗i and the (n − P) columns in 𝚿 that are not extracted
in the first step are zero, respectively. In other words, there are only
P non-zero elements in the ith row of 𝚯. A sparse 𝚯 with MP

Figure 1. Relationship between the recovery error and the number of measurements in the case of FFT basis.
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Table 1. Computing time of recovery for sphere (unit: s)

Measurement
matrix

FFT
(M = 310)

Hermite
(M = 245)

DWT
(M = 275)

Gaussian 8273.0 6513.7 6987.1

Proposed 3085.1
(P = 1250)

2974.2
(P = 1550)

2990.2
(P = 1400)

non-zero elements is obtained by using the proposedmeasurement
matrix, and the operations of inner products in recovery algorithm
are significantly accelerated. Accordingly, the computational com-
plexity of solution to equation (6) is decreased to O(𝜂nKMN),
where 𝜂 is the proportion of non-zero elements in 𝚯 and 𝜂 = P/n.
Generally, P is much less than n.
Using the proposed measurement matrix and an orthogonal basis
as 𝚽 and 𝚿 respectively, equation (5) can be transformed as

[𝜑1𝜑2 ⋅ ⋅ ⋅ 𝜑M]TΨ [𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼N ] = SΨTΨ [𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼N ]

= S [𝛼1𝛼2 ⋅ ⋅ ⋅ 𝛼N ] = [ICS1 ICS2 ⋅ ⋅ ⋅ ICSM ]T , (10)

in which, the proposed measurement matrix is expressed as the
multiplication of a sparse random matrix S and the transposed
sparse transform 𝚿. The ith row of S has P random coefficients
di1 to diP in the columns corresponding to the randomly extracted
columns from𝚿 in the ithmeasurement, and other entries in S are
all zero.

So, equation (10) can be considered as measuring the sparse
signals 𝛂1 to 𝛂N directly with the sparse random matrix S, which
has been proved to satisfy a different form of RIP, so-called RIP(p)
for p equal (or very close) to 1 [12, 13]. Therefore, equation (6)
can produce an accurate solution with high probability by using
the proposed measurement matrix. It is interesting to note that,
if the random coefficients are all set to 1 in (10), the sparse ran-
dom matrix is simplified to a sparse binary matrix (SBM) [14],
which consists of only 0 and 1. SBM is often applied as the mea-
surement matrix in wireless sensor networks, since it is easy to be
implemented on hardware and has low complexity [15].

Numerical results

Two numerical experiments with perfect electrical conductor
objects of different shapes are presented in this section to validate
the proposed scheme, inwhich the electric field integral equation is
established to solve the problems, and OMP is taken as the recov-
ery algorithm. For the convenience of comparison, we define the
recovery error as

Δ =
∥[ ̂I1 ̂I2 ⋅ ⋅ ⋅ ̂In] − [I1I2 ⋅ ⋅ ⋅ In]∥2

‖[I1I2 ⋅ ⋅ ⋅ In]‖2
. (11)

Sphere

A sphere with the radius of 5 m illuminated by the plane waves of
300 MHz is considered, who contains 12,620 Rao-Wilton-Glisson
(RWG) basis functions. The waves are set in the xoy plane, and the
incident angle is divided into 0.1∘, 0.2∘, …, 360∘.

FFT basis is used as the sparse transform. As is shown in Fig. 1,
the similar precision can be achieved at the same number (310)
of measurements by applying the Gaussian random matrix and
the proposed measurement matrix respectively, while the num-
ber of extracting columns P is larger than 1250. It means that one
can get a sensing matrix with non-zero elements accounting for
1250/3600 (𝜂) in the best case. Thus, the computational cost for
acquiring the projections of original induced currents in sparse
domain is cut by about two-thirds (1 − 𝜂) by using the proposed
measurement matrix rather than Gaussian random matrix; mean-
while, the computational complexity of measurement for both is
the same.The comparison of the computing time for acquiring the
projections is presented in Table 1, which further proves the high
efficiency.

To show the universality of the proposed technique for orthog-
onal bases, FFT basis is, respectively, replaced byHermite basis and
DWT basis. The corresponding results are shown in Figs. 2 and 3.
It is evident that, for both Hermite basis and DWT basis, much less
computational complexity for acquiring the projections is available
with the proposedmeasurementmatrix than with Gaussianmatrix
under the same condition of measurement. The comparisons of

Figure 2. Relationship between the recovery error and the number of measurements in the case of Hermite basis.
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computing time in the case of two bases are also provided in
Table 1.

Missile model

Then, consider a missile model who contains 1963 RWG basis
functions, and the angle increment is set as 1∘. The second kind of
Chebyshev basis and Legendre basis is chosen as the sparse trans-
forms, respectively. Other experimental parameters are the same
with the previous one. Both Figs. 4 and 5 indicate that the proposed
scheme is also validity for the complex-shaped objects.

By using the second kind of Chebyshev basis and the proposed
measurement matrix (M = 90, P = 100), and setting the ele-
ments less than 10−14 in the sensing matrix to zero, there are only
9000 non-zero elements in the sensing matrix, which is consistent
with the expected number MP. Hence, the solution to equation
(6) with the help of OMP is accelerated, which is demonstrated

in Table 2. The bistatic radar cross section (RCS) of the missile
model illuminated at a random incident angle (take 77∘ as an exam-
ple) is also provided in Fig. 6, which agrees well with the result
solved by the traditional MoM. From Table 2 and Fig. 6, we can
see clearly that the computing time can be significantly reduced
while the high accuracy is kept by using the proposedmeasurement
matrix.

Conclusion

Anovel scheme for constructing themeasurementmatrix has been
developed. One can get a sparse sensing matrix by adopting the
proposed measurement matrix in the solution to wide-angle EM
scattering problem based on MoM conjunction with CS. In addi-
tion, the number of measurements required for both Gaussian
random matrix and the proposed one is the same. Consequently,
the computational complexity for acquiring the projections by

Figure 3. Relationship between the recovery error and the number of measurements in the case of DWT basis.

Figure 4. Relationship between the recovery error and the number of measurements in the case of the second kind of Chebyshev basis.

https://doi.org/10.1017/S1759078724000291 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000291


International Journal of Microwave and Wireless Technologies 5

Figure 5. Relationship between the recovery error and the number of measurements in the case of Legendre basis.

Figure 6. Comparison of RCS for the missile model illuminated at a random incident angle.

Table 2. Computing time of recovery for missile model (unit: s)

Measurement
matrix

2nd
Chebyshev
(M = 90)

Legendre
(M = 100)

Gaussian 120.8 181.2

Proposed 38.7
(P = 90)

59.9
(P = 110)

using recovery algorithm can be significantly reduced under the
condition that the computational cost for measurement remains
unchanged.
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