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Introduction. Among the unsolved problems in graphical enumeration 
listed in (4) is included the determination of the number of graphs and digraphs 
with a given partition. Parthasarathy (9) has developed a formulation for 
counting graphs with a given partition by making a suitable modification of 
the method given in (2) for the enumeration of graphs. We present here an 
analogous modification that leads to a formula for the number of digraphs 
with a given partition. Not surprisingly, the main combinatorial device for 
this purpose is provided by the classical theorem due to Pôlya. 

Now we give the form of Pôlya's enumeration theorem (10) which will be 
used in this paper. 

Let A be a permutation group of order \A | acting on the set X. Let W be a 
function from X into any ring with zero characteristic such that for all am A 
and all x in X, 

W(x) = W(ax). 

As usual W is called a weight function. Let the orbits (transitivity systems) 
of A be denoted by Xi, X2, . . . , Xn. Because of this condition satisfied by W, 
we can define the weight of each orbit Xu denoted W(Xi), by W(Xt) = W(x) 
for any x in Xj. 

Then Pôlya's theorem can be stated, in a slight modification of the formula
tion given by de Bruijn (1), as follows. 

THEOREM (Pôlya). 

(i) t wçct) = T̂ T E E w(x). 

1. Enumeration of locally restricted digraphs. A directed graph (or 
digraph) consists of a finite set F of points together with a prescribed collection 
of ordered pairs of distinct points of V. Each such ordered pair {u, v) is called 
a directed line and is usually denoted by uv. The point u is adjacent to v and v 
is adjacent from u. The outdegree of a point u is the number of points adjacent 
from u\ the indegree is the number of points adjacent to u. The partition of a 
digraph is a sequence of ordered pairs consisting of the outdegree and indegree 
of each point. We arbitrarily order the ordered pairs in the partition of a 
digraph somewhat lexicographically, i.e. first we insist that the outdegrees 
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be in descending order, then for equal outdegrees we st ipulate t h a t the 
indegrees be in descending order. A locally restricted digraph is a digraph with 
a given part i t ion. For further details on digraphs see (6). 

Now let Xi, X2j . . . , xp and yu y2, . . . , yp be two sets of variables, the xt 

for the outdegrees and the y j for the indegrees. T h e generat ing function t h a t 
enumerates locally restricted digraphs with p points is a polynomial 

N(x, y) = N(xu x2,...,xp; ylt y 2, . . . , yv) 

in these variables such t h a t each term 

xiSlX2S2. . . xp
Sp. y\tly2t2. . . yv

tp satisfies 

(2) si > S2 > . . . > sp 

and 

(3) if Si = st+i, then tt > ti+1. 

T h e coefficient of such a term is the number of digraphs with par t i t ion 
(si, / i ) , (52, t2j, . • • , (sp, tp). 

For example, consider the digraph on five points in Figure 1. T h e term in 
N(x, y) t h a t corresponds to this digraph is 

xi3 x2
2 x3

2 x4 x5 y13>22 y$2 y4? y&. 

FIGURE 1 

In expressing a formula for this generat ing function N(x,y), we find i t 
convenient to use the na tura l group-theoretic set t ing provided by the power 
group (7) as applied to this s i tuat ion. T h e nota t ion and definitions are now 
given. 

Let X = {1, 2, . . . , p}. T h e set of ordered pairs (i,j) of elements of X 
with i 9^ j is denoted by X[2]. Le t the symmetr ic group of degree p, denoted 
by Sp, ac t on X. T h e reduced ordered pair group Sp

[2], defined in (2), acts on 
X[2], and each of its permuta t ions is induced by a permuta t ion in Sp. T h a t is, 
for each permuta t ion a in Sp, let a r be the induced permuta t ion in Sp

[2]. Then 
for all (i,j),a(i,j) = (cd,aj). 

Now let E2 be the ident i ty group act ing on the set Y — {0, 1}. Consider the 
[2] [2] 

power group E2
Sp act ing on Yx , the functions from X[2] in to F. Each 

[2] 
function / in Yx represents a digraph whose points are 1, 2, . . . , p and in 

[2] 
which i is adjacent to j whenever f(i, j) = 1. T w o functions f1 and f2 in Yx 

[2] 
represent isomorphic digraphs whenever there is a permuta t ion 7 in E2

Sp 

such t h a t 7/1 = / 2 . 
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Again consider the variables and yi, y2, . . . , yp and let R 
be the ring of polynomials in these variables with integral coefficients. We 

[2] [2] 

define a function W from Yx into R as follows. For each / in Yx , 

(4) w(f)= n [ 2 ] (xiyjy
(ij\ 

Then in the digraph represented b y / , the outdegree and indegree of the point i 
are given by the exponents of xt and yt respectively in W{f). 

I t is convenient to define a function denoted by 6 from R into itself in the 
following way. Suppose 

xiS lx2*2 . . . xp
spyihy2t2. . . yv

tp 

is any monomial in R. Choose a permutat ion a in Sp so t h a t 

(5) Sa(l) > S<r(2) > . . . > 5a(p) 

and 

(6) if s<r(i) = 5^(^+1), then ^(i) > ^(z+i)-

Then 0 is defined on this monomial in R by 

6 (x!Slx2
S2. . . xp

spy1
tly2

t2. . . yp
tp) = (xiMox2V2) . . . xp

s<v). 
y^oVy^vp) . . . y/cip)). 

Now 6 is extended to all of R in the obvious way and it is clear t h a t 6 is a 
linear operator on R. 

[2] 
L e t / be any function in Yx . Then the monomial Q(W(f)) is called the 

weight off. T h u s for convenience we have defined the weight of / as the degree 
sequence of the graph determined b y / . From the definition of 0, it is clear t h a t 
d(W(f)) is the contribution to the generating function 7V(x, y) made by the 

[2] 
digraph of/. I t is also clear t h a t any two functions in Yx t h a t are equivalent 

[2] 
under the power group E2

 SP have the same weight. 
Wi th this notat ion and an application of Polya 's theorem, the following 

result is obtained. 

T H E O R E M 1. The generating function which enumerates locally restricted 
digraphs is 

(7) N(x,y)=± £ M f l ( z W(f)). 

Now we give a formula for H / = 7 / W ( / ) . Each permutat ion 7 in E2
Sp' can 

be writ ten as 7 = (a ; (0) (1)) where a in Sp
[2] is induced by a in Sp and (0) (1) 

is the ident i ty permutat ion on Y. Let Zr and Zs be any two distinct cycles of 
lengths r and s respectively in the disjoint cycle decomposition of a. In obtain
ing the formula for the cycle index of Sp

[2], it was shown in (2) t h a t each cycle 
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Zr contributes r — 1 cycles, each of length r, to the cycle structure of a. 
Further, it was shown that each pair of distinct cycles Z r , Zs contributes 
2d(r, s) cycles each of length rs/d(r, s), where d(r, s) is the greatest common 
divisor of r and s. 

Since yf = / , / must be constant on each cycle in the disjoint decomposition 
of a'. By observing the number of times the symbols permuted by Zr and Zs 

appear in these cycles of a, we obtain the following formula: 

(8) T,w(f)=Tl ((i + n xt"*™ n y I 
f=7f Zr,Zs \ \ i£Zr j£Zs 

x (I + n y*""'•* n XSM'A""*) n (i + n «.y*)"1. 
\ i£Zr jeZ3 / / Zr \ i£Zr ' 

where the first product is over all distinct pairs of cycles Z r , Zs in a and the 
second is over all cycles of a. 

Obviously Formula (7) in Theorem 1 can be modified further using the fact 
that ]C/=7/ W(f) depends only on the cycle structure of a. This is, of course, 
the procedure that is followed in actual practice. 

The computation is rather cumbersome even for p = 3, but we shall sketch 
some of the details briefly. We take 5 3 acting on {1, 2, 3}. There are three 
possibilities for the cycle structure of a permutation in 53. Using formula (8) 
for each of these cases, we obtain the following results. For a = (1) (2) (3), 

E / = T / W(f) = (1 + *i 3>2) (1 + x2 yi) (1 + xt y9) (1 + x3 yi) (1 + xz 3>2) 
X (1 +x2yz). 

F o r a = (12) (3), 

E/=7/ W(f) = (1 + xi x2 yz2) (1 + x3
2 yi y2) (1 + xl yx x2 y2)

2. 

Fora = (123), 

T,f=y/W(f) = (1 + xi yxx2 y2xz yz)
2. 

Now, by applying Theorem 1, we have 

N(x,y) = (1/3!){^[(1 +xiyi)(l +x2yi)(l +x1yi)(l +x,yi) 
X (1 + x3 y2) (1 + x2 yz)] + 36[(l + xi x2 yz

2) (1 + xz
2
yi y2) 

X (1 + Xi yi x2 y2)
2] + 26[l + xi yi x2 y2 xz yz]

2} 

= 1 + xi y2 + [xi x2 yi y2 + x± x2 yi yz + x}
2y2 yz + xi x2 yz] 

+ [xi2x2 yx y2 yz + x\ x2 xz yx y2 yz + xx
2x2 y2 yz

2 + xj x2 yi2y2 yz] 

+ [xi2x2 xz yi2y2 yz + xi2x2 xz yi y2
2yz + X!2x2

2yi y2 yz
2 + xi2x2 xz y2

2yz
2] 

+ xx
2x2

2xz yi2y2 yz
2 + xi2x2

2xz
2yi2y2

2yz
2. 

We conclude this section by mentioning the simple modifications of the 
preceding formulation necessary for the enumeration of digraphs with loops. 
The ordered pair group Sp

2, as defined in (2), acts on the set X2, the cartesian 
product of X with itself. Its permutations are defined in the same way as those 

\d(r,s) 
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of Sp
[2]. One need only replace Sp

[2] by Sp
2 throughout and note that the 

contribution of Zr to Z!/=7/ W(f) in formula (8) is (1 + I I i € Z î . Xiji)7. 
The number of digraphs with a given partition was discussed by Katz and 

Powell (8). They reduced this question to a formulation by Sukhatme (11) 
which gives recurrence relations for certain number-theoretic functions. The 
extent of Sukhatme's tables enabled Katz and Powell to compute only those 
locally restricted digraphs with at most 13 lines. In principle, our formulation 
in Theorem 1 has no such restriction, but is no less unwieldy in actual use. 

2. Enumeration of locally restricted graphs. We refer to Harary 
(5) for conventional graphical terminology. The partition of a graph is the 
sequence of degrees of its points, usually written in descending order. A locally 
restricted graph is a graph with a given partition. 

The generating function that enumerates locally restricted graphs with 
p points is a polynomial N(xi, ) such that each term, XiSlx2

S2. . . x/p, 
satisfies 

(9) si > s2 > . . . > sp. 

The coefficient of such a term is the number of graphs with partition 
si, s2, . . . , Sp. For example, the term in N(xi, . . . , X5) which corresponds to 
the graph in Figure 2 is Xi4x2*XssX42x$2. 

FIGURE 2 

Now we review briefly the method of Parthasarathy (9) for the enumeration 
of locally restricted graphs. But again in obtaining a formula for the generating 
function, we use the natural group-theoretic setting provided by the power 
group (7) as applied to this situation. 

Let X = {1, 2, . . . , p). We denote the set of unordered pairs {i,j} of 
elements of X by X ( 2 ) . The pair group Sp

i2\ as defined in (2), acts on X(2), 
and each of its permutations is induced by a permutation in Sp. As before, 

(2) 

E2 is the identity group acting on Y = {0, 1}. The power group E2
Sp acts 

(2) (2) 

on Yx . Each function / in Yx represents a graph whose points are 
1,2, . . . , p and in which i and j are adjacent whenever f({i,j}) = 1. 

(2) 
Corresponding to (4), the function W from Yx into the ring R is defined 

by 

(io) w(f)= n(„(*«*i)-
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Then in the graph of/, the degree of the point i is given by the exponent of xt in 
W(f). As before, 6(W(f)) is called the weight of/. 

An application of Polya's theorem gives the following result, which was 
obtained by Parthasarathy (9) in somewhat different form. 

THEOREM 2. The generating function that enumerates locally restricted graphs is 

(il) N(xh **,..., xP) = ~ £ m ey g w(f)j . 
p\ y£E 

Now we give a formula for S / = T / ^ ( / )> again following Parthasarathy. 
(2) 

Each permutation y in E2
Sp can be written as y = (a'; (0)(1)) where 

a' in 5P
(2) is induced by a in Sp. The formula for the cycle index of 5P

( 2 ) , which 
appears in (2), shows the contribution to the cycle structure of a! made by 
each cycle Zr of a and by each pair Z n Zs of distinct cycles of a. Since 7/ = / , 
the function/ must be constant on each cycle in the disjoint cycle decomposi
tion of a . By observing the number of times the symbols permuted by the Zr 

and Zs appear in these cycles, the following formula is obtained: 

(i2) E w(f) = n (1 + n Xiidir's) n *//d(r's)V<r,s) 

f=yf Zr,Zs \ ieZr j£Zs / 
( \ ( \ ( r - 2 ) / 2 / \ ( r - l ) / 2 

x n ( i + n **)(i + n ^2) n ( i + n^2) 
r even r odd 

where the first product is over all distinct pairs of cycles Z r , Zs in a and the 
others are over all cycles of a. 

Obviously Formula (11) in Theorem 2 can be modified further, using the 
fact that Xl/=7/ W(f) depends only on the cycle structure of a. 

The computation is easily done for p = 3 and we give details here. We take 
5 3 acting on {1, 2, 3}. There are three possibilities for the cycle structure of a 
permutation in 53. Using (12), we obtain the following results. 
F o r a = (1)(2)(3), 

E/-YJ W(f) = (1 + Xi X2) (1 + X2 XZ) (1 + Xi X3). 

F o r a = (12) (3), 

L/=7 / W(f) = (1 + Xi X2 X3
2) (1 + X! X2). 

Fora = (123), 

Zf=yfW(f) = (1 + X!2X2W). 
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Now by applying Theorem 2 we have: 

N(xhx2,xz) = (1/3!){0(1 + x i x 2 ) ( l + x2xd)(l + xxxz) 

+ 30(1 + xxx2xz
2)(l + xxx2) + 26(1 + x1

2x2W)} 

= (1/3 !){(1 + 3xi x2 + Sx!2x2 x3 + x1
2x2

2xz
2) 

+ 3(1 +XiX 2 + Xi2x2x3 + Xi2x2
2xz

2) + 2(1 + xi2x2
2x3

2)} 

= 1 + Xi x2 + Xi2x2 x3 + Xi2x2
2x3

2. 

Thus no two different graphs with p = 3 points have the same partition and 
the same is true for p = 4. The first occurrence of a partition belonging to 
two different graphs involves p = 5. There are in all three pairs of such graphs; 
the two pairs shown in Figures 3 and 4, and the complements of the graphs of 
Figure 4. 

FIGURE 3 FIGURE 4 

In principle only, one can determine from formula (11) whether a given 
partition of an even number is graphical (belongs to at least one graph), 
or graphical and simple (corresponds to a unique graph), and in general the 
multiplicity of a given graphical partition (the number of different graphs to 
which it belongs). 

Parthasarathy (9) has also enumerated bicoloured graphs with a given 
bipartition by an entirely analogous modification of the method of Harary (3). 
Similarly one can now take any of several solved enumeration problems 
and modify it to obtain a formula for the number of such graphs with a given 
partition. These include connected graphs, rooted graphs, etc. However, one 
must realize that this method only gives formal solutions to these counting 
problems and does not conveniently yield exact numbers or orders of magnitude. 
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