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LINEAR MAPS ON FACTORS WHICH PRESERVE
THE EXTREME POINTSOF THE UNIT BALL

Dedicated to Zsuzsa Agnes Molnar

VANIA MASCIONI AND LAJOS MOLNAR

ABSTRACT. The aim of this paper is to characterize those linear maps from avon
Neumann factor A into itself which preserve the extreme points of the unit ball of A.
For example, we show that if A is infinite, then every such linear preserver can be
written as a fixed unitary operator times either a unital *-homomorphism or a unital
*-antihomomorphism.

Introduction and statements of the results. Linear preserver problems deal with
the question of characterizing those linear maps on matrix algebraswhich leave a certain
subset, function or relation invariant. For example, in the first mentioned casethis means
that the problem is to describe those linear maps ® on a matrix algebra M for which
®(S) c S holdstrue where S is a given subset of M . In fact, these problems represent
one of the most activeresearch areasin matrix theory (seethe survey paper [LiTg]). Inthe
last decade considerable attention has been paid to the infinite dimensional case aswell,
i.e.tolinear preserver problemsconcerning linear mapsacting on operator algebrasrather
than matrix algebras (see the survey paper [BrSe]). The linear preserver problem we
intend to investigate below isin an intimate connection with the problem of unitary group
preservers which are the linear maps leaving the set of unitaries in M invariant. The
finite dimensional case of this problem wastreated in [Mar], whilethe oneon B(H ) (the
algebra of all bounded linear operators acting on the Hilbert space H ) and on a general
C*-algebra were solved in [Rai] and in [RuDy], respectively. In [Rai, Section 4] the
problem of characterizing thoselinear mapson B(H ) which preservethe extreme points
of theunit ball of B(H ) wasimplicitly raised and concerning bijective linear selfmaps of
B(H ) which preserve the extreme pointsin question in both directions (i.e. the maps as
well astheir inversesare supposed to preserve the set of those extreme points) the author
obtained a complete description. The connection between unitary group preservers on
B(H ) and linear maps preserving the extreme points of the unit ball of B(H ) is that
in the first case our maps preserve the set of al bijective partial isometries while in the
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second casethey preservethe set of all injective or surjective partial isometries (see[Hal,
Sections 98, 99] and Lemma 1, Lemma 2 below).

The other motivation to our present investigations is the following. In the paper
[LaMa] linear maps between C*-algebras whose adjoint preserve the extreme points of
the dual ball were studied and they turned out to give a valuable clue asto what objects
may be regarded as “non-commutative composition operators’. Now, it seemsto be a
natural problem to consider linear mapsin general, i.e. without the assumption of being
the adjoints of linear maps on aC*-algebra, which preservethe extreme points of the unit
ball. For example, since B(H ) is the dual space of the Banach algebraof all trace-class
operators on H (which is a highly non-C*-algebra), in this particular but undoubtedly
very important case the problem hasnothing to do with theonetreated in[LaMa]. Infact,
as one can see below, we follow a completely different approach to attack this problem.

As indicated in the abstract, we solve the problem of determining al linear maps
which preservethe extreme pointsof the unit ball in the casewhen the underlying algebra
isavon Neumannfactor. One might havethe opinion that we should consider the problem
for example for general C*-algebras but an easy example shows that in that generality
we cannot expect almost anything. In fact, if the underlying algebra is the C*-algebra
C(H) of all compact operators acting on an infinite dimensional Hilbert spaceH , then,
sincethe unit ball of this Banach space hasno extreme pointsat all, our preserversare the
linear maps on C (H ) without any further properties. So, to obtain a more satisfactory
result we have to suppose something more. In what follows we solve the problem in the
case when our preservers act on von Neumann factors emphasizing the particular case
of B(H).

Inview of theresultsaswell astheir proofswe haveto remind the definition of Jordan
*-homomorphisms. A linear map J between *-algebras A and B is called a Jordan x-
homomor phismif

J()? = J04)
JX)* = JI(X)

hold true for every x € A. Observethat by linearization, i.e. replacing x by x+Yy, thefirst
equation aboveis equivalent to J(x)J(y) + J(y)J(X) = J(xy + yx) (x,y € A).
L et us now summarize the results of the paper.

THEOREM 1. Let A be an infinite factor. The linear map ®: A — A preservesthe
extreme points of the unit ball of A if and only if either there are a unitary operator
U € A and a unital *-homomorphismW¥: A — A suchthat @ is of the form

dA) = U¥YA) (AcA)

or there are a unitary operator U’ € A and a unital x-antihomomorphismW¥”: A — A
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such that @ is of the form

DA) = U'W(A) (AcA).

Asaconsequenceof thisresult weimmediately have the structure of surjectivelinear
selfmapsof B(H ) which preservethe extreme points of the unit ball. In fact, Corollary 1
below is a significant generalization of aresult of Rais[Rai, Lemma 3 and Corollary 1]
who obtained a similar result but worked under the quite restrictive assumption that the
maps under consideration are bijective and preserve the extreme points of the unit ball
in both directions.

COROLLARY 1. LetH beaninfinite dimensional Hilbert space. Then the surjective
linear map ®: B(H ) — B(H ) preservesthe extreme points of the unit ball of B(H ) if
and only if either thereare unitariesU,V € B(H ) such that ® is of the form

®(A) = UAV (AeB(H))
or there are antiunitariesU’, V' € B(H ) such that @ is of the form

®(A) = UAV (AeB(H)).

REMARK. We note that, as one can see from the proof of Corollary 1, it would have
been sufficient to assume that the range of @ contains a rank-one operator instead of
supposing that ® is surjective.

If the underlying Hilbert space is separable, then we can write our linear preservers
onB(H ) in amore detailed form than it was obtained in the statement of Theorem 1.

COROLLARY 2. LetH bea separableinfinite dimensional Hilbert space. Thelinear
map ®:B(H) — B(H ) preserves the extreme points of the unit ball of B(H ) if and
only if either there are a unitary operator V and a collection {U,} of isometries with
pairwise orthogonal ranges which generate H such that @ is of the form

D(A) = V(Z UaAU(*,) (AeB(H))

or there are a unitary operator V and a family of anti-isometries {V,} with pairwise
orthogonal rangeswhich generate H such that @ is of the form

D(A) = v(zﬁj v(fA*v;) (A B(H)).

Our second main result describes our linear preservers in the case of any finite von
Neumann algebras.
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THEOREM 2. Let A be a finite von Neumann algebra. The linear map ®:A — A
preserves the extreme points of the unit ball of A if and only if there exist a unitary
operator U € A and a unital Jordan *-homomor phism W such that

D(A) = UW(A) (AcA).

Concerning matrix algebras, we immediately have the last assertion of the paper (cf.
[Mar]).

COROLLARY 3. Let M bethealgebraof all complex n x nmatrices. Thelinear map
®:M — M preservesthe extreme points of the unit ball of M if and only if there are
unitary matricesU,V € M suchthat @ is either of the form

OA) = UAV (Ae M)

or of theform
®A) = UA"V (AcM)

where ! denotes the transpose.

Proofs. The statements of Lemma 1 and Lemma 2 are guessed to be well-known.
However, since we have not found any trace of them in the bibliography of Kadison and
Ringrose [KaRi1-2], for the sake of completenesswe present them with proofs.

LEMMA 1. Let A be a factor. The operator A € A is an extreme point of the unit
ball of A if and only if A is either an isometry or a coisometry.

ProOF. It is well-known that in an arbitrary C*-algebra B, the extreme
points of the unit ball are exactly those partial isometries W < B for which
(I —WW)B (I —WwW*) = {0} [KaRi2, 7.3.1. Theorem]. In afactor every two projections
are comparable [KaRi2, 6.2.6. Proposition]. Let, for example, V € A beapartial isome-
try suchthat | —W*W = V*V and VV* isasubprojection of | —\WW*. Therefore, we have
(V*V)(V*)(VW*) = 0. But V is apartial isometry and hence VW*V = V. Consequently,
we obtain that 0 = (V*V)(V*VV*) = V*W* = V* which impliesV = 0. This gives us
that W is an isometry. ]

PROOF OF THEOREM 1. The sufficiency is trivial to check. Let us assume that @
preserves the extreme points of the unit ball of A. First observe that ® is necessarily
norm-continuous. Indeed, sincein an arbitrary C*-algebra every self-adjoint operator of
norm < 1 isthe arithmetic mean of two unitaries, we easily obtain that || ®|| < 2.

Consider now the operator V = ®(1). Since V is either an isometry or a coisometry,
without loss of generality we may and do supposethat V*V = |. Since the unitary group
is arcwise connected in A, weinfer that ®(U) is an isometry for every unitary U € A.
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Let usdefinealinear map W: A — A by W(A) = V*®(A) (A € A). In what follows
we prove that W is a Jordan x-homomorphism. To verify this, first observe that, by the
fact that ® sends unitaries to isometries, we have

OESDPES) =1 (teR)

for every self-adjoint operator S € A. Using the power series expansion of the exponen-
tial function aswell asits uniqueness, it is easy to conclude that

1)y DS — P(§ () =0
—%d)(l)*d)(sz) + D D(S) — %q>(sz)*q>(|) =0.

These identitiesimply that

@) (S P = D) D(S).

Since W(S) = d(1)* (S, this shows that W preserves the positive as well as the self-
adjoint operators. If we replace Sby S+ T in (1) where S T € A are self-adjoint, then
we obtain

DS D(T) + D(T)* DY = ()" D(ST+ TS

and one can check that this resultsin
DA ) DA) = B(I) DA% (A€ A).
If we linearize this equation, i.e. replace A by A + B, we get
2 DAY D(B) + P(B*) P(A) = ()" D(AB+BA) (A B e A).

Let P € A be an arbitrary projection. Since A is an infinite factor, by [StZs, E.4.11,
p. 105] it followsthat either P ~ | or | — P ~ |. Supposethat this latter possibility is the
case. Thenwe have anisometry U € A for which UU* = | — P. By (2) we can compute

DU*)* D(U*) + DU)* D(U) = d(1)* dUU* +U*U)

3 oY
= O(1)" P2l —P) =2— W(P).

Since, by our assumption on @, d(U*)*d(U*) and ©(U)* d(U) are projections, we infer
that there are projections Q1, Q, € A such that W(P) = Q; + Q.. On the other hand, by
the positivity preserving property of W and (1) we have

W(PY2 = W(P)" W(P) = ®(P)" W' D(P) < B(P)"®(P) = W(P)

which results in Q1Q2 + @:Q1 < 0. Since Qq, Q. are projections, we easily obtain
Q:1Q, = Q,Q; = 0 and this gives us that W(P) is a projection. It is now a standard
argument to show that W is a Jordan x-homomorphism. Indeed, if P1,P, € A are mu-

tually orthogonal projections, then we know that W(P; + P,) = W(Py) + W(Py) isa
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projection, too. Therefore, W(P;) and W(P,) are also orthogonal, i.e. W preservesthe or-
thogonality between projections. If Py,. .., P, € A are mutually orthogonal projections
and \q,..., \n € R, then we have

[we ] = [ w0 = 3 gwe = (S ).
k=1 k=1 k=1 k=1
Since W is norm-continuous, by the spectral theorem we have
W(©? = W(S)
for every self-adjoint operator S A. Using thetrick of linearization we readily obtain
YA = WA (AcA).
Since W islinear and positivity preserving, we obviously have
YA = YA) (AcA).

Consequently, we infer that W is a Jordan *-homomorphism.
Our next claimis that ®(A) = VW(A) (A € A). Tothisend, let U € A bean arbitrary
unitary operator. Then W = ®(U) is anisometry and we have

WU)* W(U) + WU)P(U)* = Y(U*U + UU*) = Y(2l) = 21,
i.e
4) WWW + VWWY = 21,

Since W'W*W < | and V*WW*V < [, by (4) it follows that WVWW*W = | and
VWWV = [. Since VW*, WW* are projections, these relations imply rngW C rngV
and gV C rngW. Consequently, rng ®(U) = rngV for every unitary operator U € A.
Sincethelinear span of the unitariesin A isA, it followsthat rng ®(A) C rngV for every
A c A, andthisgivesusthat VW(A) = VW*®(A) = O(A) (A € A).

We now provethat V isunitary. Since W isaunital Jordan x-homomorphism, by [Sto,
Theorem 3.3] thereis aprojection E in the centre of the von Neumann algebra generated
by the image of W, such that the maps W; and W, on A defined by W;(A) = W(A)E and
Wy (A) = W(A)(I — E) are ax-homomorphism and a x-antihomomorphism, respectively.
Now, if we supposeon the contrary that rngV # H , then by the extreme point preserving
property of @ and the equality ®(A) = VW(A) it follows that ® sends every isometry
and coisometry to a proper isometry. Let W*W = | or WW* = [. In both cases we have
I = YWVVYW) = YW PW) = Wi (WW) + Wo(WWH). This readily implies
that

) W (WW) =E and Wr(WW)=1—E

Let P € A be aprojection suichthat P ~ | and | — P ~ | [KaRi2, 6.3.3. Lemma
(Halving)]. Using (5) we have W1(P) = W1(I — P) = E, W2(P) = Wo(I —P) = | — E.
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Since the operators appearing here are all projections, we deduce W1(P) = Wi(1) = 0
and W,(P) = W,(l) = 0. It now follows that W; = 0 and W, = 0 which is an obvious
contradiction. Therefore, we obtain that V is unitary.

It only remains to prove that either W; = 0 or W, = 0. Just as before, let P € A be
a projection for whichP ~ I and1 — P ~ . Let W € A be such that W'W = | and
WW* = P, Then W(W) is either an isometry or a coisometry. Supposethat this latter one
isthe case. Then we have

I = YW)PW)" = W1(WW) + Wa(W'W)

which gives usthat W1(P) = Wy(l). If W isan isometry for which | — P = WW'*, then
wehave W1 (W)W (W)* = 0. Therefore, W1(W) = 0and hence0 = W (W )*W (W) =
Wi(1). It follows that W; = 0 and thus we obtain that W is a x-antihomomorphism. In
case W(W) is an isometry, one can argue in avery similar way. ]

PROOF OF COROLLARY 1. Using Theorem 1, without serious loss of generality we
may and do suppose that our map ® is a surjective unital *-homomorphism of B(H ).
We assert that @ is injective. Let P be a rank-one projection. Then there is an operator
A € B(H) such that ®(A) = P. Since ®(A*A) = ®(A)*D(A) = P, we can assume that
our operator A is positive. Let us consider its spectral resolution. By the monotonicity
and continuity of @ it follows that thereis a Borel subset B of the spectrum of A having
apositive distance from 0 for which E(B) (E isthe spectral measure corresponding to A)
has nonzero image under ®. Sincethereisa positive constant ¢ for which cE(B) < A, we
obtain 0 # c®(E(B)) < P. By the minimality of P we have ®(E(B)) = P. Now, if ®is
not injective, then its kernel, being a nontrivia ideal of B(H ), contains the ideal of all
finite rank operators. Hence, the projection E(B) is infinite dimensional. But in this case
E(B) isthe sum of two orthogonal projections Q;, Q. which are both equivalent to E(B).
Using the minimality of P once again, we seethat either d(Q;) = 0 or d(Q,) = 0. Now,
Q1 and Q, areequivalent to each other and @ isax-homomorphism, thusif any of Q;, Q.
isinthekernel of @, then so isthe other one. Hence, we deduce0 = ®(Q;) +P(Q,) = P
which is a contradiction. Consequently, we obtain the injectivity of ® and so ® is a x-
automorphism of B(H ). To conclude, it is afolk result that in this case thereis a unitary
operator U € B(H ) such that ®(A) = UAU* (A eBH )). This completes the proof. m

PROOF OF COROLLARY 2.  Using the notation of Theorem 1 we can suppose without
loss of generality that ®: B(H ) — B(H ) isaunital x-homomorphism. Now, using the
separability of H and the classical result [KaRi2, 10.4.14. Corollary] on the form of the
representations of B(H ) on B(H ), we obtain the assertion. "

LEMMA 2. Let A be a finite von Neumann algebra. The extreme points of the unit
ball of A are exactly the unitariesin A.

PrOOF. By [KaRi2, 7.3.1. Theorem] every unitary operator in A is an extreme point
of the unit ball of A. Referring to that theorem again, supposethat V € A is a partial
isometry for which (I — V*V)A(I — W*) = {0}. Let V*V = E,W* = F. SinceA is
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finite, by [KaRi2, 6.9.6.] wehavel —E ~ | — F. Let W € A be a partial isometry for
whichl —E = WWand | — F = WW*. Since WWAWW* = {0}, it follows that
0 = WWWWW* = WWW* = W*, Consequently, we have E = F = | which means
that V is unitary. ]

PROOF OF THEOREM 2. If W isaunital Jordan *-homomorphism on A, then taking
the fact that W is necessarily a contraction into consideration, by the equality

YUY YU) + YU)WU) = w(2l) = 2l

we easily obtain that W(U) is unitary for every unitary operator U € A. On the other
hand, if ® preservesthe extreme pointsof A, i.e. the unitary group of the C*-algebra A,
then by [RuDy, Corollary 2] we obtain the other part of the assertion. ]

PROOF OF COROLLARY 3. The sufficiency is obvious. To the necessity we may sup-
pose that @ is a unital Jordan x-homomorphism. Since the algebra under consideration
is finite dimensional, we obtain that ® is an injective and hence surjective Jordan -
homomorphism, i.e. a Jordan x-automorphism. By a well-known theorem of Herstein
[Her] @ is either a x-automorphism or a x-antiautomorphism and, just asin the proof of
Corollary 1, we are done. ]
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