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Power-law shear-thinning fluid motions induced by a translating spherical bubble with
sinusoidal oscillation at a high frequency are numerically studied. We focus on reducing
the time-averaged drag force D on the bubble owing to the oscillation-enhanced
shear-thinning effect. Under the assumption of negligible convection, the unsteady Stokes
equation is directly solved in a finite-difference manner over a wide parameter space of the
dimensionless oscillation amplitude A (corresponding to the oscillatory-to-translational
velocity ratio) and the power-law index n of the viscosity. The results show that, for small
amplitude (A � 1), the drag reduction ratio 1 − D/D0 (here, D0 is D with no oscillation)
is proportional to A2. In contrast, for large amplitude (A � 1), the drag ratio D/D0 is
proportional to An−1, revealing a power-law behaviour. In the case of A � 1 for a strong
shear-thinning fluid with small n, the square of the vorticity over the entire domain is
much smaller than that of the shear rate, and thus the bulk flow may be regarded as
irrotational. To provide a fundamental perspective on the drag reduction mechanism, a
theoretical model is proposed based on potential theory, and demonstrated to well capture
the power-law relation between D/D0 and A.
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1. Introduction

Shear-thinning fluids exist in a wide range of industrial processes such as air lubrication
(Bobade et al. 2017; Selway, Chan & Stokes 2017), aeration (Samaras et al. 2014), airlift
pumps, food processing (McClements 2004) and blood pumps (Moyers-Gonzalez, Owens
& Fang 2009). Dispersions, such as drops (Ohta et al. 2003), bubbles (Premlata et al.
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2017) and particles are often found in shear-thinning fluid systems. To control the motion
of the dispersion in the sedimentation process (Wang, Wang & Guo 2006) and the bubble
(Iwata et al. 2008; Gaudron, Warnez & Johnsen 2015; De Corato et al. 2019b) or particle
(Agi et al. 2020) removal process, mechanical vibration and ultrasonic irradiation are
often applied. In addition to the utilization of the primary Bjerkness force (Eller 1968)
that moves the bubble to the node or anti-node for the standing wave, such an oscillatory
implementation alters the rheologic property owing to the non-Newtonian nature. As a
result, the viscosity is spatially varied, the drag force on the dispersion is reduced and the
composite feature of the bubbly or particulate system is modified.

Compared with Newtonian fluids, more complex physical changes may occur during
the vibration or oscillation of the shear-thinning fluids. In internal flows, the vibration
increases the volumetric flow rate depending on the amplitude and frequency (Barnes,
Townsend & Walters 1969, 1971; Deysarkar & Turner 1981; Phan-Thien & Dudek 1982a;
Siginer 1991; Deshpande & Barigou 2001). Deysarkar & Turner (1981) also have found
flow rate enhancement of a normally stiff paste of fine iron ore and 16 % water flowing
in a mechanically vibrated tube. When the pulsation of the driving pressure gradient is
somewhat weak, the change in the flow rate is proportional to the square of the amplitude
(Phan-Thien & Dudek 1982a). When the role of viscoelasticity is substantial, the flow
enhancement becomes drastic at the resonant frequency (Andrienko, Siginer & Yanovsky
2000; Casanellas & Ortın 2011; Casanellas & Ortín 2012).

The dynamics of dispersions in resting shear-thinning fluids has been extensively
investigated (Acharya, Mashelkar & Ulbrecht 1977; Dekee, Carreau & Mordarski 1986),
well reviewed by Chhabra (2006) and Kulkarni & Joshi (2005) and has substantial
differences from that in Newtonian fluid. The long-range disturbance caused by the moving
sphere (Gu & Tanner 1985) is reduced due to the shear-thinning effect of the fluid. In flow
around a spherical bubble with constant volume rising in a power-law shear-thinning fluid,
in which the fluid velocity divided by the bubble radius corresponds to the characteristic
shear rate scale and gives the characteristic viscosity, the drag on the bubble is reduced
below the corresponding Newtonian value (Dhole, Chhabra & Eswaran 2007a). The local
viscosity change greatly depends on the drop shape and is bound to impact the drop rise
velocity (Ohta et al. 2003, 2005). The mass transfer around a bubble (Hirose & Moo-Young
1969; Michaelides 2006; Dhole, Chhabra & Eswaran 2007b; Radl, Tryggvason & Khinast
2007) or drop (Wellek & Gürkan 1976; Kishore, Chhabra & Eswaran 2007) is increased
when the shear-thinning effect is enhanced. Besides, the wall effect induced by a confining
tube on the flows around a rigid sphere is seen to be suppressed compared with that in a
Newtonian fluid at fixed values of the Reynolds number and diameter ratio (Song, Gupta
& Chhabra 2011).

The pulsation, oscillation and acoustic excitation increase the speed of a bubble (Stein
& Buggisch 2000; Iwata et al. 2008; Karapetsas et al. 2019), drop (Mendoza-Fuentes et al.
2018) or particle (Iwamuro, Watamura & Sugiyama 2019), and significantly augment the
rate of heat transfer in shear-thinning fluids (Gupta, Patel & Chhabra 2020, 2021; Mishra,
Patel & Chhabra 2020; Mishra & Chhabra 2021). Qualitatively, the cause is attributed
to the reduction in the effective viscosity. Pulsating the power-law shear-thinning fluid
with relatively small oscillation amplitude (0 ≤ A ≤ 0.8) over a sphere (Mishra et al.
2020; Mishra & Chhabra 2021) or a cylinder (Gupta et al. 2020, 2021) promotes heat
transfer compared with that in non-pulsating flows, which reveals the potential application
of the pulsation or oscillation in controlling the heat transfer by varying the kinematic
parameters of the flow. For a radially oscillating bubble in the Carreau–Yasuda fluid,
De Corato, Dimakopoulos & Tsamopoulos (2019a) performed numerical simulations
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under the assumption that the viscosity distribution obeys the spherically symmetric
velocity gradient given by potential theory. They showed that the friction coefficient
is proportional to Cu

n−1 (here, Cu is the Carreau number and n is the shear-thinning
index). In a viscoelastic agarose gel, the ultrasound irradiation changes the effective
viscosity in the presence of bubbles, especially at the resonant frequency (Jamburidze et al.
2017). Although the drag reduction mechanism has been discussed in phenomenologically
postulated ways, the detail is not fully clarified owing to the lack of comprehensive
analyses.

Our objective is to provide a fundamental perspective on the drag reduction mechanism
for oscillatory dispersion in a shear-thinning fluid at a high frequency. For a rigid particle,
the oscillatory boundary layer forms near the no-slip wall (Majdalani & Van Moorhem
1997). At a sufficiently high frequency, a remarkably large vorticity is likely to be
generated within a very thin boundary layer, making the multiscale system complex.
We treat a spherical bubble with a free-slip boundary in the present study. In contrast
to the volume change bubble (Iwata et al. 2008; De Corato et al. 2019a), the bubble
volume remains constant. Neglecting the convective and compressible effects, we consider
a creeping incompressible fluid and obtain the solution to the unsteady Stokes equation.
Although the assumption of no volume change in the bubble is hypothetical, we choose the
simplified system to extract the essence of the drag reduction mechanism. Note that, even
for the steady creeping flow, the formulation of the drag force in a shear-thinning fluid
(Slattery & Bird 1961; Hirose & Moo-Young 1969; Renaud, Mauret & Chhabra 2004)
must rely on an approximation method because the nonlinearity in the non-Newtonian
viscosity expression prevents us from deriving the analytical solution, unlike the case
of a Newtonian flow. We perform numerical simulation and modelling for the flow of a
well-defined power-law fluid induced by the bubble motion at the prescribed speed. Our
research will shed light on the dynamics of bubbles in shear-thinning fluid subjected to
ultrasonic irradiation or mechanical vibration.

The rest of this paper is organized as follows. We formulate the problem in § 2.1,
comment on some essential parameters in § 2.2 and present some tests to validate the
numerical method in § 2.3. In § 3, results are presented and discussed. We investigate
the time-averaged velocity and viscosity distribution of the fluid around the bubble to
overview the overall features of the fluid flow induced by the oscillatory bubble in § 3.1. In
§ 3.2, the dependence of the drag force on the power-law index and oscillation amplitude
is examined. In § 3.3, we discuss the drag reduction mechanism and provide a theoretical
model to predict the time-averaged drag force. In § 4, we provide some vital comments to
conclude the paper.

2. Numerical simulation

2.1. General formulation
As shown in figure 1, we consider a spherical bubble with a radius a∗ travelling along the
x∗ axis direction with a velocity of U∗. Hereafter, a superscript ∗ stands for a dimensional
quantity. In the present study, the velocity U∗ of the bubble consists of two parts: the
constant part U∗

0 , and the oscillatory part U∗
0A cos ω∗t∗ (here, A is the dimensionless

oscillation amplitude, ω∗ is the angular frequency and t∗ is the time) which varies
sinusoidally with time. The liquid is regarded as a power-law fluid, for which the viscosity
μ∗ is given by

μ∗ = K∗γ̇ ∗n−1
, (2.1)
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U∗ = U ∗
0 (1 + A cos ω∗t∗)

x∗

O

Figure 1. The schematic of the spherical oscillatory bubble travelling in shear-thinning fluid.

where K∗ is the consistency factor, γ̇ ∗ is the shear rate and n is the power-law index, which
is limited to 0 < n < 1 for the shear-thinning fluid. Note that although the power-law
expression (2.1) with the constants K∗ and n is usually obtained under steady conditions,
it is applied to unsteady flows to facilitate elucidation of the drag reduction mechanism
rather than to reproduce the actual phenomena. Upon choosing a∗, U∗

0 , K∗ and the density
of fluid ρ∗, all the quantities are non-dimensionalized in a way such that

U = U∗

U∗
0
, ω = ω∗ρ∗(a∗)n+1

K∗(U∗
0)n−1 , t = t∗K∗(U∗

0)n−1

ρ∗(a∗)n+1 , γ̇ = γ̇ ∗a∗

U∗
0

,

u = u∗

U∗
0
, p = p∗(a∗)n

K∗(U∗
0)n , τ = τ ∗(a∗)n

K∗(U∗
0)n , S = S∗a∗

U∗
0

, ∇ = a∗∇∗,

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

where u, p, τ , S and ∇ respectively denote the fluid velocity vector, the pressure, the
viscous stress tensor, the strain rate tensor and the nabla operator. The non-dimensional
velocity of the bubble is

U = 1 + A cos ωt. (2.3)

For the incompressible creeping fluid, the equation of continuity and the unsteady Stokes
equation are expressed as

∇ · u = 0, (2.4)

∂u
∂t

= −∇p + ∇ · τ . (2.5)

The constitutive equations of the viscosity and the viscous stress tensor are

μ = γ̇ n−1, τ = 2μS, (2.6a,b)

where
S = 1

2 (∇u + (∇u)T), γ̇ =
√

2S : S. (2.7a,b)

On the bubble wall, we impose the kinematic and free-slip (FS) boundary conditions

n · u = n · exU, (τ · n) × n = 0 at r = 1, (2.8a,b)

where n is the unit normal vector pointing outwards on the bubble, and ex is the unit
vector in the x direction. At a sufficiently large distance from the bubble, the velocity and
the pressure are u → 0 and ∂p/∂r → 0. The force F acting on the oscillatory bubble can
be obtained by

F = −ex ·
∮

r=1
(−pI + τ ) · n dS. (2.9)
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Note that three dimensionless parameters n, A and ω characterize the behaviour of
the system in the present study. Thus, the conversion between the dimensionless and
dimensional force (i.e. F and F∗) is referred to as

F = F∗(a∗)n−2

K∗(U∗
0)n . (2.10)

2.2. Simulation method
We describe (2.4) and (2.5) in spherical coordinates. The second-order central difference
method numerically discretizes the equation set on staggered grids over a two-dimensional
domain. For time marching, we apply the second-order Crank–Nicolson method to the
viscous term. A simplified-marker-and-cell algorithm (Amsden & Harlow 1970) satisfies
the momentum equation (2.5) simultaneously with the solenoidal condition (2.4) by means
of a direct solution to the pressure equation (Müller & Chan 2019).

We choose the dimensionless angular frequency ω and oscillation amplitude A
by referring to experimental work using a spherical particle (Iwamuro et al. 2019).
Considering the liquid density ρ∗ ∼ 103 kg/m3, the sound pressure amplitude (Δp∗) ∼
105 Pa, the frequency f ∗ ∼ 105 s−1 and the speed of sound c∗ ∼ 103 m s−1, the
fluctuating acceleration amplitude is estimated as (Δα∗) ∼ (Δp∗)f ∗/(ρ∗c∗) ∼ 104 m s−2.
The time-averaged acceleration corresponds to the gravitational acceleration G ∼
101 m s−2. The ratio of the fluctuating force amplitude to the time-averaged drag
force would be (Δα∗)/G ∼ 103, which scales the dimensionless angular frequency ω.
The typical fluctuating velocity amplitude in Iwamuro et al. (2019) is estimated as
U∗

0A ∼ (Δp∗)/(ρ∗c∗) ∼ 10−1 m s−1, that is comparable to the fall speed U∗
0 . Hence,

the dimensionless oscillation amplitude A would be of order unity. In the present study,
the dimensionless angular frequency is fixed at ω = 1 × 103, and the amplitude is
parametrized in a range of A ∈ [0, 50]. The power-law index n is also parametrized in
a range of n ∈ [0.125, 1].

We limit the viscosity to μ = min(γ̇ n−1, μmax), here μmax is the maximum viscosity
to avoid numerical instability. It is set to μmax = 1 × 104, which is confirmed to be
large enough for the fluid to be regarded as a purely power-law one. The radius of the
computational domain is 1 ≤ r ≤ Rmax, here, the maximum radius is set to Rmax = 1 ×
103. The radial grid width (Δr) increases in geometric progression in the r direction with
the minimum (Δr)min = 1 × 10−2. The number of grid points is Nr × Nθ = 128 × 128 in
the r and θ directions. The time increment is fixed at Δt = 2π/(210ω), which is confirmed
to be small enough to capture the unsteady behaviours. Following Sugiyama & Takemura
(2010), we employ a numerical method that uses the exact values of the grid width, the cell
interfacial area and the control volume in spherical coordinates, and also guarantees the
conservation law in a discretized equation. We performed convergence tests of the total
energy dissipation rate Ėdiss, which is determined from the numerical integral of γ̇ n+1

over the entire computational domain. We confirmed the grid convergence behaviours with
decreasing (Δr)min and with increasing Nr(= Nθ ). We also confirmed the energy balance
relation that the time-averaged Ėdiss is in good agreement with the time-averaged energy
input corresponding to FU, where F is numerically evaluated on the bubble wall. Further,
we verified the Bobyleff–Forsythe formula (which will be discussed in § 3.3), involving the
surface integral of the enstrophy and the volume integrals of the enstrophy and the strain
rate square, holds exactly. The accuracy assessment indicates that the simulated results
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0 0.2 0.4 0.6 0.8 1.0

n

NS sphere
Missirlis et al.
Renaud et al.
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FS sphere
Hirose & Moo-Young

Present analytical

(b)(a)

Figure 2. The force F vs the power-law index n for steady creeping flow. The circle symbols indicate the
present numerical results. (a) For the NS sphere, the solid curves and the cross symbols indicate the empirical
expression (2.11) and the numerical results of Missirlis et al. (2001), respectively. (b) For the spherical bubble,
the solid and dashed curves indicate the semi-analytical expressions (2.12) and (A14) for 0 < 1 − n � 1.

using the present computational mesh are accurate enough for the subsequent discussion
of surface and bulk quantities.

2.3. Validation tests
Validation simulations of fluid flow induced by a sphere travelling in a shear-thinning fluid
with no oscillation (U = 1) have been conducted. Firstly, we check the validity for a no-slip
(NS) sphere since there are several available data in the literature. For the NS sphere, the
boundary condition (2.8a,b) is replaced by u = exU. Figure 2 shows the relation between
the drag force F and the power-law index n. In figure 2(a) for the NS sphere, the circle
symbols and the solid curve respectively indicate the present numerical results and an
empirical expression (Renaud et al. 2004), corresponding to

F = 4π

(
3
√

6
2(n2 + n + 1)

)n+1

. (2.11)

Note that (2.11) was formulated in such a way as to take the analytical value 6π
for the Newtonian case (n = 1) and to comprehensively capture the variation for any
shear-thinning power-law fluid (0 < n < 1). The present results are in good agreement
with the empirical curve (2.11) over the entire range of n. However, a slight discrepancy
is found upon more careful inspection. The cause would be the imperfect accuracy of the
empirical expression (2.11). The cross symbols in figure 2(a) indicate the well-validated
data of direct numerical simulations (Missirlis et al. 2001). These are supposed to be
more accurate than (2.11). The present results are in exact agreement with the data from
the simulation (Missirlis et al. 2001), and we can assert that the discrepancy between
the present numerical results and the result predicted by (2.11) is attributed to the
underestimation of (2.11). Thus, the present numerical method can reasonably treat the
shear-thinning power-law viscosity and solve the equations of the steady creeping flow
around the NS sphere.

Secondly, let us determine the spherical bubble’s validation in a steady creeping flow.
Since such studies are significantly fewer than those of the NS sphere, accessible reference
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data are limited in the literature. In figure 2(b) for the spherical bubble, the circle
symbols and the solid curve respectively indicate the present results and a semi-analytical
expression (Hirose & Moo-Young 1969), corresponding to

F = 4π 3(n−1)/2(13 + 4n − 8n2)

(2n + 1)(n + 2)
, (2.12)

which was derived under the assumption that the deviation from Newtonian flow is small
(namely the power-law index n is close to unity (i.e. 0 < 1 − n � 1)), and gives exact
value 4π for the Newtonian fluid case n = 1. Reconsidering this assumption, we also
derive another expression (A14) in a straightforward way (see Appendix A). It is drawn in
the dashed curve in figure 2(b). For n ≈ 1 where the precondition in the analyses (Hirose &
Moo-Young 1969) and Appendix A is fulfilled, the present results are in good agreement
with the curves (2.12) and (A14). Thus, the present numerical method can reasonably
treat the power-law viscosity and the FS condition in steady creeping flows. Note that,
although the validity of both the expressions (2.12) and (A14) may be violated for small n,
figure 2(b) exhibits the consistency between the present semi-analytical expression (A14)
and numerical results for n ≈ 1, and also the incidental consistency over a wider range of
n.

We have also assessed the present numerical method to predict flows induced by an
oscillating spherical bubble in a Newtonian fluid (with the index of n = 1). For the bubble
velocity U = cos ωt, the angular frequency was parametrized in a range of 10−1 ≤ ω ≤
103. For all the conditions of ω, the numerical results of the temporal change in the force
F were confirmed to be in excellent agreement with the analytical solution (Yang & Leal
1991)

F = Re

{(
2π

3
iω + 4π

(
1 + (iω)1/2)

1 + 1
3 (iω)1/2

)
exp(iωt)

}
. (2.13)

The respective effects of the shear-thinning fluid and the oscillation have been validated.
The results of numerical simulations by combining these effects will be presented in § 3.

3. Simulation results

3.1. Velocity and viscosity distribution around the bubble
To overview how the fluid flow is induced owing to the interplay between n and A, the
time-averaged velocity and viscosity distribution are investigated. In consideration of the
facts that the system is axisymmetric and the radial velocity component ur is expanded in
a Legendre polynomial series, we focus on the radial profile of the first mode 〈ûr〉:

〈ûr〉(r) = 3
2

〈∫ π

0
ur(r, θ, t) cos θ sin θ dθ

〉
, (3.1)

where 〈· · · 〉(= ω(2π)−1 ∫ 2π/ω

0 · · · dt) stands for the time average over one cycle. Figure 3
shows the simulated results of 〈ûr〉 as a function of r. For comparison, two analytical
curves (〈ûr〉 = r−3 for the potential flow and 〈ûr〉 = r−1 for the Newtonian Stokes flow)
with no oscillation A = 0 are included therein.

For n = 1 (figure 3d), corresponding to the Newtonian fluid, the plots of 〈ûr〉 collapse
onto the monopole curve r−1 irrespective of the oscillation amplitude A. This is a
natural consequence of the system linearity involved in the Newtonian Stokes equation.
The time-average process offsets the oscillation effect. For 0 < n < 1 (figure 3a–c),
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〈ûr〉

10−5

10−4

10−3

10−2

10−1

100

〈ûr〉
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Figure 3. The relation of the time-averaged velocity coefficient 〈ûr〉 as a function of r in the fully developed
state for various power-law indices n and oscillation amplitudes A. The solid and dashed curves indicate 〈ûr〉 =
r−3 for the potential flow and 〈ûr〉 = r−1 for the steady Newtonian Stokes flow, respectively. The symbols
correspond to the simulated results, where the r positions for the conditions (A = 0, 0.1, 1, 10) specified by the
symbol types are separated to make the respective profiles comprehensible. The inset shows the log–log plot to
clarify the curve slope; (a) n = 0.125, (b) n = 0.25, (c) n = 0.75 and (d) n = 1.

corresponding to the shear-thinning fluid, the slope of the profile 〈ûr〉 is steeper with
decreasing power-law index n. The viscosity distribution, depending upon the spatial
variation of the shear rate, is reflected in such an n-dependent decaying behaviour. For
A = 0, the slope at n = 0.75 (figure 3c) is between −1 (the Newtonian Stokes flow)
and −3 (the potential flow), while the profiles at the sufficiently small indices n = 0.125
(figure 3a) and n = 0.25 (figure 3b) decay more rapidly than the potential flow one. For
each n condition, the profiles with varying A are non-monotonic because the nonlinear
viscosity to the shear rate is affected by the oscillation amplitude A. Therefore, the bubble
oscillation alters the time-averaged viscosity and stress distributions. Carefully observing
figure 3(a–c), one finds that, with increasing A, the profile becomes closer to that of
the potential flow, implying that the time-averaged vorticity is attenuated in the bulk.
At each instant, the vorticity generated on the bubble surface (r = 1) is 2{uθ + (1 +
A cos ωt) sin θ} due to the FS condition (Ryskin & Leal 1984), and thus its magnitude
is likely to be larger with increasing A. However, it is evident from figure 3(a–c) that the
large amplitude oscillation (with the large A) of the bubble in the strong shear-thinning
fluid (with the small power-law index n) confines the enhanced vorticity to near the bubble
wall and hinders the vorticity transfer to the bulk.

For steady flows, the interplay between the spatially non-uniform viscosity and the
motion of dispersion (i.e. a bubble, drop or particle) has been investigated by several
researchers (e.g. Ohta et al. 2005; Zhang, Yang & Mao 2010; Zare, Daneshi & Frigaard
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Figure 4. The time-averaged viscosity distribution around the bubble in a fully developed state for various
amplitudes A at the power-law index of n = 0.25; (a) A = 0, (b) A = 0.1, (c) A = 1 and (d) A = 10.

2021). Following the earlier studies, to demonstrate the effect of the oscillation amplitude
A on the shear-thinning viscosity, figure 4 visualizes the distribution of the time-averaged
viscosity 〈μ〉 around the bubble at n = 0.25. The colour map exhibits that, for A � 1,
the low viscosity region becomes smaller with increasing A, while it becomes larger
for A � 1. A simple rough relation may account for a non-monotonic volume change in
the low viscosity region. Under the assumption that the shear rate scales linearly to the
bubble velocity magnitude |U|, namely γ̇ ∼ |1 + A cos ωt|/� (here, the length scale � is
hypothetically fixed), the instantaneous viscosity scales as μ ∼ |1 + A cos ωt|n−1. With
this relation, for a sufficiently small amplitude 0 < A � 1, the time-averaged viscosity
may scale as 〈μ〉 ∼ 1 + (1 − n)(2 − n)A2/4, which increases with A as long as 0 < n < 1,
while for the sufficiently large amplitude A � 1, it may scale as 〈μ〉 ∼ An−1, which
decreases with A. Therefore, 〈μ〉 is inferred to be maximized at a moderate A. The high
viscosity region (corresponding to the non-coloured area in figure 4) is the largest at the
moderate amplitude A = 1. Note that, even though the non-monotonic behaviour of the
shear-thinning viscosity with varying A is explainable in terms of the bubble velocity,
unlike a steady flow, the time-averaged viscosity 〈μ〉 in the unsteady flow is not necessarily
correlated with the time-averaged force 〈F〉. It is because the time-averaged viscous stress,
which is given by 〈τ 〉 = 〈2μS〉 /= 2〈μ〉〈S〉, is not proportional to 〈μ〉. To discuss the
time-averaged force on the bubble in a strong shear-thinning fluid, we will consider a
nearly irrotational velocity field with a large amplitude oscillation (figure 3a,b). Further,
we will examine the overall energy balance in the unsteady fluid motion rather than the
viscosity distribution.

3.2. The effect of the oscillation amplitude A on the force acting on the bubble
Figure 5 shows the temporal change in the force F at the power-law index of n = 0.25
and its velocity U(= 1 + A cos ωt) for various oscillation amplitudes A. Here, we shall
separately discuss the fluctuating and time-averaged components of F. Firstly, on the
fluctuating force, we confirm that the amplitude of F is approximated by 2πωA/3 and
the phase difference between F and U is approximately π/2. These features imply that the
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Figure 5. Temporal change in the force F on the bubble (solid curve) and its velocity U(= 1 + A cos ωt)
(dashed curve) for one cycle in the fully developed state for various oscillation amplitudes A at the power-law
index of n = 0.25. The horizontal axis is in scaled time t/T , and here T(= 2π/ω) is the period; (a) A = 0.01,
(b) A = 0.1, (c) A = 1 and (d) A = 10.

fluctuating component of F is consistent with the added inertia force −(2πωA/3) sin ωt
on a translationally oscillating sphere, indicating that the potential flow well describes the
fluctuating velocity distribution at each instant. In Newtonian fluid flows, as indicated
in (2.13) with a conversion of ω ⇒ ωA, such a potential approximation is valid for
sufficiently high frequency ω � 1. This is because the amplitude of the added inertia
force (corresponding to the first term inside the curly brackets in (2.13)) is proportional to
ωA and is much greater than that of the history force (corresponding to the second term),
likely to be proportional to (ωA)β with β ≤ 1/2. This relation of the added inertia force
would also hold for the non-Newtonian power-law fluid flow at ω = 1 × 103 � 1 in the
present study. Since the added inertia force is expressed as a temporally sinusoidal function
proportional to sin ωt, it makes no contribution to the time-averaged component.

Secondly, we pay attention to the time-averaged drag force denoted by D(= 〈F〉).
Figure 6(a) shows the relation between D and A. When the amplitude A is sufficiently
smaller than unity, the drag force D approaches that with no oscillation D0. For A � 1, D
substantially decreases with increasing A. This result implies that the shear-thinning effect,
enhanced with A, causes the drag reduction. This is unlike the fluctuating component
of the force F, for which the amplitude increases with A (figure 5) owing to the added
inertia force. To highlight the deviation of the time-averaged drag force with oscillation
D from that with no oscillation D0, figure 6(b) depicts the drag reduction ratio (DRR(=
1 − D/D0)) as a function of the oscillation amplitude A. For A � 1, DRR is likely to
be proportional to A2, while for A � 1, DDR is saturated to 1 (corresponding to the
upper bound as long as D > 0) with increasing A. The proportionality of DDR ∝ A2

rather than A1 for sufficiently small A comes from the nonlinearity in the power-law
viscosity and is explained from the idea of the weakly nonlinear perturbation method.
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Figure 6. The relationship between time-averaged drag force D and oscillation amplitude A at the power-law
index of n = 0.25. The circle symbols indicate the simulated results. Here, D0(= 30.32) is the drag force with
no oscillation(A = 0). Panel (a) shows D vs A. The solid curve represents D0. Panel (b) shows a log–log plot
of the drag reduction ratio (DRR(= 1 − D/D0)) vs A. The solid line corresponds to a curve with a slope of 2,
namely DRR ∝ A2.

Assuming 0 < A � 1, which is chosen as a perturbation, we write the time-dependent
force in a series form as F = D0 + α1A1 + α2A2 + · · · for each n (here, α1 = α1(t) and
α2 = α2(t) are time-dependent functions). In the present system, the O(A1) contribution
has the time dependence on cos ωt and/or sin ωt. Hence, the time-averaged value thereof
vanishes (i.e. 〈α1〉 = 0). In contrast, the O(A2) contribution comes from the correlation
between the O(A1) variations in the viscosity and the strain rate. It involves the time
dependence of cos2 ωt and/or sin2 ωt. Hence, the time-averaged value thereof is non-zero
(i.e. 〈α2〉 /= 0), and the second-order approximation of the time-averaged drag force is
expressed as D = D0 + 〈α2〉A2, accounting for the relation of 1 − D/D0 ∝ A2, as seen
for A � 1 in figure 6(b). Note that Phan-Thien & Dudek (1982b) demonstrated a similar
mechanism of the second-order drag reduction in pulsating pipe flows of a polymeric fluid
owing to the viscosity’s nonlinearity.

For sufficiently large A, the saturation of 1 − D/D0 ≈ 1 in figure 6(b) indicates that
the time-averaged drag force becomes small enough (D � D0). To highlight how such
an intense drag reduction depends upon the power-law index n, figure 7 depicts the drag
reduction behaviour for various n: the log–log plot of the time-averaged scaled drag force
D/D0 vs A (figure 7a) and the slope d(log D)/d(log A) vs A (figure 7b). In figure 7(a), the
simulated results for A � 1 exhibit a constant slope in the decaying profile for each n. The
solid lines indicate the fitted curves proportional to An−1, which capture the simulated
results for the respective n as long as the amplitude A is large enough. Figure 7(b)
corresponds to the slopes of the curves in figure 7(a), indicating the shear-thinning effect
for each n. The fluid with a smaller power-law index n has the stronger shear-thinning effect
and the scaled drag force on the bubble in it is more significantly reduced, corresponding
to the same amplitude of oscillation. Note that a similar power law in the drag reduction
was found for a radially oscillating bubble rising in a shear-thinning fluid (De Corato
et al. 2019a). De Corato et al. (2019a) could separately treat the radial and translational
motions of the bubble with two velocity scales Ṙ and U. The viscosity distribution affected
by Ṙ was assumed to be spherically symmetric. In contrast, we cannot separately treat
the effect of the constant and oscillatory velocities of the bubble. Thus, in the present
study, the shear-thinning viscosity is affected by both motions, and its distribution is
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Figure 7. The relation between the time-averaged scaled drag force D/D0 and the oscillation amplitude A for
various power-law indices n. The symbols represent the simulated results with the respective power-law index
n specified in the panel. Panel (a) shows D/D0 vs A. The solid curve for each n indicates the curve proportional
to An−1. Panel (b) shows d(log D)/d(log A) vs A, corresponding to the slope in (a). The solid curve for each n
indicates the value of n − 1.

not spherically symmetric. Subsequently, we will discuss the drag reduction mechanism
resulting in the expression of D/D0 ∝ An−1.

3.3. Discussion of the drag reduction mechanism
We now investigate how the vorticity is generated on the bubble wall, is distributed over
the space and affects the force due to the interplay between the FS boundary condition and
the high frequency. Before examining the non-Newtonian fluid flow, we shall recall the
Newtonian one, including a sphere with a velocity of U = 1 + A cos ωt. On a NS sphere,
the force FNS is written in a form (Landau & Lifschitz 1987)

FNS = 6π + Re
{

A
(

2π

3
iω + 6π(iω)1/2 + 6π

)
exp(iωt)

}
, (3.2)

where the first and second terms on the right-hand side are the steady drag force
associated with the constant unity velocity and the force with oscillatory velocity A cos ωt,
respectively. In (3.2), the first, second and third terms inside the parentheses before
exp(iωt) indicate the added inertia force, the Basset history force and the drag force,
respectively. On a spherical bubble (referred to as a FS sphere), the general expression
of the force FFS for arbitrary angular frequencies ω is given by the combination of 4π
(associated with the constant unity velocity) and (2.13) multiplied by the amplitude A
(associated with A cos ωt). At sufficiently high frequencies (ω � 1), FFS is simplified into

FFS = 4π + Re
{

A
(

2π

3
iω + 12π + O(ω−1/2)

)
exp(iωt)

}
. (3.3)

In (3.3), the first and second terms inside the parentheses before exp(iωt) indicate the
added inertia and Levich drag forces, respectively (Magnaudet & Eames 2000; Liu,
Sugiyama & Takagi 2016). The term of order ω−1/2 vanishes when ω � 1. Here, we
pay attention to the temporally oscillatory force, i.e. the second term in (3.2) and (3.3).
At high frequencies, for the NS sphere, the penetration depth � of the rotational flow is
of the order ω−1/2 (Landau & Lifschitz 1987), and hence the magnitude of the vorticity

959 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.97


Drag force on an oscillatory spherical bubble

generated on the sphere wall scales as �−1 ∼ ω1/2. By contrast, for the bubble, the vorticity
magnitude scales as ω0 owing to the FS condition (Ryskin & Leal 1984). The difference
in the order of the generated vorticity magnitude is reflected in the presence (3.2) or
absence (3.3) of the O(ω1/2) term in the force expression. Note that, for the bubble, the
temporally oscillatory force (corresponding to the second term in (3.3)) is consistent with
the force in a viscous potential flow (Joseph 2006), which is irrotational but involves the
viscous dissipation mechanism, even though it is derived in the low Reynolds number
limit. Such a consistent expression is justified as long as the vorticity magnitude in the
bulk is negligible. Although this feature is reflected in the force expression (3.3) for
the Newtonian creeping flow, the mechanism of the negligible bulk vorticity would be
explained by that the interplay between the FS condition and the high frequency hinders
the vorticity diffusion irrespective of Newtonian or non-Newtonian fluid.

Again, we will see the simulation results. Quantifying the level of bulk vorticity, we will
discuss the applicability of the potential flow theory to the non-Newtonian power-law fluid.
To this end, we employ the Bobyleff–Forsythe (BF) formula (Serrin 1959; Kang & Leal
1988; Stone 1993) for any velocity field v satisfying the solenoidal condition (∇ · v = 0)

and the kinematic and FS boundary conditions (2.8a,b), which are expressed as

β1(v) = β2(v) + β3(v), (3.4)

where

β1(v) = 1
2

∫
V
(∇v + (∇v)T) : (∇v + (∇v)T) dV,

β2(v) =
∫

V
� · � dV, β3(v) = 1

2

∮
r=1

� · � dS,

⎫⎪⎬
⎪⎭ (3.5)

and � = ∇ × v is the vorticity. Note that βk ≥ 0 for k = 1, 2 and 3. The BF formula
(3.4) characterizes the contributions of the bulk enstrophy β2 and the surface one β3
to the overall strain rate square β1. We will apply it to the present simulation results
of (i) the instantaneous velocity (by choosing v = u) and (ii) the time-averaged one
(by v = 〈u〉).

Firstly, for the instantaneous velocity, figure 8 shows the temporal change in β1(u),
β2(u) and β3(u) parametrizing oscillation amplitudes A at the small power-law index of
n = 0.25. The contribution of the surface enstrophy β3 to the overall strain rate square β1
becomes more prominent with increasing A. For A � 1, β3 is almost in balance with β1,
while the bulk enstrophy β2 is negligibly smaller than β1 and β3. This result indicates that,
at sufficiently large amplitudes, the vorticity generated on the FS boundary is confined to
the vicinity of the bubble wall, and the bulk flow may be regarded as nearly irrotational.
Such an irrotational nature at each instant rationalizes the result of figure 5 that the
added inertia force of the potential flow well describes the fluctuating component of the
force F.

Secondly, for the time-averaged velocity 〈u〉, figure 9 shows β1(〈u〉), β2(〈u〉) and
β3(〈u〉) as a function of the oscillation amplitude A for various power-law indices n. All the
panels include the potential flow solution (β1 = β3 = 12π; see (B2a–c) in Appendix B)
for comparison. For the Newtonian fluid with n = 1 (figure 9d), β1(〈u〉), β2(〈u〉) and
β3(〈u〉) are constant independent of A, and equal to the analytical solutions 4π, 8π/3 and
4π/3, respectively, for the steady Newtonian Stokes flow (see (B4a–c) in Appendix B).
This is a natural consequence because the time-averaged velocity satisfies the steady
Stokes equation, and is the same as the steady flow one owing to the system linearity. For
shear-thinning fluids with 0 < n < 1, the time-averaged velocity 〈u〉 is not proportional
to the time-averaged speed of the bubble 〈U〉 = 〈1 + A cos ωt〉 = 1. It depends upon the
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Figure 8. Temporal change in β1(u), β2(u) and β3(u) (for the instantaneous velocity u) at the power-law index
of n = 0.25. The solid and dashed curves indicate β1 and β3, respectively. The dash-dotted curve indicates β2;
(a) A = 0.01, (b) A = 0.1, (c) A = 1 and (d) A = 10.

oscillation amplitude A owing to the system nonlinearity. Therefore, as in figure 9(a–c),
β1, β2 and β3 are no longer constant with respect to A. For smaller amplitudes A < 1, the
surface enstrophy contribution β3 increases with A, and the bulk one β2 reduces, while
for larger amplitude A > 1, both β2 and β3 are rather independent of A. In the case of the
strongly shear-thinning fluids with the small power-law indices n = 0.125 (figure 9a) and
n = 0.25 (figure 9b), for A > 1, the reduced contribution of the bulk enstrophy β2 becomes
sufficiently smaller than the overall strain rate square β1. The increased contribution of the
surface enstrophy (β3 for A > 1) is almost in balance with β1. This result implies that the
interplay between the small index n and the large amplitude A confines the time-averaged
vorticity ∇ × 〈u〉 near the bubble wall and attenuates it in the bulk. This is consistent
with the results of figure 3(a,b) that the velocity field is regarded as nearly irrotational
at large amplitudes A. Although the reduction in the bulk enstrophy is attributed to the
system nonlinearity, it is non-trivial to explain the cause. A possible mechanism could
be that, unlike the Newtonian Stokes flow, in which the effect of the oscillatory velocity
A cos ωt on any time-averaged quantity is compensated to be zero, the breaking symmetry
in the vastly fluctuating velocity about the non-zero time-averaged speed of the bubble
〈U〉 = 1 alters the time-averaged quantities, and would reduce the bulk vorticity owing
to the nearly irrotational fluid motion at each instant with large A (as in figure 8c,d). In
consideration that the instantaneous (figure 8) and time-averaged (figure 9) enstrophies in
the bulk are small enough with small index n and large amplitude A, we will examine the
energy balance with the help of the potential flow theory (Chhabra 1998).
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Figure 9. Values of β1(〈u〉), β2(〈u〉) and β3(〈u〉) vs the oscillation amplitude A (for the time-averaged velocity
〈u〉). The circle, square and cross symbols indicate β1, β2 and β3, respectively; (a) n = 0.125, (b) n = 0.25,
(c) n = 0.75 and (d) n = 1 (corresponding to the Newtonian fluid). The solid lines marked by 4π, 8π/3 and
4π/3 in (d) respectively indicate the analytical solutions of β1, β2 and β3 for a steady Newtonian Stokes fluid.

In an irrotational flow, substituting each component of the strain rate tensor S (in (B1))
into (2.7a,b) gives the shear rate γ̇ :

γ̇ = 3|U|
r4

√
1 + 2 cos2 θ. (3.6)

Let ε be the energy dissipation rate. For power-law fluids, it is written as

ε = 2μS : S = γ̇ n+1. (3.7)

Let Ėdiss be the total rate of energy dissipation, which is defined as the volume integral of
ε over the entire fluid region. From (2.3), (3.6) and (3.7), Ėdiss in the irrotational motion
of the power-law fluid is

Ėdiss = 2π

∫ π

0

∫ ∞

1
εr2 sin θ dr dθ = 4π3n+1λ(n)

4n + 1
|1 + A cos ωt|n+1, (3.8)

where

λ(n) = 1
2

∫ 1

−1
(1 + 2ζ 2)(n+1)/2 dζ. (3.9)

For the approximated expression of λ(n), see (C2) in Appendix C. To assess the potential
flow model (3.8), figure 10 shows the total energy dissipation rate Ėdiss in one cycle for
various amplitudes A at n = 0.25. Overall, the theoretical prediction (3.8) well captures
the temporal fluctuation of Ėdiss of the simulated results. For smaller amplitudes A � 1
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Figure 10. Temporal change in the total energy dissipation rate Ėdiss at the power-law index of n = 0.25. The
solid and dashed curves indicate the simulated result and the prediction (3.8) based on potential flow theory,
respectively; (a) A = 0.01, (b) A = 0.1, (c) A = 1 and (d) A = 10.

(figure 10a,b), where the fluctuation level of numerical Ėdiss is much smaller than the
value of theoretical Ėdiss, the theoretical prediction (3.8) overestimates the simulated
one. By contrast, for larger amplitude A � 1 (figure 10c,d), where the fluctuation level
is comparable to the theoretical prediction of Ėdiss, the relative agreement between the
theoretical and simulated predictions become better. Note that figure 10(d) for A = 10
exhibits a rectified waveform of Ėdiss > 0 as indicated by the theoretical prediction (3.8)
in the case of A > 1.

In the examination of the energy balance, we now pay attention to the total energy input
rate Ėin = FU from the bubble to the surrounding fluid. A general expression of the energy
balance over one cycle is

〈Ėin〉 = 〈Ėdiss〉. (3.10)

Applying the theoretical model (3.8) under the assumption of potential flow to (3.10) gives

〈Ėin〉 = 4π3n+1λ(n)

4n + 1
〈|1 + A cos χ |n+1〉χ , (3.11)

where 〈· · · 〉χ stands for the average in the range of χ ∈ [0, 2π]. For sufficiently large
amplitude A (when the rectified waveform of Ėdiss is established as in figure 10 (d)), we
obtain the asymptotic expression of (3.11)

〈Ėin〉 → 4π3n+1λ(n)

4n + 1
〈| cos χ |n+1〉χAn+1 as A → ∞, (3.12)

indicating 〈Ėin〉 ∝ An+1 for each n. For the approximated expression of 〈| cos χ |n+1〉χ ,
see (C4). Note that, for the Newtonian fluid with n = 1, (2.3) and (3.3) give
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Figure 11. The time-averaged total energy input rate 〈Ėin〉 vs the oscillation amplitude A for various power-law
indices n. The circle symbols indicate the simulated results. The solid and dashed curves indicate the prediction
(3.11) based on potential flow theory and its asymptotic expression (3.12) for A � 1, respectively. The dotted
line corresponds to the drag force D0 without oscillation; (a) n = 0.125, (b) n = 0.25, (c) n = 0.5 and
(d) n = 0.75.

〈Ėin〉 = 4π + 6πA2 → 6πA2 as A → ∞, consistent with (3.12) at n = 1. Figure 11 shows
the time-averaged total energy input rate 〈Ėin〉 as a function of the oscillation amplitude
A for various power-law indices n. The simulated results are estimated from 〈Ėin〉 = 〈FU〉
using the time-series data of the force F and the bubble velocity U (e.g. those in figure 5).
These are compared with the potential flow model (3.11), its asymptotic expression (3.12)
for A � 1, and the drag force D0 (corresponding to the input rate Ėin in the case of no
oscillation (U = 1)). For small amplitude A < 1, the simulated results of 〈Ėin〉 at each
n approach D0 with decreasing A. For large amplitude A � 1, the theoretical predictions
(3.11) and (3.12) are in excellent agreement with the simulated results, demonstrating the
validity of the proportionality 〈Ėin〉 ∝ An+1 for A � 1 on the basis of the potential flow
theory.

Examining the momentum balance, we shall explain the mechanism of drag reduction
shown in figure 7(a). We will address the issue that for A � 1, the time-averaged drag
force D = 〈F〉 ∝ An−1 in the shear-thinning power-law fluid (0 < n < 1) is negatively
correlated with the amplitude A. This is in contrast to the time-averaged input rate
〈Ėin〉 = 〈FU〉 ∝ An+1 and the fluctuation level of the bubble velocity |U| ∼ A1, which
are positively correlated with A, and the time-averaged bubble velocity 〈U〉 = 1 ∝ A0,
which is independent of A. We consider the fact that the bubble velocity U determines the
kinematics of the irrotational motion at each instant, and the total energy dissipation rate
Ėdiss with no time lag (3.8). Therefore, in expressing the force F, we neglect history forces
(e.g. the Basset force corresponding to the O(ω1/2) term in (3.2)), which are related to
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vorticity generation and diffusion. Following the dissipation method (Joseph 2006) for a
flow driven by an accelerating sphere, we model the time-dependent force in the form

F = 2π

3
dU
dt

+ Ėdiss

U
, (3.13)

where the first term on the right-hand side corresponds to the added inertia force, which
involves the considerable fluctuation in figure 5, and the second term is regarded as the
instantaneous drag force. Note that the force decomposition in (3.13) is valid when the
system involves the viscous dissipation mechanism with no bulk vorticity. The added
inertia force does not influence the time-averaged drag force since it is written in a
time-derivative form. Thus, the time-averaged value is zero. Further, it has no impact on
the time-averaged total energy input rate 〈Ėin〉 = 〈FU〉 because (2π/3)(dU/dt) × U =
(π/3)(dU2/dt) is also in a time-derivative form. Therefore, (3.13) satisfies the energy
balance 〈FU〉 = 〈Ėdiss〉 over one cycle (3.10). From (2.3), (3.8) and (3.13) under the
assumption of the potential flow, we model the time-averaged drag force

D =
〈

Ėdiss

U

〉
= 4π3n+1λ(n)

4n + 1
〈|1 + A cos χ |n−1(1 + A cos χ)〉χ . (3.14)

For sufficiently large amplitude A, (3.14) is asymptotically written in a form

D → 4π 3n+1λ(n)

4n + 1
n〈| cos χ |n−1〉χAn−1 as A → ∞. (3.15)

For the approximated expression of 〈| cos χ |n−1〉χ , see (C6). The asymptotic expression
(3.15) indicates that, although the fluctuation level of the instantaneous drag force scales
as |Ėdiss/U| ∼ An for A � 1, the time-averaged drag force scales as D ∼ An−1 owing to
the compensation between the positive and negative values of Ėdiss/U during one cycle,
revealing the fact that the time-averaged drag force D decreases with A in case of the
shear-thinning fluid (0 < n < 1). Interestingly, the n dependence of this proportionality
D ∝ An−1 is consistent with the scaling relation of the drag reduction shown in figure 7(a).
For more quantitative discussion, figure 12 shows the time-averaged drag force D as a
function of the oscillation amplitude A for various power-law indices n. The simulated
results are compared with the potential flow model (3.14), its asymptotic expression (3.15)
for A � 1 and the drag force D0 without oscillation. For small amplitude A < 1, the
simulated results at each n approach D0 with decreasing A. For large amplitude A � 1,
as shown in figure 12(c,d), the discrepancy between the model ((3.11) or (3.12)) and
simulated predictions becomes more considerable with increasing n since the potential
flow assumption is likely to fail as indicated by the gentle slope of the profile 〈ûr〉 in
figure 3(c) and the non-negligible bulk enstrophy in figure 9(c). Nevertheless, for all the
indices n in figure 12, the slope of D vs A predicted by the asymptotic expression (3.15)
for A � 1 is confirmed to be consistent with the simulated results. For the small indices
n = 0.125 (figure 12a) and n = 0.25 (figure 12b), the model predictions (3.14) and (3.15)
are in quantitative agreement with the simulated results for A � 1.

The mechanism of the drag reduction expressed as D/D0 ∝ An−1 (figure 7a) is
explained by the application of the dissipation method (Joseph 2006) to the irrotational
flow of the power-law fluid. In particular, for the flow induced by the largely oscillating
bubble in the strongly shear-thinning fluid characterized by the small power-law index n,
the bulk enstrophy is small enough (figures 8 and 9). Thus, the potential flow assumption
becomes reasonable, enabling the model (3.15) thereunder to predict the time-averaged
drag force D quantitatively.
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Figure 12. The time-averaged drag force D vs the oscillation amplitude A for various power-law indices n.
The circle symbols indicate the simulated results. The solid and dashed curves indicate the prediction (3.14)
based on potential flow theory and its asymptotic expression (3.15) for A � 1, respectively. The dotted line
corresponds to the drag force D0 without oscillation; (a) n = 0.125, (b) n = 0.25, (c) n = 0.5 and (d) n = 0.75.

4. Conclusion

In summary, performing numerical simulation and modelling, we have studied the
flow dynamics induced by an oscillatory spherical bubble travelling in a power-law
shear-thinning fluid with a velocity of U(= 1 + A cos ωt). The drag reduction ratio
1 − D/D0 is proportional to A2 at small oscillation amplitude A, and the proportionality
of A2 originates from the fact that the time average of the force contribution proportional
to A1 becomes zero. In contrast, for large amplitude, the drag ratio D/D0 is proportional to
An−1. In the case of A � 1, examination of the radial profile of the time-averaged velocity
and the level of the bulk enstrophy with the aid of the BF formula revealed that the bulk
flow might be regarded as nearly irrotational for a strong shear-thinning fluid with a small
power-law index n.

Following the dissipation method (Joseph 2006) for an irrotational flow driven by
an accelerating sphere, we developed the potential flow model to describe the total
energy dissipation rate at each instant and the time-averaged drag force D. The model
quantitatively captures the numerical results of the energy and momentum balance
relations, especially at large A and small n. It also accounts for the mechanism of the
drag reduction given by the power-law relation D/D0 ∝ An−1.

Our findings have potentially significant implications for applying mechanical
oscillation in engineering fields to predict the drag force and to control a bubble’s
behaviour. Although the present study treated a simple system (i.e. unsteady
incompressible creeping flow with a spherical bubble moving at a prescribed speed in a
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power-law fluid), it provided a fundamental perspective on the drag reduction mechanism
that would boost future research on more complex systems involving e.g. a more general
shear-thinning viscosity, a wider variation in frequency, advective momentum transport,
liquid compressibility and an acoustic boundary layer.
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Appendix A. Drag force on a spherical bubble in a steady flow with a power-law index
n close to unity

We define a small parameter as ε = 1 − n, which is supposed to be 0 < ε � 1. Based
on the method of perturbation, we write the velocity, pressure and viscous stress in an
expansion form:

u = u(0) + εu(ε),

p = p(0) + εp(ε),

τ = τ (0) + ετ (ε).

⎫⎬
⎭ (A1)

Applying the Taylor expansion to the viscosity μ with respect to ε gives

μ = γ̇ −ε = μ(0) + εμ(ε) · · · , (A2)

where the leading and perturbed components μ(0) and μ(ε) are given by

μ(0) = 1, μ(ε) = − ln(2S(0) : S(0))1/2. (A3a,b)

Note that |ε ln γ̇ | � 1 is preconditioned but it would be violated when γ̇ � 1, in particular
at locations sufficiently far from the sphere. The domain where (A2) is valid would be
wider for smaller ε. The O(ε0) governing equations are

∇ · u(0) = 0, −∇p(0) + ∇2u(0) = 0. (A4a,b)

The solutions to (A4a,b) with the boundary conditions (2.8a,b) are the well-known ones
of Newtonian creeping flow, namely

u(0) = er
cos θ

r
− eθ

sin θ

2r
, p(0) = cos θ

r2 . (A5a,b)

The O(ε1) governing equations are

∇ · u(ε) = 0, −∇p(ε) + ∇2u(ε) + ∇ · (2μ(ε)S(0)) = 0. (A6a,b)

The boundary conditions are

er · u(ε) = 0, er · τ (ε) · eθ = 0 at r = 1,

u(ε) → 0, p(ε) → 0 as r → ∞,

}
(A7)
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where
τ (ε) = 2S(ε) + 2μ(ε)S(0). (A8)

From (A3a,b), the O(ε1) viscosity, that contributes to the drag force, is given by

μ(ε) = − ln 3
2

+ 2 ln r − ln(cos2 θ)

2
=
(

2 − ln 3
2

+ 2 ln r
)

P0(cos θ) − 5
3

P2(cos θ) + · · · ,

(A9)

where Pn(· · · ) is the nth-order Legendre polynomial. The solutions to (A6a,b) with (A7)
and (A9) are

u(ε) =er

(
−2 ln r

r
+ 1

3r
− 1

3r3

)
P1(cos θ)+eθ

(
ln r
r

+ 5
6r

− 1
6r3

)
P1

1(cos θ) + · · · ,

p(ε) =
(

11
3r2 − ln 3

2r2

)
P1(cos θ) + · · · ,

⎫⎪⎪⎬
⎪⎪⎭

(A10)
where P1

n(cos θ) = −dPn(cos θ)/dθ . The drag force is given by

F = −2π

∫ π

0
σrr|r=1 cos θ sin θ dθ, (A11)

where σrr is the normal stress given by

σrr = −p + er · τ · er, σrr = σ (0)
rr + εσ (ε)

rr . (A12a,b)

From (A5a,b), (A8) and (A10), the O(ε0) and O(ε1) normal stresses on the sphere wall
are

σ (0)
rr |r=1 = −3P1(cos θ), σ (ε)

rr |r=1 =
(

−7 + 3 ln 3
2

)
P1(cos θ) + · · · . (A13a,b)

From (A11), (A12a,b) and (A13a,b), the drag force with the power-law index n ≈ 1 is
approximated by

F = 4π +
(

28π

3
− 2π ln 3

)
(1 − n). (A14)

Note that the analytical result of (A14) has been included in figure 2(b) to validate the
credibility of the simulations.

Appendix B. The case of βk included in the BF formula (3.4) for the Newtonian
potential flow and for the Newtonian Stokes flow

For a potential flow around a sphere travelling with speed of U = 1 in a resting fluid, the
velocity u, the vorticity � and the components of the strain rate tensor S are

u = er
cos θ

r3 + eθ

sin θ

2r3 , � = 0,

Srr = −3 cos θ

r4 , Sθθ = Sφφ = 3 cos θ

2r4 , Srθ = Sθr = −3 sin θ

2r4 .

⎫⎪⎬
⎪⎭ (B1)

Substituting (B1) into (3.5) gives

β1(u) = 12π, β2(u) = 0, β3(u) = 12π. (B2a–c)
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Figure 13. Profiles of (a) λ(n) (defined in (3.9)), (b) 〈| cos χ |n+1〉χ and (c) 〈| cos χ |n−1〉χ as functions of
n(∈ (0, 1)). The circle symbols indicate the numerically integrated data. The solid curves correspond to the
empirical formulae (C2), (C4) and (C6), respectively, for (a), (b) and (c).

For a steady Newtonian Stokes flow induced by a FS sphere, the quantities are

u = er
cos θ

r
− eθ

sin θ

2r
, � = −eφ

sin θ

r2 ,

Srr = −cos θ

r2 , Sθθ = Sφφ = cos θ

2r2 , Srθ = Sθr = 0.

⎫⎪⎬
⎪⎭ (B3)

Substituting (B3) into (3.5) gives

β1(u) = 4π, β2(u) = 8π

3
, β3(u) = 4π

3
. (B4a–c)

Appendix C. Approximated expressions for λ(n), 〈| cos χ |n+1〉χ and 〈| cos χ |n−1〉χ

For convenient use of (3.12) and (3.15), some approximated expressions as a function of
the power-law index n(∈ (0, 1)) will be shown. For λ(n) defined in (3.9), fitting to the
numerically integrated data (corresponding to the circle symbols in figure 13a) and the
analytical values at the boundaries

λ(0) = 1
2

∫ 1

−1
(1 + 2ζ 2)1/2 dζ =

√
3

2
+

√
2

4
ln(

√
2 +

√
3),

λ(1) = 1
2

∫ 1

−1
(1 + 2ζ 2) dζ = 5

3
,

⎫⎪⎪⎬
⎪⎪⎭ (C1)

we obtain a formula
λ(n) = 0.076n2 + 0.32n + 1.271. (C2)

For 〈| cos χ |n+1〉χ , imposing the analytical values at the boundaries

〈| cos χ |n+1〉χ =

⎧⎪⎨
⎪⎩

2
π

for n = 0

1
2

for n = 1
, (C3)

we obtain a fitted formula

〈| cos χ |n+1〉χ = 2
π

(1 − n) + n
2

− 0.048n(1 − n). (C4)

See figure 13(b) for the applicability of (C4).
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For 〈| cos χ |n−1〉χ , from two asymptotic solutions

〈| cos χ |n−1〉χ →
⎧⎨
⎩

2
π

(
1
n

+ log 2
)

for n → 0

1 − (n − 1) log 2 for n → 1
, (C5)

we may draw an empirical expression

〈| cos χ |n−1〉χ = 2
πn

+ 1 − 2
π

, (C6)

which well captures the numerically integrated data (see figure 13c).
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