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Direct numerical simulation (DNS) is performed to explore turbulent Rayleigh–Bénard
convection in spherical shells. Our simulations cover six distinct values of radius ratio,
η = ri/ro = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8, under the assumption of a centrally condensed
mass with gravity profile g ∼ 1/r2; where ri, ro and r denote the inner shell radius, the
outer shell radius and the local radial coordinate, respectively. The Prandtl number is kept
constant at unity while the Rayleigh number (Ra) is varied from 3 × 103 to 5 × 108. Our
primary aim is to analyze how the radius ratio influences the global transport properties
and flow physics. To gain insights into the scaling behaviour of the Nusselt number (Nu)
and the Reynolds number (Re) with respect to Ra and η, we apply the Grossmann–Lohse
(GL) theory (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56) to the
system. It is observed that the scaling exponents for Nu and Re in relation to Ra are more
significant for smaller η values, suggesting that the simulations with smaller η reach the
classical Nu ∼ Ra1/3 regime at a relatively lower Ra. This observation could also imply
the systems with smaller η might transition to the ultimate regime earlier at a smaller Ra.
Based on our extensive DNS data, we establish that the thickness of the inner thermal
boundary, λi

ϑ , follows a scaling relationship of λi
ϑ ∼ η1/2. This relationship, in turn, leads

to a scaling law for Nu in the form of Nu ∼ f (η)Raγ , where the function f (η) is defined as
f (η) = η1/2/(1 + η4/3), and the exponent γ depends on both Ra and η. Additionally, we
characterize and explain the asymmetry in the velocity field by introducing the separate
Reynolds numbers for the inner and outer shells. The asymmetry of the kinetic and thermal
energy dissipation rates in the inner and outer boundary layers (BLs) is also quantified.
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1. Introduction

Thermal convection in spherical shells is ubiquitous in geophysical and astrophysical
processes such as tropical convection at the Earth’s atmospheric boundary (Hartmann,
Moy & Fu 2001), mantle convection within the Earth (Davies & Richards 1992), thermal
convection in Earth’s outer core (Wicht & Sanchez 2019), deep convection in the
molecular envelopes of gas giants (Aurnou et al. 2008) and thermal convection in the
convective zone of the Sun (Hanasoge, Gizon & Sreenivasan 2016). In spherical shells,
the curvature of the inner boundary differs from that of the outer boundary. Additionally,
gravitational effects vary radially and are not constant (Phillips & Lambeck 1980).
Consequently, the flow properties near the inner boundary are distinct from those at the
outer boundary, and both are different to the bulk. Rayleigh–Bénard convection (RBC)
within spherical shells (Gastine, Wicht & Aurnou 2015), where heat is supplied from
the inner sphere and dissipated at the outer sphere, serves as a paradigmatic system for
investigating thermal convection in spherical geometries. Similar to its planar counterpart,
a fundamental aspect of studying spherical RBC is to ascertain how the system responds,
such as determining dimensionless heat transfer (Nusselt number, Nu) and dimensionless
momentum transfer (Reynolds number, Re), as functions of the input parameters (Rayleigh
number, Ra, and Prandtl number, Pr). For a more comprehensive introduction to RBC
in general, and specifically planar RBC, which has been extensively studied over recent
decades, the interested reader is referred to the papers of Ahlers, Grossmann & Lohse
(2009), Chillà & Schumacher (2012), Plumley & Julien (2019) and Xia et al. (2023).

To investigate RBC in spherical shell geometry, several laboratory experiments have
been conducted. To eliminate vertical gravity and create a radially inward body force, fluids
that can be influenced by electric fields are employed in micro-gravity environments. In
these experiments, the radial body force is induced by the electric field to mimic buoyancy.
A series of experiments called ‘GeoFlow’ have been performed at the International Space
Station (ISS) (Egbers et al. 2003; Futterer et al. 2010, 2013; Zaussinger et al. 2018, 2020) to
study the flow instability, pattern formation and transition to chaos of thermal convection
in concentric, non-rotating and rotating spherical shells. Since these experiments focused
on understanding the thermal convection in Earth’s mantle, the Prandtl number considered
was in the range of 40 < Pr < 200. As a result of the limitation of the electric field
strength and the fluid dielectric properties, the Rayleigh number was limited to a relatively
small value, Ra < 107. In recent decades, several numerical studies (Zebib, Schubert &
Straus 1980; Zebib et al. 1983; Bercovici et al. 1989; Bercovici, Schubert & Glatzmaier
1992; Tilgner 1996; Tilgner & Busse 1997; Choblet & Parmentier 2009; Choblet 2012;
Gastine et al. 2015) have focused on non-rotating spherical shell thermal convection; some
of which consider an infinite Pr (Bercovici et al. 1992), simulating the Earth’s mantle.
Only a few of them investigated the scaling properties of the response parameters of the
system as a function of the driving forces. For example, Tilgner (1996) studied Nu(Ra, Pr)
and Re(Ra, Pr) scalings in the parameter space of 0.06 ≤ Pr ≤ 10 and 4 × 103 ≤ Ra ≤
8 × 105 at a fixed radius ratio η = 0.4 and a gravity profile (g(r) ∼ r). The scalings
obtained were Nu ∼ Ra0.24 and Re ∼ Ra0.5. The scarcity of scaling studies on spherical
RBC in the literature is a key motivation for this research. One of the primary goals of
the present work is to explore a wide range of parameter space to examine the scaling
behaviours of Re and Nu as functions of Ra and η.

To quantify the thermal boundary layer (BL) asymmetry and scaling properties in
spherical RBC, Gastine et al. (2015) numerically examined spherical thermal convection
with different gravity profiles (g(r) ∈ {r/ro, 1, (ro/r)2, (ro/r)5}) and a broad range of
radius ratios (0.2 ≤ η ≤ 0.95), at Pr = 1. In their approach, they assume the average
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RBC in spherical shells

plume density on the inner and the outer boundaries to be the same. Based on this
assumption, Gastine et al. (2015) calculated the ratio of the inner and the outer BL
thicknesses. The temperature drop within each of these BLs was also quantified. It
is important to note that the scaling behaviours of Nu(Ra) and Re(Ra) were studied
exclusively for the simulations with Ra up to 109 and at a specific radius ratio of η = 0.6.
For all other radius ratios, the primary focus was on studying BL asymmetry, and as a
consequence, only very low Ra values were considered. Scaling relations in these cases
were not established, leaving ample room for further research to explore the impact of
radius ratio on the scaling of Nu(Ra) and Re(Ra).

Our primary objective in this study is to unravel the influence of the radius ratio on
the scaling behaviour of dimensionless heat transport and flow velocity in spherical RBC.
This investigation holds significance specifically in the context of the convective zones
of different planets. These planetary convective zones exhibit varying sizes, leading to
different radius ratios. For example, recent geodetic analyses of Mercury’s interior have
indicated the presence of a solid inner core and a liquid outer core, with the radius ratio
falling within the range of 0.3–0.7 (Genova et al. 2019). Similarly, Earth’s outer core
and inner core possess a radius ratio of approximately 0.35 (Ahrens 1995). The situation
becomes a bit more complex when considering gas giants like Jupiter and Saturn, where
defining the convective zone depends on whether the core-metallic hydrogen interface or
the core-molecular hydrogen interface is chosen as the inner boundary. Consequently, the
radius ratio for Jupiter’s convective zone varies between 0.55 and 0.75 (Guillot et al. 2004),
and for Saturn, adopting the core-metallic hydrogen interface as the inner boundary results
in a radius ratio spanning from 0.45 to 0.55 (Christensen & Wicht 2008; Vazan et al. 2016).
Additionally, the study of gas giants is complicated by the uncertainty in their boundary
conditions. Unlike the present study, gas giants may not have no-slip boundaries. It is
important to acknowledge that the radius ratio values for other planets in our solar system
remain uncertain. For instance, the inner core radius of Venus remains unclear (O’Neill
2021; Stähler et al. 2021). Mars, however, is highly suspected not to possess a solid inner
core (Stähler et al. 2021). For the ice giants Uranus and Neptune, their interior structures
remain a subject of controversy and uncertainty (Helled, Nettelmann & Guillot 2020). The
radius ratios used in simulations and experiments pertaining to various planets in the Solar
system are listed in table 1. In many geophysical flows, the effect of rotation must be taken
into consideration. Recent studies (e.g. Gastine, Wicht & Aubert 2016; Long et al. 2020;
Song et al. 2024a; Song, Shishkina & Zhu 2024b) indicate that the behaviour of heat
transport in rotating convection approaches that of the non-rotating convection when the
Rayleigh number is sufficiently high for a given Ekman number, such that the buoyancy
effects dominate over the rotational effects.

In this study, we conduct 97 three-dimensional (3-D) DNS of spherical shell RBC with
0.2 ≤ η ≤ 0.8 and Ra up to 5 × 108, at Pr = 1. We begin by looking at the flow structures
in our simulations and report the existence of large-scale structures in spherical RBC.
Using our DNS data, we validate the ratio of inner and outer boundary layer thicknesses
as well as the mean temperature drop across thermal boundary layers given by Gastine
et al. (2015). Building upon these relations, we derive an analytical relation for the radius
ratio dependence of Nu. To further investigate the dependency of Nu and Re on Ra for
different radius ratios, we employ the Grossmann–Lohse (GL) theory (Grossmann &
Lohse 2000, 2001; Gastine et al. 2015). GL theory is grounded on the assumption of
laminar BLs and turbulent bulk flows. The thermal and kinetic energy dissipation rates are
partitioned into boundary layer and bulk contributions. Scaling relations are established
between dissipation rates and the global Reynolds number. Using the GL theory, we are
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Planet η (Observation) η (Sim. / Exp.) References

Mercury 0.3–0.7 0.2 Cao et al. (2014), Takahashi, Shimizu & Tsunakawa (2019)
0.35 Manglik, Wicht & Christensen (2010), Heyner et al. (2011)

Earth 0.35 0.35 Christensen & Aubert (2006), Aubert, Labrosse & Poitou (2009)
King et al. (2010), Christensen (2018)

0.4 Tilgner (1996), Ardes, Busse & Wicht (1997)
Jupiter 0.55–0.75 0.6 Christensen (2001)

0.76 Manneville & Olson (1996)
0.85 Yadav, Heimpel & Bloxham (2020)
0.9 Heimpel, Aurnou & Wicht (2005)

Saturn 0.45–0.55 0.5 Christensen & Wicht (2008)
0.51 Manneville & Olson (1996)
0.57 Christensen & Wicht (2008)

Table 1. Radius ratios for the selected planets in the solar system. For Mercury and Earth, the radius ratio η

is defined as the ratio of the inner solid core radius and the outer liquid iron core radius (Ahrens 1995; Genova
et al. 2019). The η for Jupiter (Guillot et al. 2004) and Saturn (Christensen & Wicht 2008; Vazan et al. 2016)
are chosen as the ratio between the radii of the inner metallic-core boundary and the outer upper atmosphere
boundary.

able to elucidate the dependence of the local scaling exponents on η. In addition to the
scaling behaviour of the dimensionless heat transport and flow velocity, we also aim to
quantify the asymmetry of the convective flow by partitioning the spherical shell domain
into inner and outer regions, with local Reynolds numbers defined for each segment. The
ratio between the inner and outer shell Reynolds numbers is expressed as a function of
η. Lastly, we explore the asymmetry of the BL dissipation rates – with the ratio between
inner and outer BL dissipation rates also expressed as a function of η. All scaling relations
are validated using our DNS data. The major contributions of the present study are as
follows.

(i) The large-scale structures are observed in spherical RBC for the first time.
(ii) An analytical relation for the radius ratio dependence of Nu is derived.

(iii) The relations for local scaling exponents for Nu(Ra) and Re(Ra) are investigated
by using GL theory.

(iv) The asymmetry of the convective flow and the boundary layer dissipation rates are
quantified as a function of radius ratio.

2. Model description

2.1. Governing equations
We consider RBC with Oberbeck–Boussinesq approximation in spherical shells with
inner radius ri and outer radius ro. The temperatures are fixed as Ti and To at the inner
and the outer boundary, respectively. The mechanical boundary conditions are no-slip
at both boundaries. The dimensionless equations were adopted by using the shell gap
d = ro − ri, the viscous dissipation time scale d2/ν, the temperature difference between
the inner and outer boundaries �T = Ti − To, the momentum diffusive velocity ν/d, and
the characteristic pressure ρν2/d2 as the reference scales. Gravity is non-dimensionalized
using its reference value at the outer boundary go = g(ro). The dimensionless governing
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RBC in spherical shells

equations for the problem read

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + Ra
Pr

gTer + ∇2u, (2.2)

∂T
∂t

+ u · ∇T = 1
Pr

∇2T. (2.3)

Here, the symbols u, p and T represent velocity, pressure and temperature, respectively.
Additionally, er represents the unit vector in the radial direction. In our study, we focus on
spherical shell convection under the influence of a centrally condensed mass with the
gravity profile, g(r) = (ro/r)2 (Chandrasekhar 1981). By adopting this gravity profile,
exact relations connecting dissipation rates with driving forces can be established (see
§ 2.3), enabling us to conduct scaling analysis effectively.

The dimensionless equations (2.1)–(2.3) are controlled by three input parameters –
Rayleigh number, Prandtl number and the radius ratio, which are defined as

Ra = αgo�Td3

νκ
, Pr = ν

κ
, η = ri

ro
, (2.4a–c)

respectively. Here, α is the thermal expansion coefficient, and ν and κ are the viscous and
thermal diffusivities, respectively.

2.2. Response parameters
In RB, there are two key response parameters in the system. One of them is
the Nusselt number, Nu, which represents the dimensionless heat flux. Within the
Oberbeck–Boussinesq approximation, one obtains

Nu =
〈urT〉s − 1

Pr
dϑ

dr

− 1
Pr

dTc

dr

= −η
dϑ

dr

∣∣∣∣
r=ri

= −1
η

dϑ

dr

∣∣∣∣
r=ro

, (2.5)

where (·) represents the time average, and 〈·〉s and 〈·〉 represent the spatial average over
the horizontal surface and the whole volume of the spherical shell, respectively. The time
and horizontally averaged radial temperature profile is ϑ = 〈T〉s, and Tc is the conductive
temperature profile which, for spherical shells with fixed thermal boundary condition,
reads

Tc(r) = η

(1 − η)2
1
r

− η

1 − η
. (2.6)

Another key response parameter is the Reynolds number,

Re =
√

〈u2〉 =
√

〈u2
r + u2

θ + u2
φ〉, (2.7)

which represents the dimensionless velocity. The radial profile of the time and horizontally
averaged horizontal velocity is

Reh(r) =
√

〈u2
θ + u2

φ〉
s
. (2.8)
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2.3. Exact dissipation relations in spherical shells
There are two exact relations for the time- and volume-averaged kinetic energy dissipation
rate εu and the thermal energy dissipation rate εϑ . In spherical shells with a centrally
condensed mass gravity profile g(r) = (ro/r)2, the exact relations can be written as
(Gastine et al. 2015)

εu = 3
1 + η + η2

Ra
Pr2 (Nu − 1), (2.9)

εϑ = 3η

1 + η + η2 Nu. (2.10)

In our dimensionless quantities, εu and εϑ are calculated as follows:

εu =
〈(

∂ui

∂xj

)2〉
, εϑ = 〈(∇T)2〉. (2.11a,b)

Using the relations (2.9), (2.10) and (2.11a,b), we can express the Nusselt numbers based
on the kinetic and thermal energy dissipation rates as

Nuεu = 1 + η + η2

3
Pr2

Ra
εu + 1,

Nuεϑ = 1 + η + η2

3η
εϑ .

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

The relative error between the estimates of the Nusselt number obtained from (2.5) and
(2.12) is used as a measure of the resolution in our simulations. For more details, please
refer to Appendix A.

2.4. Numerical settings and simulation parameters
In this work, we have used the magnetohydrodynamic code MagIC (Wicht 2002;
Christensen & Wicht 2007; Lago et al. 2021) to solve (2.1)–(2.3). MagIC is a
pseudo-spectral code in which all the unknown variables are expanded into complete
sets of functions in radial and horizontal directions. Chebyshev polynomials are
applied in the radial direction while spherical harmonic functions are used in the
azimuthal and latitudinal directions. Since the velocity field is solenoidal under the
Oberbeck–Boussinesq approximation, MagIC decomposes it into poloidal and toroidal
components,

u = ∇ × (∇ × Wer) + ∇ × Zer. (2.13)

The velocity field u, which has three components, can thus be replaced by two scalar
fields which are the poloidal potential W and the toroidal potential Z. The equations
are time-stepped by advancing the nonlinear terms using an explicit second-order
Adams–Bashforth scheme, while the linear terms are time-advanced using an implicit
Crank–Nicolson algorithm. At each time step, the linear terms are calculated in the spectral
space while the nonlinear terms are calculated in the physical space.

We conducted six sets of simulations with η = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and Pr =
1. For η = 0.2, 0.3 and 0.4 simulations, Ra is varied in the range 3 × 103 ≤ Ra ≤ 5 ×
108; for the η = 0.5 and 0.8 cases, we have 3 × 105 ≤ Ra ≤ 5 × 108. The simulations for
the η = 0.6 case are the same as those of Gastine et al. (2015). For more details about
the simulation parameters, grid resolution and the balance of the turbulent kinetic energy
budget, please refer to Appendix A.
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(b)(a)

Figure 1. Equatorial and meridional cuts of temperature fluctuations T ′ for two selected cases. (a) η =
0.2, Ra = 7 × 106, the inner radial cut is at r = ri + 0.01d and the outer radial cut is at r = ro − 0.02d.
(b) η = 0.8, Ra = 7 × 106, the inner radial cut is at r = ri + 0.02d and the outer radial cut is at r = ro − 0.02d.
Colour levels range from −0.3 (blue) to 0.3 (red).

3. Flow structures

A typical representation of the differences in the flow morphology with respect to η

is shown in figure 1. Three-dimensional contours of the temperature fluctuations T ′ for
a small radius ratio case (η = 0.2) and a large radius ratio case (η = 0.8) are plotted.
The radial cuts are located inside the thermal BLs. There are many ways to define the
thermal boundary layer (Long et al. 2020). In this work, we have adopted the slope
method (Shishkina et al. 2010; Gastine et al. 2015) to define the thermal boundary layer
thickness. It can be clearly seen that the flow structures mainly comprise sheet-like plumes
originating from within the thermal BLs. The hot plumes (red) detach from the inner
boundary and then expand in the middle of the domain, while the cold plumes (blue)
detach from the outer boundary and expand, sinking downwards towards the inner shell.
The rising hot plumes and the sinking cold plumes evolve into mushroom-type lobed
structures in the bulk. The plume size near the inner boundary is smaller than that of
the outer boundary, which is in line with the observation reported by Gastine et al. (2015).
By comparing the plume morphology between different radius ratio cases, keeping Ra
constant, we find that the number of the plumes ejected from the boundaries is higher at
a larger η. See figure 1. Moreover, the number of the sheet-like plumes is higher near the
outer boundary than near the inner boundary. This phenomenon is more pronounced at a
smaller η. For η = 0.2 and Ra = 3 × 108, flow structures characterized by the normalized
vertical velocity u′

r = ur/(
√

Ra/Pr) as well as the temperature fluctuations T
′ = T − 〈T〉s

at three different horizontal depths are shown in figure 2. These three layers are chosen to
represent the mid-depth, a layer near the inner thermal boundary layer and a layer near the
outer thermal boundary layer. We can see from both u′

r and T
′
contour plots that the plume

number is higher near the outer boundary than near the inner boundary.
The warm upflow (red) and cold downflow (blue) reveal the existence of the large-scale

structures in the flow. Figure 3 shows normalized instantaneous vertical velocity u′
r =

ur/(
√

Ra/Pr) on the horizontal mid-plane at Ra = 7 × 107 and different η. As illustrated
in figure 3, the higher the radius ratio, the greater the number of large-scale structures
present in the flow. To reveal the dominant spherical harmonic degree (analogous to the
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u′
r, r = rmid

90°N
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180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

T′, r = rmid
90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

u′
r, r – ri = 0.0047du′

r
90°N

60°N

30°N

180°

0.5

0

–0.5

T′
0.2

0

–0.2

120°W 60°W 60°E 120°E 180°0°

30°S

60°S

T′, r – ri = 0.0047d
90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

u′
r, r – ri = 0.9770d

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

T′, r – ri = 0.9770d
90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

(a) (b)

(c) (d )

(e) ( f )

Figure 2. Normalized vertical velocity u′
r = ur/(

√
Ra/Pr) and temperature fluctuations T

′ = T − 〈T〉s at
different horizontal layers for η = 0.2, Ra = 3 × 108. (a) u′

r at mid-depth, (b) T
′

at mid-depth, (c) u′
r near

the inner boundary layer at r = ri + 0.0047d, (d) T
′

near the inner boundary layer at r = ri + 0.0047d, (e) u′
r

near the outer boundary layer at r = ri + 0.9770d, ( f ) T
′

near the outer boundary layer at r = ri + 0.9770d.

dominant wavenumber in Cartesian coordinates) at each η in figure 3, time-averaged
kinetic energy spectra with respect to the spherical harmonic l on the mid-plane are
calculated as (Glatzmaier 2013)

Ekin(l) = 1

2πr2
mid〈|u|2〉s

l∑
m=0

l(l + 1)

[
l(l + 1)

r2
mid

|Wlm|2 +
∣∣∣∣dWlm

dr

∣∣∣∣
2

+ |Zlm|2
]

, (3.1)

where rmid = (ri + ro)/2 is the radius of the mid-plane, m is the spherical harmonic order,
and Wlm and Zlm are the poloidal potential and the toroidal potential of the velocity in the
spectral space, respectively (Christensen & Wicht 2007). In the above equation, the m = 0
contribution entering in the summation is multiplied by one-half (Schwaiger, Gastine &
Aubert 2021), see Appendix B for more details. Figure 4 shows kinetic energy spectra
Ekin(l) for the same cases as depicted in figure 3. The dominant harmonic degree lmax
corresponds to the peak of the spectra. A higher value of lmax implies a greater number
of large-scale structures. As seen from figure 4, at Ra = 7 × 107, the dominant harmonic
degree varies monotonically from lmax = 1 for η = 0.2 to lmax = 10 for η = 0.8. This
again indicates that the number of large-scale structures increases with η, consistent with

1000 A41-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.909


RBC in spherical shells

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°N

60°N

30°N

180° 120°W 60°W 60°E 120°E 180°0°

30°S

60°S

90°S 90°S

0.5

0

–0.5

(a) (b)

(c) (d )

(e) ( f )

Figure 3. Hammer projection of the normalized instantaneous vertical velocity u′
r = ur/(

√
Ra/Pr) at

mid-depth rmid = (ri + ro)/2. All the plots shown are at Ra = 7 × 107. The radius ratios vary as (a) η = 0.2,
(b) η = 0.3, (c) η = 0.4, (d) η = 0.5, (e) η = 0.6 and ( f ) η = 0.8.

what is observed in figure 3. Furthermore, although not plotted here, we find that this
observation holds for any fixed Ra.

Moreover, it is noted that lmax decreases with increasing Ra at a constant η, suggesting
a reduction in the number of large-scale structures at higher Ra. This trend is illustrated in
figure 5, which displays u′

r on the horizontal mid-plane for η = 0.2 at various Ra values,
and figure 6, showing the corresponding kinetic energy spectra. We can clearly see from
figure 6 that the dominant harmonic degree varies from lmax = 2 at Ra = 7 × 105 to lmax =
1 at Ra = 3 × 108. Similar inferences can be made from figures 7 and 8 for η = 0.8, where
the dominant harmonic degree varies monotonically from lmax = 12 at Ra = 7 × 105 to
lmax = 9 at Ra = 3 × 108. The decrease in lmax with rising Ra is evident from these plots.
Since lmax corresponds to the dominant length scale as shown in (3.2), this phenomenon
indicates that at a fixed η, the increase of Ra relates to a decrease of lmax, which in turn
translates to an increase of the dominant length scale Ldom.

The degree lmax is associated with the dominant length scale Ldom by the definition of
the characteristic wavelength (Backus, Parker & Constable 1996)

Ldom = 2πrmid√
lmax(lmax + 1)

, (3.2)
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Figure 4. Kinetic energy spectra Ekin(l) with respect to the harmonic degree l at mid-depth rmid = (ri + ro)/2.
All the spectra shown are for Ra = 7 × 107 at different η. The radius ratios vary as (a) η = 0.2, (b) η = 0.3,
(c) η = 0.4, (d) η = 0.5, (e) η = 0.6 and ( f ) η = 0.8. Here, lmax is the harmonic degree corresponding to the
peak of the spectrum.

which is associated with the length scale of the large-scale structures (Stevens et al. 2018).
For comparison, we also look at the so-called integral length scale (Parodi et al. 2004)

Lint =
∑

l

2πrmid√
l(l + 1)

Ekin(l). (3.3)

Figure 9 illustrates Ldom and Lint for η = 0.2 and 0.8 at various Ra. The integral length
scale stays relatively constant at approximately 1.5 across different Ra values. In planar
RBC, Stevens et al. (2018) demonstrated that the integral length scale derived from kinetic
energy spectra saturates at large aspect ratios (Γ ≥ 32) to a value of ∼1.6.

As stated above, in spherical RBC, it is observed that the integral length scale saturates
around the value of 1.5 when η ≥ 0.2, as shown in figure 9(b). This convergence
value of Lint in spherical RBC is very close to that observed in the planar case. We
provide a detailed, qualitative explanation on this observation in Appendix C. Moreover,
the dominant length scale increases with increasing Ra for both η = 0.2 and η = 0.8,
indicating a growth in the scale of large-scale structures with increasing Ra. Notably, data
for η = 0.2 and η = 0.8 exhibit a noticeable convergence of Ldom around Ldom ≈ 3.3. At
Ra = 3 × 108, the dominant length scales for both η = 0.2 and 0.8 closely resemble those
observed by Stevens et al. (2018) at Ra = 108 and aspect ratios larger than 32. Additionally,
we found that the large-scale structures in our simulations do not vary with time. As
examples, figures 10 and 11 show the time evolution of the temperature fluctuation T

′ =
T − 〈T〉s at η = 0.2 and η = 0.8, respectively. The shape and position of the large-scale
structures remain unchanged for time intervals exceeding 150 convective time units. In
fact, we examined our simulations for more than 500 convective time units and observed
no variation in the large-scale structures. Furthermore, a small set of additional simulations
revealed that the number of large-scale structures is independent of the initial conditions.
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Figure 5. Hammer projection of the normalized instantaneous vertical velocity u′
r = ur/(

√
Ra/Pr) on the

horizontal mid-plane rmid = (ri + ro)/2 for η = 0.2. Ra varies as (a) 7 × 105, (b) 3 × 106, (c) 7 × 106, (d) 3 ×
107, (e) 7 × 107 and ( f ) 3 × 108.

Multiple states, as have been observed in two-dimensional simulations (Wang et al. 2020),
were not observed in our 3-D cases.

4. Global scaling laws of response parameters

4.1. Asymmetry of temperature and velocity profiles
RBC in spherical shell geometry is significantly different from its planar counterpart,
chiefly due to the curvature of the bounding surfaces. The presence of curvature in
spherical RBC leads to asymmetry of the radial profiles of temperature and velocity
fluctuations. Owing to the thermal shortcut (Ahlers et al. 2009), the temperature drop
mostly happens inside the thermal BLs. As a result, the properties of BLs are essential,
especially in the quantification of the scaling relations of the global response parameters.
In this work, we use the slope method (Shishkina et al. 2010) to define the kinetic as well
as the thermal BL thicknesses for consistency with the BL analyses of Prandtl (1905) and
Blasius (1907). The definitions of the boundary layer thicknesses are the same as those of
Gastine et al. (2015).
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Figure 6. Kinetic energy spectra Ekin(l) with respect to harmonic degree l on the horizontal mid-plane rmid =
(ri + ro)/2 for η = 0.2. Ra varies as (a) 7 × 105, (b) 3 × 106, (c) 7 × 106, (d) 3 × 107, (e) 7 × 107 and ( f )
3 × 108. Here, lmax is the harmonic degree corresponding to the peak of the spectrum.

Time and horizontally averaged radial temperature profiles ϑ(r) exhibit a strong
asymmetry in spherical shell convection. Figure 12 shows ϑ(r) and Re(r) at different
radius ratios. At small radius ratios, the differences in curvature and gravity between the
inner and outer boundaries are significantly larger. This results in a stronger asymmetry
in both the temperature as well as the velocity profiles. For example, as illustrated
in figure 12(a), the inner BL temperature drop is approximately 57 % of the total
temperature drop at η = 0.8, Ra = 7 × 107. However, at η = 0.2, Ra = 7 × 107, the inner
BL temperature drop constitutes approximately 90 % of the total temperature drop,
implying a stronger asymmetry in the temperature field. For the velocity field, represented
by Re(r), the profile is almost symmetrical when η = 0.8. As η becomes smaller, the
difference between Re(r) in the vicinity of the inner and the outer boundaries becomes
larger. At η = 0.2, the peak value of Re(r) near the inner boundary is approximately twice
that of the value near the outer boundary, as shown in figure 12(b). The asymmetry of the
velocity field also illustrates that the flow is more turbulent in the inner half-shell than in
the outer half-shell.

For the temperature field, the asymmetry is quantified by the temperature drop �ϑi
(�ϑo) and the thermal BL thickness λi

ϑ (λo
ϑ ) at the inner (outer) BL. We assume that the

temperature drop occurs only inside the BLs, which leads to

�ϑi + �ϑo = 1, (4.1)

so that we have

�ϑi = 1 − ϑm, �ϑo = ϑm, (4.2a,b)

where ϑm = ϑ((ri + ro)/2) is the time and horizontally averaged temperature at the
mid-depth. Gastine et al. (2015) gives an analytical expression for �ϑi, �ϑo and λi

ϑ/λo
ϑ .

For the present paper to be self-contained, an outline of the scaling arguments used by
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Figure 7. Hammer projection of the normalized instantaneous vertical velocity u′
r = ur/(

√
Ra/Pr) on the

horizontal mid-plane rmid = (ri + ro)/2 for η = 0.8. Ra varies as (a) 7 × 105, (b) 3 × 106, (c) 7 × 106, (d)
3 × 107, (e) 7 × 107 and ( f ) 3 × 108.

Gastine et al. (2015) is presented below. From (2.5), we obtain

�ϑi

λi
ϑ

= 1
η2

�ϑo

λo
ϑ

. (4.3)

Gastine et al. (2015) proposed that the average plume density in the inner and outer BLs
should be the same, which yields

ρi
p = ρo

p → αgi�ϑiλ
i
ϑ

5

νκ
= αgo�ϑoλ

o
ϑ

5

νκ
, (4.4)

where ρi
p (ρo

p ) is the average plume density in the inner (outer) boundary, gi(go) being
the corresponding values of gravitational acceleration. Combining (4.1)–(4.3) and (4.4),
Gastine et al. (2015) finally derive

�ϑi = 1

1 + η5/3χ
1/6
g

, �ϑo = ϑm = η5/3χ
1/6
g

1 + η5/3χ
1/6
g

,
λi

ϑ

λo
ϑ

= η1/3

χ
1/6
g

, (4.5a–c)

where χg = g(ri)/g(ro) denotes the ratio of the gravitational acceleration between the
inner and the outer boundary. For the g(r) profile considered in the present work,
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χg = 1/η2. Hence, (4.5a–c) can be written as

�ϑi = 1
1 + η4/3 , �ϑo = ϑm = η4/3

1 + η4/3 ,
λi

ϑ

λo
ϑ

= η2/3. (4.6a–c)

However, there are some other models for �ϑi, �ϑo and λi
ϑ/λϑ (e.g. Wu & Libchaber

1991; Zhang, Childress & Libchaber 1997; Wang et al. 2022). Gastine et al. (2015) shows
that the model specified in (4.5a–c) is better than the others when Pr = 1. Thus, we employ
(4.5a–c) and (4.6a–c) in our work. Defining the asymmetry factor χ by employing the
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Figure 10. Time series of the temperature fluctuations T
′ = T − 〈T〉s at the mid-depth for η = 0.2 at different

time. Here, tconv = √
d/(g0α�T) is the convective time unit. (a) t0, (b) t0 + 45.8tconv , (c) t0 + 95.5tconv and

(d) t0 + 165.1tconv .
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Figure 11. Time series of the temperature fluctuations T
′ = T − 〈T〉s at the mid-depth for η = 0.8 at different

time. Here, tconv = √
d/(g0α�T) represents for the convective time unit. (a) t

′
0, (b) t

′
0 + 54.7tconv , (c) t

′
0 +

109.3tconv and (d) t
′
0 + 173.1tconv .

temperature drop at the inner BL,

χ = 2�ϑi

�ϑ
= 2

1 + η4/3 , (4.7)

where �ϑ is the total temperature drop across the spherical shell. With Pr = 1, the ratio
of the inner and the outer kinetic BL thickness should be the same as that for thermal BL
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Symbols represent DNS data. Dashed curves represent analytical predictions given by (4.7) and (4.8).

thicknesses (Shishkina et al. 2010), such that

λi
u

λo
u

= λ
i
ϑ

λo
ϑ

= η2/3. (4.8)

In figure 13, (4.7) and (4.8) are successfully validated against our DNS data.
From (4.6a–c) and the Nu definition in (2.5), we can directly obtain the following

relations:

λi
ϑ = η

1 + η4/3
1

Nu
, λo

ϑ = η1/3

1 + η4/3
1

Nu
. (4.9a,b)

Thus, we can define a normalized thermal boundary layer thickness

λ̃ϑ = 1 + η4/3

η
λi

ϑ = 1 + η4/3

η1/3 λo
ϑ = 1

Nu
. (4.10)

Figure 14 shows a validation of (4.10) and it shows that the relation perfectly aligns with
our DNS data.
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Figure 14. Normalized thermal boundary layer thickness λ̃ϑ as a function of Nu at different η. Symbols
represent DNS data, while the dashed black line denotes λ̃ϑ = 1/Nu.
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Figure 15. (a) Nusselt number, Nu, and (b) the compensated Nusselt number, Nu(1 + η4/3)/(η1/2), as
functions of Ra at different η. Symbols represent DNS data and the dashed black line corresponds to the
equation given by (4.14).

4.2. Radius ratio dependence of Nusselt number
In spherical RBC, the geometrical asymmetry present in the system is expected to have
an effect on the scaling law of the dimensionless heat transport. Figure 15(a) shows Nu
as a function of Ra at different η. In the considered Ra range, the smaller η cases have
a smaller value of Nu at a fixed Ra. As η → 1, Nu scaling will asymptotically approach
the planar case with an infinite aspect ratio and the differences in the exponent become
smaller at larger η; for η ≥ 0.4, the differences in Nu at different η are vanishingly small
and almost indistinguishable in the plot. Moreover, Ra dependence of Nu also varies with
η. For example, the data fit for Nu at η = 0.2 is Nu|η=0.2 = 0.101Ra0.308, while as for the
η = 0.8 case, it reads Nu|η=0.8 = 0.156Ra0.291. Taking into consideration the effect of η

on Nu as well as the η-dependence of the scaling exponent with respect to Ra, a power law
of the form Nu = f (η)Raγ (η,Ra) is deemed appropriate (Ahlers et al. 2009).
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Figure 16. Reynolds number Re as a function of the Rayleigh number Ra at different η. Symbols represent
DNS data, while the dashed black line denotes Re = 0.34Ra0.48.

Now we come to the scaling for Nu with radius ratio dependence. It is well known that
the width of the BL is related to Nu. Equation (2.5) can be written as

Nu = −η
dϑ

dr
|r=ri ≈ η

�ϑi

λi
ϑ

. (4.11)

Equation (4.6a–c) gives us the η-dependence of the temperature drop in the inner BL
(Gastine et al. 2015), while the radius ratio dependence of λi

ϑ remains to be found.
Within the BL, the viscous term balances the advection term in (2.2), which leads to

u · ∇u ∼ ν∇2u ⇒ U
L

∼ ν
1
δ2 , (4.12)

where U is the velocity of the large-scale circulation, L is the associated length scale and
δ represents the length scale relevant inside the BL. Inside the inner BL, if we assume
L = Li ∼ (ri/ro)d and δ = λ̃i

u ≈ λ̃i
ϑ , we have

λ̃i
ϑ ∼

(
νd
U

)1/2

η1/2 ⇒ λi
ϑ = λ̃

i
ϑ

d
∼ Re1/2η1/2, (4.13)

where λi
u, λ

i
ϑ are the normalized inner viscous and thermal BL thicknesses, respectively;

whereas λ̃i
u, λ̃

i
ϑ represent their dimensional counterparts. The shell thickness d = ro − ri

is used to non-dimensionalize λ̃i
u and λ̃i

ϑ . Here, Re = Ud/ν is the global Reynolds number
as defined in (2.7). In our simulations, it is observed that Re has only a weak dependence
on η, as shown in figure 16. Hence, it is reasonable to regard Re as being independent of
the radius ratio. We will investigate the radius ratio dependence of Re more precisely by
applying the GL theory (Grossmann & Lohse 2000) in subsequent sections.

Figure 17 shows that the DNS data collapse well with λi
ϑη−1/2 = 3.3Ra−0.295, which

validates the result that λi
ϑ is proportional to η1/2. Finally, using the η-dependence of

�ϑi and λi
ϑ from (4.6a–c) and (4.13), respectively, in (4.11), we get the following scaling
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Figure 17. (a) Inner thermal BL thickness λi
ϑ and (b) compensated inner BL thickness λi

ϑη−1/2, as functions
of Ra at different η. Symbols represent DNS data, while the dashed black line represents the fit λi

ϑη−1/2 =
3.3Ra−0.295, which follows from the scaling argument (4.13).

relation for the Nusselt number:

Nu ≈ η
�ϑi

λi
ϑ

∼ η1/2

1 + η4/3 Raγ . (4.14)

Here, γ ≈ 0.295 if we fit a single scaling exponent in the whole data range. A similar
exponent has also been reported by Brown et al. (2005) and Funfschilling et al. (2005)
in the cylindrical geometries. Figure 15 also shows that (4.14) exhibits a good agreement
with our DNS data.

4.3. Dissipation analysis
It must be stressed that in (4.14), although γ ≈ 0.295 agrees well with the DNS data if
fitting with one single scaling exponent in the whole Ra range, the local effective heat
transfer scaling exponent varies with Ra (Grossmann & Lohse 2000, 2001). To investigate
η and Ra dependence of Nu and Re in more detail, we apply the GL theory to our dataset.
There are basically two key assumptions in GL theory (Grossmann & Lohse 2000, 2001;
Ahlers et al. 2009). One is that there exists a large-scale circulation (LSC) with only one
typical velocity scale U. Another is that the kinetic BLs are scaling-wise characterized by
a single effective thickness λu regardless of the positions along the boundaries. For the
first assumption, we observe that there exist large-scale structures in our simulations, as
demonstrated in § 3. These large-scale structures can be regarded as indicative of the LSC.
Moreover, we use the time- and volume-averaged velocity (2.7) as the typical velocity
scale U, and use the Re based on this velocity scale to derive the scaling relations for
εbulk

u (Re), εBL
u (Re), εbulk

ϑ (Re) and εBL
ϑ (Re). These scaling relations are validated by our

DNS data, as will be shown in this section. For the assumption of kinetic BLs, Gastine
et al. (2015) have already shown that the radial profile of the horizontal velocity looks very
similar to the Prandtl–Blasius solution. We also validated that in our simulations. Hence,
it would be reasonable to state that in the parameter space explored in our simulations,
these two key assumptions of the GL theory are also valid in spherical shell RBC.

The basic idea of GL theory is to separate the whole flow into two parts, i.e. the laminar
part and the turbulent part. The laminar part resides in the vicinity of the boundaries
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while the turbulent part concentrates in the bulk region. Following this idea, the kinetic
and thermal energy dissipation rates can be separated into two contributions, which are
the BL contribution and the bulk contribution. Therefore, the two dissipation rates can be
expressed as

εu = εBL
u + εbulk

u , εϑ = εBL
ϑ + εbulk

ϑ . (4.15a,b)

Here, we use the subscripts BL and bulk for the BL and bulk contributions, respectively.
The bulk and BL contributions are defined as follows:

εbulk
u = 4π

V

∫ ro−λo
u

ri+λi
u

〈(
∂ui

∂xj

)2〉
s
r2 dr, εbulk

ϑ = 4π

V

∫ ro−λo
ϑ

ri+λi
ϑ

〈(�T)2〉sr
2 dr, (4.16a,b)

εBL
u = 4π

V

∫ ri+λi
u

ri

〈(
∂ui

∂xj

)2〉
s
r2 dr + 4π

V

∫ ro

ro−λo
u

〈(
∂ui

∂xj

)2〉
s
r2 dr,

εBL
ϑ = 4π

V

∫ ri+λi
ϑ

ri

〈(�T)2〉sr
2 dr + 4π

V

∫ ro

ro−λo
ϑ

〈(�T)2〉sr
2 dr,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.17)

where V = (4/3)π(r3
o − r3

i ) is the volume of the spherical shell. Assuming the flow in
the bulk region is highly turbulent, Grossmann & Lohse (2000) proposed the following
scalings for εbulk

u and εbulk
ϑ at a fixed Pr:

εbulk
u ∼ Re3, εbulk

ϑ ∼ Re. (4.18a,b)

Figures 18 and 19 show the bulk dissipation rates as a function of Re at different η. The data
fits for Ra ≥ 105 yield εbulk

u scales between εbulk
u ∼ Re2.72 (at η = 0.2) and εbulk

u ∼ Re2.80

(at η = 0.8), and εbulk
ϑ scales between εbulk

ϑ ∼ Re0.66 (at η = 0.2) and εbulk
ϑ ∼ Re0.71 (at

η = 0.6). For both dissipation rates, our data show considerable deviations from the
predictions of GL theory. These deviations can mainly occur because of two potential
reasons: (1) the bulk regions are still not turbulent enough for the considered Reynolds
number range, 80 < Re < 7000; and (2) the bulk region defined in this paper is the
region outside the BLs, which, as a result of plume ejection from the inner and outer
boundaries, may contain plumes that are mostly laminar and can be considered as detached
BLs (Grossmann & Lohse 2004). The presence of these plumes in the bulk region will
decrease the scaling exponents of the bulk contributions in the two dissipation rates.
Similar deviations have also been reported, for example, by Calzavarini et al. (2005).

Based on the Prandtl–Blasius BL theory and the fact that the BL thickness is
significantly smaller than the gap length, Grossmann & Lohse (2000) derived the following
scaling relations for εBL

u and εBL
ϑ at Pr = 1,

εBL
u ∼ Re5/2, εBL

ϑ ∼ Re1/2. (4.19a,b)

BL contributions for kinetic and thermal energy dissipation rates are shown in figures 20
and 21, respectively. As shown in figure 20, the best fit to DNS data with Ra ≥ 105 yields
εBL

u ∼ Re2.54 (at η = 0.8) and εBL
u ∼ Re2.62 (at η = 0.2). These fits are very close to the

theoretical scaling of εBL
u ∼ Re5/2. However, our data suggest the local scaling of εBL

u
becomes larger with increasing Ra. It is even more clear in the compensated plot, as shown
in figure 20(b). The local exponents of εBL

u (Re) initially decrease with Re and then increase
with Re, with the transitional Re being approximately 500. This observation reveals that
a single power law is not sufficient for describing the εBL

u (Re) relation and there exists
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Figure 18. (a) Bulk contribution of kinetic energy dissipation rate εbulk
u and (b) the compensated εbulk

u Re−3,
as functions of Re. Symbols represent the DNS data and dashed lines correspond to the fitting relations.
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Figure 19. (a) Bulk contribution of the thermal energy dissipation rate εbulk
ϑ and (b) the compensated

εbulk
ϑ Re−1, as functions of Re. Symbols represent the DNS data and the dashed lines correspond to the fitting

relations.

a secondary Re dependence on εBL
u . For εBL

ϑ scaling, the best fit to DNS data with Ra ≥
105 shows εBL

ϑ scales between εBL
ϑ ∼ Re0.57 (at η = 0.4) and εBL

ϑ ∼ Re0.61 (at η = 0.2),
which are close to the expected exponents. It is observed that εBL

ϑ scaling exhibits a similar
behaviour to εBL

u ; that the local exponent becomes larger at a higher Re. Although this
is less obvious for εBL

ϑ , we can still observe a gradual steepening of the slope when Re
increases, as shown in figure 21(b). This increase in the local exponent with respect to
Re points to the deviations from the simple power law predicted by GL theory for the BL
dissipation rates. Similar deviations have also been reported by Gastine et al. (2015), as a
result of the difficulty to perfectly separate the BL from the bulk.

Despite potential deviations of the local assumptions from the current DNS data,
GL theory remains remarkably effective for our system across various radius ratios,
as explained in detail below. Following GL theory, the two dissipation rates can be
represented by the sum of bulk and BL contributions,

ε̂u = α1(η)Re5/2 + α2(η)Re3,

ε̂ϑ = β1(η)Re1/2 + β2(η)Re,

}
(4.20)
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Figure 20. (a) BL contribution of the kinetic energy dissipation rate εBL
u as a function of Re. Since the data

fits at different η are indistinguishable from each other, only the fit for the η = 0.8 case is displayed on the
plot. (b) Compensated εBL

u Re−5/2 as a function of Re. Symbols represent the DNS data and the dashed lines
correspond to the fitting relations.
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Figure 21. (a) BL contribution of the thermal energy dissipation rate εBL
ϑ and (b) the compensated εBL

ϑ Re−1/2,
as functions of Re. Symbols represent the DNS data and the dashed lines correspond to the fitting relations.

where the bulk and BL contributions for viscous and thermal energy dissipation rates from
(4.18a,b) and (4.19a,b) are used. Here, we denote the curve fits by the tilded variables
and the simulation data by the plain variables. The coefficients α1, α2, β1 and β2 depend
only on geometry (Grossmann & Lohse 2000), which means they only depend on η in a
spherical shell configuration. To fit (4.20) to our data, we proceed as

log10 εu = log10

[
α1(η) exp

(
5
2

log10 Re
log10 e

)
+ α2(η) exp

(
3

log10 Re
log10 e

)]
,

log10 εϑ = log10

[
β1(η) exp

(
1
2

log10 Re
log10 e

)
+ β2(η) exp

(
log10 Re
log10 e

)]
.

⎫⎪⎪⎬
⎪⎪⎭ (4.21)

For each radius ratio, the coefficients α1, α2, β1 and β2 are determined by applying the
least squares method to log10(εu)–log10(Re) and log10(εϑ)–log10(Re) data obtained from
our DNS database. The least squares estimate of these coefficients at different η are listed
in table 2.
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η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6 η = 0.8

α1 11.4668 9.5090 8.5725 7.3427 7.2694 6.7667
α2 0.2558 0.2528 0.2437 0.2509 0.2405 0.2451
β1 0.1891 0.2805 0.3572 0.4055 0.4468 0.4791
β2 0.0021 0.0027 0.0032 0.0036 0.0039 0.0047

Table 2. Least squares estimate of coefficients α1, α2, β1 and β2 in (4.20).
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Figure 22. (a) Volume-averaged kinetic energy dissipation rate εu as a function of Re. Symbols represent
DNS data at different η. Dashed light and dark red lines represent the predictions for η = 0.2 and η = 0.8,
respectively, given by (4.20). (b) Ratio between volume-averaged kinetic energy dissipation rates obtained
from the DNS data (εu) and the predictions (ε̂u) given by (4.20), as a function of Re.

In figures 22 and 23, the curve fits represented by (4.21) are shown. Figure 22(a) shows
εu as a function of Re. Figure 22(b) shows εu normalized by the curve fit ε̂u. The curve
fits show good agreement with the DNS data in both the log-log and the semi-log plots.
Figure 23(a) shows the thermal energy dissipation rate εϑ and the corresponding fits ε̂ϑ at
all η, while figure 23(b) shows the εϑ data normalized by ε̂ϑ . The curve fits in this case
also agree well with the DNS data.

Using (2.3) in (4.20), we can write

3
1 + η + η2

Ra
Pr2 (Nu − 1) = α1(η)Re5/2 + α2(η)Re3,

3η

1 + η + η2 Nu = β1(η)Re1/2 + β2(η)Re,

⎫⎪⎬
⎪⎭ (4.22)

with the coefficients α1, α2, β1 and β2 at each η estimated as introduced above. At a
fixed Pr and η, from (4.22), we can numerically estimate Nu and Re as functions of Ra.
Furthermore, to quantify the trend of the exponents, we can also define the local effective
exponents as

αeff = ∂ ln Nu
∂ ln Ra

; βeff = ∂ ln Re
∂ ln Ra

. (4.23a,b)

The radius ratio dependence of Nu ∼ f (Ra) is shown in figure 24. In figure 24(a), a
good agreement between the DNS data and the GL theory predictions is observed. It can
be seen from figure 24(a) that in the considered Ra range, Nu is small for the smaller radius
ratios. The data corresponding to η = 0.2 and 0.3 clearly show this trend. For the rest of η,
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Figure 23. (a) Volume-averaged thermal energy dissipation rate εϑ as a function of Re. Symbols represent
DNS data, while the dashed lines with the corresponding colours denote predictions given by (4.20). (b) Ratio
between volume-averaged thermal energy dissipation rates obtained from the DNS data (εϑ ) and the predictions
(ε̂ϑ ) given by (4.20), as a function of Re.
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Figure 24. (a) NuRa−1/3 as a function of Ra. Symbols represent DNS data; solid lines with corresponding
colours are numerical results calculated from (4.22). (b) Local exponents for Nu(Ra) using GL theory
predictions given by (4.23a,b). The data are plotted at all radius ratios.

the values of Nu are very close to each other. A look at the GL theory predictions reveals
that Nu for η = 0.3 exceeds those for other η in the range 7 × 108 < Ra < 3 × 109, and
it reaches the largest value at Ra = 1010. We can also see that the GL theory predictions
for η = 0.2 will exceed all the other radius ratio cases (except η = 0.3) in the range 4 ×
109 < Ra < 9 × 109. This trend can be explained clearly from the behaviour of the local
effective exponents of Nu(Ra). As shown in figure 24(b), at a fixed Ra, the smaller radius
ratio (η = 0.2, 0.3) cases have a larger local effective exponent. A larger local effective
exponent indicates a faster increase in Nu with respect to Ra. Based on the magnitude of
the local effective exponents, Nu at η = 0.2 is expected to finally exceed the η = 0.3 curve
beyond a certain Ra. However, the local effective exponents for the η = 0.5, 0.6 and 0.8
cases are indistinguishable, which is consistent with the observation that the response of
the system asymptotes to the planar case as η → 1.

In figure 24(a), the data show that for all η, Nu approaches Nu ∼ Ra1/3 at Ra ≈ 109.
By using the GL theory, we can predict the transitional Ra, where Nu(Ra) attains the
local scaling Nu ∼ Ra1/3. In figure 24(b), by looking at the local effective exponents
predicted by the GL theory, we find that the η = 0.2 curve reaches the 1/3 local exponent
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RBC in spherical shells

at approximately Ra = 1.4 × 108, while the η = 0.3 and 0.4 curves reach this local
exponent at approximately Ra = 4.1 × 108 and 8.6 × 108, respectively. For η = 0.5, 0.6
and 0.8, the transitional Ra are so close that they are indistinguishable in the plot. The
transitional Ra for η = 0.5, 0.6 and 0.8 systems is roughly at Ra = 109. The behaviour
of the transitional Ra indicates that the transition to an enhanced heat transport regime
would occur at a much lower Ra in spherical shells than in Cartesian or cylindrical cells.
For example, experiments by Roche et al. (2010) in cylindrical cells show an enhanced
scaling of Nu ∼ Ra0.33 for Ra = 5 × 1011, which is much higher than the transitional Ra
observed in our system, although the thermal boundary conditions in their experiments
are different from our work. In essence, GL theory predicts that the smaller radius ratio
system may reach the Nu ∼ Ra1/3 scaling at a relatively lower Ra. This prediction may
also imply that the smaller radius ratio system may reach the ultimate regime at a lower
Ra. Furthermore, figure 24(b) shows that the differences in the local effective exponent at
different η are smaller at larger η. This is again in line with our expectation that the system
will asymptotically approach the planar case with an infinite aspect ratio as η → 1.

The radius ratio dependence of the compensated Re ∼ f (Ra) is shown in figure 25. The
predictions of GL theory are in a good agreement with the DNS data. It is interesting
to note that the behaviour of the Re(Ra) relation is quite different for the smaller radius
ratio (η = 0.2, 0.3 and η = 0.4) cases compared with the larger radius ratio (η = 0.5, 0.6
and η = 0.8) cases. The Re(Ra) curves for the η = 0.5, 0.6 and 0.8 cases follow the same
trend and are almost parallel to each other. However, the Re(Ra) curves for η = 0.2, 0.3
and 0.4 show different trends and are observed to have some cross-overs with the Re(Ra)

curves at larger η. For example, at Ra = 3 × 105, the η = 0.2 case has the lowest Re, which
increases with increasing Ra, faster than the rest of the cases. As mentioned above, some
cross-overs with the rest of the Re curves are also observed. The predictions from the GL
theory in figure 25(a) indicate that at Ra ≈ 1010, Re for the η = 0.2 case will increase to
be the largest. Different trends for different radius ratio cases can be explained by looking
at the local effective exponents for Re (see (4.23a,b)) in figure 25(b). At a fixed Ra, the
local effective exponent is the largest at η = 0.2, followed by the η = 0.3 and 0.4 cases.
For the η ≥ 0.5 cases, the local effective exponents are indistinguishable from each other
in figure 25(b). Similar to the larger αeff for Nu, a larger local effective exponent βeff for Re
indicates a faster increase in Re with respect to Ra, which is consistent with the steep rise of
Re for the η = 0.2 cases as shown in figure 25(a). Furthermore, GL theory predictions of
βeff indicate that the smaller radius ratio system may reach the ultimate scaling for Re(Ra)

at a relatively lower Ra, similar to what we observe for Nu(Ra). Moreover, figure 25(b)
shows that the differences in βeff at different η are smaller for larger η, in line with the fact
that the system approaches the planar case as η → 1.

In the preceding analysis, it is natural to question how the scaling behaviour of Nu
and Re relates to the degree of supercriticality Ra/Rac instead of Ra, where Rac is the
critical Ra for the onset of convection. Plotting the scaling relations Nu ∼ Nu(Ra/Rac)
and Re ∼ Re(Ra/Rac), the corresponding local exponents for different η revealed that the
use of Ra/Rac as an independent variable does not change any of our conclusions and adds
nothing new or interesting to the discussion.

5. Asymmetry of the velocity field

In contrast to the planar RBC, time and horizontally averaged radial profiles of temperature
and velocity in spherical shells are asymmetric. For example, the temperature drop inside
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Figure 25. (a) ReRa−1/2 as a function of Ra. Symbols represent DNS data; solid lines with corresponding
colours are the GL theory predictions given by (4.22). (b) Local exponents for Re(Ra) using GL theory
predictions given by (4.23a,b). The data are plotted at all radius ratios.

the inner shell thermal BL and the Reynolds number near the inner boundary are larger
than those near the outer boundary. These radial asymmetries are directly inherited from
the geometrical asymmetry present in the system. Therefore, quantifying the asymmetry of
the radial profiles as a function of the radius ratio is important. For the mean temperature
profile ϑ(r), the properties in which we are interested are the thermal BL thicknesses
λϑi and λϑo , as well as the mean temperature drop within the BLs �ϑi and �ϑo. The
subscripts ‘i’ and ‘o’ refer to the inner and the outer BLs, respectively. The ratios λϑi/λϑo
and �ϑi/�ϑo provide good measures to quantify the asymmetry of the mean temperature
profile. The theoretical estimates from Gastine et al. (2015), stated in (4.6a–c), agree well
with our DNS data; see figure 13.

To quantify the asymmetry of the Reynolds number Re(r), we divide the domain into an
inner shell and an outer shell at the middle plane. The Reynolds numbers corresponding
to the inner shell (Rei) and the outer shell (Reo) are defined as

Rei = 1
Vi

∫ rmid

ri

Re(r)4πr2dr, Reo = 1
Vo

∫ ro

rmid

Re(r)4πr2dr. (5.1a,b)

Here, rmid = (ri + ro)/2 is the radius at mid-depth, while Vi, Vo are the inner and the
outer shell volumes, respectively. From figure 12(b), it can be seen that the time and
horizontally averaged Re is higher near the inner boundary in comparison with that of
the outer boundary. A smaller radius ratio results in a larger difference, pointing to a clear
η-dependence. The ratio Rei/Reo ∼ f (η) is used to quantify the asymmetry of the velocity
profile.

To define the local Rayleigh numbers, Rai and Rao for the inner and outer sub-shells,
respectively, we assume symmetric temperature drops: 2�ϑi for the inner sub-shell and
2�ϑo for the outer sub-shell. With this definition, we could write (Tisserand et al. 2011;
Wei et al. 2014; Zhu, Verzicco & Lohse 2017)

Rai = αgo(2�ϑi)d3

νκ
= 2�ϑi

�ϑ

αgo�ϑd3

νκ
= χRa,

Rao = αgo(2�ϑo)d3

νκ
= 2

(
1 − �ϑi

�ϑ

)
αgo�ϑd3

νκ
= (2 − χ)Ra,

⎫⎪⎪⎬
⎪⎪⎭ (5.2)

as the Rayleigh numbers for the inner and outer shells, respectively. Here, χ = 2�ϑi/�ϑ

is the asymmetry factor defined in (4.7).

1000 A41-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.909


RBC in spherical shells

The general form of Re(Ra) and Rei(Rai) relations can be written as

Re = h(η)Raβ(η,Ra), Rei = hi(η)Raβi(η,Rai)
i . (5.3a,b)

From figure 12(b), it is clear that the flow in the inner shell is more turbulent than
in the outer shell, and thus the global Reynolds number Re is dominated by the inner
shell contributions. Figure 26 shows Re, Rei and Reo as functions of Ra, Rai and Rao,
respectively. Since the global Reynolds number Re is dominated by the contributions from
the inner shell, the Re(Ra) and Rei(Rai) curves in figure 26 are indistinguishable for all η.
Hence, we can conveniently write h(η) = hi(η) and β(η, Ra) = βi(η, Rai). Here, we use
β(η, Ra) ≈ 1/2 as the estimation of the Re(Ra) scaling. This scaling works well in our
simulations, as shown in figure 25, and has also been observed in many other experiments
and simulations (Tilgner 1996; Brown, Funfschilling & Ahlers 2007; Chillà & Schumacher
2012). From (5.2) and (5.3a,b), we can write

Rei

Re
=

(
Rai

Ra

)β

≈
(

Rai

Ra

)1/2

= χ1/2. (5.4)

From the definitions of Rei and Reo, it follows that

Re·V = Rei·Vi + Reo·Vo, (5.5)

where V = (4/3)π(r3
o − r3

i ) is the total shell volume, and Vi = (4/3)π(r3
m − r3

i ) and Vo =
(4/3)π(r3

o − r3
m) are the inner and outer shell volumes, respectively. Combining (4.7),

(5.4) and (5.5), we arrive at the following relation:

Rei

Reo
=

(
2

1 + η4/3

)1/2

(η2 + 4η + 7)

8(η2 + η + 1) −
(

2
1 + η4/3

)1/2

(7η2 + 4η + 1)

. (5.6)

Equation (5.6) represents the ratio of the inner and outer shell Reynolds numbers as a
function of the radius ratio, which can be regarded as a measure to quantify the asymmetry
of the velocity field in our system.

Equation (5.6) is validated against our DNS data in figure 27. It can be observed that
the predictions by (5.6) agree reasonably well with the data. We can also see from the
data that Rei/Reo exhibits a dependence on Ra, albeit weak, especially for the small radius
ratio cases. As η → 1, Rei/Reo → 1, indicating the asymmetry of the velocity field will
become smaller at a higher η, as expected.

6. Asymmetry of energy dissipation rates

As a result of the asymmetry in the thermal and viscous BLs, the energy dissipation rates
can be divided into the partial contributions from the two asymmetric BLs and an interior
bulk region,

εu = εbulk
u + εBL,inner

u + εBL,outer
u ,

εϑ = εbulk
ϑ + ε

BL,inner
ϑ + ε

BL,outer
ϑ ,

}
(6.1)

where we use subscripts bulk, BL to represent the bulk and BL contributions, respectively.
The subscripts inner and outer denote contributions from the inner BL and the outer BL,
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Figure 26. Global, inner shell and outer shell Reynolds numbers (Re, Rei, Reo) as functions of the global, inner
shell and outer shell Rayleigh numbers (Ra, Rai, Rao), respectively. (a) η = 0.2, (b) η = 0.3, (c) η = 0.4, (d)
η = 0.5, (e) η = 0.6 and ( f ) η = 0.8.
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Figure 27. Ratio of the inner and outer shell Reynolds numbers, Rei/Reo, as a function of η. Symbols
represent DNS data. The dashed horizontal line corresponds to Rei/Reo = 1.

respectively. The inner and the outer BL kinetic energy and thermal energy dissipation
rates respectively are

εBL,inner
u = 4π

V

∫ ri+λi
u

ri

〈(
∂ui

∂xj

)2〉
s
r2 dr,

εBL,outer
u = 4π

V

∫ ro

ro−λo
u

〈(
∂ui

∂xj

)2〉
s
r2 dr,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.2)
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Figure 28. Contributions of the bulk and BL regions to the thermal energy dissipation rate as functions of Ra.
Curves are plotted for all η. Solid circles represent the bulk contribution, while the solid squares represent the
total BL contributions. Open downward triangles and open upward triangles denote the inner and the outer BL
contributions, respectively. (a) η = 0.2, (b) η = 0.3, (c) η = 0.4, (d) η = 0.5, (e) η = 0.6 and ( f ) η = 0.8.

and

ε
BL,inner
ϑ = 4π

V

∫ ri+λi
ϑ

ri

〈
(�T)2〉

sr
2 dr,

ε
BL,outer
ϑ = 4π

V

∫ ro

ro−λo
ϑ

〈
(�T)2〉

sr
2 dr.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

The relative contributions of the thermal and kinetic energy dissipation rates from the
bulk and BLs vary with Ra and η. We explore this in the following subsections.

6.1. Asymmetry of thermal energy dissipation rate
Figure 28 shows the relative contributions of the bulk and BL regions for the thermal
energy dissipation rate as a function of Ra, at different η. The total BL contribution is
always larger than the bulk contribution for the considered Ra range. With increasing Ra,
the bulk contribution will also increase. In figure 28, it is seen that for the thermal energy
dissipation rate, the inner BL contribution is always larger than the outer BL contribution.
The bulk and the total BL contributions as functions of both Ra and η are shown in
figure 29. The relative contributions of the bulk and the sum of the two BLs are almost
independent of η.

In figure 23, for η ≥ 0.3, we observe cross-over points between the bulk and the outer
BL contribution curves. From the GL theory, it is known that the energy dissipation rates
will gradually transition from BL-dominant to bulk-dominant, as Ra increases. At small
Ra, the flow is quasi-laminar with a thicker BL and a less turbulent bulk, implying a larger
fraction of the BL dissipation and a relatively smaller fraction of the bulk dissipation.
As Ra increases, the BL shrinks in size and the bulk becomes more turbulent, leading
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Figure 29. Relative contributions of the bulk and the BLs (inner + outer) to the thermal energy dissipation
rate as a function of Ra at different η.

to an increase in the fraction of the bulk dissipation. Since the outer BL contribution
is smaller than the inner BL contribution for the thermal energy dissipation rate, the
bulk contribution will first exceed the outer BL contribution, followed by the inner BL
contribution, and will finally exceed the total BL contribution at an even larger Ra. This
explains the cross-overs observed in the thermal dissipation rate data. As a result of the
limited Ra range considered in this simulation campaign, the cross-over point between
the inner BL dissipation and the bulk dissipation has not been observed yet. However, in
figure 28, we can clearly observe a trend that the bulk contribution would exceed the inner
BL contribution at an even higher Ra.

In figure 28, it is also observed that Ra at the cross-over point is larger for higher η

cases. For example, for η = 0.3, the bulk contribution exceeds the outer BL contribution
at approximately Ra = 3 × 103, while for η = 0.8, the cross-over point is at Ra > 5 × 108.
Since both εBL

ϑ and εbulk
ϑ stay almost the same with increasing η, and ε

BL,outer
ϑ increases,

the cross-over point shifts towards the higher Ra end of the plot.
To quantify the asymmetry of the thermal energy dissipation rate in the inner and the

outer BLs, we estimate

ε
BL,inner
ϑ = 4π

V

∫ ri+λi
ϑ

ri

〈(�T)2〉sr
2 dr ≈

(
�ϑi

λi
ϑ

)2 4πr2
i

V
λi

ϑ (6.4)

and

ε
BL,outer
ϑ = 4π

V

∫ ro

ro−λo
ϑ

〈(�T)2〉sr
2 dr ≈

(
�ϑo

λo
ϑ

)2 4πr2
o

V
λo

ϑ . (6.5)

Combining the above equations with (4.6a–c) leads to

ε
BL,inner
ϑ

ε
BL,outer
ϑ

∼
(

�ϑi

�ϑo

)2 λo
ϑ

λi
ϑ

η2 = η−4/3. (6.6)

In figure 30, it can be seen that (6.6) agrees well with the DNS data.
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Figure 30. Ratio of the inner and outer BL contributions of thermal energy dissipation rate as a function of η.
The dashed line denotes ε

BL,inner
ϑ /ε

BL,outer
ϑ = 1. Open symbols represent the DNS data.

6.2. Asymmetry of kinetic energy dissipation rate
Relative contributions of the kinetic energy dissipation rate εbulk

u , εBL
u , εBL,inner

u and
εBL,outer

u are shown in figure 31. The kinetic energy dissipation rate is bulk dominant since
the bulk contribution is always larger than the total BL contribution. For the η ≥ 0.3 cases,
εbulk

u keeps increasing with increasing Ra. However, at η = 0.2, εbulk
u will first increase and

then decrease at a higher Ra. Furthermore, figure 32 shows that there is no η dependence
on the fractions of the bulk and the total BL contributions for kinetic energy dissipation
rate.

In contrast to the thermal energy dissipation rate, the outer BL contribution is always
larger than the inner BL contribution for the kinetic energy dissipation rate. Following a
similar procedure as in § 6.1, the inner and the outer BL kinetic energy dissipation rates
are estimated as

εBL,inner
u = 4π

V

∫ ri+λi
u

ri

〈(
∂ui

∂xj

)2〉
s
r2 dr ≈

(
Rei

λi
u

)2 4πr2
i

V
λi

u (6.7)

and

εBL,outer
u = 4π

V

∫ ro

ro−λo
u

〈(
∂ui

∂xj

)2〉
s
r2 dr ≈

(
Reo

λo
u

)2 4πr2
o

V
λo

u, (6.8)

respectively. Using (5.6) in combination with (6.7) and (6.8), we get

εBL,inner
u

ε
BL,outer
u

∼
(

Rei

Reo

)2 λo
u

λi
u
η2 =

η4/3
(

2
1 + η4/3

)1/2

(η2 + 4η + 7)

8(η2 + η + 1) −
(

2
1 + η4/3

)1/2

(7η2 + 4η + 1)

< 1.

(6.9)

Equation (6.9) ensures εBL,outer
u > εBL,inner

u .
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Figure 31. Bulk and BL (inner + outer) contributions of the kinetic energy dissipation rate as functions of Ra
for different radius ratios. Solid circles represent the bulk contribution and the solid squares represent the total
BL contributions. Open downward and upward triangles denote inner and outer BL contributions, respectively.
Dashed lines with corresponding colours are added to improve the readability of the plot. (a) η = 0.2, (b)
η = 0.3, (c) η = 0.4, (d) η = 0.2, (e) η = 0.6 and ( f ) η = 0.8.
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Figure 32. Relative contributions of the bulk and the BLs (inner + outer) to the kinetic energy dissipation
rate as the function of Ra and different η.

Figure 33 shows εBL,inner
u /εBL,outer

u as a function of η. The theoretical estimation of
(6.9) predicts the trend reasonably well. However, there are significant deviations from the
data, particularly at smaller η. The smaller the radius ratio, the larger the scatter in the
εBL,inner

u /εBL,outer
u data with respect to Ra. The deviations come from the Ra dependence

of εBL,inner
u /εBL,outer

u especially in the small η cases, since both Rei/Reo and λi
u/λ

o
u have
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Figure 33. Ratio of the inner and outer BL contributions of kinetic energy dissipation rate as a function of η.
Open symbols represent the DNS data.

Ra dependence as illustrated in figures 13 and 27. Further investigations are still needed
for demonstrating the Ra-dependence of εBL,inner

u /εBL,outer
u .

It must be stressed here that owing to the dominance of εBL
ϑ and εbulk

u , our simulations
lie in regime II of the GL theory, in which the boundary layer and the bulk contributions
dominate the thermal dissipation rate and the kinetic energy dissipation rate, respectively
(Grossmann & Lohse 2000).

7. Conclusion

Three-dimensional DNS for spherical shell thermal convection with 0.2 ≤ η ≤ 0.8, Ra ≤
5 × 108 and Pr = 1 were conducted in this study. We used the centrally condensed gravity
profile (g ∼ (r0/r)2) in our simulations so that the exact relations for the dissipation rates
exist. A qualitative look at the flow structures reveals the existence of large-scale structures.
At a fixed radius ratio, the number of large-scale structures decreases with increasing Ra,
while at a fixed Ra, the number of large-scale structures increases with η. The integral
length scale at the horizontal mid-depth was found to be saturated at approximately 1.5 for
η ≥ 0.2.

From the BL scaling analysis, it was found that the inner thermal BL thickness scales as
λi

ϑ ∼ η1/2Ra−0.295 in our simulations. Using the definition of Nu as well as the asymmetry
of the thermal BLs of Gastine et al. (2015), we derived the radius ratio dependence of
the Nusselt number as Nu ∼ (η1/2/(1 + η4/3))Raγ , where γ ≈ 0.295 for the fit with one
single exponent in the whole data range considered. However, it is well known that the
local effective scaling exponent varies with respect to Ra (Grossmann & Lohse 2000,
2001; Xu, Bajaj & Ahlers 2000; Ahlers et al. 2009; Zhu et al. 2018). To quantify how the
local exponent changes with Ra, we employ the GL theory to investigate the non-power law
effects of Nu(Ra), Re(Ra) scalings. Larger local effective exponents αeff and βeff for Nu ∼
Raαeff and Re ∼ Raβeff are observed in lower η. From the prediction of the GL theory, the
transition point to an enhanced heat transport regime (αeff ≥ 1/3) is found to occur at a
lower Ra for a smaller η.
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To assess the asymmetry in the velocity field, we introduce Rei and Reo for the inner
and outer shells, respectively. The dominance of Rei in the global Reynolds number Re is
evident from the similarity in the scaling exponents and prefactors of Re(Ra) and Rei(Rai)
relations. Leveraging this similarity, we establish an empirical relation Rei/Reo(η) as a
quantification of the velocity field’s asymmetry.

The investigation extends to the asymmetry of thermal and kinetic energy dissipation
rates. Regarding thermal energy dissipation, it is observed that the inner BL contribution
surpasses the outer BL contribution. For higher radius ratio cases, Ra at the cross-over
point between εbulk

ϑ and ε
BL,outer
ϑ increases, which is explained by the system becoming

less asymmetric at higher η. An analytical relation ε
BL,inner
ϑ /ε

BL,outer
ϑ (η) is derived and

validated against DNS data. For kinetic energy dissipation, the inner BL contribution is
smaller than the outer BL contribution, with a provided relation for εBL,inner

u /εBL,outer
u (η).

Although the provided relation reasonably predicts the observed trend, its accuracy
diminishes at smaller η. The deviations are attributed to the strong Ra-dependence.
Additionally, we find that, for both thermal and kinetic energy dissipation rates, the
fractions of bulk and total BL contributions remain independent of η.

Further investigations are needed to answer some open questions. For example, further
simulations at Ra > 109 should be performed to really show the transition to the Nu ∼
Ra1/3 regime and beyond. Larger scaling exponents for Nu(Ra), Re(Ra) at smaller η were
obtained from this study. A physical explanation for this behaviour will be sought in the
future research. It still needs to be verified whether or not the smaller η cases will transition
to the ultimate regime at smaller Ra, and is expected to be the subject of the future editions
of this work. Moreover, whether the scaling behaviour for Nu(Ra), Re(Ra), as well as the
the asymmetry of the velocity field Rei/Reo(η) proposed in this work, will hold in other
gravity profiles and different Pr remains to be investigated in the future.
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Appendix A. Simulation data and grid resolution.

An appropriate resolution should achieve a balance of the turbulent kinetic energy
budget, which is the balance between the volume-averaged buoyancy power Pbuoy and
volume-averaged kinetic energy dissipation rate εu,

Pbuoy = Ra
Pr

〈gTur〉, εu = 〈u · ∇2u〉. (A1a,b)
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Figure 34. Time series of the volume-averaged buoyancy power Pbuoy, the volume-averaged kinetic energy
dissipation rate εu, the total energy balance Pbuoy + εu, and the volume-averaged kinetic energy variation rate
dEkin/dt at (a) η = 0.2, Ra = 3 × 107 and (b) η = 0.8, Ra = 3 × 107.

We show two examples at η = 0.2 and η = 0.8 with Ra = 3 × 107 in figure 34. The
time derivative of the total kinetic energy dEkin/dt is also shown in the figure. As it is
clearly seen, the volume-averaged generation of kinetic energy from the radial buoyancy
flux is balanced by the volume-averaged viscous dissipation rate for both the cases. The
simulation details are shown in table 3.

Appendix B. Kinetic energy spectra calculation

In MagIC code, the kinetic energy spectra Ekin(l) are calculated as

Ekin(l) = 1

2πr2
mid〈|u|2〉s

l∑
m=0

l(l + 1)

[
l(l + 1)

r2
mid

|Wlm|2 +
∣∣∣∣dWlm

dr

∣∣∣∣
2

+ |Zlm|2
]

, (B1)

where the m = 0 contribution is pre-multiplied by 1/2. In the above equation, Wlm(r) and
Zlm(r) are the poloidal potential and toroidal potential of velocity in the spectral space,
respectively. They are defined by

Wlm(r) = 1
2π2

∫ π

0
dθ sin θPm

l (cos θ)

∫ 2π

0
dφW(r, θ, φ) e−imφ (B2)

and

Zlm(r) = 1
2π2

∫ π

0
dθ sin θPm

l (cos θ)

∫ 2π

0
dφZ(r, θ, φ) e−imφ, (B3)

where W(r, θ, φ) and Z(r, θ, φ) are the poloidal potential and toroidal potential of velocity
u, respectively. In physical space, the velocity u can be written as

u = ∇ × (∇ × W(r, θ, φ)er) + ∇ × Z(r, θ, φ)er. (B4)

Note that both W(r, θ, φ) and Z(r, θ, φ) are real functions, so that we have

Wl,−m(r) = W∗
l,m(r), Zl,−m(r) = Z∗

l,m(r), (B5a,b)
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where the asterisk denotes the complex conjugate. From (B5a,b), we can get

|Wl,m|2 = |W∗
l,m|2 = |Wl,−m|2, |Zl,m|2 = |Z∗

l,m|2 = |Zl,−m|2, (B6a,b)

and ∣∣∣∣dWl,m

dr

∣∣∣∣
2

=
∣∣∣∣dW∗

l,m

dr

∣∣∣∣
2

=
∣∣∣∣dWl,−m

dr

∣∣∣∣
2

. (B7)

Combining (B1), (B6a,b) and (B7), we could get

Ekin(l) = 1

4πr2
mid〈|u|2〉s

l∑
m=−l

l(l + 1)

[
l(l + 1)

r2
mid

|Wlm|2 +
∣∣∣∣dWlm

dr

∣∣∣∣
2

+ |Zlm|2
]

, (B8)

where the domain of harmonic order m entering the summation is [−l, l]. Here, the m = 0
contribution in (B8) is equally weighted with others. Both (B1) and (B8) are correct and
they are equivalent to each other. In this work, we have adopted (B1) to compute the kinetic
energy spectra.

Appendix C. Effective horizontal wavenumber and the integral length scale

The integral length scale converges at approximately the value of 1.5 in the spherical RBC,
which is very close to the convergence value (∼ 1.6) in the planar cases (Stevens et al.
2018). This could be qualitatively explained from the kinetic energy spectra with respect
to the so-called effective horizontal wavenumber. The effective horizontal wavenumber
can be defined as follows.

In spherical coordinates, the spherical harmonics Ym
l (θ, φ) are the orthogonal

eigenfunctions of the horizontal Laplacian operator in θ and φ,

∇2
HYm

l ≡ 1
r2 sin θ

∂

∂θ

(
sin θ

∂Ym
l

∂θ

)
+ 1

r2 sin2 θ

∂2Ym
l

∂φ2 = − l(l + 1)

r2 Ym
l , (C1)

where −l(l + 1)/r2 is the eigenvalue of Ym
l (θ, φ). In analogy with the eigenvalues in the

Cartesian coordinates,

∇2
Hei(kxx+kyy) =

(
∂2

∂x2 + ∂2

∂y2

)
ei(kxx+kyy) = −k2

h ei(kxx+kyy), (C2)

where k2
h = k2

x + k2
y is the horizontal wavenumber. Comparing (C1) and (C2), we could

then define an effective horizontal wavenumber in spherical coordinates as

kH =
√

l(l + 1)

r2 . (C3)

Correspondingly, a horizontal wavelength can be invoked as

L = 2π

kH
= 2πr√

l(l + 1)
. (C4)

To obtain E
′
kin(kH) spectra from Ekin(l) spectra, we proceed as

E
′
kin(kH)�kH = Ekin(l)�l. (C5)

Figures 35 and 36 show Ekin(l) and E
′
kin(kH) spectra for different η at Ra = 7 × 107

and Ra = 3 × 108, respectively. Although Ekin(l) spectra do not, all the E
′
kin(kH) spectra
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Figure 35. Kinetic energy spectra (a) Ekin(l) with respect to harmonic degree l, and (b) E
′
kin(kH) with respect

to effective horizontal wavenumber kH . The vertical black solid line in panel (b) is kH = 4.2, which corresponds
to L = 2π/kH = 1.5. All the spectra are with the same Ra = 7 × 107.
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Figure 36. Kinetic energy spectra (a) Ekin(l) with respect to harmonic degree l, and (b) E
′
kin(kH) with respect

to effective horizontal wavenumber kH . The vertical black solid line in panel (b) is kH = 4.2, which corresponds
to L = 2π/kH = 1.5. All the spectra are with the same Ra = 3 × 108.

collapse regardless of η considered. The reason for the collapse is that it gets rid of the
effect of the mid-depth radial coordinate, which is different for different η.

In planar RBC, Stevens et al. (2018) found that Ekin(kh) spectra collapse when aspect
ratio Γ ≥ 32. It can be reasoned that in spherical RBC, there also exists a threshold ηc

such that E
′
kin(kH) spectra collapse when η ≥ ηc. Since E

′
kin(kH) spectra collapse for all

values of η considered in this work, this ηc must be smaller than 0.2. In the limit η → 1,
the behaviour of the system, including E

′
kin(kH) spectra, will asymptotically approach the

planar RBC with an infinite aspect ratio. The collapse in the E
′
kin(kH) spectra for all η ≥

0.2, as shown in figures 35 and 36, is analogous to the collapse of the spectra in the planar
case. Therefore, the integral length scale in simulations is more or less the same as the
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asymptotic value in planar RBC. This could qualitatively explain the reason why our Lint
converges to the similar value as observed in planar RBC.
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