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On monopole and confinement

Though our knowledge of confinement is, at present, quite poor, it is necessary to discuss
briefly the approach of monopoles where some activities have been investigated recently
for understanding the mechanism of confinement.1 One of the most favoured mechanism
of confinement is the one due to monopole condensation [620], where one has to see if the
monopole condensation occurs in the confined phase but not in the deconfined one. Dual-
superconductivity mechanism of confinement assumes the formation of an Abrikosov-type
tube between heavy quarks introduced into the vacuum via the Wilson loop,2 while the tube
itself is a classical solution of the equations of motion of the Higgs-type model Lagrangian
of the action:

Seff =
∫

d4x

[
|Dµφ|2 + 1

4
G2

µν + V (|φ|2)

]
, (46.1)

where φ is a scalar field with a non-zero magnetic charge, Gµν is the field strength tensor
built from the dual-gluon field Bµ, Dµ is the covariant derivative, and V (|φ|2) is the potential
energy:

V (|φ|2) = m2

2
|φ|2 − λ

4
|φ|4 , (46.2)

ensuring that 〈φ〉 �= 0 in the vacuum. If m2 < 0, the potential has the typical Mexican shape
and |φ|2 = m2/λ. However, the relation of these effective fields to the fundamental ones of
QCD is not yet clear, which is the main limitations of the use of this effective theory. How-
ever, there is not, at present, any answer to this question, and the answer can only come from
the data, which are, at present, lattice measurements. This lack of understanding concerns
the nature of non-perturbative field configurations defined as monopoles in non-Abelian
gauge theories. The few knowledge one has is that monopoles are intrinsically U (1) config-
urations. However, it is not a priori clear which U (1) subgroup of e.g. SU (2) is to be taken
for classifying the monopoles. If one takes the most successful maximal Abelian projection
[617–619], and associates a conserved magnetic charge to any operator in the adjoint rep-
resentation, we still have very little understanding of the field configurations describing

1 For reviews, see e.g. [617–619].
2 The energy of the flux tube is proportional to the length of the flux implying that an infinite energy is needed for dissociating at

infinite distance a monopole–antimonopole pair.
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monopoles in this projection, and in particular on the monopole size. Lattice measurements
indicate that magnetic charges condense in the confined phase, and is independent of the
specific choice of the Abelian projection [619]. On the other, a lattice measurement of the
monopole size gives the radius [621]:

Rmono ≈ 0.06 fm , (46.3)

defined in terms of the full non-Abelian action associated with the monopole and not in
terms of the projected action. It is relatively small compared with the temperature of the
confinement–deconfinement phase transition:

Tc ≈ 300 MeV , (46.4)

corresponding to a distance dmono ∼ 1/Tc ∼ 0.5 fm. An attempt to understand the origin
of this scale hierarchy has been investigated in [617] using monopole cluster assuming that
monopole condensation occurs when the monopole action is UV divergent. However, one
expects that the onset of condensation in the standard field theoretical language corresponds
to the zero mass of the magnetically charged field φ. This apparent contradiction can be
understood from the kinematical relation between the physical mass mphys entering in the
propagator of the scalar field and the mass M ≡ S/L defined in terms of the Euclidian
action, where L is the length of the trajectory and S the corresponding action on a cubic
lattice with spacing a. To leading order in ma:

m2
phys · a = M − ln 7

a
, (46.5)

where ln 7 originates from the fact that a trajectory of length L can be realized on a cubic
lattice in NL = 7L/a various ways. At each step, the trajectory can be continued on an
adjacent cube, where in four dimensions one has eight such cubes. Zakharov [617] argues
that the data on monopole action imply a fine tuning:

Mmono(a) − ln 7

a
� Mmono(a) ∼ �QCD , (46.6)

where ln 7 is of pure geometrical origin and Mmono is the monopole energy defined on a
compact U (1) group as:

Mmono(a) = 1

8π

∫
�B2d3r ∼

( c

e2

) (
1

a

)
, (46.7)

where c is a constant, e is the electric charge and gm = 1/2e is the magnetic charge. Analysis
of lattice data [618] suggests that the actual physical size Rphys of the monopole can be much
smaller than that in Eq. (46.3). By Rphys one means the distance where the excess of the
monopole action is parametrically smaller than the action associated with the zero-point
fluctuations. Using the running of the QCD coupling and the condition due to the U (1)
critical coupling e2

c ≈ 1 at which the monopole condenses, one obtains the scale:

Mphys ≈ 1 TeV (46.8)
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giving the electroweak scale rather than the QCD one of the order of �QCD, therefore
indicating that QCD projected onto the scalar-filed theory via monopoles corresponds to a
fine-tuned theory. This result suggests a SU (2) lattice measurements at β = 4 rather than
the present results at β = 2.6, which is too low to see the dissolution of monopoles at short
distance. This is a subject that deserves further investigations.

It is also often stated that the symmetry responsible for confinement is different in pure
gauge theory and in the presence of quarks. In pure gauge theory, the order parameter is
the vacuum expectation value of the Polyakov line, and the symmetry is Z N , the centre of
the group. Since in the presence of quarks, Z N is explicitly broken, one might expect that the
order parameter is the chiral quark 〈ψ̄ψ〉 condensate, which is responsible for spontaneous
breaking of the chiral symmetry, although it is also known that the quark masses explicitly
break chiral symmetry. However, the relation between confinement and chiral symmetry is
not clear at all. Lattice simulations indicate that the two transitions take place at the same
temperature, but there is no explanation of this numerical observation.

Another point is that if dual superconductivity in all Abelian projections is the symmetry
behind confinement, then it should also work in full QCD.

Finally, there are the recent attempts [622,623] to tackle the confinement problem using
QCD perturbation theory. The approach is based on a gluon chain model in the large NC

QCD, which gives a string-like picture of hadrons although confinement is not built in.
One can modify the Born approximation by introducing a non-local counterterm for an IR
renormalization of the Coulomb potential, which now possesses a linear term proportional
to the QCD string tension. The arbitrary IR subtraction point can be optimized by using a
variational method. It reaches its optimal value at that of the string tension. The procedure
induces a mass to the gluon which, in some sense, is similar to the tachyonic gluon mass
introduced by [161] at short distance. Some further examples of the applications of the
approach to confinement are discussed in [623].

From this short summary, we conclude that though there has been progress towards an
understanding of confinement via monopole condensation, but there remain some unclar-
ified points that still need further investigation. The perturbative approach to confinement
looks promising.
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