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Abstract

We study the distribution of the consensus formed by a broadcast-based consensus algo-
rithm for cases in which the initial opinions of agents are random variables. We first
derive two fundamental equations for the time evolution of the average opinion of agents.
Using the derived equations, we then investigate the distribution of the consensus in the
limit in which agents do not have any mutual trust, and show that the consensus without
mutual trust among agents is in sharp contrast to the consensus with complete mutual
trust in the statistical properties if the initial opinion of each agent is integrable. Next, we
provide the formulation necessary to mathematically discuss the consensus in the limit
in which the number of agents tends to infinity, and derive several results, including a
central limit theorem concerning the consensus in this limit. Finally, we study the distri-
bution of the consensus when the initial opinions of agents follow a stable distribution,
and show that the consensus also follows a stable distribution in the limit in which the
number of agents tends to infinity.
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1. Introduction

Consensus formation is a problem in which agents initially having different opinions
mutually exchange and thereby update their opinions using a distributed algorithm in order
to achieve a consensus [5]. In the past, this problem has appeared in a number of differ-
ent contexts, including distributed computation [18], load balancing in computer networks
[11, 14], distributed data fusion [19] or clock synchronization in sensor networks [10],
coordinate control of mobile agents [13], and opinion formation on social networks [1–3, 8].

In the present paper, we consider a specific consensus algorithm, namely, the broadcast-
based consensus algorithm. In this algorithm, one agent is chosen randomly with a given
probability of broadcasting its opinion to neighbor agents. Agents receiving an opinion from
their common neighbor compute the weighted average of their opinions and the received
opinion. The broadcast-based algorithm is very amenable to implementation because this algo-
rithm can exploit the broadcast nature of the wireless communication environment and does
not require bidirectional communication among agents (nodes) [20]. The broadcast-based
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Probability laws of consensus in a broadcast-based consensus algorithm 1417

algorithm also has high affinity to social networks because, for example, Twitter users very
frequently broadcast a received tweet to all followers, which is usually referred to as retweet-
ing. In addition to these features, it has been shown that the broadcast-based algorithm yields a
consensus with probability one, and the obtained consensus value is, as expected, equal to the
average of the initial opinions of the agents if the agents broadcast their opinions with equal fre-
quency [4, 7]. Therefore the broadcast-based consensus-forming algorithm has recently been
investigated in several studies [4, 7, 17, 20].

Note that the consensus achieved in the algorithm is not generally a constant, but instead
largely varies depending on the order in which agents broadcast. For application of a consensus
algorithm to sensor data fusion or coordinate control of mobile agents, the obtained consensus
should, as far as possible, be kept around the average of the initial sensor data or the initial
coordinates of the agents. In addition, in the formation of consensus on social networks, it
is desirable that the obtained consensus is approximately equal to the average of the initial
opinions of all users without being strongly influenced by ‘influencers’. Several studies [4, 7]
investigated the mean deviation of the obtained consensus value from the average of the initial
opinions as a metric of the performance of the consensus-forming algorithm. However, little
is known about the probability laws of the obtained consensus, not only for broadcast-based
algorithms, but also for other general consensus-forming algorithms.

Previously, we investigated the distribution of the consensus obtained in the broadcast-based
consensus algorithm and found that the obtained consensus has a complicated probabilistic
behavior (e.g. it may follow a Cantor distribution), even if the number of agents is two [9, 15].
We also numerically found that if the initial opinion of the agents follows a stable distribu-
tion, such as a Gaussian distribution or a Lévy distribution, the distribution of the consensus
approaches the distribution of the initial opinion (with different parameter values) as the num-
ber of agents increases. In the present paper, we formally extend our previous results to the
case in which the initial opinion of each agent is a random variable. This extension is very
natural when applying a consensus algorithm to real engineering issues, such as sensor-data
fusion and opinion formation on social networks. For example, the data collected by a sensor,
corresponding to the initial opinion of an agent, is usually a random variable because of the
random noise included in the data. The opinion of each user of social network services is also
a random variable that varies depending on the feelings of the user and the social environment
at that time.

In the present paper, after presenting the problem formulation, we first derive two fun-
damental equations on the time evolution of the weighted average of opinions of the agents
(Proposition 3.1 and Corollary 3.1). The derived equations, for example, reveal that the con-
sensus is expressed as a weighted average of the initial opinions of agents. Based on the derived
equations, we then investigate the distribution of the consensus in the limit where agents do not
have any mutual trust (Theorem 4.1), and show that the consensus obtained is in sharp contrast
to that with complete mutual trust in the statistical properties if the initial opinion of each agent
is integrable. Next, we provide the formulation necessary to mathematically discuss consensus
in the limit that the number of agents tends to infinity, and derive several results concerning
the consensus in this limit (Theorem 5.1 and Corollary 5.1). We also show that the central
limit theorem for consensus holds in the limit of increasing number of agents together with
decreasing mutual trust between agents (Theorem 5.2). If the initial opinions of agents follow
the common stable distribution, then the consensus is expected to follow the same stable dis-
tribution because the consensus is expressed as a weighted average of the initial opinions of
agents. Thus we finally investigate the distribution of consensus in which each agent’s initial

https://doi.org/10.1017/jpr.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.9


1418 S. SHIODA AND D. KATO

opinion follows a stable distribution and derive the analytical expression for the consensus
(Theorem 6.2). The derived expression reveals that the consensus does not necessarily follow
a stable distribution, even if the initial opinion follows a stable distribution. However, we find
a simple relationship between the statistical dispersion of the consensus and that of the initial
opinion (Corollary 6.1). We finally show that the consensus follows a stable distribution in
the limit of an infinite number of agents (Theorem 6.2 and Corollary 6.1). The last result has
been numerically demonstrated in a previous study [9, 15], and the present paper presents a
mathematically formal proof.

The remainder of the present paper is organized as follows. In Section 2 we present the
problem formulation. Then, in Section 3, we derive two fundamental equations for the time
evolution of the weighted average of the opinions of the agents. In Section 4 we consider
the distribution of the consensus in the limit where agents do not have any mutual trust. In
Section 5 we provide the formulation necessary to mathematically discuss consensus in the
limit in which the number of agents tends to infinity, and derive several results concerning the
consensus in this limit. In Section 6 we consider the case in which the initial opinions of agents
follow a common stable distribution. In Section 7 we conclude the paper with some comments
on unresolved issues and prospects for their resolution.

2. Problem formulation

We consider N agents interacting on a complete graph. The agents are numbered from
1 to N. The agents have their own opinions, and the opinion of each agent is expressed

as a real number. Let Xn(t) ∈R denote the opinion of agent n ∈N def= {1, . . . , N} at time

t ∈N
def= {0, 1, 2, . . .}. The initial opinions of agents {Xn(0)}n∈N are assumed to be statistically

independent and identically distributed, and they are finite with probability one. The agents
broadcast their opinions to each other as well as update their opinions at discrete times t ∈N

in the following manner. At each discrete time, one of the agents broadcasts its opinion to its
neighbors. The probability that agent n broadcasts its opinion at each discrete time is denoted
by pn. We assume that pn > 0 for all n ∈N and

∑
n∈N pn = 1. At each discrete time t, agent n

updates its opinion based on the following equation:

Xn(t + 1) = Xn(t) +
∑

m∈N
δm,et r(Xm(t) − Xn(t)), (2.1)

where et ∈N is a random variable denoting the agent broadcasting its opinion at time t and

δm,n =
⎧⎨
⎩

1, m = n,

0, otherwise.

Note that r ∈ (0, 1] is a trust parameter that represents the confidence that each agent places
on the opinion of other agents. We assume that {et}∞t=0 are statistically independent and iden-
tically distributed random variables. We also assume that {et}∞t=0 and {Xn(0)}n∈N are mutually
independent. Equation (2.1) can be expressed in matrix form as follows:

X(t + 1)T = Q(et)X(t)T,

X(t)
def= (X1(t), . . . , XN(t)),
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where Q(k) = {q(k)
mn} is a matrix expressing the opinion updates when agent k is broadcasting its

opinion, and its elements are given as

q(k)
mn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − r, m = n,

r, m �= n, n = k,

0, otherwise.

Note that Q(k) is a stochastic matrix, that is, the sum of the elements of each row vector of Q(k)

is equal to 1.

We define Q
def= ∑

n∈N pnQ(n) = {qmn}. The mnth element of Q is given as

qmn =
⎧⎨
⎩

rpn, m �= n,

1 − r(1 − pn), m = n.

In the present paper, we mainly study X̄(t)
def= πX(t)T, where π

def= (p1, . . . , pN), rather than
studying the opinion vector X(t) = (X1(t), . . . , XN(t)). Note that π is the left eigenvector of Q
corresponding to an eigenvalue of one. Here X̄(t) can be considered as the weighted average of
opinions of the agents because

X̄(t) =
∑
n∈N

pnXn(t),

and pn, which is the probability that agent n broadcasts its opinion, expresses the strength of
the influence of agent n in the formation of the consensus. There are two reasons why we focus
on X̄(t) rather than handling the opinion vector X(t) = (X1(t), . . . , XN(t)). One reason is that
using X̄(t) simplifies the discussion. The other reason comes from the properties of X̄(t), which
are appropriate for discussing the consensus. First, X̄(t) converges to the consensus as t goes to
infinity, and thus the consensus can be known from X̄(t). Second, X̄(t) is a martingale if X1(0)
is integrable, because if t ≥ s,

E[X̄(t) | X(s)] =E[πX(t)T | X(s)]

=E[πQ(et−1) × · · · × Q(es)X(s)T | X(s)]

= πE[Q(et−1)] × · · · ×E[Q(es)]X(s)T

= πQt−sX(s)T

= πX(s)T

= X̄(s),

and thus

E[X̄(t) | X̄(s)] =E[E[X̄(t) | X(s)] | X̄(s)] =E[X̄(s) | X̄(s)] = X̄(s).

Because of this property, the conditional expectation of the consensus of given X̄(t) is equal to
X̄(t) for all t ≥ 0, which will be shown at the end of this section.

Here we give a definition of obtaining the consensus.
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Definition 2.1. If a random variable Xc exists and satisfies

lim
t→∞ X(t) = (Xc, . . . , Xc) with probability one,

then we say that a consensus is obtained and that it is equal to Xc.

If agents whose initial opinions are constant and finite interact in a general directed graph,
then the irreducibility of Q is a sufficient condition for obtaining a consensus in the broadcast-
based consensus algorithm [9]. The present paper assumes that the graph is complete,
r > 0, and pn > 0 for all n ∈N , under the condition in which Q is irreducible. Since the initial
opinions are assumed to be finite with probability one, consensus is reached with probability
one in the problem formulation of the present paper. Note that the consensus is obtained if, for
any ε > 0,

lim
t→∞ P(dX(t) > ε) = 0, (2.2)

where

dX(t)
def= max{X1(t), . . . , XN(t)} − min{X1(t), . . . , XN(t)}.

To see that (2.2) holds in the formulation of the present paper, note that dX(t) = (1 − r)tdX(0),
and thus

P(dX(t) > ε) = P
(
dX(0) > ε(1 − r)−t)

≤ P
(
2 max{|X1(0)|, . . . , |XN(0)|} > ε(1 − r)−t)

= 1 − P

(
max{|X1(0)|, . . . , |XN(0)|} ≤ ε

2
(1 − r)−t

)

= 1 − P

(
ε

2
(1 − r)−t ≤ X1(0) ≤ ε

2
(1 − r)−t

)N

→ 0, as t → ∞,

where in the last line we use the fact that X1(0) is finite with probability one. A definition of
consensus formation similar to that by (2.2) will be used in Section 5 (Definition 5.1).

The notations frequently used in the present paper are summarized in Table 1.

3. Time evolution of average opinion

In this and the following sections, we denote the average opinion at time t, X̄(t), by X̄(N)(t, r)
and the consensus, Xc, by X(N)

c (r) in order to recall the dependence of the random variable on
the trust parameter r and the number of agents N. Note that the average opinion at time 0 is
denoted by X̄(N)(0) because this opinion does not depend on r.

Proposition 3.1. We have

X̄(N)(t, r) = (1 − r)tX̄(N)(0) + r
t−1∑
k=0

(1 − r)kXek (0), t = 1, 2, . . . . (3.1)
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TABLE 1. Notation.

Notation Explanation

N number of agents

N def= {1, . . . , N} set of indices of agents
r trust parameter
Xn(t) opinion of agent n at time t

X(t)
def= (X1(t), . . . , XN(t)) opinion vectors at time t

dX(t), dX(N)(t, r) largest difference between opinions of agents at time t
et index of the agent broadcasting the opinion at time t

pn
def= P(et = n) probability that agent n broadcasts the opinion

Q(k) def= {q(k)
mn} opinion update matrix when agent k broadcasts the opinion

Q
def= ∑

k∈N pnQ(k) average of the opinion update matrices

π
def= (p1, . . . , pN) left eigenvector of Q with eigenvalue of one

X̄(t)
def= πX(t)T, X̄(N)(t, r) average opinion of the agents with weight π at time t

Xc, X(N)
c (r) consensus

Proof. X̄(N)(t, r) can be written in the following form:

X̄(N)(t, r) = π

(
t−1∏
k=0

Q(ek)

)
X(0)T,

t−1∏
k=s

Q(ek) def= Q(et−1) · · · Q(es+1)Q(es). (3.2)

Observe that

Q(e0)X(0)T = (1 − r)X(0)T + rXe0 (0)1T (3.3)

and (
t−1∏
k=1

Q(ek)

)
1T = 1T, (3.4)

where 1 is a row vector having all elements equal to 1. Substituting (3.3) and (3.4) into (3.2)
yields

X̄(N)(t, r) = (1 − r)π

(
t−1∏
k=1

Q(ek)

)
X(0)T + rXe0 (0). (3.5)

Substituting

Q(e1)X(0)T = (1 − r)X(0)T + rXe1 (0)1T,

(
t−1∏
k=2

Q(ek)

)
1T = 1T,
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into (3.5) yields

X̄(N)(t, r) = (1 − r)2π

(
t−1∏
k=2

Q(ek)

)
X(0)T + (1 − r)rXe1 (0) + rXe0 (0).

By iterating this procedure, we finally arrive at

X̄(N)(t, r) = (1 − r)t−1πQ(et−1)X(0)T + r
t−2∑
k=0

(1 − r)kXek (0)

= (1 − r)tX̄(N)(0) + r
t−1∑
k=0

(1 − r)kXek (0),

which completes the proof. �

Proposition 3.1 implies that the consensus finally achieved is expressed as

X(N)
c (r) = r

∞∑
k=0

(1 − r)kXek (0).

Equation (3.1) can be written in a different form, as shown in the following corollary.

Corollary 3.1. We have

X̄(N)(t, r) =
∑
n∈N

An(t, r)Xn(0), t = 1, 2, . . . , (3.6)

An(t, r)
def= pn + r

t−1∑
k=0

(1 − r)k(1(ek=n) − pn),

where the sum of random variables, A1(t, r), . . . , AN(t, r), is equal to 1. That is,∑
n∈N

An(t, r) = 1. (3.7)

Proof. Substituting X̄(N)(0) =∑
n∈N pnXn(0) into (3.1) yields

X̄(N)(t, r) = (1 − r)tX̄(N)(0) + r
t−1∑
k=0

(1 − r)kXek (0)

=
∑
n∈N

{
pn(1 − r)t + r

t−1∑
k=0

(1 − r)k1(ek=n)

}
Xn(0)

=
∑
n∈N

{
pn + r

t−1∑
k=0

(1 − r)k(1(ek=n) − pn)

}
Xn(0),
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where the last equality follows from (1 − r)t = 1 − r
∑t−1

k=0 (1 − r)k. Equation (3.7) can be
shown by direct calculation as follows:

∑
n∈N

An(t, r) =
∑
n∈N

pn +
∑
n∈N

r
t−1∑
k=0

(1 − r)k(1(ek=n) − pn)

=
∑
n∈N

pn + r
t−1∑
k=0

(1 − r)k

(∑
n∈N

1(ek=n) −
∑
n∈N

pn

)

= 1 + r
t−1∑
k=0

(1 − r)k(1 − 1)

= 1,

where the last equality follows from
∑

n∈N pn = 1 and
∑

n∈N 1(ek=n) = 1. �

Note that An(t, r) ∈ [0, 1] for all t ∈N∪ {∞}, and r ∈ (0, 1], and, as shown in (3.7),
A1(t, r), . . . , AN(t, r) are not mutually independent.

Corollary 3.1 implies that the consensus that is finally obtained is expressed as

X(N)
c (r) =

∑
n∈N

An(r)Xn(0), (3.8)

An(r)
def= lim

t→∞ An(t, r) = pn + r
∞∑

k=0

(1 − r)k(1(ek=n) − pn). (3.9)

Note that
∑K

k=1 (1 − r)k(1(ek=n) − pn) converges as K tends to infinity with probability one,
and thus the right-hand side of (3.9) is well-defined because

∞∑
k=0

Var [r(1 − r)k(1(ek=n) − pn)] = rpn(1 − pn)

2 − r
< ∞

(for details see Theorem 2.5.6 of [6]). Equations (3.6) and (3.8) imply that X̄(N)(t, r) or X(N)
c (r)

is a weighted average of the initial opinions of agents having weights that are random variables.
The expectation and variance of An(t, r) are given as follows:

E[An(t, r)] = pn, Var [An(t, r)] = r(1 − (1 − r)2t)

2 − r
pn(1 − pn).

As expected, if X1(0) is integrable, it follows from Corollary 3.1 that

E[X̄(N)(t, r)] =
∑
n∈N

E[An(t, r)]E[Xn(0)] =E[X1(0)]
∑
n∈N

pn =E[X1(0)].

4. Consensus in the limit of no mutual trust

In the case of r = 0, the agents have no mutual trust, and thus consensus is not obtained
because no agents change their opinions after time 0. The average opinion at r = 0,

X̄(N)(∞, 0) = lim
t→∞ X̄(N)(t, 0) =

∑
n∈N

pnXn(0),
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exists, but it is not the consensus at r = 0. Since the consensus is reached when r > 0 and
it is equal to X̄(N)(∞, r), it is interesting to see whether X̄(N)(∞, r) converges to X̄(N)(∞, 0)
as r ↓ 0. In this section we investigate the convergence of X̄(N)(∞, r) in the limit r ↓ 0. In
particular, we investigate whether limr↓0 An(r) = pn because limr↓0 X̄(N)(∞, r) = X̄(N)(∞, 0)
if limr↓0 An(r) = pn for all n ∈N . Note that the consensus in the limit r ↓ 0 and that when
r = 1 are contrasting when X1(0) is integrable, which will be shown in this section.

In this section we use the notation An(r, ω) instead of An(r) to explicitly denote that An(r, ω)
is a mapping from the probability space (�, P) to R. Note that limr↓0 An(r, ω) is not necessarily
equal to pn for all ω ∈ �. For example, if agent n broadcasts its opinion for all t = 0, 1, . . . ,

then limr↓0 An(r, ω) = 1, and if agent n never broadcasts its opinion, then limr↓0 An(r, ω) = 0.
However, as shown in the following theorem, An(r, ω) = pn for almost all of ω ∈ �.

Lemma 4.1. We have

lim
r↓0

An(r) = An(0) = pn, with probability one.

Proof. It suffices to show that Bn(r) → 0 as r ↓ 0 with probability one, where

Bn(r)
def= r

∞∑
k=0

(1 − r)k(1(ek=i) − pn).

It follows from the Chebyshev inequality that

P(|Bn(r)| > ε) <
Var [Bn(r)]

ε2
= rpn(1 − pn)

(2 − r)ε2
.

Let ri
def= α−i for any α > 1. The Borel–Cantelli lemma implies that Bn(ri) → 0 as i → ∞ with

probability one because

∞∑
i=0

P(|Bn(ri)| > ε) <

∞∑
i=0

α−ipn(1 − pn)

ε2
= pn(1 − pn)

(1 − α−1)ε2
< ∞.

Let En
def= {ω ∈ � | limi→∞ Bn(ri) = 0}. As we proved above, P(En) = 1. Let

B↓(r)
def=

∞∑
i=0

B↓
i 1(r∈[ri,ri+1)), B↓

i
def= ri

∞∑
k=0

(1 − ri+1)k(1(ek=n) − pn),

B↑(r)
def=

∞∑
i=0

B↑
i 1(r∈[ri,ri+1)), B↑

i
def= ri+1

∞∑
k=0

(1 − ri)
k(1(ek=n) − pn).

Since ri+1(1 − ri)k < r(1 − r)k < ri(1 − ri+1)k for r ∈ [ri, ri+1), we have B↑(r) < Bn(r) <

B↓(r), and thus

lim
r↓0

B↑(r) ≤ lim
r↓0

Bn(r) ≤ lim
r↓0

B↓(r).
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Observe that

B↓
i = ri

∞∑
k=0

(1 − ri+1)k(1(ek=n) − pi)

= α−i
∞∑

k=0

(1 − α−(i+1))k(1(ek=n) − pn)

= αα−(i+1)
∞∑

k=0

(1 − α−(i+1))k(1(ek=n) − pi)

= αBn(ri+1)

and

B↑
i = ri+1

∞∑
k=0

(1 − ri)
k(1(ek=n) − pn)

= α−(i+1)
∞∑

k=0

(1 − α−i)k(1(ek=n) − pn)

= α−1α−i
∞∑

k=0

(1 − α−i)k(1(ek=n) − pn)

= α−1Bn(ri).

It follows from these observations that on En

lim
r↓0

B↓(r) = lim
i→∞ αBn(ri+1) = 0, lim

r↓0
B↑(r) = lim

i→∞ α−1Bn(ri) = 0,

which completes the proof. �

Lemma 4.1 readily yields the following result.

Theorem 4.1. X̄(N)(∞, r) is right continuous as a function of r at r = 0 with probability one.
That is,

lim
r↓0

X(N)
c (r) = lim

r↓0
X̄(N)(∞, r) = X̄(N)(∞, 0) =

∑
n∈N

pnXn(0) with probability one.

In order to compare with the results for r ↓ 0, we also show the results for r = 1, in which
the agents trust each other completely. It follows from An(t, 1) = 1(e0=n) that

X̄(N)(t, 1) =
∑
n∈N

1(e0=n)Xn(0) = Xe0 (0). (4.1)

Since (4.1) holds for t = 1, 2, . . . , we have limt→∞ X̄(N)(t, 1) = Xe0 (0). The consensus is

readily reached at t = 1 when r = 1 and Xe0 (0)
d= X1(0). As such, we finally obtain

X(N)
c (1)

d= X1(0), (4.2)

where
d= indicates equality in the distribution.
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Theorem 4.1 and equation (4.2) provide very contrasting results. In the limit r ↓ 0, the con-
sensus converges to the average of the initial opinions of agents, and, when r = 1, the consensus
is probabilistically equal to the initial opinion of an arbitrarily chosen agent. It is rather ironic
that the consensus converges to the average of the initial opinions of agents as r ↓ 0 because the
agents do not trust each other at all in the limit r ↓ 0. We also note that if X1(0) is integrable,
then the consensus at r = 0 reaches E[X1(0)] as N → ∞ due to the law of large numbers, while
the consensus at r = 1 does not depend on N. However, this is not always the case. If X1(0)
follows a Cauchy distribution (and thus is not integrable), the achieved consensus also follows
the same Cauchy distribution with X1(0) independently of the trust parameter r and the number
of agents N, as shown in Section 6.

5. Limit of infinite number of agents

Numerically we found that the consensus tends to gradually approach a Gaussian distri-
bution as the number of agents N tends to infinity while the trust parameter r tends to zero
(an example of the numerical results will be shown at the end of this section). This fact sug-
gests that the central limit theorem for the consensus will hold by increasing N to infinity at
an appropriate speed while decreasing r closer to 0. Thus, in this section, we first provide the
formulation necessary to study the consensus in the limit N → ∞ while letting pn = 1/N for
all n ∈N . Under the formulation provided, we then derive several results concerning the con-
sensus in the limit N → ∞, which will be used in Section 6 to study the consensus when the
initial opinions of agents follow a stable distribution. At the end of this section we discuss a
central limit theorem for the consensus.

Proposition 5.1. If X1(0) is integrable, then

lim
N→∞ E

[
eiθ X̄(N)(t,r)]= ei(1−r)tθE[X1(0)]

t−1∏
k=0

ϕX(r(1 − r)kθ ), (5.1)

where ϕX(θ ) is a characteristic function of X1(0).

Proof. It follows from Proposition 3.1 that

E
[
eiθ X̄(N)(t,r)]=E

[
ei(1−r)tθ X̄(N)(0)+ir

∑t−1
k=0 (1−r)kθX(ek )(0)].

Let

A def=
{
ω ∈ �

∣∣∣ lim
N→∞ X̄(N)(0) →E[X1(0)]

}
.

Since X1(0) is integrable, the strong law of large numbers implies that P(A) = 1. Let B(N)(t)
denote the event whereby each agent broadcasts its opinion at most once during [0, t − 1],
defined as follows:

B(N)(t)
def= {

ω ∈ � | ∀k ∈ (0, . . . , t − 1), ∀j ∈ (0, . . . , t − 1) \ {k}, ej(ω) �= ek(ω)
}
.

Note that P(B(N)(t)) converges to 1 as N → ∞ because

lim
N→∞ P(B(N)(t)) = lim

N→∞
(N − 1) × · · · × (N − t)

Nt
= 1.

https://doi.org/10.1017/jpr.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.9


Probability laws of consensus in a broadcast-based consensus algorithm 1427

Thus it follows that

lim
N→∞ E

[
ei(1−r)tθ X̄(N)(0)+ir

∑t−1
k=0 (1−r)kθX(ek )(0)]

= lim
N→∞ E

[
ei(1−r)tθ X̄(N)(0)+ir

∑t−1
k=0 (1−r)kθX(ek )(0)1A∩B(N)(t)

]
+ lim

N→∞ E
[
ei(1−r)tθ X̄(N)(0)+ir

∑t−1
k=0 (1−r)kθX(ek )(0)1(A∩B(N)(t))c

]

=E

[
lim

N→∞ ei(1−r)tθ X̄(N)(0)+ir
∑t−1

k=0 (1−r)kθX(ek )(0)1A∩B(N)(t)

]

= ei(1−r)tθE[X1(0)]
E

[
lim

N→∞ eir
∑t−1

k=0 (1−r)kθX(ek )(0)1B(N)(t)

]
.

Since X(e0)(0), . . . , X(et−1)(0) are mutually independent on B(N)(t), it follows that

E

[
lim

N→∞ eir
∑t−1

k=0 (1−r)kθX(ek )(0)1B(N)(t)

]
=

t−1∏
k=0

E
[
eir(1−r)kθX(ek )(0)]

=
t−1∏
k=0

E
[
eir(1−r)kθX1(0)]

=
t−1∏
k=0

ϕX(r(1 − r)kθ ),

which completes the proof. �

Remark 5.1. The assumption that pn = 1/N for all n ∈N is only used to prove that P(B(N)(t))
converges to 1 as N → ∞. Thus this assumption can be replaced by a looser assumption, under
which P(B(N)(t)) → 1 as N → ∞.

Since the right-hand side of (5.1) satisfies the properties of a characteristic function,
Proposition 5.1 implies that, as N → ∞, X̄(N)(t, r) weakly converges to a random variable,
denoted by X̄(∞)(t, r), the characteristic function of which is equal to the right-hand side of
(5.1). Here, X̄(∞)(t, r) corresponds to the average opinion of the agents in the limit N → ∞. It
follows from (5.1) that

X̄(∞)(t, r)
d= (1 − r)t

E[X1(0)] + r
t−1∑
k=0

(1 − r)kZk, (5.2)

where Z0, Z1, . . . are independent and identically distributed random variables with the same
distribution as X1(0).

Equation (5.2) implies the following. For finite t, Xek on the right-hand side of (3.1) can
be replaced by Zk in the limit N → ∞. Instead of the right-hand side of (3.1), the right-hand
side of (5.2) is easy to calculate because {Zk}∞k=0 is an independent and identically distributed
sequence. If, as t goes to infinity, the left-hand side of (5.2) converges to the consensus in the
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limit N → ∞, that is,

lim
N→∞ X(N)

c (r) = lim
t→∞ X̄(∞)(t, r)

d= r
∞∑

k=0

(1 − r)kZk, (5.3)

then the calculation of the consensus seems easy. However, it is not ensured that (5.3) always
holds even if X1(0) is integrable. This is because the difference between the largest and smallest
opinions of agents

dX(N)(t, r)
def= max{X1(t), . . . , XN(t)} − min{X1(t), . . . , XN(t)}

can go to infinity as N → ∞, and, in such a case, the formation of a consensus is not mathemat-
ically clear, even in the limit t → ∞. In order to define the consensus in the limit of an infinite
number of agents, it is necessary to increase the number of agents N together with the elapsed
time t to infinity so that the discrepancy among opinions of agents is kept sufficiently small in
order to ensure that a consensus is reached. Based on the consideration mentioned above, in
the following we introduce the definition of the consensus formation in the limit N → ∞. In
the definition, we assume that a sequence of trust parameters {rN}∞N=1 is given.

Definition 5.1. If there is a sequence of non-negative integers {tN}∞N=1 such that tN → ∞ as
N → ∞, and dX(N)(tN, rN) converges to 0 as N → ∞ in probability, that is,

lim
N→∞ P(dX(N)(tN, rN) > ε) = 0 for all ε > 0,

then we say that the consensus in the limit N → ∞, X(∞)
c , is obtained, and X(∞)

c is given as
limN→∞ X̄(N)(tN, rN).

In this definition, {tN}∞N=1 represents how the time required to build a consensus increases
with N for a given {rN}∞N=1. Note that {rN}∞N=1 does not necessarily decrease to 0, and rN can
be equal to a constant value r for all N. The definition of consensus formation in such a form
has not been used before in the existing literature. Definition 5.1 is related to the definition of
consensus formation by (2.2), in which only the time t is scaled to infinity.

In what follows, after deriving supplementary results (Lemma 5.2 and Corollary 5.1), we
derive the main results (Theorem 5.1 and Corollary 5.2) on the consensus in the limit N → ∞
when rN = r for all N = 1, 2, . . . , which will be used in Section 6. The following result is
repeatedly used to derive the results in this section.

Lemma 5.1. (Lemma 3.1.1 of [6].) If cj → 0, aj → ∞, and ajcj → λ, then (1 + cj)aj → eλ.

The next lemma gives the condition for reaching the consensus in the limit N → ∞.

Lemma 5.2. Suppose that

lim
N→∞ NP(|X1(0)| > ε(1 − rN)−tN ) = 0 for all ε > 0. (5.4)

Then the consensus in the limit N → ∞ is obtained.

Proof. Let

A(N, ε)
def= {ω ∈ � | 2(1 − rN)tN max{|X1(0)|, . . . , |XN(0)|} ≤ ε}.
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Since dX(N)(t, r) = (1 − r)tdX(N)(0) and dX(N)(0) ≤ 2 max{|X1(0)|, . . . , |XN(0)|}, we see that
on A(N, ε)

dX(N)(tN, rN) ≤ 2(1 − rN)tN max{|X1(0)|, . . . , |XN(0)|} ≤ ε.

This means that {dX(N)(tN, rN) ≤ ε} ⊃A(N, ε). To complete the proof, we observe that

P(A(N, ε)) = P(2(1 − rN)tN max{|X1(0)|, . . . , |XN(0)|} ≤ ε)

= P

(
max{|X1(0)|, . . . , |XN(0)|} ≤ ε

2
(1 − rN)−tN

)

= P

(
|X1(0)| ≤ ε

2
(1 − rN)−tN

)N

=
(

1 − P

(
|X1(0)| > ε

2
(1 − rN)−tN

))N

.

Thus, if (5.4) holds, then

lim
N→∞ P(A(N, ε)) = lim

N→∞

(
1 − P

(
|X1(0)| > ε

2
(1 − rN)−tN

))N

= lim
N→∞ exp

(
−NP

(
|X1(0)| > ε

2
(1 − rN)−tN

))

= 1, (5.5)

where the second equality follows from Lemma 5.1. Since {dX(N)(tN, rN) ≤ ε} ⊃A(N, ε), it
follows from (5.5) that

lim
N→∞ P

(
dX(N)(tN, rN) ≤ ε

)= 1 for all ε > 0,

which completes the proof. �

Corollary 5.1. If X1(0) is integrable, then the consensus in the limit N → ∞ is obtained.

Proof. Choose {tN}∞N=1 satisfying the conditions that tNrN/ log N → ∞ and tN → ∞ as
N → ∞. (For example, letting tN = N/rN meets these conditions.) It follows from Lemma 5.1
that for any ε > 0

lim
N→∞

ε

N
(1 − rN)−tN = elimN→∞ tN rN−log N+log ε = ∞.

The above result means that there exists N0 such that N ≤ ε(1 − rN)−tN for all N ≥ N0. Since
X1(0) is integrable, it follows that, for all N ≥ N0,

NP(|X1(0)| > ε(1 − rN)−tN ) ≤ NP(|X1(0)| > N)

=E[N1|X1(0)|>N]

≤E[|X1(0)|1|X1(0)|>N]

→ 0, as N → ∞.

Thus the desired conclusion follows from Lemma 5.2. �
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Remark 5.2. According to Corollary 5.1, in order to obtain a consensus we should increase tN
with N faster than log N/rN when X1(0) is integrable.

The next theorem gives the condition for (5.3) being ensured.

Theorem 5.1. Suppose that rN = r for all N = 1, 2, . . . . If (5.4) holds with the choice of
{tN}∞N=1 satisfying tN/

√
N → 0 as N → ∞, then X(∞)

c , the consensus in the limit N → ∞,
is obtained and

X(∞)
c

d= r
∞∑

k=0

(1 − r)kZk, (5.6)

where Z0, Z1, . . . are independent and identically distributed random variables with X1(0).

Proof. Suppose that (5.4) holds with the choice of {tN}∞N=1 satisfying tN/
√

N → 0 as
N → ∞. Since (5.4) holds, it follows from Corollary 5.1 that the consensus is obtained in
the limit N → ∞ and limN→∞ X̄(N)(tN, r) is equal to the consensus. According to Proposition
3.1,

X̄(N)(tN, r) = (1 − r)tN X̄(N)(0) + r
tN−1∑
k=0

(1 − r)kXek (0).

Since for any ε > 0

{(1 − r)tN |X̄(N)(0)| > ε} ⊂ {(1 − r)tN |X1(0)| > ε} ∪ · · · ∪ {(1 − r)tN |XN(0)| > ε},
it follows that

P((1 − r)tN |X̄(N)(0)| > ε) ≤ NP((1 − r)tN |X1(0)| > ε)

= NP(|X1(0)| > ε(1 − r)−tN ),

where the last term, NP(|X1(0)| > ε(1 − r)−tN ), goes to 0 as N → ∞ because of (5.4). This
means that (1 − r)tN |X̄(N)(0)| → 0 as N → ∞ in probability. Next, observe that on B(N)(tN)
(defined in the proof of Proposition 5.1), Xe0, . . . , XetN−1 are mutually independent. Thus, if

P(B(N)(tN)) → 1 as N → ∞, we obtain

lim
N→∞ r

tN−1∑
k=0

(1 − r)kXek (0)
d= r

∞∑
k=0

(1 − r)kZk.

The following observation proves limN→∞ P(B(N)(tN)) = 1:

lim
N→∞ P(B(N)(tN)) = lim

N→∞
N × · · · × (N − tN + 1)

NtN

= lim
N→∞

tN−1∏
k=0

(
1 − k

N

)

≥ lim
N→∞

(
1 − tN − 1

N

)tN

= 1,
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where the last equality follows from Lemma 5.1 and (tN − 1)tN/N → 0 as N → ∞ because
tN/

√
N → 0 as N → ∞. Thus the proof is completed. �

Remark 5.3. The assumption tN/
√

N → 0 as N → ∞ is not necessary for consensus building
but for the consensus to be given as the right-hand side of (5.6). Thus, even if tN/

√
N does not

go to 0 as N → ∞, the consensus may be obtained in the limit N → ∞, but it is not given as
the right-hand side of (5.6). Note that the condition tN/

√
N → 0 as N → ∞ may need to be

replaced by another condition if the assumption pn = 1/N for all n ∈N used in this section is
replaced by another condition.

Corollary 5.2. Suppose that rN = r for all N = 1, 2, . . . . If X1(0) is integrable, then X(∞)
c is

obtained and is given as (5.6).

Proof. Choose {tN}∞N=1 such that tN tends to infinity faster than log N but slower than
√

N
as N → ∞. With this choice of {tN}∞N=1, (5.4) holds, as shown in the proof of Corollary 5.1,
and thus applying Theorem 5.1 completes the proof. �

In the remainder of this section, we assume {rN}∞N=1 meets the following conditions:

lim
N→∞ rN = 0, lim

N→∞ log N/(rN
√

N) = 0. (5.7)

Then we investigate the behavior of D(N)(tN, rN)
def= X̄(N)(tN, rN) −E[X1(0)] in the limit

N → ∞, where tN increases faster than log N/rN but slower than
√

N.

Theorem 5.2. Suppose Var [X1(0)] = σ 2 < ∞. If {tN}∞N=1 satisfies log N/(tNrN) → 0 and
tN/

√
N → 0 as N → ∞, then

1√
rN

D(N)(tN, rN) ⇒ N(0, σ 2/2), as N → ∞,

where ⇒ denotes weak convergence and N(0, σ 2/2) is a Gaussian distribution with mean 0
and variance σ 2/2.

Proof. Observe that on B(N)(t),

D(N)(t, r)
d= (1 − r)tX̄(N)(0) −E[X1(0)] +

t−1∑
k=0

(1 − r)kZk,

= (1 − r)t(X̄(N)(0) −E[X1(0)]) + r
t−1∑
k=0

(1 − r)k(Zk −E[X1(0)])

= (1 − r)t(X̄(N)(0) −E[X1(0)]) + r
t−1∑
k=0

(1 − r)k(Zk −E[Zk]),

where Z0, Z1, . . . are independent random variables having the same distribution as X1(0).
Thus, on B(N)(tN), we have

1√
rN

D(N)(tN, rN)

= 1√
rN

(1 − rN)tN (X̄(N)(0) −E[X1(0)]) + 1√
rN

tN−1∑
k=0

(1 − rN)k(Zk −E[Zk]). (5.8)
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Note that if tN/
√

N → 0 as N → ∞, then P(B(N)(tN)) → 1 as N → ∞, as shown in the proof of
Theorem 5.1 The first term on the right-hand side of (5.8) converges to 0 as N → ∞ because

1√
rN

(1 − rN)tN |X̄(N)(0) −E[X1(0)]|

≤ 1√
rNN

|N1/2(X̄(N)(0) −E[X1(0)])|

=
√

rN

rN
√

N
|N1/2(X̄(N)(0) −E[X1(0)])|

→ 0, as N → ∞,

where N1/2(X̄(N)(0) −E[X1(0)]) converges to a random variable following a Gaussian dis-

tribution, rN
√

N → ∞, and rN → 0 as N → ∞. Next, let YN,k
def= √

rN(1 − rN)k(Zk −E[Zk]).
Observe that

lim
N→∞

tN−1∑
k=0

Var [YN,k] = lim
N→∞ Var [X1(0)]rN

tN−1∑
k=0

(1 − rN)2k

= lim
N→∞

σ 2(1 − (1 − rN)2tN )

2 − rN

= σ 2

2
,

where the last equality follows from limN→∞ (1 − rN)2tN = e− limN→∞ 2tN rN = 0 because of
the assumption log N/(rNtN) → 0 (and thus rNtN → ∞) as N → ∞. We can also see that for
all ε > 0

tN−1∑
k=0

E[|YN,k|2; YN,k ≥ ε]

≤
tN−1∑
k=0

E[|YN,k|2; |YN,0| ≥ ε]

≤ rN

tN−1∑
k=0

(1 − rN)2k
E[|Z0 −E[Z0]|2;

√
rN |(Z0 −E[Z0])| ≥ ε]

≤ 1

2 − rN
E[|Z0 −E[Z0]|2;

√
rN |(Z0 −E[Z0])| ≥ ε]

= 1

2 − rN
E

[
|Z0 −E[Z0]|2; |Z0 −E[Z0]| ≥ ε√

rN

]

→ 0, as N → ∞.

Thus YN,0, . . . , YN,tN−1 satisfies Lindeberg’s condition, and applying the central limit theorem
to
∑tN−1

k=0 YN,k completes the proof. �
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FIGURE 1. Convergence of distribution of consensus to Gaussian distribution. (a) Initial opinion follows
uniform distribution. (b) Initial opinion follows exponential distribution.

As in the proof of Corollary 5.1, if log N/(tNrN) → 0 as N → ∞, then limN→∞ X̄(N)(tN, r)
is the consensus in the limit N → ∞ and thus Theorem 5.2 can be considered as the central
limit theorem for the consensus.

Figure 1 shows the results of simulation experiments concerning Theorem 5.2. In
Figure 1(a) we assume that the initial opinions of agents follows a uniform distribution on the
interval [ − 1, 1]. The dotted lines in the figure show the probability density function (PDF)
for X(N)

c (rN)/
√

rN obtained from the results of 107 simulations, and the solid black line shows
the PDF for the Gaussian distribution N(0, σ 2/2). We set rN = N−0.4, which satisfies (5.7).
The figure confirms that the PDF of the consensus converges to the PDF of the Gaussian dis-
tribution as N increases. In Figure 1(b) we assume that the initial opinions of agents follow
an exponential distribution with a mean of 1, and we also set rN = N−0.4. The figure also
confirms that the simulation results converge to the Gaussian distribution N(0, σ 2/2) as N
increases.

6. Initial opinion follows stable distribution

As shown in (3.8), the consensus can be expressed as a weighted average of the initial
opinions of agents. If the initial opinions of agents follow a common stable distribution, the
consensus is expected to follow the same stable distribution, and an analytical expression for
the distribution of the consensus might be available because the sum of independent random
variables following a common stable distribution also follows the same distribution. In this
section we consider the case in which the initial opinions of agents, X1(0), . . . , XN(0), follow a
common stable distribution represented by S(α, β, γ, δ; 0) [12], where α ∈ (0, 2] is the stability
parameter (characteristic exponent), β ∈ [ − 1, 1] is the skewness parameter, γ ∈ (0, ∞) is the
scale parameter, and δ ∈ ( − ∞, ∞) is the location parameter. The integer ‘0’ in S(α, β, γ, δ; 0)
is used as a distinction between the different parametrizations [12].

Theorem 6.1. ([12].) If {Sn}N
n=1 are mutually independent and Sn (n = 1, . . . , N) fol-

lows a stable distribution S(α, βn, γn, δn; 0), then
∑N

n=0 anSn follows a stable distribution
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S(α, β̄, γ̄ , δ̄; 0), where a1, . . . , aN are arbitrary real numbers, and

γ̄ =
(

N∑
n=0

|anγn|α
)1/α

, β̄ =
∑N

n=0 βn(sign an)|anγn|α
γ α

,

δ̄ =

⎧⎪⎨
⎪⎩
∑N

n=0 anδn + tan
πα

2

(
βγ −∑N

n=0 βnanγn
)
, α �= 1,

∑N
n=0 anδn + 2

π

(
βγ log γ −∑N

n=0 βnanγn log |anγn|
)
, α = 1.

Applying Theorem 6.1 to a broadcast-based consensus-forming model yields the following
result.

Theorem 6.2. If X1(0) follows a stable distribution S(α, β, γ, δ; 0), then X̄(N)(t, r) also follows
a stable distribution S(α, β, γt, δt; 0) for a given outcome of {An(t, r)}n∈N, where

γt = γ

(∑
n∈N

An(t, r)α
)1/α

, δt =
⎧⎨
⎩

δ, α �= 1,

δ − 2βγ
π

∑
n∈N An(t, r) log An(t, r), α = 1.

Proof. Applying Theorem 6.1 to Corollary 3.1 with an = An(t, r), βn = β, γn = γ , and δn =
δ readily gives the desired conclusion. �

According to Theorem 6.2, X̄(N)(t, r) follows a stable distribution when the outcome of
{An(t, r)}n∈N is given. Note that the scale parameter of X̄(N)(t, r), γt, is a random variable
because γt depends on {An(t, r)}n∈N. However, there is a deterministic relationship between γt

and the scale parameter of X1(0), γ , as shown in the following corollary.

Corollary 6.1. We have

γt

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≤ γ, α > 1,

= γ, α = 1,

≥ γ, α < 1.

Proof. First note that
∑

n∈N An(t, r) = 1. If α > 1, An(t, r)α ≤ An(t, r) and thus

γt = γ

(∑
n∈N

An(t, r)α
)1/α

≤ γ

(∑
n∈N

An(t, r)

)1/α

= γ 11/α = γ .

Similar arguments yield γ∞ ≥ γ when α < 1. If α = 1, then

γt = γ

(∑
n∈N

An(t, r)

)
= γ . �

The consensus obtained by the consensus formation algorithm is expected to be around an
intermediate value of the initial opinions of agents. At least, the statistical dispersion of the con-
sensus obtained by the algorithm should be smaller than the dispersion of the initial opinions
of agents. However, Corollary 6.1 shows that the scale parameter for the obtained consensus,
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representing the statistical dispersion, does not become smaller than the scale parameter for the
initial opinions when α ≤ 1. This means that the consensus obtained by the broadcast-based
algorithm is not a representative opinion of agents when α ≤ 1.

Corollary 6.1 readily yields the following interesting result.

Corollary 6.2. If X1(0) follows a Cauchy distribution with scale parameter γ , then X̄(N)(t, r)
also follows a Cauchy distribution with scale parameter γ .

Proof. A Cauchy distribution is a stable distribution with α = 1 and β = 0. Theorem 6.2
implies that X̄(N)(t, r) also follows a stable distribution, and its location parameter δ is the
same with X1(0). In addition, Corollary 6.1 implies that the scale parameter of X̄(N)(t, r) is the
same as that of X1(0). These observations complete the proof. �

Since X̄(N)(t, r) converges to the consensus as t → ∞, Corollary 6.2 implies that if the
initial opinion of each agent follows a Cauchy distribution, the consensus has exactly the same
distribution as the initial opinion. Although these findings have been numerically demonstrated
in previous studies [9, 15], in the present paper, Corollary 6.2 presents a mathematically formal
proof.

Even if the initial opinions follow a stable distribution, the consensus as well as X̄(N)(t, r)
does not follow a stable distribution unless the initial opinions follow a Cauchy distri-
bution because the scale parameter is generally a random variable. However, in the limit
N → ∞, while letting pn = 1/N for all n ∈N , the scale parameter becomes a constant, and
the consensus, as well as X̄(N)(t, r), follows a stable distribution, as shown in the following
theorem.

Theorem 6.3. Suppose that X1(0) follows a stable distribution S(α, β, γ, δ; 0), and pn = 1/N
for all n ∈N . If (5.4) holds with the choice of {tN}∞N=1 satisfying tN/

√
N → 0 as N → ∞, then

the consensus X(∞)
c in the limit N → ∞, is obtained, and X(∞)

c follows a stable distribution
S(α, β, γ∞, δ; 0), where

γ∞ = γ r

(1 − (1 − r)α)1/α
.

Proof. It follows from Theorem 5.1 that the consensus is obtained in the limit N → ∞, and
X(∞)

c is given as (5.6). Applying Theorem 6.1 to (5.6) proves the result. �

Corollary 6.3. If X1(0) follows a stable distribution S(α, β, γ, δ; 0) with α > 1 and pn = 1/N
for all n ∈N , then X(∞)

c , then the consensus in the limit N → ∞, is obtained and X(∞)
c follows

a stable distribution S(α, β, γ∞, δ; 0), where

γ∞ = γ r

(1 − (1 − r)α)1/α
.

Proof. If X1(0) follows a stable distribution with α > 1, then X1(0) is integrable. Thus it
follows from Corollary 5.2 that the consensus is obtained in the limit N → ∞ and X(∞)

c is
given as (5.6). Applying Theorem 6.1 to (5.6) proves the result. �

Suppose that X1(0) follows a Gaussian distribution with mean μ and variance σ 2. This is
a stable distribution with α = 2, γ = σ , and δ = μ. Since a Gaussian distribution has a finite
mean, it follows from Corollary 6.3 that X(∞)

c follows a Gaussian distribution with mean μ,
and its variance σ 2∞ is given by

σ 2∞ = rσ 2

2 − r
. (6.1)
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FIGURE 2. Convergence to distribution in limit N → ∞. (a) Initial opinion follows Gaussian distribution.
(b) Initial opinion follows Lévy distribution.

Figure 2(a) shows the results of simulation experiments when X1(0) follows a Gaussian dis-
tribution with mean 0 and variance 1. The dots in the figure show the PDF for the obtained
consensus, which was obtained from the results of 107 simulations, and the black line shows
the PDF for the Gaussian distribution with mean 0 and variance σ∞, which is given by (6.1).
The trust parameter r was set at 0.5. The PDF for the obtained consensus of the simulation
results converges to the black line as N becomes large, and the simulation results with N = 100
are almost identical to the results indicated by the black line.

Next, suppose that X1(0) follows a Lévy distribution with scale parameter γ and location
parameter δ, and choose {tN}∞N=1 such that tN tends to infinity faster than log N but slower than√

N as N → ∞. With this choice of {tN}∞N=1, (5.6) holds because

NP(X1(0) > ε(1 − r)−tN ) ∼ N√
εatN/2

= N√
εNlog atN/(2 log N)

→ 0, as N → ∞,

where a
def= 1/(1 − r), and we use the fact that the complementary cumulative distribution

function for the Lévy distribution can be approximated by a power-law distribution with an
exponent of 3/2. Thus it follows from Theorem 6.3 that the consensus in the limit N → ∞ is
obtained, and X(∞)

c follows a Lévy distribution with location parameter δ and scale parameter
γ∞, where

γ∞ = γ r

2 − r − 2
√

1 − r
. (6.2)

Figure 2(b) shows the results of simulation experiments when X1(0) follows a Lévy distribution
with scale parameter 1 and location parameter 0. The dotted lines in the figure show the PDF
for the obtained consensus, which was obtained from the results of 107 simulations, and the
solid black line shows the PDF for the Lévy distribution with mean 0 and variance γ∞, which
is given by (6.2). The trust parameter r was also set at 0.5. The figure also shows that the PDF
for the obtained consensus of the simulation results converges to the black line as N becomes
large, and the simulation results with N = 100 are almost identical to the results indicated by
the black line.
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7. Concluding remarks

In the present paper we studied the distribution of the consensus when the initial opinions of
agents are random variables following a common distribution. The extension to cases in which
initial opinions are random variables created mathematically in the present paper would enrich
the consensus formation problem. For example, as shown at the end of Section 4 or some
of the results in Section 6 (e.g. Corollary 6.1), the effectiveness of the consensus algorithm
largely depends on the integrability of the initial opinion and the consensus algorithm may
not be useless when the initial opinion is not integrable. This finding comes from extending
the problem when the initial opinion is a random variable. The consideration of the consensus
formation problem in the limit in which the number of agents is infinite is also mathematically
valuable, and we believe that further interesting results will be obtained.

Some of the results obtained in the present paper can be extended relatively easily to cases in
which agents interact on a graph with more general topology. For example, we showed that the
consensus is expressed as a weighted average of the initial opinions of agents (Corollary 3.1).
We found that the expression of the consensus as a weighted average of the initial opinions
of agents is also possible when agents are interacting on a non-complete graph. Since some
of the results in Section 4 (Theorems 4.1) and Section 6 (Theorem 6.2, Corollary 6.1, and
Corollary 6.1) are derived based on this expression, these results can be extended to cases
in which agents interact on a non-complete graph. We also found that the expression of the
consensus as a weighted average of the initial opinions of the agents is available not only for
a broadcast-based algorithm, but also for a wide range of consensus algorithms, including a
gossip-based algorithm. On the other hand, we derive (3.1) in Proposition 3.1 by fully using
the completeness of the graph and the homogeneity of the trust parameter, so (3.1) may be able
to be extended to more general cases but will have a much more complicated expression. Since
most of results in Section 5 are derived based on (3.1), the extension of these results to more
general cases will have some difficulties, although this is a very interesting research subject.

Recently, we showed that the time reversal process for the consensus formation process is
ergodic when the initial opinions of agents are constant [16]. This allows us to numerically
obtain the distribution for the consensus by observing the time reversal process for consensus
formation for a fixed sample path. It is also interesting and worth considering to extend this
result to cases in which the initial opinions of agents are random variables.
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