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In a ball Ω ⊂ R
n with n � 2, the chemotaxis system⎧⎨

⎩
ut = ∇ · (D(u)∇u

)
+ ∇ · ( u

v
∇v

)
,

0 = Δv − uv

is considered along with no-flux boundary conditions for u and with prescribed
constant positive Dirichlet boundary data for v. It is shown that if D ∈ C3([0,∞)) is
such that 0 < D(ξ) � KD(ξ + 1)−α for all ξ > 0 with some KD > 0 and α > 0, then
for all initial data from a considerably large set of radial functions on Ω, the
corresponding initial-boundary value problem admits a solution blowing up in finite
time.
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1. Introduction

The analysis of chemotaxis-consumption systems has been stimulated to a signifi-
cant extent by experimental observations witnessing an unexpectedly rich variety of
facets in the collective behaviour of aerobic bacteria: in diverse particular settings,
colonies of Bacillus subtilis have been seen to generate strikingly complex pat-
terns during their search for oxygen [19, 25]. In their simplest shape, mathematical
descriptions for such nutrient taxis processes reduce to cross-diffusion models of the
form {

ut = ∇ · (D(u, v)∇u) −∇ · (uS(u, v)∇v),
τvt = Δv − uv,

(1.1)

for the unknown population density u = u(x, t) and the signal concentration
v = v(x, t). Here a key feature is linked to the circumstance that according to
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Finite-time blow-up in a repulsive chemotaxis-consumption system 1151

its fundamental purpose, (1.1) presupposes the considered signal to be consumed,
contrary to frameworks covered by classical Keller–Segel systems that typically
address application contexts of self-enhancing aggregation mechanisms in which
the directing cues are produced by individuals, and in which the corresponding
second sub-problems then suitably generalize the production-diffusion equation
vt = Δv − v + u [13].

At levels of rigorous mathematical analysis, this difference between (1.1) and
such Keller–Segel production systems has been found to go along with substantial
deviations with respect to core characteristics: while several representatives of the
latter model class are well known to generate structures even in the extreme sense
of spontaneous singularity formation [4, 8, 11, 20, 28], the literature concerned
with solution behaviour in nutrient taxis systems related to (1.1) seems exclusively
restricted to the identification of situations determined by relaxation towards spatial
homogeneous states.

For instance, in its simplest fully parabolic version with τ = 1 and constant dif-
fusivities D and chemotactic sensitivities S, and posed under no-flux boundary
conditions in bounded two-dimensional domains Ω, (1.1) is known to admit global
classical solutions for arbitrarily large initial data (u0, v0), with each of these solu-
tions approaching the respectively unique spatially constant equilibrium at the
considered mass level, as given by ( 1

|Ω|
∫
Ω
u0, 0) ([24, 35]; cf. also [18, 37]). Although

for the corresponding three-dimensional analogue involving large data only certain
weak solutions have been found to exist globally, while results on global classical
solvability are until now limited to suitable small-data scenarios [22], for any of
these solutions a similar statement concerning the large time behaviour has been
derived [24]. A considerable stability of this trend towards homogeneity in (1.1)
has been indicated by studies revealing comparably trivial asymptotics even in the
presence of buoyancy-induced couplings to Navier–Stokes flows such as those being
of relevance in the experimental framework addressed in [25] ([2, 6, 12, 29, 31]).

Beyond studies explicitly focusing on large time behaviour, the literature contains
considerable additional evidence for relaxation, and especially also for blow-up pre-
vention, in numerous further versions and relatives of (1.1). This becomes manifest
in results on existence and regularity for systems involving nonlinear diffusion rates
or nonconstant cross-diffusion rates, or both [14, 15, 17, 34, 36, 38], possibly
in frameworks of small-data trajectories [1, 23, 27], and partially even in find-
ings concerned with instantaneous regularization of singular initial distributions
[16, 26].

Subtly accounting for directional effects. Main results. Most of the
precedents studies on (1.1) have either disregarded any directional information on
chemotactic motion by simply estimating cross-diffusive effects in their absolute
strength, hence leading to results irrespective of the sign of S, or explicitly concen-
trated on attractive taxis mechanisms by assuming S to be nonnegative. In fact, at
least in their simpler forms such chemoattraction-consumption systems have been
found to possess some global dissipative structure, and an appropriate exploitation
thereof has been underlying the derivation of regularity and stabilization features
to a substantial extent (cf. e.g. [36] and [24]). It may be interpreted as evidence
for more complex behaviour in systems differing from fully attractive ones that for
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the close relative thereof obtained on still letting D ≡ const. > 0 but allowing S in
(1.1) to be tensor-valued, even in simple cases of constant S only slightly deviating
from positive multiples of the identity matrix the knowledge is yet much sparser:
until now, only certain generalized and possibly quite irregular solutions have been
found exist globally [30], with statements on eventual smoothness and large time
stabilization limited to two-dimensional settings [32].

The intention of the present work will now be to indicate that chemotaxis-
consumption systems of the form (1.1) may indeed generate strongly structured
solution behaviour if cross-diffusion acts in an appropriately destabilizing direc-
tion. In fact, we shall see that when S is a suitably chosen negative scalar function,
hence modelling repulsive taxis, then solutions may even exhibit finite-time blow-
up phenomena. Notably, this outcome will thereby considerably diverge from some
previous findings on differences in solution behaviour induced by deviations from
purely attractive taxis in classical Keller–Segel production systems: in such settings,
namely, switching to tensor-type constant S �≡ 1n×n, or even to fully repulsive cross-
diffusion, has been found to significantly reduce the respective tendency towards
singularity formation [3, 7]. To specify the exemplary setting within which this will
be studied, let us consider the no-flux/Dirichlet initial-boundary value problem
associated with a parabolic-elliptic version of (1.1) given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) + ∇ ·
(u
v
∇v

)
, x ∈ Ω, t > 0,

0 = Δv − uv, x ∈ Ω, t > 0,(
D(u)∇u+

u

v
∇v) · ν = 0, v = 1, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

where we will focus on the case when Ω is a ball in R
n with n � 2; here the partic-

ular choice of the so-called logarithmic sensitivity 0 < v �→ 1
v , well consistent with

classical approaches to account for the Weber–Fechner law of stimulus response
[9, 21], ensures that upon replacing v with v

M if necessary, (1.2) can be seen to be
equivalent to the corresponding variant in which v|∂Ω = M > 0.

Our main result now shows that whenever the diffusion mechanism herein is
assumed to undergo any asymptotic damping effect of algebraic functional type [10],
finite-time singularity formation occurs within a considerably large set of choices of
the initial data u0:

Theorem 1.1. Let n � 2, R > 0 and Ω = BR(0) ⊂ R
n, and suppose that

D ∈ C3([0,∞)) is such that D(ξ) > 0 for all ξ � 0, (1.3)

and such that

D(ξ) � KD(ξ + 1)−α for all ξ > 0 (1.4)

with some KD > 0 and α > 0. Then for each R0 ∈ (0, R) and any θ ∈ (0, 1) there
exists m� = m�(R,R0, θ) > 0 with the property that whenever

u0 ∈W 1,∞(Ω) is radially symmetric and nonnegative (1.5)
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and such that ∫
Ω

u0dx � m� as well as
∫
BR0

u0dx � θ

∫
Ω

u0dx, (1.6)

the problem (1.2) admits a solution blowing up in finite time. More precisely, there
exist Tmax ∈ (0,∞) and a uniquely determined pair of functions{

u ∈ ⋃
q>n C

0([0, Tmax);W 1,q(Ω)) ∩ C2,1(Ω × (0, Tmax)) and

v ∈ C2,0(Ω × (0, Tmax))
(1.7)

such that u > 0 and v > 0 in Ω × (0, Tmax), that (u, v) solves (1.2) in the classical
sense in Ω × (0, Tmax), and that

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (1.8)

Remark 1.2. A challenging question is how far results of the above flavour can
be expected to carry over to the attraction-consumption counterpart of (1.2)
obtained on replacing the first equation therein by an identity of the form
ut = ∇ · (D(u)∇u) −∇ · (uv∇v); of particular interest in this context would then
be a comparison of corresponding blow-up mechanisms and times. Examining this
in detail would go beyond the scope of the present manuscript, however, as mainly
through a positive sign of the taxis-related contribution to the key inequality (3.9)
below, our analysis to be subsequently developed will quite crucially rely on the
repulsive character of the cross-diffusive mechanism in (1.2).

2. Local existence and transformation to a scalar problem

To begin with, let us state an essentially straightforward extension of known results
on local existence and extensibility to the present setting. For detailed reasonings in
some closely related situations, we may refer to [33, lemma 2.1] and [5, theorem 1.3].

Lemma 2.1. Let n � 2, R > 0 and Ω = BR(0) ⊂ R
n, and suppose that (1.3) is valid.

Then for any choice of initial data fulfilling (1.5), one can find Tmax ∈ (0,∞] and
functions u and v, uniquely determined by the inclusions in (1.7), such that u(·, t)
and v(·, t) are radially symmetric for all t ∈ (0, Tmax), that u > 0 and v > 0 in
Ω × (0, Tmax), that (u, v) forms a classical solution of (1.2) in Ω × (0, Tmax), and
that

if Tmax <∞, then lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (2.1)

Moreover, ∫
Ω

u(x, t)dx =
∫

Ω

u0(x)dx for all t ∈ (0, Tmax). (2.2)

Throughout the sequel, we suppose that Ω = BR(0) ⊂ R
n with some n � 2 and

R > 0, and whenever D and u0 fulfilling (1.3) and (1.5) have been fixed, we let
Tmax ∈ (0,∞] and (u, v) be as obtained in lemma 2.1. Moreover, whenever this
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appears convenient we shall switch to standard radial notation, e.g. by writing
u(r, t) instead of u(x, t) for r = |x| ∈ [0, R] and t ∈ (0, Tmax).

By following a well-established reduction procedure [11], we can transform the
accordingly relevant radial version of (1.2) to a scalar problem:

Lemma 2.2. Let R > 0, assume (1.3) and (1.5), and let

w(s, t) :=
∫ s1/n

0

ρn−1u(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, Tmax). (2.3)

Then w belongs to C0([0, Tmax);C1([0, Rn]) ∩ C2,1((0, Rn] × (0, Tmax)) and satisfies

ws(s, t) =
1
n
u
(
s1/n, t

)
for all s ∈ [0, Rn] and t ∈ [0, Tmax), (2.4)

and we have

wt = n2s2−2/nD(nws)wss

+ nws ·
{
rn−1∂r ln v

}∣∣∣
r=s1/n

for all s ∈ (0, Rn) and t ∈ (0, Tmax) (2.5)

as well as

w(0, t) = 0 and w(Rn, t) =
m

n|B1(0)| for all t ∈ [0, Tmax), (2.6)

where m :=
∫
Ω
u0dx.

Proof. All these statements can be verified by straightforward computations on the
basis of (1.2) and (2.3). �

3. Basic evolution properties of φ(t) =
∫ Rn

0
s−γw(s, t)ds

The purpose of this section will be to derive a first statement on how the antagonistic
effects of the diffusive and cross-diffusive contributions to (2.5) quantitatively influ-
ence the evolution of the moment-like quantities [0, Tmax) � t �→ ∫ Rn

0
s−γw(s, t)ds.

A preparatory observation of key importance in this regard provides a pointwise
bound for the taxis gradient acting in (1.2), the effect of which is estimated from
below in terms of a nonlocal expression involving the function w from (2.3):

Lemma 3.1. If R > 0 and (1.3) as well as (1.5) hold, then

rn−1∂r ln v(r, t) � U(r, t)
1 +

∫ r
0
ρ1−nU(ρ, t)dρ

for all r ∈ (0, R) and t ∈ (0, Tmax), (3.1)

where with w taken from (2.3) we have set

U(r, t) := w(rn, t) ≡
∫ r

0

ρn−1u(ρ, t)dρ for r ∈ [0, R] and t ∈ [0, Tmax). (3.2)
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Proof. For fixed t ∈ (0, Tmax), we note that by positivity of v(·, t) in Ω and the
inclusion v(·, t) ∈ C2(Ω),

y(r) := rn−1∂r ln v(r, t), r ∈ [0, R],

defines a function y ∈ C1([0, R]) which satisfies

y(r) � c1r
n for all r ∈ [0, R]

with some c1 = c1(t) > 0, because vr(0, t) = 0. On the other hand, the strict
positivity of u(·, t) in Ω ensures the existence of c2 = c2(t) > 0 fulfilling

Ur(r, t) = rn−1u(r, t) � c2r
n−1 for all r ∈ [0, R].

Therefore,

r1−ny2(r) � c21
c2

· r2Ur(r, t) for all r ∈ (0, R),

whence given any η ∈ (0, 1) we can pick r0(η) = r0(η; t) ∈ (0, R) such that

r1−ny2(r) � ηUr(r, t) for all r ∈ (0, r0(η)]. (3.3)

We now use the second equation in (1.2) to compute, partially suppressing
arguments and especially the time t yet fixed,

yr(r) = ∂r

(
rn−1 vr

v

)

= rn−1 vrr
v

+ (n− 1)rn−2 vr
v

− rn−1 v
2
r

v2

=
rn−1

v
·
(
vrr +

n− 1
r

vr

)
− r1−ny2(r)

= rn−1u− r1−ny2(r)

= Ur − r1−ny2(r) for all r ∈ (0, R). (3.4)

To make use of this in the course of a comparison argument, for η > 0 we let r0(η)
be as above and define

ζ(r) :=
{

1
1 − η

+
∫ r

r0(η)

ρ1−nU(ρ, t)dρ
}−1

, r ∈ [r0(η), R], (3.5)

noting that then ζ solves ζ ′(r) = −r1−nU(r, t)ζ2(r) for all r ∈ (r0(η), R) with
ζ(r0(η)) = 1 − η. Accordingly, using that hence especially ζ(r) � 1 on [r0(η), R]
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we infer that

y(r) := ζ(r)U(r, t), r ∈ [r0(η), R], (3.6)

satisfies

y′(r) − Ur(r, t) + r1−ny2(r)

=
{
ζ(r) − 1

}
· Ur(r, t) +

{
ζ ′(r) + r1−nU(r, t)ζ2(r)

}
· U(r, t)

� 0 for all r ∈ (r0(η), R) (3.7)

as well as y(r0(η)) = (1 − η)U(r0(η), t). As (3.4) together with (3.3) implies that

yr(r) � (1 − η)Ur(r, t) for all r ∈ (0, r0(η))

and that thus, by direct integration based on the identity y(0) = U(0, t) = 0,

y(r) � (1 − η)U(r, t) for all r ∈ [0, r0(η)], (3.8)

we particularly obtain that y(r0(η)) � y(r0(η)), so that we may combine (3.4) with
(3.7) to infer upon an ODE comparison that y(r) � y(r) for all r ∈ [r0(η), R]. Since
(3.5) and (3.6) therefore imply that

y(r) � y(r) � (1 − η)U(r, t)
1 +

∫ r
0
ρ1−nU(ρ, t)dρ

for all r ∈ [r0(η), R],

and since (3.8) trivially entails that

y(r) � (1 − η)U(r, t)
1 +

∫ r
0
ρ1−nU(ρ, t)dρ

for all r ∈ [0, r0(η)],

on taking η ↘ 0 we can confirm (3.1). �

As a result, the identity in (2.5) can be turned into an autonomous scalar
parabolic inequality containing a nonlocal source term.

Lemma 3.2. Let R > 0, suppose that (1.3) and (1.5) hold, and let w be as in (2.3).
Then

wt � n2s2−2/nD(nws)wss

+ n · wws

1 + 1
n

∫ s
0
σ2/n−2w(σ, t)dσ

for all s ∈ (0, Rn) and t ∈ (0, Tmax). (3.9)

Proof. In view of (3.2) and (2.3), we only need to insert (3.1) into (2.5), use the
nonnegativity of ws, and observe that∫ r

0

ρ1−nU(ρ, t)dρ =
1
n

∫ s

0

σ2/n−2w(σ, t)dσ

for t ∈ (0, Tmax), r ∈ (0, R) and s = rn. �
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For the moment-type functional in question, this has the following fairly
immediate consequence.

Lemma 3.3. Let R > 0, suppose that D satisfies (1.3) as well as

D(ξ) � KDξ
−α′

for all ξ > 0 (3.10)

with some KD > 0 and α′ ∈ (0, 1), and assume (1.5). Then for any choice of γ ∈
(−∞, 2 − 2

n ),

φ(t) :=
∫ Rn

0

s−γw(s, t)ds, t ∈ [0, Tmax), (3.11)

defines a positive function φ ∈ C0([0, Tmax)) ∩ C1((0, Tmax)) fulfilling

φ′(t) � −n
2−α′ · (2 − 2

n − γ)KD

1 − α′

∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds

+ n

∫ Rn

0

s−γw(s, t)ws(s, t)
1 + 1

n

∫ s
0
σ2/n−2w(σ, t)dσ

ds for all t ∈ (0, Tmax). (3.12)

Proof. Since γ < 2, in view of the inclusions u ∈ C0(Ω × [0, Tmax)) and ut ∈ C0(Ω ×
(0, Tmax)) asserted by (1.7) it follows from the dominated convergence theorem that
φ has the claimed regularity properties and satisfies

φ′(t) =
∫ Rn

0

s−γwt(s, t)ds

� n2

∫ Rn

0

s2−2/n−γD
(
nws(s, t)

)
wss(s, t)ds

+ n

∫ Rn

0

s−γw(s, t)ws(s, t)
1 + 1

n

∫ s
0
σ2/n−2w(σ, t)dσ

ds for all t ∈ (0, Tmax). (3.13)

To estimate the second last integral, we note that according to (1.3) and (3.10),
letting

D0(ξ) :=
∫ ξ

0

D(τ)dτ, ξ � 0,

defines a nonnegative function from C1([0,∞)) which satisfies D0(ξ) � KD

1−α′ ξ
1−α′

for all ξ � 0, so that an integration by parts shows that for all t ∈ (0, Tmax) we have

n2

∫ Rn

0

s2−2/n−γD
(
nws(s, t)

)
wss(s, t)ds

= n

∫ Rn

0

s2−2/n−γ∂sD0

(
nws(s, t)

)
ds

= −n
(
2 − 2

n
− γ

) ∫ Rn

0

s1−2/n−γD0

(
nws(s, t)

)
ds
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+ nR2n−2−nγD0

(
nws(Rn, t)

) − lim
s↗0

{
ns2−2/n−γD0

(
nws(s, t)

)}

� −n
(
2 − 2

n
− γ

) ∫ Rn

0

s1−2/n−γD0

(
nws(s, t)

)
ds

� −n
2−α′ · (2 − 2

n − γ
)
KD

1 − α′

∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds, (3.14)

because our assumption γ < 2 − 2
n ensures that for all t ∈ (0, Tmax),

s2−2/n−γD0

(
nws(s, t)

) → 0 as s↘ 0.

Combining (3.14) with (3.13) establishes (3.12). �

4. Turning (3.12) into an autonomous ODI for φ. Proof of theorem 1.1

To see that for suitable choices of the free parameter γ in (3.11) the resulting
function φ indeed satisfies an appropriately forced autonomous ODI, we shall next
relate the transport-driven and the diffusive part in (3.12) to φ. Of technically
crucial importance in this respect will be the observation that this can be achieved
in quite a convenient manner if instead of φ itself, an intermediate quantity ψ, to
be specified in (4.3), will be referred to in a preliminary step.

For suitably large values of γ, this function can be used to control the action of
the nonlocal expression arising in the denominator of the rightmost summand from
(3.12):

Lemma 4.1. Let R > 0, assume (1.3), and let γ ∈ (−∞, 2 − 2
n ) be such that

γ > 2 − 4
n
. (4.1)

Then there exists C(γ,R) > 0 such that whenever (1.5) holds,∫ s

0

σ2/n−2w(σ, t)dσ � C(γ,R)ψ1/2(t) (4.2)

where we have set

ψ(t) :=
∫ Rn

0

s−γ−1w2(s, t)ds, t ∈ (0, Tmax), (4.3)

Proof. By nonnegativity of w and the Cauchy–Schwarz inequality,∫ s

0

σ2/n−2w(σ, t)dσ �
∫ Rn

0

σ2/n−2w(σ, t)dσ

�
{ ∫ Rn

0

σ−γ−1w2(σ, t)dσ
}1/2

·
{ ∫ Rn

0

σ4/n−3+γdσ
}1/2

for all t ∈ (0, Tmax),
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so that since (4.1) warrants that 4
n − 3 + γ > −1, (4.2) results if, for instance, we

let C(γ,R) := ( 4
n − 2 + γ)−1/2R2−n+nγ/2. �

Actually for all γ from the range addressed in lemma 3.3, in much the same
manner also φ itself can be related to ψ:

Lemma 4.2. Suppose that R > 0 and that (1.3) holds, and let γ ∈ (−∞, 2 − 2
n ).

Then one can find C(γ,R) > 0 such that for any choice of u0 fulfilling (1.5), the
functions φ an ψ accordingly defined through (3.11) and (4.3) satisfy

φ(t) � C(γ,R)ψ1/2(t) for all t ∈ (0, Tmax). (4.4)

Proof. Again using the Cauchy–Schwarz inequality, we see that

φ(t) �
{ ∫ Rn

0

s−γ−1w2(s, t)ds
}1/2

·
{ ∫ Rn

0

s−γ+1ds
}1/2

for all t ∈ (0, Tmax),

and that thus (4.4) is valid with C(γ,R) := (2 − γ)−1/2Rn−nγ/2. �

In deriving the following estimate for the diffusion-related part from (3.12) in
terms of ψ, we shall now make essential use of our assumption (3.10) on D.

Lemma 4.3. Suppose that R > 0, and assume that (1.3) and (3.10) hold with some
KD > 0 and α′ ∈ (0, 1). Then for any γ ∈ (−∞, 2 − 2

n ) which is such that

γ <
2 − 4

n + 2α′

1 + α′ , (4.5)

one can fix C(γ,R) > 0 in such a way that whenever (1.5) holds, with ψ taken from
(4.3) we have∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds � C(γ,R)ψ(1−α′)/2(t)

+ C(γ,R) ·
{ ∫

Ω

u0dx
}1−α′

for all t ∈ (0, Tmax).

(4.6)

Proof. Observing that our assumption (4.5) guarantees that

−1 + 2
n + γ − α′

1 − α′ − γ

2
=

(1 + α′)γ − 2 + 4
n − 2α′

2(1 − α′)
<0,

we can pick a positive number λ = λ(γ) such that

−1 + 2
n + γ − α′

1 − α′ < λ <
γ

2
. (4.7)

Assuming (1.5) with m :=
∫
Ω
u0dx, for t ∈ (0, Tmax) we then particularly obtain

from the right inequality in (4.7) that λ < 1, and that thus
∫ Rn

0
s−λws(s, t)ds is
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finite and may be rewritten using an integration by parts according to∫ Rn

0

s−λws(s, t)ds = λ

∫ Rn

0

s−λ−1w(s, t)ds+
R−nλm
n|B1(0)| , (4.8)

because s−λw(s, t) → 0 as s↘ 0 and w(Rn, t) = m
n|B1(0)| by (2.6). Here, again

invoking the Cauchy–Schwarz inequality we can estimate
∫ Rn

0

s−λ−1w(s, t)ds �
{∫ Rn

0

s−γ−1w2(s, t)ds
}1/2

·
{ ∫ Rn

0

s−2λ+γ−1ds
}1/2

,

whence making full use of the second restriction in (4.7) now we obtain that∫ Rn

0

s−λws(s, t)ds � c1(γ,R)ψ1/2(t) + c2(γ,R)m for all t ∈ (0, Tmax) (4.9)

with c1(γ,R) := λ(γ − 2λ)−1/2Rnγ/2−nλ and c2(γ,R) := (n|B1(0)|Rnλ)−1.
In order to relate this to (4.6), we now rely on the positivity of α′ in employing

the Hölder inequality to see that∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds

=
∫ Rn

0

{
s−λws(s, t)

}1−α′

· s1−2/n−γ+(1−α′)λds

�
{ ∫ Rn

0

s−λws(s, t)ds
}1−α′

·
{∫ Rn

0

s[1−2/n−γ+(1−α′)λ]·(1/α′)ds
}α′

for all t ∈ (0, Tmax), (4.10)

where thanks to the lower estimate for λ in (4.7), μ ≡ μ(γ) := [1 − 2
n − γ +

(1 − α′)λ] · 1
α′ satisfies

μ >
[
1 − 2

n
− γ +

(
−1 +

2
n

+ γ − α′
)]

· 1
α′ = −1.

Therefore, writing c3(γ,R) := (μ+ 1)−α
′
Rn(μ+1)α′

we infer from (4.8) and (4.9)
that since (A+B)α

′ � Aα
′
+Bα

′
for all A � 0 and B � 0,∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds

�
{
c1(γ,R)ψ1/2(t) + c2(γ,R)m

}1−α′

· c3(γ,R)

� c1−α
′

1 (γ,R)c3(γ,R)ψ(1−α′)/2(t)

+ c1−α
′

2 (γ,R)c3(γ,R)m1−α′
for all t ∈ (0, Tmax),

and conclude as intended. �
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By suitably choosing the parameter γ so as to become compatible with the
requirements from both (4.1) and (4.5), we can collect the outcomes of lemmas
4.1, 4.2 and 4.3 to establish an autonomous ODI for φ, here yet conditional in
being asserted only throughout time intervals within which φ is a priori known to
remain suitably large.

Lemma 4.4. Let R > 0, and suppose that (1.3) and (3.10) are valid with some
KD > 0 and α′ ∈ (0, 1). Then there exist γ ∈ (−∞, 2 − 2

n ), Γ(R) > 0 and C(R) > 0
with the property that whenever (1.5) holds and T ∈ (0, Tmax] is such that the
function φ from (3.11) satisfies

φ(t) � Γ(R) for all t ∈ (0, T ), (4.11)

we have

φ′(t) � 1
C(R)

· φ(t) − C(R) ·
{∫

Ω

u0dx
}1−α′

for all t ∈ (0, T ). (4.12)

Proof. The positivity of α′ warrants that

2 − 4
n + 2α′

1 + α′ −
(
2 − 4

n

)
=

4α′

n(1 + α′)
> 0,

so that we can pick γ ∈ (2 − 4
n , 1 − 2

n ) such that γ < 2−4/n+2α′

1+α′ . We may therefore
employ lemma 4.3 to find c1(R) > 0 with the property that if (1.5) holds, then for
all t ∈ (0, Tmax) we have

n2−α′ · (2 − 2
n − γ)KD

1 − α′

∫ Rn

0

s1−2/n−γw1−α′
s (s, t)ds

� c1(R)ψ(1−α′)/2(t) + c1(R) ·
{ ∫

Ω

u0dx
}1−α′

, (4.13)

while lemmas 4.1 and 4.2 yield c2(R) > 0 and c3(R) > 0 such that for each u0

fulfilling (1.5),

1
n

∫ s

0

σ2/n−2w(σ, t)dσ � c2(R)ψ1/2(t) for all t ∈ (0, Tmax) (4.14)

and

ψ1/2(t) � c3(R)φ(t) for all t ∈ (0, Tmax). (4.15)

We now choose Γ(R) > 0 large enough fulfilling

c1(R) · {c3(R)Γ(R)
}−1−α′

+ c1(R)c2(R) · {c3(R)Γ(R)
}−α′

� nγ

4
, (4.16)

and henceforth suppose that u0 is such that (1.5) holds, and that (4.11) is satisfied
with some T ∈ (0, Tmax]. Then thanks to (4.14), in the rightmost summand in (3.12)
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we can estimate

n

∫ Rn

0

s−γw(s, t)ws(s, t)
1 + 1

n

∫ s
0
σ2/n−2w(σ, t)dσ

ds

� n

1 + c2(R)ψ1/2(t)
·
∫ Rn

0

s−γw(s, t)ws(s, t)ds

=
n

1 + c2(R)ψ1/2(t)
·
{
γ

2

∫ Rn

0

s−γ−1w2(s, t)ds+
R−nγw2(Rn, t)

2

}

� nγ

2
· ψ(t)
1 + c2(R)ψ1/2(t)

for all t ∈ (0, Tmax)

because of (4.3) and the fact that since γ < 2, we have s−γw2(s, t) → 0 as s↘ 0
for all t ∈ (0, Tmax). Using (4.13), from (3.12) we thus infer that

φ′(t) � nγ

2
· ψ(t)
1 + c2(R)ψ1/2(t)

− c1(R)ψ(1−α′)/2(t)

− c1(R) ·
{∫

Ω

u0dx
}1−α′

for all t ∈ (0, Tmax), (4.17)

where we note that due to (4.15), (4.11) and (4.16),

c1(R)ψ(1−α′)/2(t)
ψ(t)

1+c2(R)ψ1/2(t)

= c1(R) · {1 + c2(R)ψ1/2(t)
} · ψ−((1+α′)/2)(t)

= c1(R)ψ−((1+α′)/2)(t) + c1(R)c2(R)ψ−((α′)/2)(t)

� c1(R) · {c3(R)φ(t)
}−1−α′

+ c1(R)c2(R) · {c3(R)φ(t)
}−α′

� nγ

4
for all t ∈ (0, T ). (4.18)

Furthermore, since both 0 � ξ �→ ξ
1+c2(R)ξ1/2 and 0 � ξ �→ ξ

1+c2(R)c3(R)ξ are nonde-
creasing, again relying on (4.15) and (4.11) we can estimate

ψ(t)
1 + c2(R)ψ1/2(t)

� c23(R)φ2(t)
1 + c2(R)c3(R)φ(t)

=
c23(R)φ(t)

1 + c2(R)c3(R)φ(t)
· φ(t)

� c23(R)Γ(R)
1 + c2(R)c3(R)Γ(R)

· φ(t) for all t ∈ (0, T ).
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Combining this with (4.18) and (4.17) we thus obtain that

φ′(t) � nγ

4
· ψ(t)
1 + c2(R)ψ1/2(t)

+
{
nγ

4
· ψ(t)
1 + c2(R)ψ1/2(t)

− c1(R)ψ(1−α′)/2(t)
}

− c1(R) ·
{ ∫

Ω

u0dx
}1−α′

� nγ

4
· c23(R)Γ(R)
1 + c2(R)c3(R)Γ(R)

· φ(t) − c1(R) ·
{ ∫

Ω

u0dx
}1−α′

for all t ∈ (0, T ),

whence letting

C(R) := max
{

4
nγ

· 1 − c2(R)c3(R)Γ(R)
c23(R)Γ(R)

, c1(R)
}
,

we arrive at (4.12). �

It remains to make sure that at sufficiently large mass levels, not only the hypoth-
esis in (4.11) can be guaranteed to hold throughout evolution, but also (4.12) can
be turned into an absorption-free linear ODI describing exponential growth of φ.
The actual impossibility thereof on suitably large time intervals will lead us to our
main result on the occurrence of finite-time blow-up in (1.2):

Proof of theorem 1.1. We take any α′ ∈ (0, 1) such that α′ � α, and noting that
then (1.4) implies (3.10), we first apply lemma 4.4 to find γ ∈ (−∞, 2 − 2

n ),
c1(R) > 0 and c2(R) > 0 such that if (1.5) and (4.11) hold with φ as in (3.11)
and some T ∈ (0, Tmax], we have

φ′(t) � c1(R)φ(t) − c2(R) ·
{ ∫

Ω

u0dx
}1−α′

for all t ∈ (0, T ). (4.19)

Given R0 ∈ (0, R) and θ ∈ (0, 1), we thereupon fix m� = m�(R,R0, θ) > 0 large
enough such that abbreviating

c3(R,R0) :=
Rn(1−γ) −R

n(1−γ)
0

n(1 − γ)|B1(0)| (4.20)

we have

c3(R,R0)θm� > Γ(R) (4.21)

and

1
2
c1(R)c3(R,R0)θmα′

� > c2(R), (4.22)

and henceforth assume that (1.5) and (1.6) hold.

https://doi.org/10.1017/prm.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.39


1164 Y. Wang and M. Winkler

With Tmax ∈ (0,∞] and w as accordingly defined in lemma 2.1 and (2.3), writing
m :=

∫
Ω
u0dx we then obtain from (2.3) and (1.6) that

w(Rn0 , 0) =
∫ R0

0

rn−1u0(r)dr =
1

n|B1(0)|
∫
BR0 (0)

u0dx � θm

n|B1(0)| ,

so that since ws � 0, from (3.11) and (4.20) it follows that

φ(0) �
∫ Rn

Rn
0

s−γw(s, 0)ds

� θm

n|B1(0)|
∫ Rn

Rn
0

s−γds

= c3(R,R0)θm. (4.23)

Since this φ(0) > Γ(R) by (4.21), and since (4.23) furthermore implies that

1
2
c1(R)φ(0) − c2(R) ·

{∫
Ω

u0dx
}1−α′

� 1
2
c1(R)c3(R,R0)θm− c2(R) ·

{∫
Ω

u0dx
}1−α′

= m1−α′ ·
{1

2
c1(R)c3(R,R0)θmα′ − c2(R)

}
> 0,

from (4.19) it readily follows that

T := sup
{
T ′ ∈ (0, Tmax)

∣∣∣∣ φ > Γ(R) and φ′ >
c1(R)

2
φ on [0, T ′]

}

is a well-defined element of (0, Tmax] ⊂ (0,∞] and actually must have the property
that T = Tmax, because φ is nondecreasing on [0, T ) and therefore satisfies φ(t) >
φ(0) on (0, T ) and hence also

φ′(t) � c1(R)φ(t) − c2(R) ·
{ ∫

Ω

u0dx
}1−α′

� 1
2
c1(R)φ(t) +

{
1
2
c1(R)φ(0) − c2(R) ·

{ ∫
Ω

u0dx
}1−α′}

>
1
2
c1(R)φ(t) for all t ∈ (0, T )

by (4.19). Thus knowing that φ′ > c1(R)
2 φ throughout (0, Tmax), upon an integration

thereof we infer that

c1(R)
2

· t < ln
φ(t)
φ(0)

for all t ∈ (0, Tmax),
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and that thus

c1(R)
2

· Tmax � ln
mRn(1−γ)

n(1 − γ)|B1(0)|φ(0)
,

because

φ(t) �
∫ Rn

0

s−γ · m

n|B1(0)|ds =
mRn(1−γ)

n(1 − γ)|B1(0)| for all t ∈ (0, Tmax)

according to (3.11) and (2.6). As therefore Tmax indeed is finite, in view of (2.1) we
finally obtain that also (1.8) holds. �
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5 T. Cieślak and M. Winkler. Finite-time blow-up in a quasilinear system of chemotaxis.
Nonlinearity 21 (2008), 1057–1076.

6 R. J. Duan, A. Lorz and P. A. Markowich. Global solutions to the coupled chemotaxis-fluid
equations. Comm. Partial Differ. Equ. 35 (2010), 1635–1673.

7 E. Espejo and H. Wu. Optimal critical mass for the two-dimensional Keller–Segel model
with rotational flux terms. Commun. Math. Sci. 18 (2020), 379–394.

8 M. A. Herrero and J. J. L. Velázquez. A blow-up mechanism for a chemotaxis model. Ann.
Scu. Norm. Sup. Pisa Cl. Sci. 24 (1997), 633–683.

9 T. Hillen and K. Painter. A user’s guide to PDE models for chemotaxis. J. Math. Biol.
58 (2009), 183–217.
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