
Cia),> and Clay Minerals. Vol. 38. No. 3. 331-334. 1990. 

NEW DATA AND A REVISED STRUCTURAL MODEL FOR 
FERRIHYDRITE: COMMENT 
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Eggleton and Fitzpatrick (1988) proposed a new 
structural model for ferrihydrite having 35% tetrahe­
dral and 65% octahedral Fe. According to Eggleton and 
Fitzpatrick (1988), the presence of 4-fold coordinated 
Fe was mainly based upon three distinct results: (I) 
Goncharov et al. (1978) recognized the presence of 
4-fold Fe in solution; (2) the first product that forms 
on heating ferrihydrite is maghemite; (3) X-ray ab­
sorption spectroscopy (XAS) indicates a Feret/Fe~.;';. ra­
tio similar to that of maghemite. Neither of the two 
first arguments is convincing, and, instead of assessing 
the presence of Feret ions, XAS clearly points towards 
the absence of Fe~et , if it is recorded and analyzed in 
correct conditions. 

The first argument implies that, if present, 4-fold 
coordination would be preserved from the solution to 
the formation of ferric gels, such as ferrihydrite. Con­
tradictory examples are well known: at low hydrolysis 
ratio, AI-bearing solutions possess only AIl3 polymers 
(Keggin-type structure), containing 1 Altet. among 13 
Al atoms; this tetrahedral contribution disappears as 
hydrolysis is completed (Akitt et al. . 1972; Bottero et 
al., 1987). Furthermore, unlike Goncharov et al. (1978), 
most authors agree that Fe is exclusively 6-fold coor­
dinated in solutions and ferric gels (see, e.g., the reviews 
of Schneider and Schwyn, 1987; Flynn, 1984; Magini, 
1977; Van der Giessen, 1968). 

The second argument assumes that phase transfor-

mations preserve site occupancies. Maghemite may also 
form by the thermal decomposition oUkaganeite, which 
contains no Feret (Gonzales-Calbet and Alario Franco, 
1982). Similarly, each time chemists heat boehmite to 
get spinel-type aluminas (y-, 0-, fJ-, 11-AI203), they do 
not question the absence of Alr.t in boehmite (see, e.g., 
Coke et aI., 1984; Leonard et al., 1967). Finally fer­
rihydrite aged at moderate temperature (92°C) directly 
transforms to hematite instead of mag he mite (Johnson 
and Lewis, 1983). The appearance of maghemite be­
tween 250° and 600°C reported in the work of Eggleton 
and Fitzpatrick (1988) might also have been due to the 
diffusion of 6-fold coordinated Fe to vacant tetrahedral 
sites, as is known for the formation of spinel-type al­
uminas. As pointed out by Eggleton and Fitzpatrick 
(1989), however, "Thermal transformations between 
the various iron oxyhydroxide and oxide phases are 
complex and may depend on the structure ofthe orig­
inal phase, crystal size, and heating rates ... "; there is 
some futility of trying to derive structural information 
from the thermal behavior of a solid. 

The only direct evidence of the presence of Fer.t in 
ferrihydrite stems from the analysis of XAS, but the 
quality of spectra presented by Eggleton and Fitzpat­
rick (1988) was insufficient to allow any conclusive 
finding; the interpretations had no firm physical basis 
and thus must be regarded as speculative. A correct 
spectral resolution, necessary to analyze absorption edge 

Table 1. Pre-edge spectra decomposition of ferrihydrite and reference compounds (Lorentzian parameters). 

Pre- Ll L2 L3 L4 LS 
edge 

Material Int. Energy Int. Energy Int. Energy Int. Energy Int. Energy Int. 

FePO.' 210 7112.1 210 
Hematite2 59 7111.2 25 7112.4 44 7113.5 17 7114.9 14 
Goethite' 47 7111.3 21 7112.6 38 7113.9 12 7115 .8 14 
Maghemite 30% Fetet.3 77 7112.1 57 7111.3 15 7112.6 27 
6-line Fh. 0% Fetet. 48 7111.5 27 7112.4 36 7113.7 7 7115 .2 6 

36% Fetet. 
3 48 7112.1 72 7111.3 13 7112.6 24 7113.9 8 7115.8 9 

2-line Fh. 0% Fetet. 42 7111.4 25 7112.3 32 7113.7 6 7115.2 3 
36% Fetet. 

3 42 7112.1 72 7111.3 13 7112.6 24 7113.9 8 7115.8 9 

Spectra of 6-line and 2-line ferrihydrite have been fitted assuming 0% and 36% of tetrahedral Fe. Int. = normalized intensity 
x 1000; line L1 = tetrahedral component, FWHM = 1.45 eV; lines L2, L3 = octahedral components, FWHM = 1.2 eV 
(after Combes et al., 1989a, 1989b); lines L4, L5 = octahedral components, FWHM = 2.0 eV (after Combes et aI. , 1989a, 
I 989b). 

, After Coombes et al. (1989a). 
2 After Coombes et al. (l989b). 
3 Spectrum has been fitted with a linear combination of FePO. and goethite lines. 
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Figure L Normalized X-ray absorption pre-edge spectra offerrihydrite samples and reference Fe oxides recorded on a X-ray 
synchrotron beam. Intensity of spectrum of maghemite is between those of Fel.i. and Fe~-+;. reference compounds, confirming 
the intracrystalline Fe-site distribution (Table 1). 

spectra, may be achieved only by using synchrotron 
radiation. The resolution thus reached is as low as 1.2-
1.3 eV at the FeK-absorption edge using a Si (511) 
monochromator (Combes et aI., 1989a, 1989b). This 
experimental resolution is to be compared with that 

given by Eggleton and Fitzpatrick (1988), 50 eV (full 
width), which is rather broad to resolve spectral fea­
tures of about 2-eV width (Table 1). Furthermore, be­
cause of the closeness of the main edge, the convolution 
of the whole X-ray absorption edge spectrum with a 
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gaussian line of 50-eV width strongly diminishes the 
normalized intensity ofthe pre-edge spectrum. Because 
of this experimental broadening, the normalized ab­
sorbance of the FeP04 pre-edge spectrum of Eggleton 
and Fitzpatrick (1988) is as weak as 3-5% instead of 
21 %, if recorded using synchrotron radiation (Table 1). 

The analysis of the spectra has no physical meaning; 
in no spectroscopic methods are site occupancies ob­
tained by deriving spectra. Accurate crystal chemical 
information can be obtained only by fitting spectra with 
fundamental components. In absorption edge spectra, 
such a fitting must be performed on normalized ab­
sorbance spectra, after background removal, as has been 
done for several minerals (Bonnin et aI., 1985; Calas 
and Petiau, 1983; Drager et al., 1988; Manceau and 
Calas, 1986; Manceau et al., 1987; Calas et aI., 1984; 
Roeetal., 1984;Waychunas, 1987; Brown etal., 1988). 
None of these requirements were fulfilled by Eggleton 
and Fitzpatrick (1988). Finally, their row-absorption 
spectrum of 6-line ferrihydrite was closer to goethite 
than to maghemite. A correct spectral interpretation 
should have suggested either the absence of Fetet, as 
in goethite, or the presence of Fet.t, as in maghemite. 
In either case, the presence of 30% Fetet can be con­
cluded without assuming a large amount of 4-fold Fe 
in goethite. 

Combes (1988) analyzed the pre-edge spectra of a 
large collection of natural and synthetic ferric hydrous 
gels, including a 6-line ferrihydrite synthesized by the 
method ofTowe and Bradley (1967), similar to the one 
of Eggleton and Fitzpatrick (1988). The intensity and 
shape of those spectra were similar to those of goethite 
and hematite, and Combes (1988) concluded, for all 
of their samples, an absence of Felot. To illustrate the 
above comments the normalized pre-edge spectra of a 
2-line and a 6-line ferrihydrite are shown in Figure 1 
for synchrotron radiation. These two natural ferrihy­
drite materials were characterized by Schwertmann and 
Fischer (1973), and Carlson and Schwertmann (1981), 
and possess XRD patterns identical to those published 
by Eggleton and Fitzpatrick (1988) (Figure 2). The pre­
edge intensity ofFeP04 (Fet.t) is about four times that 
of hematite and goethite (Combes et al., 1989a, 1989b, 
and Table 1). Both the intensity and the structure of 
ferrihydrite spectra are close to those of goethite and 
clearly distinct from those of mag he mite. Spectral sim­
ulations of 2-line and 6-line ferrihydrites show that 
adding 36% Fe~t (the amount suggested by Eggleton 
and Fitzpatrick, 1988) strongly enhances the intensity 
of the pre-edge spectrum, which then looks like that 
of maghemite. These results strongly support the ab­
sence of 4-fold coordinated Fe. Given the reliability of 
our spectral decompositions (Table I), the detection 
limit of 4-fold iron is 5-7%. 

As a final note, in agreement with Schneider (1988), 
we believe that the presence of Fe lot in ferritin has not 
been firmly established. Whatever the coordination may 

Ferrihydrite-6L (110) 

F errihydrit e-2 L 

1.50 2.50 

Figure 2. X-ray powder diffraction patterns for 2-line and 
6-line ferrihydrite samples. 

be, a structural analogy between the structures of fer­
rihydrite and ferritin, a metallo-protein, has never been 
shown. To our knowledge, no direct link exists between 
thermal analysis (differential thermal, thermal gravi­
metric), transmission electron microscopy, selective 
chemical dissolution, surface area measurements, and 
magnetic properties and the local structure of highly 
disordered materials, nor transition-metal coordina­
tion environments. Only by using adequate structural 
analytical tools (e.g., extended X-ray absorption fine­
structure spectroscopy and X-ray absorption near-edge 
spectroscopy), can the local order, the only preserved 
structural scale of poorly ordered compounds, be elu­
cidated. 
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