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Solvability of Hessian quotient equations
in exterior domains
Limei Dai, Jiguang Bao , and Bo Wang
Abstract. In this paper, we study the Dirichlet problem of Hessian quotient equations of the
form Sk(D2u)/S l(D2u) = g(x) in exterior domains. For g ≡ const., we obtain the necessary and
sufficient conditions on the existence of radially symmetric solutions. For g being a perturbation of
a generalized symmetric function at infinity, we obtain the existence of viscosity solutions by Perron’s
method. The key technique we develop is the construction of sub- and supersolutions to deal with
the non-constant right-hand side g.

1 Introduction

In this paper, we study the exterior Dirichlet problem of the Hessian quotient equation

Sk(D2u)
S l(D2u) = g(x) in R

n/Ω̄,(1.1)

u = ϕ on ∂Ω,(1.2)

where n ≥ 2, 0 ≤ l < k ≤ n, Ω is a smooth, bounded, strictly convex open set in R
n ,

ϕ ∈ C2(∂Ω), 0 < g ∈ C0(Rn/Ω), S0(D2u) ∶= σ0(λ(D2u)) ∶= 1,

S j(D2u) ∶= σ j(λ(D2u)) ∶= ∑
1≤i1< ⋅ ⋅ ⋅ <i j≤n

λ i1 ⋅ ⋅ ⋅ λ i j , j = 1, 2, . . . , n

denotes the jth elementary symmetric function of λ(D2u) = (λ1 , λ2 , . . . , λn), the
eigenvalues of the Hessian matrix of u.

Equation (1.1) has received a lot of attentions since the classical work of Caffarelli,
Nirenberg, and Spruck [7] and Trudinger [22]. For l = 0, it is the k-Hessian equation.
In particular, if k = 1, it is the Poisson equation, while it is the Monge–Ampère
equation if k = n. For n = k = 3 and l = 1, it is the special Lagrangian equation which
is closely connected with geometric problems: If u satisfies detD2u = Δu in R

3, then
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the graph of Du in C
3 is a special Lagrangian submanifold, that is, its mean curvature

vanishes everywhere and the complex structure on C
3 sends the tangent space of the

graph to the normal space at every point.
A classical theorem of Jörgens (n = 2) [15], Calabi (n ≤ 5) [8], and Pogorelov

(n ≥ 2) [21] states that any convex classical solution of det D2u = 1 in R
n must be a

quadratic polynomial. Caffarelli and Li [6] extended the Jörgens–Calabi–Pogorelov
theorem and studied the existence of solutions of Monge–Ampère equations in
exterior domains with prescribed asymptotic behavior. They proved that for n ≥ 3,
given any b ∈ Rn and any n × n real symmetric positive definite matrix A with
det A = 1, there exists some constant c∗ depending on n, Ω, ϕ, b, and A such that
for every c > c∗, the Monge–Ampère equation det D2u = 1 in R

n/Ω̄ with the Dirich-
let boundary condition (1.2) and the following prescribed asymptotic behavior at
infinity

u(x) = 1
2

xT Ax + b ⋅ x + c + O(∣x∣2−n), as ∣x∣ → ∞,(1.3)

admits a unique viscosity solution u ∈ C∞(Rn/Ω̄) ∩ C0(Rn/Ω). Based on this work,
Li and Lu [19] completed the characterization of the existence and non-existence of
solutions in terms of the above asymptotic behaviors. For more results concerning the
exterior Dirichlet problem for Monge–Ampère equations, we refer to [1, 3–5, 13] and
the references therein.

After the work of Caffarelli and Li [6], there have been extensive studies on the
existence of fully nonlinear elliptic equations in exterior domains.

For the exterior Dirichlet problem of the Hessian equations, Dai and Bao [12]
first obtained the existence of solutions satisfying the asymptotic behavior (1.3) with
A = (1/(n

k))
1
k I. Later on, Bao, Li, and Li [2] proved that for n ≥ 3, given any b ∈ Rn and

any n × n real symmetric positive definite matrix A with Sk(A) = 1, there exists some
constant c∗ depending on n, Ω, ϕ, b, and A such that for every c > c∗, the Hessian
equation Sk(D2u) = 1 in R

n/Ω̄ with the Dirichlet boundary condition (1.2) and the
following prescribed asymptotic behavior at infinity

u(x) = 1
2

xT Ax + b ⋅ x + c + O(∣x∣θ(2−n)), as ∣x∣ → ∞,

admits a unique viscosity solution u ∈ C∞(Rn/Ω̄) ∩ C0(Rn/Ω), where θ ∈ [ k−2
n−2 , 1]

is a constant depending on n, k, and A. For more results concerning the exterior
Dirichlet problem for Hessian equations, we refer to [9, 10] and the references therein.

For the exterior Dirichlet problem of the Hessian quotient equation (1.1) with g ≡ 1
and the Dirichlet boundary condition (1.2), Dai [11] first obtained the existence of
solutions with asymptotic behavior

u(x) = c̄
2
∣x∣2 + c + O(∣x∣2−k+l), as ∣x∣ → ∞,

where n ≥ 3, c̄ = ((n
l )/(

n
k))

1
k−l , and k − l ≥ 3. Subsequently, Li and Dai [17] obtained

the existence result for the case k − l = 1 and k − l = 2. Later on, Li and Li [16] proved
that for n ≥ 3 and, given any b ∈ Rn and any A in the set
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Solvability of Hessian quotient equations in exterior domains 3

Ak , l ∶={A is an n × n real symmetric positive definite matrix with Sk(A)/S l(A) = 1},

with k−l
tk−t l

> 2, where

tk ∶= max
1≤i≤n

∂
∂λ i

σk(λ(A))λ i

σk(λ(A)) = max
1≤i≤n

σk−1;i(λ)λ i

σk(λ) ,(1.4)

and

tk ∶= min
1≤i≤n

∂
∂λ i

σk(λ(A))λ i

σk(λ(A)) = min
1≤i≤n

σk−1;i(λ)λ i

σk(λ) ,(1.5)

there exists some constant c∗ depending on n, k, l, Ω, ϕ, b, and A such that for every
c > c∗, the Hessian equation Sk(D2u)/S l(D2u) = 1 in R

n/Ω̄ with the Dirichlet
boundary condition (1.2) and the following prescribed asymptotic behavior at infinity

u(x) = 1
2

xT Ax + bT x + c + O(∣x∣2−m), as ∣x∣ → ∞,

admits a unique viscosity solution u ∈ C0(Rn/Ω), where m ∈ (2, n] is a constant
depending on n, k, l, and A. Recently, we have just learned that Jiang, Li, and Li [14]
generalized this result to g = 1 + O(r−β) with β > 2. For more results concerning the
exterior Dirichlet problem for Hessian equations, we refer to [18] and the references
therein.

Our paper consists of two parts. In the first part, we obtain the necessary and
sufficient conditions on the existence of radially symmetric solutions of the exterior
Dirichlet problem of Hessian quotient equations.

Before stating our result of the first part, we first give the definition of k-convex
functions. For k = 1, 2, . . . , n, we say a C2 function u defined in a domain is k-convex
(uniformly k-convex), if λ(D2u) ∈ Γ̄k (Γk), where

Γk ∶= {λ ∈ Rn ∶ σ j(λ) > 0, j = 1, 2, . . . , k}.

In particular, a uniformly n-convex function is a convex function. Note that (1.1) is
elliptic for uniformly k-convex functions.

For n ≥ 3, consider the following problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sk(D2u) = S l(D2u), in R
n/B̄1 ,

u = b, on ∂B1 ,

u = â
2
∣x∣2 + c + O(∣x∣2−n), as ∣x∣ → ∞,

(1.6)

where B1 denotes the unit ball in R
n , 2 ≤ k ≤ n, 0 ≤ l ≤ k − 1, â = ((n

l )/(
n
k))

1
k−l , b,

c ∈ R. Our first result can be stated as follows.

Theorem 1.1 For n ≥ 3, let 2 ≤ k ≤ m ≤ n, 1 ≤ l < k. Then problem (1.6) admits a
unique radially symmetric uniformly m-convex solution

u(x) = b + ∫
∣x ∣

1
sξ(μ−1(c)s−n)ds, ∀ ∣x∣ ≥ 1,
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if and only if c ∈ [μ(α0),∞) for m = k and c ∈ [μ(α0), μ(αm)] for k + 1 ≤ m ≤ n,
where ξ(t) denotes the inverse function of

t = (n
k
)ξk − (n

l
)ξ l

in the interval [a0 ,∞) with

a0 = ((l(n
l
))/(k(n

k
)))

1
k−l

, α0 = a l
0(

n
l
) l − k

k
, αm = (

(m − l)(n
l )

(m − k)(n
k)

)
l

k−l

(n
l
) k − l

m − k

with k + 1 ≤ m ≤ n and

μ(α) = b − â
2
+ ∫

∞

1
s[ξ(αs−n) − â]ds, ∀ α ∈ [α0 ,∞).(1.7)

Remark 1.2 For the case l = 0, the necessary and sufficient conditions on the exis-
tence of radially symmetric solutions of the exterior Dirichlet problem of Hessian
equations were obtained by Wang and Bao [23].

For n = 2, consider the following problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S2(D2u) = S1(D2u), in R
n/B̄1 ,

u = b, on ∂B1 ,
u = ∣x∣2 + ρ

2
ln ∣x∣ + c + O(∣x∣−2), as ∣x∣ → ∞,

(1.8)

where b, c, and ρ ∈ R.

Theorem 1.3 For n = 2, problem (1.8) admits a unique radially symmetric convex
solution

u(x) = b − 1
2
+ 1

2
∣x∣2 + 1

2
[∣x∣

√
∣x∣2 + ρ + ρ ln(∣x∣ +

√
∣x∣2 + ρ)]

− 1
2
[
√

1 + ρ + ρ ln(1 +
√

1 + ρ)](1.9)

if and only if ρ ≥ −1, and c = ν(ρ), where

ν(ρ) = b − 1
2
+ ρ

4
+ ρ

2
ln 2 − 1

2
[
√

1 + ρ + ρ ln(1 +
√

1 + ρ)].

Corollary 1.4 For n = 2, problem (1.8) admits a unique radially symmetric convex
solution (1.9) if and only if c ≤ b − 1.

In the second part of this paper, we obtain the existence of viscosity solutions of
the exterior Dirichlet problem of the Hessian quotient equation (1.1) and (1.2).

Before stating our main result, we will first give the definition of viscosity solutions
of (1.1) and (1.2).

Definition 1.5 A function u ∈ C0(Rn/Ω) is said to be a viscosity subsolution (super-
solution) of (1.1) and (1.2), if u ≤ ϕ (u ≥ ϕ) on ∂Ω and for any x̄ ∈ Rn/Ω̄ and any
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uniformly k-convex function v ∈ C2(Rn/Ω̄) satisfying

u(x) ≤ (≥) v(x), x ∈ Rn/Ω̄ and u(x̄) = v(x̄),

we have

Sk(D2v(x̄))
S l(D2v(x̄)) ≥ (≤) g(x̄).

If u ∈ C0(Rn/Ω) is both a viscosity subsolution and a viscosity supersolution of
(1.1) and (1.2), we say that u is a viscosity solution of (1.1) and (1.2).

Suppose that g ∈ C0(Rn) satisfies

0 < inf
Rn

g ≤ sup
Rn

g < +∞,(1.10)

and for some constant β > 2,

g(x) = g0(rA(x)) + O(rA(x)−β), as ∣x∣ → ∞,(1.11)

where

rA(x) ∶=
√

xT Ax for some A ∈ Ak , l(1.12)

and g0 ∈ C0([0,+∞)) satisfies

0 < inf
[0,+∞)

g0 ≤ sup
[0,+∞)

g0 < +∞,

and

C0 ∶= lim
r→+∞

g0(r) > 0.

Our main result can be stated as follows.

Theorem 1.6 For n ≥ 3, let 0 ≤ l < k ≤ n and k−l
tk−t l

> 2. Assume that g satisfies (1.10)
and (1.11). Then, for any given b ∈ Rn and A ∈ Ak , l , there exists some constant c̃,
depending only on n, b, A, Ω, g , g0, ∣∣ϕ∣∣C2(∂Ω), such that for every c > c̃, there exists a
unique viscosity solution u ∈ C0(Rn/Ω) of (1.1) and (1.2) with the following prescribed
asymptotic behavior at infinity:

u(x) = u0(x) + b ⋅ x + c + O(∣x∣2−min{β , k−l
tk−t l

}), as ∣x∣ → ∞, if β /= k − l
tk − t l

,(1.13)

or

u(x) = u0(x) + b ⋅ x + c + O(∣x∣2−min{β , k−l
tk−t l

} ln ∣x∣), as ∣x∣ → ∞, if β = k − l
tk − t l

,

(1.14)

https://doi.org/10.4153/S0008414X23000834 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000834


6 L. Dai, J. Bao, and B. Wang

where u0(x) = ∫
rA(x)

0 θh0(θ)dθ with h0 satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h0(r)k + tk rh0(r)k−1h′0(r)
h0(r)l + t l rh0(r)l−1h′0(r) = g0(r), r > 0,

h0(0) > supr∈[0,+∞) g
1

k−l
0 (r),

h0(r)k + tk rh0(r)k−1h′0(r) > 0.

(1.15)

Remark 1.7 Under the assumption of g0, by the classical existence, uniqueness and
extension theorem for the solution of the initial value problem of the ODE, we know
that (1.15) admits a bounded solution h0 in C0[0,+∞) ∩ C1(0,+∞). In particular, if
g0 ≡ 1, then h0 ≡ 1 and u0(x) = 1

2 xT Ax.

The rest of this paper is organized as follows. In Section 2, we will prove
Theorems 1.1 and 1.2. In Section 3, we will construct a family of generalized sym-
metric smooth k-convex subsolutions and supersolutions of (1.1) by analyzing the
corresponding ODE. In Section 4, we will finish the proof of Theorem 1.6 by Perron’s
method. In Appendix A, we will give the Appendix.

2 Proof of Theorems 1.1 and 1.3

Before proving Theorems 1.1 and 1.3, we will first make some preliminaries.
Consider the function

t = t(ξ) = (n
k
)ξk − (n

l
)ξ l , ∀ ξ ∈ R.

It is easy to see that t is smooth and strictly increasing on the interval [a0 ,∞). Let
ξ = ξ(t) denote the inverse function of t on the interval [a0 ,∞). Then ξ is smooth
and strictly increasing on [α0 ,∞). Moreover,

ξ(t) ≥ a0 , ∀ t ≥ α0 .

Let μ(α) be defined as in (1.7). Then μ has the following properties.

Lemma 2.1 μ is smooth, strictly increasing on [α0 ,∞) and lim
α→∞

μ(α) = ∞.

Proof The smoothness of μ follows directly from the smoothness of ξ. Then, by a
direct computation,

μ′(α) = ∫
∞

1
s1−n ξ′(αs−n)ds.

Therefore, Lemma 2.1 follows directly from the facts that ξ(t) is strictly increasing on
[α0 ,∞) and lim

t→∞
ξ(t) = ∞. ∎

Lemma 2.2 Let 2 ≤ k ≤ m ≤ n and 0 ≤ l ≤ k − 1. Assume that λ = (β, γ, . . . , γ) ∈ Rn

and σk(λ) = σl(λ). Then λ ∈ Γm if and only if

a0 < γ < γm ,
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where

γm =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

( (m−l)(n
l)

(m−k)(n
k)
)

1
k−l

, k + 1 ≤ m ≤ n,

∞, m = k.

Proof If λ ∈ Γm , we have that for j = 1, . . . , m,

(n − 1
j − 1

)βγ j−1 + (n − 1
j

)γ j > 0,

which implies that

γ j−1( jβ + (n − j)γ) > 0.

By [23, Lemma 1], we have that γ > 0. It follows that

jβ + (n − j)γ > 0,(2.1)

for j = 1, . . . , m.
The equation σk(λ) = σl(λ) can be equivalently written as

1
n
(n

k
)γk−1[kβ + (n − k)γ] = 1

n
(n

l
)γ l−1[l β + (n − l)γ].

Since γ > 0, dividing the above equality by γ l−1, we have that

[k(n
k
)γk−l − l(n

l
)]β = γ[(n − l)(n

l
) − (n − k)(n

k
)γk−l].(2.2)

It is easy to see that γ ≠ a0. Indeed, if γ = a0, then the left-hand side of (2.2) equals to 0.
However, the right-hand side of (2.2) equals a l

0(n
l )

n(k−l)
k ≠ 0, which is a contradiction.

It follows from (2.2) and γ ≠ a0 that

β =
(n − l)(n

l ) − (n − k)(n
k)γk−l

k(n
k)γk−l − l(n

l )
γ.(2.3)

Inserting the above equality into (2.1), we have that

(n
k)(k − j)γk−l + (n

l )( j − l)
k(n

k)γk−l − l(n
l )

> 0,(2.4)

for j = 1, . . . , m.
Now we claim that k(n

k)γk−l − l(n
l ) > 0 or equivalently, γ > a0. Indeed, if

k(n
k)γk−l − l(n

l ) < 0, on one hand, we have that by (2.4)

(n
k
)(k − j)γk−l + (n

l
)( j − l) < 0, ∀ j = 1, . . . , m.

On the other hand,

(n
k
)(k − j)γk−l + (n

l
)( j − l) ≥ (n

l
)( j − l) > 0

for any l + 1 ≤ j ≤ k, which is a contradiction.
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For m = k, we have already obtained that a0 < γ < ∞. For k + 1 ≤ m ≤ n, by γ > a0
and (2.4), we have that

γk−l <
(n

l )( j − l)
(n

k)( j − k)
, ∀ j = k + 1, . . . , m.

Then we can conclude that a0 < γ < γm .
Conversely, if a0 < γ < γm , it is easy to check that λ ∈ Γm . Indeed, by (2.3), we have

that for j = 1, . . . , m,

jβ + (n − j)γ =
(n

k)(k − j)γk−l + (n
l )( j − l)

k(n
k)γk−l − l(n

l )
> 0.

It follows from the above inequality and γ > 0 that

σ j(λ) = 1
n
(n

j
)γ j−1[ jβ + (n − j)γ] > 0, ∀ j = 1, . . . , m.

Lemma 2.2 is proved. ∎

Proof of Theorem 1.1 If c ∈ [μ(α0),∞) for m = k or c ∈ [μ(α0), μ(αm)] for k + 1 ≤
m ≤ n, by the intermediate value theorem and Lemma 2.1, there exists uniquely α0 ≤
α < ∞ for m = k or α0 ≤ α ≤ αm for k + 1 ≤ m ≤ n such that c = μ(α). Consider the
function

u(r) = b + ∫
r

1
sξ(αs−n)ds, ∀ r ≥ 1.(2.5)

Here and throughout of this section, we use r to denote rI defined as in (1.12).
Next, we shall prove that u is the unique uniformly m-convex solution to (1.6). The

uniqueness of u follows directly from the comparison principle (see [20, Theorem
1.7]). It is obvious that u satisfies the second line in (1.6) by taking r = 1 in (2.5).
Differentiating (2.5) with respect to r > 1, it follows from the range of α and the
monotonicity of ξ that

a0 < u′(r)
r

= ξ(αr−n) < γm , ∀ r > 1.(2.6)

By (2.6) and Lemma 2.2, we can conclude that u is uniformly m-convex. Since ξ(t) is
the inverse function of t = (n

k)ξk − (n
l )ξ l on the interval [a0 ,∞), then equation (2.6)

can be equivalently written as

αr−n = (n
k
)ξk(αr−n) − (n

l
)ξ l(αr−n)

= (n
k
)(u′

r
)k − (n

l
)(u′

r
)l , ∀ r > 1.(2.7)

By differentiating (2.7) with respect to r, we have that u satisfies the first line in (1.6).
It only remains to prove that u satisfies the third line in (1.6). Since
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ξ(t) = ξ(0) + ξ′(0)t + O(t2)

= â + t
(k − l)â l−1(n

l )
+ O(t2),

as t → 0, then we have that

u(r) = â2

2
r2 + b − â

2
+ ∫

r

1
s[ξ(αs−n) − â]ds

= â2

2
r2 + b − â

2
+ ∫

∞

1
s[ξ(αs−n) − â]ds − ∫

∞

r
s[ξ(αs−n) − â]ds

= â2

2
r2 + μ(α) − ∫

∞

r
s[ξ(αs−n) − â]ds

= â2

2
r2 + μ(α) + O(r2−n)

= â2

2
r2 + c + O(r2−n),(2.8)

as r → ∞.
Conversely, suppose that u is the unique radially symmetric uniformly m-convex

solution to (1.6). By Lemma 2.2, we have that

a0 < u′(r)
r

< γm , ∀ r > 1.(2.9)

The first line in (1.6) can be written as

(n
k
)ku′′(u′

r
)k−1 + (n

k
)(n − k)(u′

r
)k = (n

l
)lu′′(u′

r
)l−1 + (n

l
)(n − l)(u′

r
)l , ∀ r > 1.

By multiplying the above equation by rn−1, we have that

(n
k
)(rn−k(u′)k)′ = (n

l
)(rn−l(u′)l)′ , ∀ r > 1.

Then there exists α ∈ R such that

(n
k
)(u′

r
)k − (n

l
)(u′

r
)l = αr−n , ∀ r > 1.(2.10)

By (2.9), (2.10), and the monotonicity of t = (n
k)ξk − (n

l )ξ l , we can conclude that α0 ≤
α < ∞ for m = k and α0 ≤ α ≤ αm for k + 1 ≤ m ≤ n. By the definition of ξ, we can
solve u′/r from (2.10), that is,

u′

r
= ξ(αr−n), ∀ r > 1.

It follows that

u(r) = b + ∫
r

1
sξ(αs−n)ds, ∀ r > 1.

Then, by (2.8) and Lemma 2.2, c = μ(α) ∈ [μ(α0), μ(α1)].
Theorem 1.1 is proved. ∎
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Proof of Theorem 1.3 If ρ ≥ −1 and c = ν(ρ), we will prove that u defined as in (1.9)
is the unique convex solution to (1.8) as follows.

The uniqueness of u follows directly from the comparison principle (see [20,
Theorem 1.7]). It is obvious that u satisfies the second line in (1.8) by taking r = 1
in (1.9). Differentiating (1.9) with respect to r > 1, we have that

u′(r)
r

= 1 +
√

r2 + ρ
r

> 1, ∀ r > 1.(2.11)

By applying Lemma 2.2 with n = m = k = 2 and l = 1, we have that u is convex. By a
direct computation,

S2(D2u) − S1(D2u)

= u′′ u
′

r
− (u′′ + u′

r
)

= 0,

which implies that u satisfies the first line in (1.8). It only remains to prove that u
satisfies the third line in (1.8). Since

r
√

r2 + ρ = r2 + ρ
2
+ O(r−2),

and

ln(r +
√

r2 + ρ) = ln r + ln 2 + O(r−2),

as r → ∞, we have that

u(r) = r2 + ρ
2

ln r + ν(ρ) + O(r−2),(2.12)

as r → ∞, which implies that u satisfies the third line in (1.8).
Conversely, suppose that u is the unique radially symmetric convex solution

to (1.8). The first line in (1.8) can be written as

u′′ u
′

r
= u′′ + u′

r
, ∀ r > 1.

By multiplying the above equation by 2r, we have that

((u′)2)′ = 2(ru′)′ , ∀ r > 1.

Then there exists ρ ∈ R such that

(u′)2 − 2ru′ = ρ, ∀ r > 1.(2.13)

It follows that

Δ(r) ∶= 4(r2 + ρ) ≥ 0, ∀ r > 1,

which implies that ρ ≥ −1. By Lemma 2.2 with n = m = k = 2 and l = 1, we have that

u′(r)
r

> 1, ∀ r > 1.(2.14)
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Combining (2.13) and (2.14), we can solve u′ as

u′(r) = r +
√

r2 + ρ, ∀ r > 1.

Integrating the above equality from 1 to r, we have that u must take the form as in (1.9).
Moreover, by expanding u at infinity as in (2.12), we can conclude that c = ν(ρ).

Theorem 1.3 is proved. ∎

Proof of Corollary 1.4 By the argument in [23], we have that ν(ρ) is increasing on
[−1, 0] and decreasing on [0,∞). Thus,

ν(ρ) ≤ ν(0) = b − 1, ∀ ρ ≥ −1.

Then Corollary 1.4 follows from the above inequality and Theorem 1.3. ∎

Remark 2.3 If k = n = 2, l = 0, we can refer to Theorem 2 in [23].

3 Generalized symmetric functions, subsolutions and
supersolutions

In this section, we will construct a family of generalized symmetric smooth subsolu-
tions and supersolutions of (1.1).

For any A ∈ Ak , l , without loss of generality, we may assume that A is diagonal,
that is,

A = diag(a1 , . . . , an),

where a = (a1 , . . . , an) ∈ Rn and 0 < a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ an .

Definition 3.1 A function u is called a generalized symmetric function with respect
to A if u is of the form

u(x) = u(r) = u(rA(x)) = u((
n
∑
i=1

a i x2
i )

1
2 ),

where r ∶= rA(x) is defined as in (1.12).
If u is both a generalized symmetric function with respect to A and a subsolution

(supersolution, solution) of (1.1), then we say that u is a generalized symmetric
subsolution (supersolution, solution) of (1.1).

By the assumptions on g, there exist functions g , g ∈ C0([0,+∞)) satisfying

0 < inf
r∈[0,+∞)

g(r) ≤ g(r) ≤ g(x) ≤ g(r) ≤ sup
r∈[0,+∞)

g(r) < +∞,∀ x ∈ Rn ,

and

g(r) ≤ g0(r) ≤ g(r),∀ x ∈ Rn .(3.1)
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12 L. Dai, J. Bao, and B. Wang

Moreover, g(r) is strictly increasing in r and for some C1, θ0 > 0, we have that

g(r) = g0(r) + C1r−β , r > θ0(3.2)

and

g(r) = g0(r) − C1r−β , r > θ0 .

In order to construct the subsolutions of (1.1), we want to construct the generalized
symmetric subsolutions or solutions of

Sk(D2v)
S l(D2v) = g(r).(3.3)

However, Proposition A.1 tells us that it is impossible to construct the generalized
symmetric solutions of the above equation for 1 ≤ k ≤ n − 1 directly unless A = âI.

Thus, we will construct the generalized symmetric smooth subsolutions of (3.3).
Indeed, we will construct the subsolutions of the form

w(r) ∶= wβ1 ,η ,δ(r) ∶= β1 + ∫
r

η
θh(θ , δ)dθ , ∀ r ≥ η,

where β1 ∈ R, η > 1, δ > supr∈[1,+∞) g
1

k−l (r), and h = h(θ , δ) is obtained as follows.

Lemma 3.2 For n ≥ 3, 0 ≤ l < k ≤ n, the following problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(r)k + tk rh(r)k−1h′(r)
h(r)l + t l rh(r)l−1h′(r) = g(r), r > 1,

h(1) = δ,
h(r)k + tk rh(r)k−1h′(r) > 0

(3.4)

admits a smooth solution h = h(r, δ) on [1,+∞) satisfying:

(i) g
1

k−l (r) ≤ h(r, δ) ≤ δ, and ∂r h(r, δ) ≤ 0.
(ii) h(r, δ) is continuous and strictly increasing in δ and

lim
δ→+∞

h(r, δ) = +∞, ∀ r ≥ 1.

Proof For brevity, sometimes we write h(r) or h(r, δ), tk(a) or tk and t l(a) or t l ,
when there is no confusion. By (3.4), we have that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dh
dr

= − 1
r

h
tk

h(r)k−l − g(r)
h(r)k−l − g(r) t l

tk

=∶ V(h, r), r > 1,

h(1) = δ.
(3.5)

Then ∂V/∂h is continuous and V satisfies the local Lipschitz condition in the domain
(g

1
k−l (r), δ) × (1,+∞). Since δ > supr∈[0,+∞) g

1
k−l (r) and t l /tk < 1, so by the exis-

tence, uniqueness, and extension theorem for the solution of the initial value problem
of the ODE, we obtain that problem (3.4) has a smooth solution h(r, δ) such that
g

1
k−l (r) ≤ h(r, δ) ≤ δ, and ∂r h(r, δ) ≤ 0. Then assertion (i) of this lemma is proved.
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By (3.4), we have that

(r
k

tk hk(r))′

(r
l

t l h l(r))′
=

k
tk

r
k

tk
−1(h(r)k + tk rh(r)k−1h′(r))

l
t l

r
l

t l
−1(h(r)l + t l rh(r)l−1h′(r))

=
k
tk

r
k

tk
−1

l
t l

r
l

t l
−1

g(r), r > 1,

that is,

(r
k

tk hk(r))′ = kt l
l tk

r
k

tk
− l

t l g(r)(r
l

t l h l(r))′ .

Integrating the above equality from 1 to r, we have that

∫
r

1
(s

k
tk hk(s))′ds = kt l

l tk
∫

r

1
s

k
tk
− l

t l g(s)(s
l

t l h l(s))′ds.

Then

r
k

tk hk(r) − δk = kt l
l tk

∫
r

1
s

k
tk
− l

t l g(s)(s
l

t l h l(s))′ds.(3.6)

Since h(r)k + tk rh(r)k−1h′(r) > 0, then h(r)l + t l rh(r)l−1h′(r) > 0, so also
(r

l
t l h l(r))′ > 0. According to the mean value theorem of integrals, we have that there

exists 1 ≤ θ1 ≤ r such that

r
k

tk hk(r) − δk = kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)∫

r

1
(s

l
t l h l(s))′ds,

i.e.,

F(h, δ, θ1 , r) ∶= r
k

tk hk(r) − δk − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l h l(r) + kt l

l tk
θ

k
tk
− l

t l
1 g(θ1)δ l = 0.

(3.7)

Then we claim that

∂F
∂h

= k [r
k

tk hk−1 − t l
tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l h l−1] > 0.(3.8)

Indeed, by (3.7), we have that

r
k

tk hk(r) − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l h l(r) = δ l [δk−l − kt l

l tk
θ

k
tk
− l

t l
1 g(θ1)] .(3.9)

Since t l ≤ l
n < k

n ≤ tk and δk−l > supr∈[0,+∞) g(r), we have that

δk−l − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1) > 0.(3.10)

Inserting the above inequality into (3.9), we have that

r
k

tk hk(r) − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l h l(r) > 0.
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Since − t l
tk

> − kt l
l tk

, we have that

0 < r
k

tk hk(r) − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l h l(r) < r

k
tk hk(r) − t l

tk
θ

k
tk
− l

t l
1 g(θ1)r

l
t l h l(r),

that is, (3.8).
By the implicit function theorem and the existence and uniqueness of solutions of

(3.4), (3.7) admits a unique function h(r) ∶= h(r, δ) ∶= h(r, δ, θ1). Moreover,

∂h
∂δ

= −∂F
∂δ

/∂F
∂h

.

By (3.8) and (3.10),

∂h
∂δ

=
kδ l−1 [δk−l − t l

tk
θ

k
tk
− l

t l
1 g(θ1)]

kr
l

t l h l−1[r
k

tk
− l

t l hk−l − t l
tk

θ
k

tk
− l

t l
1 g(θ1)]

> 0.(3.11)

By (3.9), we have that

h l(r) [r
k

tk hk−l(r) − kt l
l tk

θ
k

tk
− l

t l
1 g(θ1)r

l
t l ] = δ l [δk−l − kt l

l tk
θ

k
tk
− l

t l
1 g(θ1)] .

As δ → +∞, the right side of the above equality tends to +∞. Since h is increasing in
δ by (3.11), we can conclude that h(r, δ, θ1) → +∞, as δ → +∞. This lemma is proved.

∎

The asymptotic behavior of w can be given as follows.

Lemma 3.3 As r → ∞,

w(r) = ∫
r

0
θh0(θ)dθ + μβ1 ,η(δ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(r2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(r2− k−l
tk−t l ln r), if β = k−l

tk−t l
,

(3.12)

where

μβ1 ,η(δ) → +∞, as δ → +∞.(3.13)

Proof Let h0 satisfy (1.15). From the equation in (1.15), we have that

k−l
tk−t l

r
k−l

tk−t l
−1h0(r)

kt l−l tk
tk−t l [h0(r)k + tk rh0(r)k−1h′0(r)]

k−l
tk−t l

r
k−l

tk−t l
−1h0(r)

kt l−l tk
tk−t l [h0(r)l + t l rh0(r)l−1h′0(r)]

= g0(r), r > 0.

It follows that

(r
k−l

tk−t l h
(k−l)tk

tk−t l
0 )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l
0 )′

= g0(r), r > 0.(3.14)
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Integrating the above equality on both sides, we have that

h0(r) = (r−
k−l

tk−t l ∫
r

0
g0(s)(s

k−l
tk−t l h0(s)

(k−l)t l
tk−t l )′ds)

tk−t l
(k−l)tk

.(3.15)

Rewrite w(r) as

w(r) = β1 + ∫
+∞

η
θh(θ)dθ − ∫

+∞

r
θh(θ)dθ

= β1 + ∫
+∞

η
θh(θ)dθ + ∫

r

0
θh0(θ)dθ − ∫

r

0
θh0(θ)dθ − ∫

+∞

r
θh(θ)dθ

= β1 + ∫
+∞

η
θh(θ)dθ + ∫

r

0
θh0(θ)dθ − ∫

η

0
θh0(θ)dθ − ∫

+∞

η
θh0(θ)dθ

+ ∫
+∞

r
θh0(θ)dθ − ∫

+∞

r
θh(θ)dθ

= ∫
r

0
θh0(θ)dθ + β1 − ∫

η

0
θh0(θ)dθ + ∫

+∞

η
θ[h(θ) − h0(θ)]dθ

− ∫
+∞

r
θ[h(θ) − h0(θ)]dθ

= ∫
r

0
θh0(θ)dθ + μβ1 ,η(δ) − ∫

+∞

r
θ[h(θ) − h0(θ)]dθ ,

(3.16)

where

μβ1 ,η(δ) ∶= β1 − ∫
η

0
θh0(θ)dθ + ∫

+∞

η
θ[h(θ) − h0(θ)]dθ .

By (3.4),

k−l
tk−t l

r
k−l

tk−t l
−1h(r)

kt l−l tk
tk−t l [h(r)k + tk rh(r)k−1h′(r)]

k−l
tk−t l

r
k−l

tk−t l
−1h(r)

kt l−l tk
tk−t l [h(r)l + t l rh(r)l−1h′(r)]

= g(r), r > 1.

It follows that

(r
k−l

tk−t l h
(k−l)tk

tk−t l )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l )′
= g(r), r > 1,(3.17)

that is,

(r
k−l

tk−t l h
(k−l)tk

tk−t l )′ = g(r)(r
k−l

tk−t l h
(k−l)t l

tk−t l )′ , r > 1.

Integrating the above equality from 1 to r, we obtain that

r
k−l

tk−t l h
(k−l)tk

tk−t l − δ
(k−l)tk

tk−t l = ∫
r

1
g(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds.
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It follows that

h(r) = (δ
(k−l)tk

tk−t l r−
k−l

tk−t l + r−
k−l

tk−t l ∫
r

1
g(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds)

tk−t l
(k−l)tk

(3.18)

and

w(r) = β1 + ∫
r

η
θ (δ

(k−l)tk
tk−t l θ−

k−l
tk−t l + θ−

k−l
tk−t l

× ∫
θ

1
g(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds)

tk−t l
(k−l)tk

dθ , ∀ r ≥ η > 1.

Since by (3.2), g(r) = g0(r) + C1r−β , r > θ0, then the last term in (3.16) is

− ∫
+∞

r
θ[h(θ) − h0(θ)]dθ

= − ∫
+∞

r
θ
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(δ

(k−l)tk
tk−t l θ

− k−l
tk−t l + θ

− k−l
tk−t l ∫

θ

1
g(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds)

tk−t l
(k−l)tk − h0(θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dθ

= − ∫
+∞

r
θ
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[δ0θ

− k−l
tk−t l + θ

− k−l
tk−t l ∫

θ

θ0

(g0(s) + C1s−β)(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )
′

ds)
tk−t l
(k−l)tk − h0(θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dθ

= − ∫
+∞

r
θ {[δ0θ

− k−l
tk−t l + θ

− k−l
tk−t l (∫

θ

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )

′

ds

−∫
θ0

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )

′

ds)

+θ
− k−l

tk−t l ∫
θ

θ0

C1s−β(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ds]
tk−t l
(k−l)tk − h0(θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dθ ,

= − ∫
+∞

r
θ {[δ1θ

− k−l
tk−t l + θ

− k−l
tk−t l ∫

θ

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds

+ θ
− k−l

tk−t l ∫
θ

θ0

C1s−β(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ds]
tk−t l
(k−l)tk − h0(θ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dθ

= − ∫
+∞

r
θh0(θ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ1θ
− k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

+
θ
− k−l

tk−t l ∫ θ
0 g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds − h

(k−l)tk
tk−t l

0 (θ)

h
(k−l)tk

tk−t l
0 (θ)

+ 1

+
θ
− k−l

tk−t l ∫ θ
θ0

C1s−β(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ds

h
(k−l)tk

tk−t l
0 (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

tk−t l
(k−l)tk

− 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

dθ ,

(3.19)
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where δ0 = δ
(k−l)tk

tk−t l + ∫
θ0

1 g(s)(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ds and δ1 = δ0 − ∫
θ0

0 g0(s)

(s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ds. In (3.19), we let

Q(θ) ∶= θ−
k−l

tk−t l ∫
θ

θ0
C1s−β(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds.

Then, if β /= k−l
tk−t l

,

Q(θ) = θ−
k−l

tk−t l ∫
θ

θ0
C1s−β(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds

= θ−
k−l

tk−t l (C1θ
k−l

tk−t l
−β h

(k−l)t l
tk−t l (θ) − C1θ

k−l
tk−t l

−β
0 h

(k−l)t l
tk−t l (θ0)

+C1β ∫
θ

θ0
s−β−1s

k−l
tk−t l h(s)

(k−l)t l
tk−t l ds)

= C2θ−β + C3θ−
k−l

tk−t l + C1βh(κ0)
(k−l)t l

tk−t l θ−
k−l

tk−t l ∫
θ

θ0
s−β−1s

k−l
tk−t l ds(3.20)

= C2θ−β + C3θ−
k−l

tk−t l + C1βh(κ0)
(k−l)t l

tk−t l

k−l
tk−t l

− β
θ−β − C1βh(κ0)

(k−l)t l
tk−t l

k−l
tk−t l

− β
θ

k−l
tk−t l

−β
0 θ−

k−l
tk−t l

= C4θ−β + C5θ−
k−l

tk−t l ,(3.21)

where C2 ∶= C2(θ) = C1h
(k−l)t l

tk−t l (θ) and C3 = −C1θ
k−l

tk−t l
−β

0 h
(k−l)t l

tk−t l (θ0). In (3.20), we
employ the integration by parts and the mean value theorem of integrals and κ0 ∈

[θ0 , θ], C4 = C2 + C1 βh(κ0)
(k−l)t l

tk−t l
k−l

tk−t l
−β , C5 = C3 − C1 βh(κ0)

(k−l)t l
tk−t l

k−l
tk−t l

−β θ
k−l

tk−t l
−β

0 .

In (3.19), we set

R(θ) ∶= θ−
k−l

tk−t l ∫
θ

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds − h

(k−l)tk
tk−t l

0 (θ)

= θ−
k−l

tk−t l ∫
θ

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds − θ−

k−l
tk−t l ∫

θ

0
g0(s)(s

k−l
tk−t l h0(s)

(k−l)t l
tk−t l )′ds

= θ−
k−l

tk−t l ∫
θ

0
g0(s)((s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ − (s

k−l
tk−t l h0(s)

(k−l)t l
tk−t l )′) ds.

(3.22)

According to (3.14) and (3.17), we can have that

lim
r→+∞

(r
k−l

tk−t l h
(k−l)tk

tk−t l )′

(r
k−l

tk−t l h
(k−l)tk

tk−t l
0 )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l
0 )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l )′
= lim

r→+∞

g(r)
g0(r) = 1.
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Consequently,

lim
r→+∞

(r
k−l

tk−t l h
(k−l)tk

tk−t l )′

(r
k−l

tk−t l h
(k−l)tk

tk−t l
0 )′

= lim
r→+∞

(r
k−l

tk−t l h
(k−l)t l

tk−t l )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l
0 )′

.(3.23)

On the other hand, in light of (3.14) and (3.17), we know that

(h0(r))
(k−l)tk

tk−t l = r−
k−l

tk−t l ∫
r

0
g0(s)(s

k−l
tk−t l h0(s)

(k−l)t l
tk−t l )′ds

and

(h(r))
(k−l)tk

tk−t l = r−
k−l

tk−t l ∫
r

0
g(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds.

As a result,

lim
r→+∞

(h(r))
(k−l)tk

tk−t l

(h0(r))
(k−l)tk

tk−t l

= lim
r→+∞

g(r)(r
k−l

tk−t l h
(k−l)t l

tk−t l )′

g0(r)(r
k−l

tk−t l h
(k−l)t l

tk−t l
0 )′

= lim
r→+∞

(r
k−l

tk−t l h
(k−l)t l

tk−t l )′

(r
k−l

tk−t l h
(k−l)t l

tk−t l
0 )′

.(3.24)

Likewise, we also have that

lim
r→+∞

(h(r))
(k−l)t l

tk−t l

(h0(r))
(k−l)t l

tk−t l

= lim
r→+∞

(r
k−l

tk−t l h
(k−l)tk

tk−t l )′

(r
k−l

tk−t l h
(k−l)tk

tk−t l
0 )′

.(3.25)

From (3.23)–(3.25), we get that

lim
r→+∞

(h(r))
(k−l)tk

tk−t l

(h0(r))
(k−l)tk

tk−t l

= lim
r→+∞

(h(r))
(k−l)t l

tk−t l

(h0(r))
(k−l)t l

tk−t l

.

So

lim
r→+∞

h(r)
h0(r) = 1.

And, therefore, the term ∫
θ

0 g0(s)((s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ − (s
k−l

tk−t l h0(s)
(k−l)t l

tk−t l )′) ds in

(3.22) is bounded and thus

θ−
k−l

tk−t l ∫
θ

0
g0(s)(s

k−l
tk−t l h(s)

(k−l)t l
tk−t l )′ds − h

(k−l)tk
tk−t l

0 (θ) = C10θ−
k−l

tk−t l ,(3.26)

where c10 = c10(θ) = ∫
θ

0 g0(s)((s
k−l

tk−t l h(s)
(k−l)t l

tk−t l )′ − (s
k−l

tk−t l h0(s)
(k−l)t l

tk−t l )′) ds. Hence,

by (3.21) and (3.26), we know that
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− ∫
+∞

r
θ[h(θ) − h0(θ)]dθ

= − ∫
+∞

r
θh0(θ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

δ1θ−
k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

+ C10θ−
k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

+ 1 + C4θ−β + C5θ−
k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

⎤⎥⎥⎥⎥⎥⎥⎦

tk−t l
(k−l)tk

− 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

dθ .

(3.27)

Thus, due to the fact that h0 is bounded, then (3.27) becomes

−∫
+∞

r
θ[h(θ) − h0(θ)]dθ = − ∫

+∞

r
O(θ1− k−l

tk−t l ) + O(θ1−β)dθ

=O(r2−min{β , k−l
tk−t l

}), as r → +∞.

If β = k−l
tk−t l

, then by (3.20),

Q(θ) = C2θ−
k−l

tk−t l + C3θ−
k−l

tk−t l + C1
k − l

tk − t l
h(κ0)

(k−l)t l
tk−t l θ−

k−l
tk−t l (ln θ − ln θ0)

= C6θ−
k−l

tk−t l ln θ + C7θ−
k−l

tk−t l ,(3.28)

where C6 = C1
k−l

tk−t l
h(κ0)

(k−l)t l
tk−t l , C7 ∶= C2 + C3 − C1

k−l
tk−t l

h(κ0)
(k−l)t l

tk−t l ln θ0 . Therefore,
by (3.19), (3.22), and (3.28), we know that

− ∫
+∞

r
θ[h(θ) − h0(θ)]dθ

= − ∫
+∞

r
θh0(θ)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ1θ
− k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

+ C10θ
− k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

+ 1 + C6θ
− k−l

tk−t l ln θ + C7θ
− k−l

tk−t l

h
(k−l)tk

tk−t l
0 (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

tk−t l
(k−l)tk

− 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

dθ .

(3.29)

Hence, by the fact that h0 is bounded, then (3.29) turns into

−∫
+∞

r
θ[h(θ) − h0(θ)]dθ = − ∫

+∞

r
O(θ1− k−l

tk−t l ) + O(θ1− k−l
tk−t l ln θ)dθ

=O(r2− k−l
tk−t l ln r), as r → +∞.

To sum up, we can get (3.12). By Lemma 3.2(ii), we know that (3.13) holds. ∎

Let

W(x) ∶= Wβ1 ,η ,δ ,A(x) ∶= w(r) ∶= wβ1 ,η ,δ(r), ∀ x ∈ Rn/Eη ,

where Eη ∶= {x ∈ Rn ∶ r < η}. Then we can conclude that such W is a generalized
symmetric smooth subsolution of (1.1) as follows.
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Theorem 3.4 W is a smooth k-convex subsolution of (1.1) in R
n/Ēη .

Proof By the definition of w, we have that w′ = rh and w′′ = h + rh′. It follows that
for i, j = 1, . . ., n,

∂ i jW = ha i δ i j +
h′

r
(a i x i)(a jx j).

By Lemma A.2, we have that for j = 1, . . ., k,

S j(D2W) = σ j(λ(D2W))

= σ j(a)h j + h′

r
h j−1

n
∑
i=1

σ j−1;i(a)a2
i x2

i

≥ σ j(a)h j + t j(a)σ j(a)rh j−1h′

= σ j(a)h j−1(h + t j(a)rh′),(3.30)

where we have used the facts that h ≥ g
1

k−l > 0 and h′ ≤ 0 for any r ≥ 1 by Lemma 3.2(i).
Since l < k, t l ≤ tk ≤ k

n ≤ tk , then − t l
tk

≥ −1. It follows that

0 ≤ hk−l − g(r)
hk−l − g(r) t l

tk

≤ 1 ≤ tk

t j
, j ≤ k,

and

h′ = − 1
r

h
tk

h(r)k−l − g(r)
h(r)k−l − g(r) t l

tk

≥ − 1
r

h
tk

tk

t j
= − 1

r
h
t j

.

Thus, h + t jrh′ ≥ 0. Hence, by (3.30), S j(D2w) ≥ 0 for j = 1, . . . , k. Moreover, by (3.5)
and the fact that σk(a) = σl(a), we have that for any x ∈ Rn/Ēη ,

Sk(D2W)
S l(D2W) = σk(λ(D2W))

σl(λ(D2W))

=
σk(a)hk + h′

r hk−1 ∑n
i=1 σk−1;i(a)a2

i x2
i

σl(a)h l + h′
r h l−1 ∑n

i=1 σl−1;i(a)a2
i x2

i

≥ σk(a)hk + tk(a)σk(a)rhk−1h′

σl(a)h l + t l(a)σl(a)rh l−1h′

= hk + tk(a)rhk−1h′

h l + t l(a)rh l−1h′

= g(r) ≥ g(x).

Then we complete the proof. ∎

Next we shall construct the generalized symmetric supersolution of (1.1) of the form

Ψ(x) ∶= Ψβ2 ,η ,τ ,A(x) ∶= ψ(r) ∶= ψβ2 ,η ,τ(r) ∶= β2 + ∫
r

η
θH(θ , τ)dθ , ∀ x ∈ Rn/Eη ,

where β2 ∈ R and H is obtained from the following lemma.
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Lemma 3.5 For n ≥ 3 and 0 ≤ l < k ≤ n. Let t l
tk

g(1) < τk−l < g(1). Then the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H(r)k + tk rH(r)k−1H′(r)
H(r)l + t l rH(r)l−1H′(r) = g(r), r > 1,

H(1) = τ
(3.31)

admits a smooth solution H(r) = H(r, τ) on [1,+∞) satisfying:

(i) t l
tk

g(r) < Hk−l(r, τ) < g(r), ∂r H(r, τ) ≥ 0 for r ≥ 1.
(ii) H(r, τ) is continuous and strictly increasing with respect to τ.

Proof For brevity, we sometimes write H(r) or H(r, τ) when there is no confusion.
From (3.31), we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dH
dr

= − 1
r

H
tk

H(r)k−l − g(r)
H(r)k−l − g(r) t l

tk

, r > 1,

H(1) = τ.
(3.32)

Since t l
tk

g(1) < τk−l < g(1) and g(r) is strictly increasing, by the existence, unique-
ness, and extension theorem for the solution of the initial value problem of the
ODE, we can get that the problem has a smooth solution H(r, δ) satisfying t l

tk
g(r) <

Hk−l(r, τ) < g(r), and ∂r H(r, τ) ≥ 0, that is, (i) of this lemma.
Let

p(H) ∶= p(H(r, τ)) ∶= H(r, τ)
tk

H(r, τ)k−l − g(r)
H(r, τ)k−l − g(r) t l

tk

.

Then (3.32) becomes
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂H
∂r

= − 1
r

p(H(r, τ)), r > 1,

H(1, τ) = τ.
(3.33)

Differentiating (3.33) with τ, we have that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2H
∂r∂τ

= − 1
r

p′(H)∂H
∂τ

,

∂H(1, τ)
∂τ

= 1.

It follows that
∂H(r, τ)

∂τ
= q(r) = exp∫

r

1
(− 1

s
)p′(H(s, τ))ds > 0,

that is, (ii) of this lemma. ∎

Remark 3.6 If g ≡ 1, then we choose g ≡ g ≡ 1, δ = τ = 1. Then h ≡ 1 and H ≡ 1 satisfy
(3.4) and (3.32), respectively.
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Analogous to (3.12),

ψ(r) = ∫
r

0
θh0(θ)dθ + νβ2 ,η(τ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(r2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(r2− k−l
tk−t l ln r), if β = k−l

tk−t l
,

(3.34)

as r → +∞, where

νβ2 ,η(τ) ∶= β2 − ∫
η

0
θh0(θ)dθ + ∫

+∞

η
θ[H(θ) − h0(θ)]dθ .

Theorem 3.7 Ψ is a k-convex supersolution of (1.1) in R
n/Eη .

Proof By Lemma A.2, we have that for j = 1, . . ., k,

S j(D2Ψ) = σ j(λ(D2Ψ))

= σ j(a)H(r) j + H′(r)
r

H(r) j−1
n
∑
i=1

σ j−1;i(a)a2
i x2

i ≥ 0,

where we have used the fact that H′ ≥ 0 by Lemma 3.5(i). Moreover, by (3.31), we have
that for any x ∈ Rn/Eη ,

Sk(D2Ψ)
S l(D2Ψ) = σk(λ(D2Ψ))

σl(λ(D2Ψ))

=
σk(a)H(r)k + H′(r)

r H(r)k−1 ∑n
i=1 σk−1;i(a)a2

i x2
i

σl(a)H(r)l + H′(r)
r H(r)l−1 ∑n

i=1 σl−1;i(a)a2
i x2

i

≤ H(r)k + tk rH(r)k−1H′

H(r)l + t l rH(r)l−1H′

= g(r) ≤ g(x).(3.35)

∎

4 Proof of Theorem 1.6

Before proving Theorem 1.6, we will first give some lemmas which will be used later.

Lemma 4.1 Suppose that ϕ ∈ C2(∂Ω). Then there exists some constant C, depending
only on g , n, ∣∣ϕ∣∣C2(∂Ω), the upper bound of A, the diameter and the convexity of Ω,
and the C2 norm of ∂Ω, such that, for each ς ∈ ∂Ω, there exists x(ς) ∈ Rn such that
∣x(ς)∣ ≤ C,

ρς < ϕ on ∂Ω/{ς} and ρς(ς) = ϕ(ς),

where

ρς(x) = ϕ(ς) + Ξ
2
[(x − x(ς))T A(x − x(ς)) − (ς − x(ς))T A(ς − x(ς))], x ∈ Rn ,

and (
n
k)Ξk

(n
l)Ξ l > sup

E2R

g for some R > 0 such that E1 ⊂⊂ Ω ⊂⊂ ER .
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Proof The proof of Lemma 4.1 is similar to the proof of Lemma 3.1 in [9]. We only
substitute the constant F 1

k in Lemma 3.1 in [9] with Ξ. Here, we omit its proof. ∎

Lemma 4.2 [11, Lemma 2.2] Let B be a ball in R
n , and let f ∈ C0(B) be nonnegative.

Suppose that u ∈ C0(B) satisfies Sk(D2u) ≥ f (x) in B in the viscosity sense. Then the
Dirichlet problem

Sk(D2u)
S l(D2u) = f (x), x ∈ B,

u = u(x), x ∈ ∂B

admits a unique k-convex viscosity solution u ∈ C0(B).

Lemma 4.3 [11, Lemma 2.3] Let D be a domain in R
n , and let f ∈ C0(Rn) be

nonnegative. Assume that v ∈ C0(D) and u ∈ C0(Rn) are two k-convex functions
satisfying in the viscosity sense

Sk(D2v)
S l(D2v) ≥ f (x), x ∈ D,

and

Sk(D2u)
S l(D2u) ≥ f (x), x ∈ Rn ,

respectively, u ≤ v on D and u = v on ∂D.
Let

w(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v(x), x ∈ D,

u(x), x ∈ Rn/D.

Then w ∈ C0(Rn) is a k-convex function satisfying

Sk(D2w)
S l(D2w) ≥ f (x) in R

n in the viscosity sense.

Proof of Theorem 1.6 Without loss of generality, we may assume that A =
diag(a1 , . . . , an) ∈ Ak , l , 0 < a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ an and b = 0.

For any δ > supr∈[1,+∞) g
1

k−l (r), let

Wδ(x) ∶= κ1 + ∫
rA(x)

R
θh(θ , δ)dθ ∀x ∈ R

n/{0},

where rA(x) is defined as in (1.12), where ρς(x) and h(r, δ) are obtained from
Lemmas 4.1 and 3.2, respectively, and κ1 ∶= minx∈ER/Ω

ς∈∂Ω
ρς(x).

Let

φ(x) ∶= max
ς∈∂Ω

ρς(x).

https://doi.org/10.4153/S0008414X23000834 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000834


24 L. Dai, J. Bao, and B. Wang

Since ρς satisfies

Sk(D2ρς)
S l(D2ρς)

≥ g(x) in E2R ,

then φ satisfies

Sk(D2φ)
S l(D2φ) ≥ g(x) in E2R in the viscosity sense,(4.1)

and

φ = ϕ on ∂Ω.(4.2)

By Theorem 3.4, we have that Wδ is a smooth k-convex subsolution of (1.1), i.e.,

Sk(D2Wδ)
S l(D2Wδ)

≥ g(x) in R
n/Ω̄.(4.3)

Since Ω ⊂⊂ ER , we can conclude that

Wδ ≤ κ1 ≤ ρς ≤ φ on ĒR/Ω.(4.4)

Moreover, by Lemma 3.2, Wδ is strictly increasing in δ and

lim
δ→+∞

Wδ(x) = +∞, ∀ rA(x) > R.

By (3.12), we have that

Wδ(x) = ∫
rA(x)

0
θh0(θ)dθ + μ(δ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣x∣2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(∣x∣2−
k−l

tk−t l ln ∣x∣), if β = k−l
tk−t l

,

as ∣x∣ → +∞, where

μ(δ) ∶= κ1 − ∫
R

0
θh0(θ)dθ + ∫

+∞

R
θ[h(θ) − h0(θ)]dθ .

Let

uκ2 ,τ(x) ∶= κ2 + ∫
rA(x)

1
θH(θ , τ)dθ , ∀ x ∈ Rn/Ω,

where κ2 is any constant, t l
tk

g(1) < τk−l < g(1) and H is obtained from Lemma 3.5.
Then we have that, by (3.35),

Sk(D2uκ2 ,τ)
S l(D2uκ2 ,τ)

≤ g(x), ∀ x ∈ Rn/Ω,(4.5)

and by (3.34), as ∣x∣ → +∞,

uκ2 ,τ(x) = ∫
rA(x)

0
θh0(θ)dθ + νκ2(τ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣x∣2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(∣x∣2−
k−l

tk−t l ln ∣x∣), if β = k−l
tk−t l

,
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where

νκ2(τ) ∶= κ2 − ∫
1

0
θh0(θ)dθ + ∫

+∞

1
θ[H(θ , τ) − h0(θ)]dθ

is convergent.
Since Wδ is strictly increasing in δ, then there exists some δ̂ > supr∈[1,+∞) g

1
k−l (r)

such that min∂E2R Wδ̂ > max∂E2R φ. It follows that

Wδ̂ > φ on ∂E2R .(4.6)

Clearly, μ(δ) is strictly increasing in δ. By (3.13), we have that limδ→+∞ μ(δ) = +∞.
Let

ĉ ∶= ĉ(τ) ∶= sup
E2R/Ω

φ − ∫
1

0
θh0(θ)dθ + ∫

+∞

1
θ[H(θ) − h0(θ)]dθ

and

c̃ ∶= max{ĉ, μ(δ̂), max
ς∈∂Ω

x∈E2R/Ω

ρς(x)}.

Then, for any c > c̃, there is a unique δ(c) such that μ(δ(c)) = c. Consequently, we
have that

Wδ(c)(x) = ∫
rA(x)

0
θh0(θ)dθ + c +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣x∣2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(∣x∣2−
k−l

tk−t l ln ∣x∣), if β = k−l
tk−t l

,
(4.7)

as ∣x∣ → +∞, and

δ(c) = μ−1(c) > μ−1(μ(δ̂)) = δ̂.

By the monotonicity of Wδ in δ and (4.6), we conclude that

Wδ(c) ≥ Wδ̂ > φ on ∂E2R .(4.8)

Taking κ2 such that νκ2(τ) = c. Then we have that

κ2 =c + ∫
1

0
θh0(θ)dθ − ∫

+∞

1
θ[H(θ , τ) − h0(θ)]dθ ,(4.9)

and as ∣x∣ → +∞,

uκ2 ,τ(x) = ∫
rA(x)

0
θh0(θ)dθ + c +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣x∣2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(∣x∣2−
k−l

tk−t l ln ∣x∣), if β = k−l
tk−t l

.
(4.10)

Define

u(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

max{Wδ(c)(x), φ(x)}, x ∈ E2R/Ω,
Wδ(c)(x), x ∈ Rn/E2R .
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Then, by (4.8), we have that u ∈ C0(Rn/Ω). By (4.1), (4.3), and Lemma 4.3, u satisfies
in the viscosity sense

Sk(D2u)
S l(D2u) ≥ g(x) in R

n/Ω.

By (4.4) and (4.2), we obtain that u = ϕ on ∂Ω. Moreover, by (4.7), we have that u
satisfies the asymptotic behavior (4.10) at infinity.

By the definitions of c̃, uκ2 , and φ, we have that

uκ2 ,τ ≥ κ2 ≥ φ inE2R/Ω.(4.11)

By (4.4), Wδ(c) ≤ φ ≤ uκ2 ,τ on ∂Ω. By (4.3), (4.5), (4.7), (4.10), and the comparison
principle, we have that

Wδ(c) ≤ uκ2 ,τ in R
n/Ω.(4.12)

Let u ∶= uκ2 ,τ in R
n/Ω. By (4.11), (4.12), and the definition of u, we have that u ≤ u in

R
n/Ω.

For any c > c̃, let Sc denote the set of ρ ∈ C0(Rn/Ω) which are viscosity subsolu-
tions of (1.1) and (1.2) satisfying ρ = ϕ on ∂Ω and ρ ≤ u in R

n/Ω. Apparently, u ∈ Sc ,
which implies that Sc ≠ ∅. Define

u(x) ∶= sup{ρ(x)∣ρ ∈ Sc}, ∀ x ∈ Rn/Ω.

Then

u ≤ u ≤ u in R
n/Ω.

Hence, by the asymptotic behavior of u and u at infinity, we have that

u(x) = ∫
rA(x)

0
θh0(θ)dθ + c +

⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(∣x∣2−min{β , k−l
tk−t l

}), if β /= k−l
tk−t l

,

O(∣x∣2−
k−l

tk−t l ln ∣x∣), if β = k−l
tk−t l

,

as ∣x∣ → +∞.
Next, we will show that u = ϕ on ∂Ω. On one side, since u = ϕ on ∂Ω, we have that

lim inf
x→ς

u(x) ≥ lim
x→ς

u(x) = ϕ(ς), ς ∈ ∂Ω.

On the other side, we want to prove that

lim sup
x→ς

u(x) ≤ ϕ(ς), ς ∈ ∂Ω.

Let ϑ ∈ C2(E2R/Ω) satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δϑ = 0, in E2R/Ω̄,
ϑ = ϕ, on ∂Ω,
ϑ = max∂E2R u, on ∂E2R .
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By Newton’s inequality, for any ρ ∈ Sc , we have that Δρ ≥ 0 in the viscosity sense.
Moreover, ρ ≤ ϑ on ∂(E2R/Ω). Then, by the comparison principle, we have that
ρ ≤ ϑ in E2R/Ω. It follows that u ≤ ϑ in E2R/Ω. Therefore,

lim sup
x→ς

u(x) ≤ lim
x→ς

ϑ(x) = ϕ(ς) for ς ∈ ∂Ω.

Finally, we will prove that u ∈ C0(Rn/Ω) is a viscosity solution of (1.1). For any
x ∈ Rn/Ω, choose some ε > 0 such that Bε = Bε(x) ⊂ R

n/Ω. By Lemma 4.2, the
following Dirichlet problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sk(D2ũ)
S l(D2ũ) = g(y), in Bε ,

ũ = u, on ∂Bε

(4.13)

admits a unique k-convex viscosity solution ũ ∈ C0(Bε). By the comparison principle,
u ≤ ũ in Bε . Define

w̃(y) =
⎧⎪⎪⎨⎪⎪⎩

ũ(y), in Bε ,
u(y), in (Rn/Ω)/Bε .

Then w̃ ∈ Sc . Indeed, by the comparison principle, ũ(y) ≤ u(y) in B̄ε . It follows that
w̃ ≤ u in R

n/Bε . By Lemma 4.3, we have that Sk(D2w̃)
S l (D2w̃) ≥ g(y) in R

n/Ω in the viscosity
sense. Therefore, w̃ ∈ Sc .

By the definition of u, u ≥ w̃ in R
n/Ω. It follows that u ≥ ũ in Bε . Hence, u ≡ ũ

in Bε . Since ũ satisfies (4.13), then we have that in the viscosity sense,

Sk(D2u)
S l(D2u) = g(y), ∀ y ∈ Bε .

In particular, we have that in the viscosity sense,

Sk(D2u)
S l(D2u) = g(x).

Since x is arbitrary, we can conclude that u is a viscosity solution of (1.1).
Theorem 1.6 is proved. ∎

A Appendix

In this appendix, we will show that it is impossible to construct the generalized
symmetric solution of (3.3).

Proposition A.1 If there exists a C2 function defined on (r1 , r2) such that T(x) ∶= G(r)
is a generalized symmetric solution of (3.3), then

k = n, or a1 = ⋅ ⋅ ⋅ = an = â = ((n
l
)/(n

k
))

1
k−l

,

where r = rA is defined as in (1.12).

Before proving the above proposition, we will first give some elementary lemmas.
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Lemma A.2 If M = (p i δ i j + sq i q j)n×n with p, q ∈ Rn and s ∈ R, then

σk(λ(M)) = σk(p) + s
n
∑
i=1

σk−1;i(p)q2
i , k = 1, . . . , n.

Proof See [2]. ∎

Lemma A.3 Suppose that ϕ̃ ∈ C2[0,+∞) and Φ̃(x) ∶= ϕ̃(r). Then Φ̃ satisfies

Sk(D2Φ̃) = σk(a)h̃(r)k + h̃′(r)
r

h̃(r)k−1
n
∑
i=1

σk−1;i(a)a2
i x2

i ,(A.1)

where h̃(r) ∶= ϕ̃′(r)/r.

Proof Since r2 = xT Ax = ∑n
i=1 a i x2

i , we have that

2r∂x i r = ∂x i (r2) = 2a i x i and ∂x i r =
a i x i

r
.

It follows that

∂x i Φ̃(x) = ϕ̃′(r)∂x i r =
ϕ̃′(r)

r
a i x i ,

∂x i x j Φ̃(x) = ϕ̃′(r)
r

a i δ i j +
ϕ̃′′(r) − ϕ̃′(r)

r
r2 (a i x i)(a jx j)

= h̃(r)a i δ i j +
h̃′(r)

r
(a i x i)(a jx j).

By Lemma A.2, we have that

Sk(D2Φ̃) = σk(λ(D2Φ̃))

= σk(a)h̃(r)k + h̃′(r)
r

h̃(r)k−1
n
∑
i=1

σk−1;i(a)a2
i x2

i . ∎

Lemma A.4 Let a = (a1 , a2 , . . . , an) satisfy 0 < a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ an . Then, for
1 ≤ k ≤ n,

0 < tk ≤ k
n
≤ tk ≤ 1,(A.2)

0 = t0 < 1
n
≤ an

σ1(a) = t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tn−1 < tn = 1,

and

0 = t0 < a1

σ1(a) = t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tn−1 < tn = 1,

where tk and tk are defined as in (1.4) and (1.5). Moreover, for 1 ≤ k ≤ n − 1,

tk = tk = k
n

if and only if a1 = ⋅ ⋅ ⋅ = an = C for some C > 0.
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Remark A.5 From (A.2), we know that

0 < a1

σ1(a) ≤ t l ≤
l
n
< k

n
≤ tk ≤ 1.

Then

0 < tk − t l < 1.

Now we give the proof of Proposition A.1.

Proof For the special case l = 0, 1 ≤ k ≤ n, the Hessian equation case, Proposition
A.1 can be proved similarly with Proposition 2.2 in [9]. We only need to prove the case
1 ≤ l < k ≤ n.

Let J(r) = G′(r)/r. By (A.1), we know that T satisfies

Sk(D2T)
S l(D2T) =

σk(a)J(r)k + J′(r)
r J(r)k−1

n
∑
i=1

σk−1;i(a)a2
i x2

i

σl(a)J(r)l + J′(r)
r J(r)l−1

n
∑
i=1

σl−1;i(a)a2
i x2

i

= g(r).

Set x = (0, . . . , 0,
√

r/a i , 0, . . . , 0). Then

Sk(D2T)
S l(D2T) = σk(a)J(r)k + J′(r)J(r)k−1σk−1;i(a)a i

σl(a)J(r)l + J′(r)J(r)l−1σl−1;i(a)a i
= g(r).

So

σk(a)J(r)k + J′(r)J(r)k−1σk−1;i(a)a i = g(r)[σl(a)J(r)l + J′(r)J(r)l−1σl−1;i(a)a i].
(A.3)

Since σk(a) = σl(a), then

J(r)k − g(r)J(r)l

J′(r) = g(r)J(r)l−1σl−1;i(a)a i − J(r)k−1σk−1;i(a)a i

σk(a) .(A.4)

Noting that the left side of (A.4) is independent of i, so for any i /= j, we have that

g(r)J(r)l−1σl−1;i(a)a i − J(r)k−1σk−1;i(a)a i = g(r)J(r)l−1σl−1; j(a)a j − J(r)k−1σk−1; j(a)a j .

As a result,

g(r)J(r)l−1[σl−1;i(a)a i − σl−1; j(a)a j] = J(r)k−1[σk−1;i(a)a i − σk−1; j(a)a j].
(A.5)

Applying the equality σk(a) = σk ;i(a) + a i σk−1;i(a) for all i , we get that

σl−1;i(a)a i − σl−1; j(a)a j

= [σl−1;i j(a) + σl−2;i j(a)a j]a i − [σl−1;i j(a) + σl−2;i j(a)a i]a j

= σl−1;i j(a)(a i − a j).

Therefore, (A.5) becomes

g(r)J(r)l−1σl−1;i j(a)(a i − a j) = J(r)k−1σk−1;i j(a)(a i − a j).

https://doi.org/10.4153/S0008414X23000834 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000834


30 L. Dai, J. Bao, and B. Wang

If k = n, then σk−1;i j(a) = 0 for any i /= j. But σl−1;i j(a) > 0, so we get that

a1 = ⋅ ⋅ ⋅ = an = â.

If 1 ≤ l < k ≤ n − 1, then σk−1;i j(a) > 0 and σl−1;i j(a) > 0. Suppose on the contrary that
a i /= a j , then

g(r)J(r)l−1σl−1;i j(a) = J(r)k−1σk−1;i j(a).

Thus,
σk−1;i j(a)
σl−1;i j(a) = g(r)J(r)l−1

J(r)k−1 = g(r)J(r)l−k .(A.6)

Since the left side is independent of r, then g(r)J(r)l−k is a constant c0 > 0. So g(r) =
c0 J(r)k−l . Substituting into (A.4), we have that

J(r)(1 − c0)
c0 J′(r) = σl−1;i(a)a i − σk−1;i(a)a i

σk(a) .(A.7)

Since the left side of the above equality is independent of i, then for any i /= j,

σl−1;i(a)a i − σk−1;i(a)a i = σl−1; j(a)a j − σk−1; j(a)a j ,

so

σl−1;i j(a)(a i − a j) = σk−1;i j(a)(a i − a j).

However, a i /= a j ; thus, σl−1;i j(a) = σk−1;i j(a). Therefore, by (A.6), we can have c0 = 1.
Then, by (A.7), we can get that for all i,

σl−1;i(a)a i = σk−1;i(a)a i .

Recalling the equality
n
∑
i=1

a i σk−1;i(a) = kσk(a),

we know that kσk(a) = l σl(a). Since A ∈ Ak , l , we can conclude that σk(a) = σl(a)
and k = l , which is a contradiction. ∎

References

[1] J. G. Bao and H. G. Li, On the exterior Dirichlet problem for the Monge–Ampère equation in
dimension two. Nonlinear Anal. 75(2012), 6448–6455.

[2] J. G. Bao, H. G. Li, and Y. Y. Li, On the exterior Dirichlet problem for Hessian equations. Trans.
Amer. Math. Soc. 366(2014), 6183–6200.

[3] J. G. Bao, H. G. Li, and L. Zhang, Monge–Ampère equation on exterior domains. Calc. Var.
52(2015), 39–63.

[4] J. G. Bao, H. G. Li, and L. Zhang, Global solutions and exterior Dirichlet problem for
Monge–Ampère equation in R

2 . Differential Integral Equations 29(2016), 563–582.
[5] J. G. Bao, J. G. Xiong, and Z. W. Zhou, Existence of entire solutions of Monge–Ampère equations

with prescribed asymptotic behavior. Calc. Var. 58(2019), Article no. 193, 12 pp.
[6] L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun.

Pure Appl. Math. 56(2003), 549–583.
[7] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic

equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155(1985), 261–301.

https://doi.org/10.4153/S0008414X23000834 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000834


Solvability of Hessian quotient equations in exterior domains 31

[8] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by
K. Jörgens. Michigan Math. J. 5(1958), 105–126.

[9] X. Cao and J. G. Bao, Hessian equations on exterior domain. J. Math. Anal. Appl. 448(2017),
22–43.

[10] L. M. Dai, Existence of solutions with asymptotic behavior of exterior problems of Hessian
equations. Proc. Amer. Math. Soc. 139(2011), 2853–2861.

[11] L. M. Dai, The Dirichlet problem for Hessian quotient equations in exterior domains. J. Math.
Anal. Appl. 380(2011), 87–93.

[12] L. M. Dai and J. G. Bao, On uniqueness and existence of viscosity solutions to Hessian equations in
exterior domains. Front. Math. China 6(2011), 221–230.

[13] G. H. Hong, A remark on Monge–Ampère equation over exterior domains. Preprint, 2020.
https://arxiv.org/abs/2007.12479

[14] T. Y. Jiang, H. G. Li, and X. L. Li, The Dirichlet problem for Hessian quotient equations on exterior
domains. Preprint, 2022, arXiv:2205.07200.

[15] K. Jörgens, Über die Lösungen der Differentialgleichung rt − s2 = 1. Math. Ann. 127(1954), 130–134
(in German).

[16] D. S. Li and Z. S. Li, On the exterior Dirichlet problem for Hessian quotient equations.
J. Differential Equations 264(2018), 6633–6662.

[17] H. G. Li and L. M. Dai, The exterior Dirichlet problem for Hessian quotient equations. J. Math.
Anal. Appl. 393(2012), 534–543.

[18] H. G. Li, X. L. Li, and S. Y. Zhao, Hessian quotient equations on exterior domains. Preprint, 2020.
https://arxiv.org/abs/2004.06908

[19] Y. Y. Li and S. Y. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère
equation. Calc. Var. 57(2018), Article no. 161, 17 pp.

[20] Y. Y. Li, L. Nguyen, and B. Wang, Comparison principles and Lipschitz regularity for some
nonlinear degenerate elliptic equations. Calc. Var. 57(2018), Article no. 96, 29 pp.

[21] A. Pogorelov, On the improper convex affine hyperspheres. Geom. Dedicata 1(1972), 33–46.
[22] N. S. Trudinger, On the Dirichlet problem for Hessian equations. Acta Math. 175(1995), 151–164.
[23] C. Wang and J. G. Bao, Necessary and sufficient conditions on existence and convexity of solutions

for Dirichlet problems of Hessian equations on exterior domains. Proc. Amer. Math. Soc.
141(2013), 1289–1296.

School of Mathematics and Information Science, Weifang University, Weifang 261061, P. R. China
e-mail: lmdai@wfu.edu.cn

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
e-mail: jgbao@bnu.edu.cn

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China
e-mail: wangbo89630@bit.edu.cn

https://doi.org/10.4153/S0008414X23000834 Published online by Cambridge University Press

https://arxiv.org/abs/2007.12479
https://arxiv.org/abs/2205.07200
https://arxiv.org/abs/2004.06908
mailto:lmdai@wfu.edu.cn
mailto:jgbao@bnu.edu.cn
mailto:wangbo89630@bit.edu.cn
https://doi.org/10.4153/S0008414X23000834

	1 Introduction
	2 Proof of Theorems 1.1 and 1.3
	3 Generalized symmetric functions, subsolutions and supersolutions
	4 Proof of Theorem 1.6
	A Appendix

