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Abstract

Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables pro-
vided by the Worldclim, our study analysed the suitable distribution areas of T. varians under
current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s
and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental vari-
ables affecting the geographic distribution of T. varians were also identified, and the changes
in the area of suitable range under current and future climate changes were compared. The
results showed that the key environmental variables affecting the distribution of T. varians
were temperature and precipitation, comprising annual mean temperature (bio1), temperature
seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and pre-
cipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distri-
bution area of T. varians is within the range of 92°13′E–122°08′E, 18°17′N–31°55′N. The
current high, medium, and low suitable areas for T. varians predicted by the MaxEnt
model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas
are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan,
Hong Kong, and Hainan. Under different future climatic conditions, some of the high,
medium, and low suitability zones for T. varians increased and some decreased, but the
mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the
main distribution area of T. varians.

Introduction

Trilocha varians (Walker, 1855) is an insect of the family Bombycidae, that harms Ficus spp.
Lepidoptera are holomorphic insects, so T. varians goes through four developmental stages
common to holomorphic insects: eggs, larvae, pupae, and adults. T. varians is mainly distrib-
uted in South and Southeast Asian countries, such as Malaysia, Philippines, Vietnam, and
Thailand. It is also widely distributed in southern China, especially in Taiwan and Hainan
(Kedar et al., 2014; Arya 2019). It is a major pest of Ficus spp. and its larvae cause 80–90%
of Ficus spp. leaves to fall off (Kedar et al., 2014). Ficus spp. that have been reported to
have been damaged by T. varians include Ficus elastica, Ficus benjamina, Ficus nitida, Ficus
caraica, Ficus religiosa, Ficus infectoria, Ficus benghalensis, and Ficus septica (Arya, 2019).
Ficus spp. belongs to the family Moraceae with high ecological tolerance, high dispersal,
and high germination rate, which is the reason why Ficus spp. as an exotic tree species in
Macau, has become the main tree species for its parks (Zhang et al., 2017). Ficus spp. is a
native species of southern China, mainly in Taiwan, Zhejiang, Fujian, Guangdong, Guangxi,
Guizhou, Yunnan, and other provinces, with trees up to 15–25 m in height and about 50
cm in diameter at breast height (Flora Reipublicae Popularis Sinicae, http://www.cn-flora.ac.
cn/). Ficus spp. has an upright trunk, distinct shape, and fast growth rate, which can quickly
increase the coverage of urban greenery, and its large canopy can also provide effective shade
for pedestrians, so it is often used as an ornamental tree and street tree in landscape planning
(Chen, 2020). At present, several papers have been published to describe the damage of Ficus
spp. by T. varians. Basari et al. (2019) reported that Ficus microcarpa in Malaysia were attacked
by T. varians larvae, resulting in 100% defoliation. Naeem-Ullah et al. (2020) reported that
F. microcarpa leaves in Pakistan were heavily eaten by T. varians, which severely affected
the ornamental value of F. microcarpa. Daimon et al. (2012) also documented that the larvae
of T. varians affect two species of Ficus, F. benjamina and F. microcarpa, in Taiwan, China, and
Okinawa, Japan. Therefore, research on the potential distribution range of T. varians is bene-
ficial to the management and prevention of Ficus spp. pests and the maintenance of the urban
greening environment.

In its sixth assessment report in 2022, the Intergovernmental Panel on Climate Change
(IPCC) states that the Earth’s average temperature has increased by 1.5°C from pre-industrial
temperatures. Climate change is manifested in many ways, including increased temperatures
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due to increased carbon dioxide concentrations, and extreme
weather events such as droughts or storms (Jactel et al., 2019).
Rising sea levels, insecurity of food and water, and increased
rates of transmission of infectious diseases under climate change
pose a threat to human health and safety (Barrett et al., 2015). Of
course, global climate change not only threatens human survival
but also affects other organisms. Climate change has already
been reported to affect the body size of several contemporary
species such as Apodemus speciosus and Apodemus argenteus,
and may have an even greater impact on faunal communities
in the future (Millien et al., 2006). High temperatures increase
insect mortality, and insect pheromone communication is dis-
turbed by increased temperature and atmospheric gas concen-
trations (Boullis et al., 2016). Climate change can also affect
the distribution of insects. Climate change has been described
to cause mountain butterflies to migrate to higher elevations
(Rödder et al., 2021). Local extinctions of bumblebees have
been reported in extreme temperatures, and the risk of extinc-
tion will increase if climate change continues (Sirois-Delisle
and Kerr, 2018). Climate change may reduce the abundance of
Ephemeroptera, Plecoptera, and Trichoptera insects in temper-
ate alpine regions of Switzerland (Timoner et al., 2021). In con-
clusion, climate change has far-reaching effects on the
geographical distribution of insects, and it is necessary to predict
the geographical distribution of T. varians under future climate
change to help us better prevent their infestation of Ficus spp.

Species distribution models (SDMs) are useful for predicting
the future spatial distribution of species under changing climate
scenarios and have been widely used in conservation biology, evo-
lutionary biology, and biogeography (Islam et al., 2021; Yang
et al., 2022a, 2022b). SDMs built using analytical methods such
as climate change experiment, bioclimatic prediction system, gen-
eralised linear model, generalised additive model, ecological niche
modelling, ecological niche factor analysis, genetic algorithm for
rule-set prediction, and the maximum entropy algorithm
(MaxEnt) have been widely used (Zhang et al., 2021). The
MaxEnt is a method for modelling species distributions when
only species distribution data are available, and has been shown
to perform well in predicting distribution (Sutton and Martin,
2022; Zhao et al., 2022). Its accuracy and performance are higher
than other models even with fewer distribution data (Aidoo et al.,
2022). At the same time, the MaxEnt model also has the advan-
tages of short running time, easy operation, good performance,
and high accuracy (He et al., 2021). Among the existing investiga-
tions, Xu et al. (2022) predicted the suitable distribution area of
Oryctes rhinoceros (L.) using the MaxEnt model. The results indi-
cate that the MaxEnt model can be used for the research of suit-
able areas for insects. Similarly, Mugiyo et al. (2022) used the
MaxEnt model to map the spatial distribution of underutilised
crop species under climate change.

Despite its impact on Ficus spp., no studies have yet predicted the
current and potential future distribution of T. varians using the
MaxEnt model. In our report, MaxEnt was used to simulate the cur-
rent potential distribution area of T. varians and to predict the poten-
tial distribution area of T. varians for two periods in the 2050s and
2090s under the three conditions of SSP1-2.6, SSP2-4.5, and
SSP5-8.5 (shared socioeconomic pathways). The key environmental
variables and suitable ranges affecting the distribution of T. varians
were also analysed in conjunction with additional environmental
variables. This study can help us to take appropriate control mea-
sures in advance to reduce the loss of Ficus spp. and advance the pro-
cess of rational ecological research.

Materials and methods

Species occurrence data

Adequate occurrence records are an important prerequisite for the
construction of species’ ecological niche models (Li et al., 2020).
Three sources of occurrence records were used in this study,
namely the Global Biodiversity Information Facility (http://www.
gbif.org/), National Specimen Information Infrastructure (http://
www.nsii.org.cn/), and literature related to T. varians. The related
literature is from China National Knowledge Infrastructure
(https://www.cnki.net/), but the occurrence records in the literature
lack specific latitude and longitude coordinates, so we determined
the coordinates of the occurrence records by Google Earth
(http://ditu.google.cn/). Finally, a total of 122 occurrence records
were obtained and saved in the .csv format for predictive modelling.

Environmental variables

A total of 19 bioclimatic variables involved in this study were
obtained from the Worldclim, and the data used in the modelling
were based on meteorological records from 1970 to 2000. The
IPCC, in its Fifth Assessment Report published in 2014, referred
to the Representative Concentration Pathways (SSPs) being used
in new climate model simulations. In this study, SSP1-2.6,
SSP2-4.5, and SSP5-8.5 were selected to simulate the habitat suit-
ability distribution of T. varians in the 2050s and 2090s, which
represent three scenarios with different concentrations of green-
house gas (GHG) emissions. Initial modelling was first performed
using MaxEnt 3.4.4, and then the initial contribution of each
environmental variable was calculated using the jackknife detec-
tion method, which eliminated mean temperature of coldest quar-
ter (bio11), max temperature of warmest month (bio5), and
precipitation of coldest quarter (bio19), the three variables with
zero contribution. Then SPSS was used to calculate the Pearson
correlation between the variables, and the variables with |p| >
0.8 were removed. The combined contribution rate and Pearson
correlation finally identified four environmental variables for
re-modelling, namely annual mean temperature (bio1), tempera-
ture seasonality (standard deviation × 100) (bio4), precipitation of
driest month (bio14), and precipitation of driest quarter (bio17).

MaxEnt model building and evaluation

Re-modelling was performed based on the filtered dominant
environment variables. The 25% of the occurrence records were
randomly selected as the test set and the remaining 75% as the
training set, and the computation was repeated ten times, with
the replication run type set to ‘cross-validation’ and the maximum
number of iterations set to 500. The receiver operating character-
istic (ROC) curve is used to visualise the model performance, and
the sum of the area under the curve (AUC value) is an important
performance evaluation criterion to verify the accuracy of the
model. The larger the AUC value, the greater the correlation
between the environmental variables and the predicted geograph-
ical distribution of the species, and the better the prediction of the
model (Zhang et al., 2021). An AUC value of 0.5 means that the
model is not better than random; an AUC value of <0.5 means
that the model is worse than random; an AUC value of 0.5–0.7
means that the model effect is weak; an AUC value of 0.7–0.9
means that the model effect is moderate; an AUC value of 0.9–
1 means that the model effect is strong (Xu et al., 2020).
Afterwards, response curves were established to analyse the

318 Qianqian Qian et al.

https://doi.org/10.1017/S0007485324000117 Published online by Cambridge University Press

http://www.gbif.org/
http://www.gbif.org/
http://www.gbif.org/
http://www.nsii.org.cn/
http://www.nsii.org.cn/
http://www.nsii.org.cn/
https://www.cnki.net/
https://www.cnki.net/
http://ditu.google.cn/
http://ditu.google.cn/
https://doi.org/10.1017/S0007485324000117


response of T. varians to key environmental variables. According
to the IPCC report, the probability of species presence (P) was
divided into four classes, which were distinguished by different
colours on the map: highly suitable (P≥ 0.66, red), moderately
suitable (0.33 ≤ P < 0.66, orange), weakly suitable (0.05≤
P < 0.33, blue), and unsuitable (P < 0.05, green).

Results

Model results validation

With an AUC value of 0.970 (fig. 1), the model performed
strongly and was accurate enough to be used to predict the geo-
graphic distribution of T. varians. Environmental variables with
Pearson’s correlation |p| > 0.8 were screened (table 1) and the con-
tribution of these environmental variables was calculated using a
Jackknife (table 2). Bio1 had a contribution rate of 59.6%, bio14
32.6%, bio4 6.4%, and bio17 1.4%. The cumulative contribution
rate reached 100%, so these four environmental variables were
finally selected for distribution modelling.

The current distribution of T. varians

The suitable potential distribution area for T. varians is divided
into four classes, with green representing unsuitable areas, blue
representing low suitable areas, orange representing medium suit-
able areas, and red representing high suitable areas (fig. 2). Under
the current climatic conditions (table 3), the suitable distribution
area of T. varians is within the range of 92°13′E–122°08′E, 18°
17′N–31°55′N, mainly concentrated in low latitude and low alti-
tude areas. The area of the high suitability zone is 14.00 × 104

km2, accounting for 1.45% of the total area. It is mainly distribu-
ted in southern Guangdong, southwestern Guangxi, western
Taiwan, Hong Kong, and the Hainan, and a small amount in
southern Yunnan and southeastern Tibet. Most of these regions

are located in the tropics and subtropics. Guangdong has the lar-
gest high suitability area of 5.43 × 104 km2, followed by Guangxi
and Hainan with 2.89 × 104 and 2.77 × 104 km2. The area of a
highly suitable area in Hainan accounts for 78.27% of the total
area of the province, the area of a highly suitable area in
Taiwan accounts for 44.03% of the total area of the province,
the area of a highly suitable area in Guangdong accounts for
30.21% of the total area of the province, and the area of a highly
suitable area in Guangxi accounts for 12.14% of the total area of
the province. Among them, the high suitability area of Hong
Kong accounts for 82.07% of the total area, which is the most suit-
able area for the survival of T. varians. The area of the middle
suitable zone is 21.50 × 104 km2, accounting for 2.23% of the

Figure 1. Area under the ROC curve (AUC) for T. varians.

Table 1. Results of Pearson correlation coefficient

bio1 bio4 bio14 bio17

bio4 0.692** 1

bio14 0.501** 0.428** 1

bio17 0.512** 0.434** 0.594** 1

**The difference is extremely significant at the 0.01 level (P < 0.01).

Table 2. Contribution rate and permutation importance of each environment
variables

Variable Per cent contribution Permutation importance

bio1 59.6 63.7

bio14 32.6 6

bio4 6.4 27.3

bio17 1.4 3
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total area. It is mainly distributed in southern Guangdong and
southern Guangxi, and a small amount is distributed in southern
Yunnan and southern Fujian. The area of the low suitability zone
is 71.95 × 104 km2, accounting for 7.47% of the total area. It is
mainly distributed in Yunnan, Jiangxi, Fujian, southern Hunan,
northern Guangxi, and northern Guangdong, and a small amount
in Sichuan, Zhejiang, Tibet, and southern Guizhou. The rest are
unsuitable areas, mainly distributed in northern China, such as
Xinjiang, Inner Mongolia, Gansu, Hebei, Jilin, Heilongjiang,
Liaoning, etc.

Future distribution prediction of T. varians

In order to explore the impact of climate change on the distribu-
tion of T. varians, the potential distribution of three GHG

concentration scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, was
simulated by the MaxEnt, and a total of six predictions were
obtained for two periods (the 2050s and 2090s) (fig. 3). The
results show (table 4) that in 2050s, under SSP1-2.6, the area of
the high suitability zone is 16.78 × 104 km2, the medium suitabil-
ity zone is 17.56 × 104 km2, and the low suitability zone is 73.10 ×
104 km2. Under SSP2-4.5, the area of the high suitability zone is
15.62 × 104 km2, the medium suitability zone is 19.79 × 104 km2,
and the low suitability zone is 81.54 × 104 km2. Under SSP5-8.5,
the area of the high suitability zone is 21.00 × 104 km2, the
medium suitability zone is 18.77 × 104 km2, and the low suitability
zone is 81.54 × 104 km2. Under SSP5-8.5, the area of the high suit-
ability area is 21.00 × 104 km2, the area of the medium suitability
area is 18.77 × 104 km2, and the area of the low suitability area is
74.53 × 104 km2. Compared with the current distribution, the area

Figure 2. Current potential distribution of T. varians.

Table 3. Analysis of main suitable distributions of T. varians

Province
High suitable area

(104 km2)
Total

(104 km2) Percentage of high suitable area in province Percentage of high suitable area in China

Yunnan 0.91 39.41 2.32 0.10

Fujian 0.05 12.13 0.44 0.00

Guangxi 2.89 23.76 12.14 0.30

Taiwan 1.59 3.60 44.03 0.16

Guangdong 5.43 17.97 30.21 0.56

Hong Kong 0.09 0.11 82.07 0.01

Hainan 2.77 3.54 78.27 0.29

Tibet 0.27 122.84 0.22 0.03

China (land area) 14.00 960 – 1.45
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of high suitability zones all increased, by 19.86, 11.57, and 50.64%,
respectively. The area of medium suitability zones all decreased,
by 18.33, 8.00, and 12.70%, respectively. The area of low suitabil-
ity zones all increased, by 1.60, 13.33, and 3.59%, respectively. In

the 2090s, under SSP1-2.6, the area of the high suitability zone is
11.67 × 104 km2, medium suitability zone is 17.88 × 104 km2, and
the low suitability zone is 74.28 × 104 km2. Under SSP2-4.5, the
area of the high suitability zone is 17.07 × 104 km2, the medium

Figure 3. Future distribution of T. varians.
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suitability zone is 17.75 × 104 km2, and the area of the low suit-
ability zone is 76.37 × 104 km2. Under SSP5-8.5, the area of the
high suitability zone is 14.67 × 104 km2, the area of the medium
suitability zone is 23.39 × 104 km2, and the area of the low suit-
ability zone is 73.33 × 104 km2. Compared to the current distribu-
tion, the area of the high suitability zone decreased by 16.64%
under SSP1-2.6, increased by 21.93% under SSP2-4.5, and
increased by 4.79% under SSP5-8.5. The area of the medium suit-
ability zone decreased by 16.84% under SSP1-2.6, decreased by
21.93% under SSP2-4.5, and increased by 8.80% under
SSP5-8.5. The area of low suitability zones all increased, by
3.24, 6.14, and 1.92%, respectively. Although the area of the suit-
able zone for T. varians increased and decreased under different
conditions, the T. varians did not undergo significant migration.

Separate comparisons of changes in the area of high suitability
areas showed that provinces with high suitability areas did not
change in different periods and scenarios, only the area changed
to different degrees (table 5). Yunnan had a substantial increase in
the area of high suitability area under the SSP5-8.5 scenario in
both periods, with an increase of 43.96 and 87.91%, respectively.
In Fujian province, the area of high suitability area under the
SSP5-8.5 scenario in the 2050s period increased substantially
except for a large increase in the area of high suitability area
under all other conditions. Guangxi showed an increase in all
conditions except for a 60.21% decrease in the area of high

suitability area under the SSP1-2.6 scenario in the 2090s period.
Taiwan, on the other hand, was the opposite of Guangxi, with
only an increase of 11.95% under the SSP1-2.6 scenario in the
2090s. Guangdong decreased by 3.5% under the scenario of
SSP5-8.5 in the 2090s, and the area of high suitability area
increased under all other conditions. In Hong Kong, the area of
high suitability area changed the most under the SSP5-8.5 scen-
ario in the 2090s period, decreasing by 77.78%. Hainan had less
change under all scenarios. The areas of high suitability areas in
Tibet all showed an increase in the 2050s period and a decrease
in the 2090s period. In terms of the total area of high suitability
areas in China, the area increased under all scenarios except for
the SSP5-8.5 scenario, which decreased by 16.64% in the 2090s.

Analysis of environmental variables

In order to identify key environmental variables that influence the
potential distribution of T. varians, the regularised training gains
of environmental variables were analysed by a jackknife. Among
them (fig. 4), bio1 had the largest regularised training gain of
more than 2.4, bio14 and bio17 had regularised training gains
of less than 1.7, and bio4 had regularised training gains of less
than 1.8. Meanwhile, these four environmental variables have a
cumulative contribution of 100% and a cumulative permutation
importance of 100%. Therefore, the most critical environmental

Table 4. Predicted suitable areas for T. varians under current and future climatic conditions

Decade Scenarios

Predicted area (km2) Comprise with current distribution (%)

High suitable
area

Moderate suitable
area

Low suitable
area

High suitable
area

Moderate suitable
area

Low suitable
area

Current – 14.00 21.50 71.95 – – –

2050s SSP1-2.6 16.78 17.56 73.10 19.86 −18.33 1.60

SSP2-4.5 15.62 19.79 81.54 11.57 −8.00 13.33

SSP5-8.5 21.09 18.77 74.53 50.64 −12.70 3.59

2090s SSP1-2.6 11.67 17.88 74.28 −16.64 −16.84 3.24

SSP2-4.5 17.07 17.75 76.37 21.93 −17.44 6.14

SSP5-8.5 14.67 23.39 73.33 4.79 8.80 1.92

Table 5. Current and future changes in the size of high suitable areas for T. varians

Province Current high suitable areas (104 km2)

2050s comprise with current distribution (%) 2090s comprise with current distribution (%)

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5

Yunnan 0.91 13.19 −31.87 43.96 −61.54 −28.57 87.91

Fujian 0.05 −80.00 −80.00 580.00 −100.00 −80.00 −100.00

Guangxi 2.89 54.33 18.67 114.88 −60.21 103.11 17.99

Taiwan 1.59 −12.58 −0.63 −13.21 11.95 −8.81 −18.24

Guangdong 5.43 23.20 24.13 55.25 10.13 11.23 −3.50

Hong Kong 0.09 −11.11 0 0 0 0 −77.78

Hainan 2.77 −18.05 0.36 2.17 −6.14 −1.44 −3.61

Tibet 0.27 29.63 40.74 85.19 −66.67 −11.11 −7.40

China 14.00 19.86 11.57 50.64 −16.64 21.93 4.79
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variable affecting the geographical distribution of T. varians is the
annual mean temperature (bio1), the temperature seasonality
(standard deviation × 100) (bio4), the precipitation of driest
month (bio14), and the precipitation of driest quarter (bio17).
In other words, the temperature factor and precipitation factor
had the most significant effect on the geographical distribution
of T. varians. The optimum range of environmental variables
affecting the geographical distribution of T. varians over a range
was analysed by response curves (presence probability: P >
0.66). The results showed (fig. 5) that the optimal range of annual
mean temperature (bio1) was >20.50°C, peaking at 22.58°C; the
temperature seasonality (standard deviation × 100) (bio4) was
<554.17, peaking at 234.67; the precipitation of driest month

(bio14) was 19.46–26.17 and >58.79 mm, peaking at 22.73 mm;
the precipitation of driest quarter (bio17) was 72.38–96.65 and
>264.98 mm, peaking at 86.36 mm.

Discussion

In this study, it was found that the distribution of T. varians was
mainly influenced by four environmental factors: annual mean
temperature (bio1), temperature seasonality (standard deviation ×
100) (bio4), precipitation of driest month (bio14), and precipita-
tion of driest quarter (bio17). The high suitability area of T. var-
ians is mainly in the Pearl River Basin, and the suitability area will
increase in the future, but the centre of mass did not undergo

Figure 4. Importance of environment variables to T. varians.

Figure 5. Response curve of environmental variables to occurrence probability of T. varians.
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significant migration. Temperature and precipitation were found
to be important environmental factors affecting the distribution
of lepidopteran pests in previous articles of lepidopteran-related
studies, e.g. Spodoptera exigua was affected by precipitation of
the coldest quarter (bio19), annual precipitation (bio12) and
mean temperature of the coldest quarter (bio11) (Falsafi et al.,
2022); Zeuzera pyrina was affected by precipitation of the coldest
quarter (bio19), precipitation seasonality (bio15) and precipita-
tion of driest quarter (bio17) (Fekrat and Farashi, 2022); the dis-
tribution of Parapediasia teterrella was influenced by annual
mean temperature (bio1), mean temperature of the coldest quar-
ter (bio11), and precipitation of the coldest quarter (bio19) (Jie
et al., 2020). Temperature and precipitation were equally key
environmental variables in this study. The suitable distribution
area for T. varians is in the Pearl River Basin (102°14′E–115°
53′E; 21°31′N–26°49′N), which has a tropical monsoon climate
and a subtropical monsoon climate (Gu et al., 2016; Zhang
et al., 2021). The tropical monsoon climate is characterised by
year-round hot temperatures above 20°C and annual precipitation
of 1500–2000 mm. (Wu et al., 2008). The average annual tem-
perature in the subtropical monsoon climate zone ranges from
15 to 22°C, and annual precipitation ranges from 800 to 1600
mm (Wu et al., 2008). In the existing studies, 24–26°C and
60.5% relative humidity are usually chosen for selection and cul-
tivation of T. varians, indicating that it is suitable for survival
under these conditions (Basari et al., 2019; Ramzan, 2020). The
results of this paper show that the optimal range of annual aver-
age temperature (bio1) suitable for T. varians is greater than
20.50°C, the precipitation of driest month (bio14) >58.79 mm,
and the precipitation of driest quarter (bio17) >264.98 mm.
Temperature and precipitation in subtropical and tropical mon-
soon climates also fall within this range. Meanwhile, the results
demonstrated that T. varians is completely unsuitable in north-
east, north, and northwest China. This may be related to the
local temperature and precipitation, for example, northwest
China has a continental arid climate where the temperature can
reach below −30°C in the coldest months and the annual precipi-
tation is 100–200 mm (Yang et al., 2022a, 2022b). Comparison of
the topographic map of China provided by the Chinese govern-
ment website with the predictions of our survey revealed that T.
varians is mainly distributed at low elevations and low latitudes,
such as Guangdong, Guangxi, and Hainan. These places are all
below 200 m in elevation, below 30°N in latitude, with abundant
precipitation and high mean annual temperatures (Wu et al.,
2008). This indicates that T. varians does not have good environ-
mental adaptability and can only survive in areas with suitable
precipitation and temperature.

Under different future climatic conditions, some of the high,
medium, and low suitability zones for T. varians increased and
some decreased. The total suitable zone showed an increase, but
not significant. T. varians is mainly distributed in the Pearl
River Basin. It is reported that the monthly mean temperature
in the Pearl River Basin will increase by 0.25–0.34°C per decade
under RCP4.5 and by 0.42–0.60°C per decade under SSP5-8.5,
and the mean annual precipitation will also increase under both
RCPs (Duan et al., 2020). However, under RCP4.5, drought events
lasting 3–4 months will increase by 4.3% and those lasting more
than 5 months will increase by 3.4%. Under RCP8.5, more
medium- and long-term drought events with higher severity
will occur (Zhou et al., 2021). In CMIP6, new scenario shared
economy paths (SSPs) were developed that integrate CMIP5 rep-
resentative centralised paths (RCPs), so the results can be used to

some extent as a reference to explain the findings of this paper
(Hirsch et al., 2018). The results of our study showed that the
area of most of the high and low suitability zones for T. varians
increased under future climatic conditions, which may be related
to the increase of temperature and precipitation in the future. At
the same time, the medium suitability zones mostly decreased,
which may be related to the increase in drought duration.

The increase in the area of high, medium, and low suitability
areas for T. varians in most future scenarios suggests that future
environmental conditions will be more favourable for T. varians
to survive and reproduce. Logan et al. (2007) modelled future cli-
mate change and found that warming favours the reproduction
and survival of Lymantria dispar, while its colonisation of poplar
will increase from 33% in 1991 to 100% in 2071. Hodkinson
(1997) found that the host range of Cacopsylla groenlandica
expanded from one species of willow to four species of willow
due to climate warming. Therefore, it is hypothesised that changes
in the distribution area of T. varians may result in increased dam-
age to Ficus spp. or more Ficus spp. species being infested.

The MaxEnt model is highly accurate for species distribution
prediction but still differs from reality. In the current work, we
chose environmental variables from meteorological records
from 1970 to 2000, but global climate change has been dramatic
in recent years. The IPCC mentioned in the second part of its
Sixth Assessment Report that global warming will exceed 1.5 or
2°C during the 21st century, and that there are large uncertainties
in the conversion of emission scenarios into concentration path-
ways due to uncertainties in climate-carbon cycle feedbacks. The
average precipitation will also increase, but with seasonal and
regional variability, with an increase in synoptic variability
(Zhuo et al., 2020). Therefore, the environmental variables used
in this study may differ significantly from those under future cli-
mate change. Also, the factors affecting the distribution of species
are multiple. Human activities affect the distribution of species,
and the distribution of plants fed on by phytophagous insects
also affects the distribution of insects (Qin et al., 2020; Yang
et al., 2022a, 2022b). In this study, we only considered the effects
of 19 environmental variables on the distribution of T. varians.
We did not explore whether there is a link between the distribu-
tion area of Ficus spp. and the potential distribution of T. varians.
However, our report can still explain to some extent the suitable
distribution area of T. varians and provide reference value for
controlling it.

Conclusions

In this work, the currently suitable areas for T. varians were ana-
lysed using the MaxEnt model, and key environmental variables
affecting the distribution of T. varians were identified. The poten-
tial distribution of T. varians was predicted under three concen-
tration pathways, SSP1-2.6, SSP2-4.5, and SSP5-8.5, for the
periods of 2050s and 2090s, respectively. The research concluded
that the current high, medium, and low suitability zones of T. var-
ians predicted by the MaxEnt model accounted for 1.45, 2.23, and
7.47% of the total land area of China, respectively, and were
mainly distributed in Guangdong, Guangxi, Hainan, Taiwan,
and Hong Kong. The annual mean temperature (bio1), the tem-
perature seasonality (standard deviation × 100) (bio4), the pre-
cipitation of driest month (bio14), and the precipitation of
driest quarter (bio17) are the key environmental variables affect-
ing the geographical distribution of T. varians. Under future cli-
mate change, the geographic distribution of T. varians did not
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shift significantly and remained concentrated in Guangxi,
Guangdong, Hainan, Taiwan, and Hong Kong.
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