
Bull. Aust. Math. Soc. 109 (2024), 552–561
doi:10.1017/S0004972723000977

A NOTE ON NORMALISED GROUND STATES FOR THE
TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR

SCHRÖDINGER EQUATION

DEKE LI � and QINGXUAN WANG

(Received 8 June 2023; accepted 21 August 2023; first published online 9 October 2023)

Abstract

We consider the two-dimensional minimisation problem for inf{Ea(ϕ) : ϕ ∈ H1(R2) and ‖ϕ‖22 = 1}, where
the energy functional Ea(ϕ) is a cubic-quintic Schrödinger functional defined by Ea(ϕ) := 1

2

∫
R2 |∇ϕ|2 dx −

1
4 a
∫
R2 |ϕ|4 dx + 1

6 a2
∫
R2 |ϕ|6 dx. We study the existence and asymptotic behaviour of the ground state. The

ground state ϕa exists if and only if the L2 mass a satisfies a > a∗ = ‖Q‖22, where Q is the unique positive
radial solution of −Δu + u − u3 = 0 in R2. We show the optimal vanishing rate

∫
R2 |∇ϕa|2 dx ∼ (a − a∗) as

a↘ a∗ and obtain the limit profile.

2020 Mathematics subject classification: primary 35B33; secondary 35B40, 35J20, 35Q55.

Keywords and phrases: cubic-quintic nonlinearities, normalised ground states, asymptotic behaviour,
vanishing rate.

1. Introduction and main results

We consider the two-dimensional (2D) cubic-quintic nonlinear Schrödinger equation

iψt = −Δψ − |ψ|2ψ + |ψ|4ψ, (t, x) ∈ R × R2, (1.1)

where the cubic nonlinearity is known as the Kerr nonlinearity [4] and the quintic
nonlinearity was introduced in [15]. The incorporation of the defocusing quintic term
is motivated by the stabilisation of two-dimensional vortex solitons [13]. This kind of
model can be used to describe nonlinear optics, field theory, the mean-field theory of
superconductivity, the motion of Bose–Einstein condensates and Langmuir waves in
plasma physics (see [4] and the references therein).

The combination of a focusing cubic nonlinearity and defocusing quintic nonlinear-
ity is very natural in many physical applications and leads to interesting mathematics.
The nonlinear Schrödinger equations with the cubic-quintic nonlinearity (or general
combined power-type nonlinearities) is very different from the purely cubic equation,
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since an effect of the quintic term is to prevent finite time blow-up (see [2]). Moreover,
the arguments on the asymptotic behaviour of minimisers become much more complex
and some new phenomena appear.

In particular, Soave [16, 17] studied normalised ground states for the nonlinear
Schrödinger equation with combined nonlinearities. The uniqueness and nondegener-
acy of positive solutions for the time-independent cubic-quintic nonlinear Schrödinger
equation was shown in [1, 11]. Tao et al. [18] considered the Schrödinger equation
with combined power-type nonlinearities including the cubic-quintic nonlinearity and
studied local and global well-posedness, scattering, finite time blow-up and asymptotic
behaviour. Killip et al. [9, 10] studied solitons, scattering and the initial-value problem
with nonvanishing boundary conditions for the cubic-quintic nonlinear Schrödinger
equation on R3.

We focus on the normalised ground states of (1.1) and define the energy functional

E(u) :=
1
2

∫
R2
|∇u|2 dx − 1

4

∫
R2
|u|4 dx +

1
6

∫
R2
|u|6 dx.

A standing wave is a solution of (1.1) of the form

ψ(x, t) = e−iλtu(x),

where λ ∈ R and u(x) ∈ H1(R2) is a time-independent function. Usually, u(x) is called
a normalised ground state if it is a minimiser of the minimising problem under the
prescribed L2 mass:

I(a) := inf{E(u) : u ∈ H1(R2) and ‖u‖22 = a}.

Let ϕ(x) = u(x)/
√

a. It is easy to check that u is a minimiser of I(a) if and only if ϕ(x)
is a minimiser of the minimisation problem for e(a), where I(a) = ae(a),

e(a) := inf{Ea(ϕ) : ϕ ∈ H1(R2) and ‖ϕ‖22 = 1}, (1.2)

and the energy functional is given by

Ea(ϕ) :=
1
2

∫
R2
|∇ϕ|2 dx − a

4

∫
R2
|ϕ|4 dx +

a2

6

∫
R2
|ϕ|6 dx.

In what follows, we will consider this equivalent minimisation problem for e(a).
Now let

a∗ :=
∫
R2
|Q|2 dx,

where Q is the unique positive radial solution of the nonlinear scalar field equation

−Δu + u − u3 = 0, u ∈ H1(R2). (1.3)

The following theorem follows by the same arguments as in [1].
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THEOREM 1.1. Let Q be the unique positive radial solution of (1.3). Then:

(1) if 0 < a ≤ a∗ = ‖Q‖22, there is no minimiser for (1.2);
(2) if a > a∗, there exists at least one minimiser for (1.2).

Moreover, e(a) = 0 for 0 < a ≤ a∗ and lima↘a∗ e(a) = e(a∗) = 0 for a > a∗.

REMARK 1.2. We can restrict the minimiser of (1.2) to nonnegative radially symmetric
functions, since Ea(ϕ) ≥ Ea(|ϕ|) for any ϕ ∈ H1(R2) (from the fact that |∇|ϕ|| ≤ |∇ϕ|
almost everywhere (a.e.) in R2) and the symmetric decreasing rearrangement. There-
fore, in what follows, we will assume that the ground state ϕa(x) of (1.2) is nonnegative
and radially symmetric decreasing.

In view of Theorem 1.1, it is natural to ask what would happen for minimisers ϕa of
e(a) as a↘ a∗. We obtain the following result.

THEOREM 1.3. Assume that a > a∗ and ϕa is a nonnegative radially symmetric ground
state of e(a). Then,

lim
a↘a∗

∫
R2
|∇ϕa|2 dx→ 0 and

∫
R2
|∇ϕa|2 dx ∼ (a − a∗). (1.4)

Given a sequence {ak}with ak ↘ a∗ as k → ∞, there exists a subsequence (still denoted
by {ak}) such that

(ak − a∗)−1/2ϕak ((ak − a∗)−1/2x)→ w0(x) strongly in H1(R2), (1.5)

where w0 satisfies

−Δw0(x) = −β2w0(x) + a∗w3
0(x) − a2

∗w
5
0(x) for some β with 0 < β2 < 3

16 .

Moreover,

lim
a↘a∗

(a − a∗)−2e(a) = −
a2
∗

6

∫
R2
|w0|6 dx. (1.6)

REMARK 1.4. From (1.4), the vanishing phenomenon happens for the ground states
as a↘ a∗. This is very different from the purely cubic equation or the cubic-quintic
equation with an external potential (see [3, 5–8, 14, 19]). In particular, Guo and
Seiringer [5] studied the mass concentration properties of normalised ground-state
solutions for the purely cubic equation with an external potential as a↗ a∗ (a < a∗
and a tends to a∗). The second author and Feng [19] studied the blow-up properties of
ground-state solutions of the 2D cubic-quintic nonlinear Schrödinger equation with a
harmonic potential.

The paper is organised as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we prove Theorem 1.3. Throughout this paper, we use standard notation. For simplicity,
we write ‖ · ‖p to denote the Lp(R2) norm for p ≥ 1; a↘ a∗ means that a tends
to a∗ with a > a∗; X ∼ Y means X � Y and Y � X, where X � Y (X � Y) means
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X ≤ CY (X ≥ CY) for some appropriate positive constants C. The value of the positive
constant C is allowed to change from line to line and also in the same formula.

2. Proof of Theorem 1.1

We recall from [20] that a∗ also corresponds to the best constant in the
Gagliardo–Nirenberg inequality∫

R2
|ϕ(x)|4 dx ≤ 2

a∗

∫
R2
|∇ϕ(x)|2 dx

∫
R2
|ϕ(x)|2 dx, ϕ(x) ∈ H1(R2), (2.1)

which becomes an equality when ϕ(x) = Q(|x|), where Q is the unique positive radial
solution of (1.3). It is easy to see that

1
2

∫
R2
|Q(x)|4 dx =

∫
R2
|∇Q(x)|2 dx =

∫
R2
|Q(x)|2 dx (2.2)

(see also [2, Lemma 8.1.2]).

LEMMA 2.1. For any a > 0, we have e(a) ≤ 0 and e(a) < 0 if and only if a > a∗.

PROOF. Let Q be the unique positive radial solution of (1.3). For γ > 0, define

ϕγ(x) :=
γQ(γx)
‖Q‖2

,

so that ‖ϕγ(x)‖22 = 1. Since ‖∇Q‖22 =
1
2‖Q‖

4
4 = a∗ (by (2.2)), then,

Ea(ϕγ) =
1
2

∫
R2
|∇ϕγ|2 dx − a

4

∫
R2
|ϕγ|4 dx +

a2

6

∫
R2
|ϕγ|6 dx

=
γ2

2

(
1 − a

a∗

)
+

a2γ4

6a3
∗

∫
R2
|Q|6 dx. (2.3)

By letting γ → 0+, we deduce that e(a) ≤ 0.
To prove that e(a) = 0 if and only if 0 < a ≤ a∗, we just need to show that for

0 < a ≤ a∗, we have Ea(ϕ) ≥ 0 for any ϕ ∈ H1(R2). We deduce from the Gagliardo–
Nirenberg inequality (2.1) that

Ea(ϕ) =
1
2

∫
R2
|∇ϕ|2 dx − a

4

∫
R2
|ϕ|4 dx +

a2

6

∫
R2
|ϕ|6 dx ≥ a2

6

∫
R2
|ϕ|6 dx ≥ 0.

Thus, e(a) = 0 if and only if 0 < a ≤ a∗.
Next, we claim that for any a > a∗, we have e(a) < 0. By (2.3),

e(a) ≤ γ2

2

(
1 − a

a∗

)
+

a2γ4

6a3
∗

∫
R2
|Q|6 dx =: −A(a − a∗)γ2 + Bγ4,

where

A =
1

2a∗
> 0 and B =

a2

6a3
∗

∫
R2
|Q|6 dx > 0.
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Now, let γ = C0(a − a∗)1/2, taking C0 small enough so that AC2
0 − BC4

0 > 0. Then,

e(a) ≤ −(AC2
0 − BC4

0)(a − a∗)2 � −(a − a∗)2 < 0 (2.4)

for any a > a∗. This completes the proof of the Lemma 2.1. �

PROOF OF THEOREM 1.1. Part (2) of Theorem 1.1 comes from [1], or it can be proved
by the standard concentration-compactness principle [12].

Next, we prove that there is no minimiser for (1.2) with 0 < a ≤ a∗ = ‖Q‖22. Suppose
that there exists a minimiser ϕa with 0 < a ≤ a∗. As pointed out in Section 1, we can
assume ϕa to be nonnegative. We deduce from the Gagliardo–Nirenberg inequality
(2.1) and e(a) = 0 that

1
2

∫
R2
|∇ϕa|2 dx =

a
4

∫
R2
|ϕa|4 dx

and ∫
R2
|ϕa|6 dx = 0

for 0 < a ≤ a∗. This implies ϕa = 0 a.e., which is a contradiction with ‖ϕa‖22 = 1. This
completes the proof of the first part of Theorem 1.1.

To prove the stated properties of the energy e(a), note that Lemma 2.1 implies
that e(a) = 0 for 0 < a ≤ a∗ = ‖Q‖22. We have already shown that e(a) � −(a − a∗)2

for a > a∗ in (2.4), hence it remains to show that lima↘a∗ e(a) = e(a∗) = 0 for a > a∗.
This will complete the proof of Theorem 1.1. �

3. Asymptotic behaviour of ground states as a ↘ a∗
Suppose that ϕa(x) is a ground state of e(a) for a > a∗. Then ϕa(x) satisfies the

Euler–Lagrange equation

−Δϕa(x) = λaϕa(x) + aϕ3
a(x) − a2ϕ5

a(x) (3.1)

for some suitable Lagrange multiplier λa ∈ R and the Pohozaev-type identity
∂Ea(τϕa(τx))|τ=1 = 0 (see [2]), that is,

∫
R2
|∇ϕa|2 dx − a

2

∫
R2
|ϕa|4 dx +

2a2

3

∫
R2
|ϕa|6 dx = 0. (3.2)

Moreover, λa in (3.1) can be given by

λa = −
1
2

∫
R2
|∇ϕa|2 dx − a

4

∫
R2
|ϕa|4 dx. (3.3)

LEMMA 3.1. For any a > a∗, we have e(a) ∼ −(a − a∗)2.
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PROOF. In view of (2.4), we just need to prove the lower bound. First, for any
ϕ ∈ H1(R2), by using the Hölder’s inequality and Young’s inequality with ε,

∫
R2
|ϕ|4 dx ≤

( ∫
R2
|ϕ|2 dx

)1/2( ∫
R2
|ϕ|6 dx

)1/2

≤ 3(a − a∗)
8a2

∫
R2
|ϕ|2 dx +

2a2(a − a∗)−1

3

∫
R2
|ϕ|6 dx. (3.4)

Then, for any ϕ(x) ∈ H1(R2) with ‖ϕ‖22 = 1, by using the Gagliardo–Nirenberg inequal-
ity (2.1) and (3.4),

Ea(ϕ) =
1
2

∫
R2
|∇ϕ|2 dx − a

4

∫
R2
|ϕ|4 dx +

a2

6

∫
R2
|ϕ|6 dx

≥ −a − a∗
4

∫
R2
|ϕ|4 dx +

a2

6

∫
R2
|ϕ|6 dx

� −(a − a∗)2.

This completes the proof of Lemma 3.1. �

LEMMA 3.2. Assume that ϕa(x) is a ground state of e(a). Then for any a > a∗,∫
R2
|∇ϕa(x)|2 dx ∼

∫
R2
|ϕa(x)|4 dx ∼ (a − a∗). (3.5)

PROOF. From the Gagliardo–Nirenberg inequality (2.1),

1
2

∫
R2
|∇ϕa(x)|2 dx − a

4

∫
R2
|ϕa(x)|4 dx ≥ −a − a∗

4

∫
R2
|ϕa(x)|4 dx. (3.6)

However, by the definition of e(a) and Lemma 3.1,

1
2

∫
R2
|∇ϕa(x)|2 dx − a

4

∫
R2
|ϕa(x)|4 dx ≤ Ea(ϕa) = e(a) � −(a − a∗)2. (3.7)

From the inequalities (3.6) and (3.7),∫
R2
|ϕa(x)|4 dx � (a − a∗).

Moreover, by the Gagliardo–Nirenberg inequality (2.1) and (3.7),∫
R2
|∇ϕa(x)|2 dx �

∫
R2
|ϕa(x)|4 dx � (a − a∗).

From (3.1), (3.2) and Lemma 3.1,

a2

6

∫
R2
|ϕa|6 dx = −e(a) ∼ (a − a∗)2. (3.8)
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By Hölder’s inequality together with (3.7) and (3.8),
∫
R2
|∇ϕa(x)|2 dx �

∫
R2
|ϕa(x)|4 dx �

( ∫
R2
|ϕa|6 dx

)1/2
� (a − a∗).

This completes the proof of the lemma. �

Let ϕa be a nonnegative minimiser of (1.2) and define the L2-normalised function

wτ(x) := τϕa(τx),

where τ := (a − a∗)−1/2 > 0. From (3.5) and (3.8),∫
R2
|∇wτ(x)|2 dx ∼

∫
R2
|wτ(x)|4 dx ∼

∫
R2
|wτ(x)|6 dx ∼ 1. (3.9)

By the Euler–Lagrange equation (3.1) and Remark 1.2, the functions wτ are nonnega-
tive solutions and satisfy

−Δwτ(x) = τ2λawτ(x) + aw3
τ(x) − a2w5

τ(x). (3.10)

It follows from Lemma 3.2 and (3.3) that τ2λa is uniformly bounded as a↘ a∗ and
strictly negative for a close to a∗. By passing to a subsequence, if necessary, we can
thus assume that

τ2λa → −β2 < 0, as a↘ a∗. (3.11)

PROOF OF THEOREM 1.3. First, (1.4) in Theorem 1.3 comes from (3.5). Next, we
prove (1.5). Note that {wτ} is radially symmetric, since ϕa is radially symmetric (see
Remark 1.2). By (3.9), {wτ} is uniformly bounded in H1

rad(R2) and there exists a
subsequence {wτk } such that wτk ⇀ w0 weakly in H1

rad(R2), where H1
rad(R2) denotes

the Sobolev space of radial H1(R2) functions. For 2 < p < +∞, the embedding
H1

rad(R2) ↪→ Lp(R2) is compact, so wτk → w0 strongly in Lp(R2). This implies that
∫
R2
|wτk |4 dx→

∫
R2
|w0|4 dx and

∫
R2
|wτk |6 dx→

∫
R2
|w0|6 dx. (3.12)

By the Pohozaev identity (3.2), wτk (x) satisfies
∫
R2
|∇wτk |2 dx − ak

2

∫
R2
|wτk |4 dx +

2a2
k

3

∫
R2
|wτk |6 dx = 0

and it follows from (3.12) that

lim
k→∞

∫
R2
|∇wτk |2 dx =

a∗
2

∫
R2
|w0|4 dx +

2a2
∗

3

∫
R2
|w0|6 dx. (3.13)

By passing to the weak limit τk → 0+ in (3.10), we see that w0(x) satisfies

−Δw0(x) = −β2w0(x) + a∗w3
0(x) − a2

∗w
5
0(x). (3.14)
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We also have the Pohozaev identity (see [1]),

β2
∫
R2
|w0|2 dx − a∗

2

∫
R2
|w0|4 dx +

a2
∗

3

∫
R2
|w0|6 dx = 0, (3.15)

where β2 ∈ (0, 3/16) since w0 � 0 (see [1]). From (3.14) and (3.15),
∫
R2
|∇w0|2 dx =

a∗
2

∫
R2
|w0|4 dx −

2a2
∗

3

∫
R2
|w0|6 dx. (3.16)

It follows from (3.13) that

lim
k→∞

∫
R2
|∇wτk |2 dx =

∫
R2
|∇w0|2 dx. (3.17)

However, by (3.11) together with (3.12) and (3.17),

lim
k→∞

∫
R2
|wτk |2 dx = lim

k→∞

1
τ2

kλak

( ∫
R2
|∇wτk |2 dx − ak

∫
R2
|wτk |4 dx + a2

k

∫
R2
|wτk |6 dx

)

= − 1
β2

( ∫
R2
|∇w0|2 dx − a∗

∫
R2
|w0|4 dx + a2

∗

∫
R2
|w0|6 dx

)

=

∫
R2
|w0|2 dx.

Combining this with (3.17) shows wτk → w0 strongly in H1(R2) and this yields (1.5).
By (3.8) and (3.12),

lim
k→∞

τ4
ke(ak) = − lim

k→∞

τ4
ka2

k

6

∫
R2
|ϕak |6 dx

= − lim
k→∞

a2
k

6

∫
R2
|wτk |6 dx = −

a2
∗

6

∫
R2
|w0|6 dx. (3.18)

Finally, by applying the same argument as we used before to (3.18), we can take a
subsequence {τk} with τk → +∞ as k → +∞, such that

lim inf
a↘a∗

τ4e(a) = lim
k→∞

τ4
ke(ak) = −

a2
∗

6

∫
R2
|w0|6 dx, (3.19)

where w0(x) satisfies (3.15) with some β2 ∈ (0, 3/16) and
∫
R2 |w0(x)|2 dx = 1. However,

taking the test function φτ = τ−1w0(τ−1x) in Ea(·), we deduce from (3.16) that

τ4e(a) ≤ τ4Ea(φτ) =
1
2

∫
R2
|∇w0|2 dx − a

4

∫
R2
|w0|4 dx +

a2

6

∫
R2
|w0|6 dx

=
a∗ − a

4

∫
R2
|w0|4 dx +

a2 − 2a2
∗

6

∫
R2
|w0|6 dx.
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This means that

lim sup
a↘a∗

τ4e(a) ≤ −
a2
∗

6

∫
R2
|w0|6 dx.

Combining this with (3.19) gives (1.6). This completes the proof of Theorem 1.3. �
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