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Birds have to flap their wings to generate the needed thrust force, which powers them
through the air. But how exactly do flapping wings create such force, and at what
amplitude and frequency should they operate? These questions have been asked by
many researchers. It turns out that much of the secret is hidden in the wake left
behind the flapping wing. Exemplified by the study of Andersen et al. (J. Fluid Mech.,
vol. 812, 2017, R4), close examination of the flow pattern behind a flapping wing
will inform us whether the wing is towed by an external force or able to generate
a net thrust force by itself. Such studies are much like looking at the footprints of
terrestrial animals as we infer their size and weight, figuring out their walking and
running gaits. A map that displays the collection of flow patterns after a flapping wing,
using flapping frequency and amplitude as the coordinates, offers a full picture of its
flying ‘gaits’.
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1. Introduction

The dinosaurs are long gone, but their fossilized footprints are still around.

Scientists are able to infer the size, weight and sometimes the running gaits of
these terrestrial animals by closely examining their footprints. The spacing between
the footprints and their depth and angles reflect much information about how these
animals interacted with the ground many million years ago.

When a bird flies by in the fluid that we call air, the perturbed gas moves and
rotates in some orderly fashion, somewhat like footprints cast into the muddy ground
by land animals. Such wakes or flow structures are quite short lived, they disappear
quickly due to diffusion or are destroyed by wind. Making transparent air and
its motion visible to our eyes is challenging but can be achieved with smoke or
lightweight powder that marks the air temporarily. If the details of air flow structures
around a flying bird are made visible, a fluid dynamicist can extract much information
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about how the bird generates lift and thrust forces and how quickly it flies. It is thus
almost a necessity to show flow structures when studying how birds fly and how
fish swim (Miller er al. 1997); the latter is almost an identical problem for many
scientists since the physical mechanisms that produce forces and the mathematical
handling of the two systems are similar. The equivalence between fish swimming
and bird flying was made pleasantly visible, graphically, by the Dutch artist Maurits
C. Escher in his two 1938 woodcuts, Sky and Water I and II, as he morphed flying
birds into swimming fish.

To focus on the key element of the locomotion problem, the study of how birds fly
is often simplified to studying how a flapped aerofoil interacts with an open flow. It
turns out that the wake structure resulting from the interaction between the flapping
wing and the initially uniform flow reveals a lot of clues that a fluid dynamicist will
find useful. For instance, if an aerofoil or wing is flapped slowly, with its top speed
much less than the open flow speed, the wake often forms a classical von Kdrmén
vortex street, a signature flow structure found after an immobile object sitting in a flow
(von Kdrman & Burgers 1935). There, the vortex dipoles formed by any two adjacent
fluid vortices will point, at least partially, in the upstream direction. This indicates that
the open flow has been slowed down by the gentle flapping wing. If the flapping speed
is much increased, however, by either increasing the flapping frequency or amplitude
or both, the vortex street will look different. The vortex dipoles now behave like a
series of fluid puffs generated at the trailing end of the wing and getting pushed off
into the downstream direction. This increase in the fluid speed downstream of the
flapping wing is directly associated with the generation of a net thrust force, which
is useful for bird flight. Here, the thrust-producing wake is often termed the inverted
von Kdrmdn vortex street.

However, the exact mechanism by which a flapped wing reverses the flow structure,
thus turning a von Karmdn vortex street into an inverted von Karméan vortex street,
and how the net force experienced by the wing changes from being resistive to
propulsive, is not known (Vandenberghe, Zhang & Childress 2004; Godoy-Diana,
Aider & Wesfreid 2008).

2. Overview

The article by Andersen et al. (2017) presents a detailed and revealing investigation
of the rich variety of wake structures of a flapping wing, and relates the changes in
the wake structure to the transition from drag to thrust.

This study consists of numerical simulations and laboratory experiments. The
numerical results were obtained using a particle vortex method (Walther & Larsen
1997). There, many virtual particles are seeded into the flow where the speed gradient
or shear is strong. These vortex particles, as marked in two colours depending on
the sign of the local fluid rotation (vorticity), follow the flow and diffuse over time,
revealing the wake structures. The laboratory experiment was conducted in a flowing
soap film, a nearly two-dimensional water tunnel (Zhang et al. 2000; Rutgers, Wu
& Daniel 2001) that not only offers high-speed laminar flows but also provides a
convenient flow visualization platform. The thinness of the flowing film, of the order
of a few micrometres, makes it possible for us to see the minute thickness changes
through optical interference. Advected by the main flow and spun by flow rotation,
soap films often render great flow details.

From the two very different methods, one experimental and the other computational,
the authors have found two large collections of flow structures over a broad range
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FIGURE 1. (@) A von Kidrman vortex street produced from a pitching wing in a flowing
soap film. When the wing is flapped slowly, it experiences a net drag force. (b) An
inverted von Kéirmdn vortex street, obtained by the particle vortex method, emerging
as the wing flaps faster at the drag—thrust boundary. The red (blue) particles indicate
counter-clockwise (clockwise) local fluid rotation and the magenta curve shows that a
backward jet is being generated when compared against the black line that shows the
unperturbed uniform flow profile. (Image courtesy of Andersen et al. (2017).)

of kinematic parameters. With each method, two different flapping gaits are studied:
pitching and heaving. In the pitching gait, the wing is flapped or pivoted about its
leading edge (Schnipper, Andersen & Bohr 2009). In the heaving gait, on the other
hand, the wing is flapped transversely to the oncoming flow. The flow map is charted,
with impressive precision against the flapping frequency and amplitude.

It is remarkable that computations and experiments produce nearly identical results
under the same parameters. In a way, one method used in this study validates the other
when their maps for the wakes of flapping wings overlap. The net force experienced
by the wing can be computed from the simulations and a boundary, which demarcates
net drag and net thrust, emerges.

By examining the wake map and the drag—thrust boundary, some meaningful
conclusions can be made: (i) a von Kidrmdn wake is always a drag wake; (ii) a
thrust wake is (most likely) an inverted von Karman wake. But wait, here comes
some ‘fine print’ that immediately follows: (iii) a drag wake can sometimes be more
complicated than a simple von Kdrman wake and (iv) an inverted von Kérmdn wake
is not necessarily a thrust wake, a point that has been made previously by other
groups (Bohl & Koochesfahani 2009; Das, Shukla & Govardhan 2016).

One other important message a reader should take home is about the location
of the drag—thrust boundary. In the pitching gait, this boundary follows closely the
curve drawn by 2Af/U = 0.28, where 2A is the peak-to-peak flapping amplitude, f
the flapping frequency and U the oncoming flow speed. This dimensionless number,
which is often referred to as the amplitude-based Strouhal number, compares the
flapping speed with the oncoming flow speed. Here, if the flapping speed 2Af is low,
the wing as a whole experiences a net drag. When the flapping speed is high enough,
a thrust force is produced and an inverted von Kdrmin wake is found. Similarly,
in the heaving gait, the flapping wing makes its drag—thrust transition at constant
2Af/U = 0.16. The difference in the numbers, between 0.28 and 0.16, reflects the
difference in the gaits used by the flapping wing.

Back to bird flight. Assuming that a bird flies at a constant cruising speed, the thrust
force generated by the flapping wings has to be equal to the drag force experienced
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by the non-thrust-producing aerodynamic surfaces such as the head, body and the
tail of the bird. The total drag force, and thus the thrust force, are not insignificant,
which suggests that bird wings need to operate at a point well above the drag—thrust
boundary. The Strouhal numbers taken by the birds should therefore be reasonably
high.

3. Future

The above study demonstrates many common features and differences between two
flapping gaits, pitching and heaving, used by a simple wing. In particular, a pitching
wing needs to flap approximately 75 % faster than the heaving wing when it needs to
cross the drag—thrust boundary. Naively, this seems to be the difference between the
fluid areas swept by the flapping wing as it operates in the two different gaits. Perhaps
it is time to ask in which gait the wing consumes less energy. In another words, it is
time to find out how to drive the wings to produce useful thrust cost effectively.

As we come to know almost everything about a single flapping wing and its wakes,
it is certainly time to ask how multiple flapping wings freely interact with each other.
Indeed, orderly and stable patterns begin to emerge with a minimum ‘bird flock’ of
two flapping wings (Ramananarivo et al. 2016), perhaps we will soon observe similar
formations in fish schools (Weihs 1973).
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