Bull. Aust. Math. Soc. 109 (2024), 552–561 doi[:10.1017/S0004972723000977](http://dx.doi.org/10.1017/S0004972723000977)

A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATIO[N](#page-0-0)

DEKE L[I](https://orcid.org/0000-0001-8929-0937)O[®] and QIN[G](https://orcid.org/0000-0001-9120-468X)XUAN WANG

(Received 8 June 2023; accepted 21 August 2023; first published online 9 October 2023)

Abstract

We consider the two-dimensional minimisation problem for $\inf\{E_a(\varphi) : \varphi \in H^1(\mathbb{R}^2) \text{ and } ||\varphi||_2^2 = 1\}$, where the energy functional $E_a(\varphi)$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi) := \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi|^2 dx \frac{1}{4}a \int_{\mathbb{R}^2} |\varphi|^4 dx + \frac{1}{6}a^2 \int_{\mathbb{R}^2} |\varphi|^6 dx$. We study the existence and asymptotic behaviour of the ground state. The ground state φ_a exists if and only if the *L*² mass *a* satisfies $a > a_* = ||Q||_2^2$, where *Q* is the unique positive radial solution of $-Au + u - u^3 = 0$ in \mathbb{R}^2 . We show the optimal vanishing rate $\int |\nabla \varphi|^2 dx \sim (a$ radial solution of $-\Delta u + u - u^3 = 0$ in \mathbb{R}^2 . We show the optimal vanishing rate $\int_{\mathbb{R}^2} |\nabla \varphi_a|^2 dx \sim (a - a_*)$ as $a \searrow a_*$ and obtain the limit profile.

2020 *Mathematics subject classification*: primary 35B33; secondary 35B40, 35J20, 35Q55.

Keywords and phrases: cubic-quintic nonlinearities, normalised ground states, asymptotic behaviour, vanishing rate.

1. Introduction and main results

We consider the two-dimensional (2D) cubic-quintic nonlinear Schrödinger equation

$$
i\psi_t = -\Delta\psi - |\psi|^2\psi + |\psi|^4\psi, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^2,
$$
 (1.1)

where the cubic nonlinearity is known as the Kerr nonlinearity [\[4\]](#page-8-0) and the quintic nonlinearity was introduced in [\[15\]](#page-8-1). The incorporation of the defocusing quintic term is motivated by the stabilisation of two-dimensional vortex solitons [\[13\]](#page-8-2). This kind of model can be used to describe nonlinear optics, field theory, the mean-field theory of superconductivity, the motion of Bose–Einstein condensates and Langmuir waves in plasma physics (see [\[4\]](#page-8-0) and the references therein).

The combination of a focusing cubic nonlinearity and defocusing quintic nonlinearity is very natural in many physical applications and leads to interesting mathematics. The nonlinear Schrödinger equations with the cubic-quintic nonlinearity (or general combined power-type nonlinearities) is very different from the purely cubic equation,

Qingxuan Wang was partially supported by the NSFC 11801519.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

since an effect of the quintic term is to prevent finite time blow-up (see [\[2\]](#page-8-3)). Moreover, the arguments on the asymptotic behaviour of minimisers become much more complex and some new phenomena appear.

In particular, Soave [\[16,](#page-8-4) [17\]](#page-8-5) studied normalised ground states for the nonlinear Schrödinger equation with combined nonlinearities. The uniqueness and nondegeneracy of positive solutions for the time-independent cubic-quintic nonlinear Schrödinger equation was shown in [\[1,](#page-8-6) [11\]](#page-8-7). Tao *et al.* [\[18\]](#page-8-8) considered the Schrödinger equation with combined power-type nonlinearities including the cubic-quintic nonlinearity and studied local and global well-posedness, scattering, finite time blow-up and asymptotic behaviour. Killip *et al.* [\[9,](#page-8-9) [10\]](#page-8-10) studied solitons, scattering and the initial-value problem with nonvanishing boundary conditions for the cubic-quintic nonlinear Schrödinger equation on \mathbb{R}^3 .

We focus on the normalised ground states of (1.1) and define the energy functional

$$
E(u) := \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx - \frac{1}{4} \int_{\mathbb{R}^2} |u|^4 \, dx + \frac{1}{6} \int_{\mathbb{R}^2} |u|^6 \, dx.
$$

A standing wave is a solution of [\(1.1\)](#page-0-1) of the form

$$
\psi(x,t)=e^{-i\lambda t}u(x),
$$

where $\lambda \in \mathbb{R}$ and $u(x) \in H^1(\mathbb{R}^2)$ is a time-independent function. Usually, $u(x)$ is called a normalised ground state if it is a minimiser of the minimising problem under the prescribed L^2 mass:

$$
I(a) := \inf{E(u) : u \in H^1(\mathbb{R}^2) \text{ and } ||u||_2^2 = a}.
$$

Let $\varphi(x) = u(x) / \sin x$ √ *a*. It is easy to check that *u* is a minimiser of *I*(*a*) if and only if $\varphi(x)$ he minimisation problem for $e(a)$ where $I(a) = ae(a)$ is a minimiser of the minimisation problem for $e(a)$, where $I(a) = ae(a)$,

$$
e(a) := \inf \{ E_a(\varphi) : \varphi \in H^1(\mathbb{R}^2) \text{ and } ||\varphi||_2^2 = 1 \},
$$
 (1.2)

and the energy functional is given by

$$
E_a(\varphi) := \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi|^6 dx.
$$

In what follows, we will consider this equivalent minimisation problem for *e*(*a*). Now let

$$
a_* := \int_{\mathbb{R}^2} |Q|^2 dx,
$$

where \hat{O} is the unique positive radial solution of the nonlinear scalar field equation

$$
-\Delta u + u - u^3 = 0, \quad u \in H^1(\mathbb{R}^2). \tag{1.3}
$$

The following theorem follows by the same arguments as in [\[1\]](#page-8-6).

THEOREM 1.1. Let Q be the unique positive radial solution of [\(1.3\)](#page-1-0). Then:

- (1) *if* $0 < a \le a_* = ||Q||_2^2$, there is no minimiser for [\(1.2\)](#page-1-1);
(2) *if* $a > a_+$ there exists at least one minimiser for (1.2)
- (2) *if a* > a_* *, there exists at least one minimiser for [\(1.2\)](#page-1-1).*

Moreover, $e(a) = 0$ *for* $0 < a \le a_*$ *and* $\lim_{a \to a_*} e(a) = e(a_*) = 0$ *for* $a > a_*$ *.*

REMARK 1.2. We can restrict the minimiser of [\(1.2\)](#page-1-1) to nonnegative radially symmetric functions, since $E_a(\varphi) \ge E_a(|\varphi|)$ for any $\varphi \in H^1(\mathbb{R}^2)$ (from the fact that $|\nabla |\varphi| \le |\nabla \varphi|$ almost everywhere (a.e.) in \mathbb{R}^2) and the symmetric decreasing rearrangement. Therefore, in what follows, we will assume that the ground state $\varphi_a(x)$ of [\(1.2\)](#page-1-1) is nonnegative and radially symmetric decreasing.

In view of Theorem [1.1,](#page-2-0) it is natural to ask what would happen for minimisers φ_a of $e(a)$ as $a \searrow a_*$. We obtain the following result.

THEOREM 1.3. Assume that $a > a_*$ and φ_a is a nonnegative radially symmetric ground *state of e*(*a*)*. Then,*

$$
\lim_{a \searrow a_*} \int_{\mathbb{R}^2} |\nabla \varphi_a|^2 dx \to 0 \quad and \quad \int_{\mathbb{R}^2} |\nabla \varphi_a|^2 dx \sim (a - a_*) \tag{1.4}
$$

Given a sequence $\{a_k\}$ *with* $a_k \searrow a_*$ *as* $k \to \infty$ *, there exists a subsequence* (*still denoted by* {*ak*}*) such that*

$$
(a_k - a_*)^{-1/2} \varphi_{a_k}((a_k - a_*)^{-1/2} x) \to w_0(x) \quad \text{strongly in } H^1(\mathbb{R}^2), \tag{1.5}
$$

*where w*⁰ *satisfies*

$$
-\Delta w_0(x) = -\beta^2 w_0(x) + a_* w_0^3(x) - a_*^2 w_0^5(x) \quad \text{for some } \beta \text{ with } 0 < \beta^2 < \frac{3}{16}.
$$

Moreover,

$$
\lim_{a \searrow a_*} (a - a_*)^{-2} e(a) = -\frac{a_*^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$
 (1.6)

REMARK 1.4. From [\(1.4\)](#page-2-1), the vanishing phenomenon happens for the ground states as $a \searrow a_*$. This is very different from the purely cubic equation or the cubic-quintic equation with an external potential (see [\[3,](#page-8-11) [5–](#page-8-12)[8,](#page-8-13) [14,](#page-8-14) [19\]](#page-8-15)). In particular, Guo and Seiringer [\[5\]](#page-8-12) studied the mass concentration properties of normalised ground-state solutions for the purely cubic equation with an external potential as $a \nearrow a_{*}$ ($a < a_{*}$) and *a* tends to *a*∗). The second author and Feng [\[19\]](#page-8-15) studied the blow-up properties of ground-state solutions of the 2D cubic-quintic nonlinear Schrödinger equation with a harmonic potential.

The paper is organised as follows. In Section [2,](#page-3-0) we prove Theorem [1.1.](#page-2-0) In Section [3,](#page-4-0) we prove Theorem [1.3.](#page-2-2) Throughout this paper, we use standard notation. For simplicity, we write $\|\cdot\|_p$ to denote the $L^p(\mathbb{R}^2)$ norm for $p \geq 1$; $a \searrow a_*$ means that *a* tends to *a*[∗] with *a* > *a*[∗]; *X* ∼ *Y* means *X* ≤ *Y* and *Y* ≤ *X*, where *X* ≤ *Y* (*X* ≥ *Y*) means

 $X \leq CY$ ($X \geq CY$) for some appropriate positive constants *C*. The value of the positive constant *C* is allowed to change from line to line and also in the same formula.

2. Proof of Theorem [1.1](#page-2-0)

We recall from [\[20\]](#page-8-16) that *a*[∗] also corresponds to the best constant in the Gagliardo–Nirenberg inequality

$$
\int_{\mathbb{R}^2} |\varphi(x)|^4 \, dx \le \frac{2}{a_*} \int_{\mathbb{R}^2} |\nabla \varphi(x)|^2 \, dx \int_{\mathbb{R}^2} |\varphi(x)|^2 \, dx, \quad \varphi(x) \in H^1(\mathbb{R}^2), \tag{2.1}
$$

which becomes an equality when $\varphi(x) = Q(|x|)$, where *Q* is the unique positive radial solution of [\(1.3\)](#page-1-0). It is easy to see that

$$
\frac{1}{2} \int_{\mathbb{R}^2} |Q(x)|^4 \, dx = \int_{\mathbb{R}^2} |\nabla Q(x)|^2 \, dx = \int_{\mathbb{R}^2} |Q(x)|^2 \, dx \tag{2.2}
$$

(see also [\[2,](#page-8-3) Lemma 8.1.2]).

LEMMA 2.1. *For any a* > 0, we have $e(a) \le 0$ and $e(a) < 0$ if and only if $a > a_*$.

PROOF. Let *Q* be the unique positive radial solution of [\(1.3\)](#page-1-0). For $\gamma > 0$, define

$$
\varphi_{\gamma}(x) := \frac{\gamma Q(\gamma x)}{\|Q\|_2},
$$

so that $\|\varphi_{\gamma}(x)\|_{2}^{2} = 1$. Since $\|\nabla Q\|_{2}^{2} = \frac{1}{2} \|Q\|_{4}^{4} = a_{*}$ (by [\(2.2\)](#page-3-1)), then,

$$
E_a(\varphi_\gamma) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi_\gamma|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi_\gamma|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi_\gamma|^6 dx
$$

=
$$
\frac{\gamma^2}{2} \Big(1 - \frac{a}{a_*} \Big) + \frac{a^2 \gamma^4}{6a_*^3} \int_{\mathbb{R}^2} |Q|^6 dx.
$$
 (2.3)

By letting $\gamma \to 0^+$, we deduce that $e(a) \leq 0$.

To prove that $e(a) = 0$ if and only if $0 < a \le a_*$, we just need to show that for $0 < a \le a_*$, we have $E_a(\varphi) \ge 0$ for any $\varphi \in H^1(\mathbb{R}^2)$. We deduce from the Gagliardo– Nirenberg inequality [\(2.1\)](#page-3-2) that

$$
E_a(\varphi) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi|^6 dx \ge \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi|^6 dx \ge 0.
$$

Thus, $e(a) = 0$ if and only if $0 < a \le a_*$.

Next, we claim that for any $a > a_*$, we have $e(a) < 0$. By [\(2.3\)](#page-3-3),

$$
e(a) \le \frac{\gamma^2}{2} \left(1 - \frac{a}{a_*} \right) + \frac{a^2 \gamma^4}{6a_*^3} \int_{\mathbb{R}^2} |Q|^6 \, dx =: -A(a - a_*) \gamma^2 + B \gamma^4,
$$

where

$$
A = \frac{1}{2a_*} > 0 \quad \text{and} \quad B = \frac{a^2}{6a_*^3} \int_{\mathbb{R}^2} |Q|^6 \, dx > 0.
$$

 556 D. Li and Q. Wang [5]

Now, let $\gamma = C_0(a - a_*)^{1/2}$, taking C_0 small enough so that $AC_0^2 - BC_0^4 > 0$. Then,

$$
e(a) \le -(AC_0^2 - BC_0^4)(a - a_*)^2 \le -(a - a_*)^2 < 0
$$
\n(2.4)

for any *a* > $a_∗$. This completes the proof of the Lemma [2.1.](#page-3-4) $□$

PROOF OF THEOREM [1.1.](#page-2-0) Part (2) of Theorem [1.1](#page-2-0) comes from [\[1\]](#page-8-6), or it can be proved by the standard concentration-compactness principle [\[12\]](#page-8-17).

Next, we prove that there is no minimiser for [\(1.2\)](#page-1-1) with $0 < a \le a_* = ||Q||_2^2$. Suppose there exists a minimiser (a_*) with $0 < a \le a$. As pointed out in Section 1, we can that there exists a minimiser φ_a with $0 < a \le a_*$. As pointed out in Section [1,](#page-0-2) we can assume φ_a to be nonnegative. We deduce from the Gagliardo–Nirenberg inequality (2.1) and $e(a) = 0$ that

$$
\frac{1}{2}\int_{\mathbb{R}^2} |\nabla \varphi_a|^2 dx = \frac{a}{4}\int_{\mathbb{R}^2} |\varphi_a|^4 dx
$$

and

$$
\int_{\mathbb{R}^2} |\varphi_a|^6 \, dx = 0
$$

for $0 < a \le a_*$. This implies $\varphi_a = 0$ a.e., which is a contradiction with $||\varphi_a||_2^2 = 1$. This completes the proof of the first part of Theorem 1.1 completes the proof of the first part of Theorem [1.1.](#page-2-0)

To prove the stated properties of the energy $e(a)$, note that Lemma [2.1](#page-3-4) implies that $e(a) = 0$ for $0 < a \le a_* = ||Q||_2^2$. We have already shown that $e(a) \le -(a-a_*)^2$
for $a > a$ in (2.4) hence it remains to show that $\lim_{x \to a} e(a) = e(a) = 0$ for $a > a$ for $a > a_*$ in [\(2.4\)](#page-4-1), hence it remains to show that $\lim_{a \setminus a_*} e(a) = e(a_*) = 0$ for $a > a_*$. This will complete the proof of Theorem [1.1.](#page-2-0)

3. Asymptotic behaviour of ground states as $a \searrow a_*$

Suppose that $\varphi_a(x)$ is a ground state of $e(a)$ for $a > a_*$. Then $\varphi_a(x)$ satisfies the Euler–Lagrange equation

$$
-\Delta \varphi_a(x) = \lambda_a \varphi_a(x) + a\varphi_a^3(x) - a^2 \varphi_a^5(x)
$$
\n(3.1)

for some suitable Lagrange multiplier $\lambda_a \in \mathbb{R}$ and the Pohozaev-type identity $\partial E_a(\tau \varphi_a(\tau x))|_{\tau=1} = 0$ (see [\[2\]](#page-8-3)), that is,

$$
\int_{\mathbb{R}^2} |\nabla \varphi_a|^2 \, dx - \frac{a}{2} \int_{\mathbb{R}^2} |\varphi_a|^4 \, dx + \frac{2a^2}{3} \int_{\mathbb{R}^2} |\varphi_a|^6 \, dx = 0. \tag{3.2}
$$

Moreover, λ_a in [\(3.1\)](#page-4-2) can be given by

$$
\lambda_a = -\frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi_a|^2 \, dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi_a|^4 \, dx. \tag{3.3}
$$

LEMMA 3.1. *For any a* > a_* *, we have e*(*a*) ~ $-(a - a_*)^2$.

PROOF. In view of (2.4) , we just need to prove the lower bound. First, for any $\varphi \in H^1(\mathbb{R}^2)$, by using the Hölder's inequality and Young's inequality with ϵ ,

$$
\int_{\mathbb{R}^2} |\varphi|^4 dx \le \left(\int_{\mathbb{R}^2} |\varphi|^2 dx \right)^{1/2} \left(\int_{\mathbb{R}^2} |\varphi|^6 dx \right)^{1/2} \le \frac{3(a - a_*)}{8a^2} \int_{\mathbb{R}^2} |\varphi|^2 dx + \frac{2a^2(a - a_*)^{-1}}{3} \int_{\mathbb{R}^2} |\varphi|^6 dx. \tag{3.4}
$$

Then, for any $\varphi(x) \in H^1(\mathbb{R}^2)$ with $\|\varphi\|_2^2 = 1$, by using the Gagliardo–Nirenberg inequality (2.1) and (3.4) ity [\(2.1\)](#page-3-2) and [\(3.4\)](#page-5-0),

$$
E_a(\varphi) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi|^6 dx
$$

\n
$$
\geq -\frac{a - a_*}{4} \int_{\mathbb{R}^2} |\varphi|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi|^6 dx
$$

\n
$$
\geq -(a - a_*)^2.
$$

This completes the proof of Lemma [3.1.](#page-4-3) \Box

LEMMA 3.2. Assume that $\varphi_a(x)$ *is a ground state of e(a). Then for any* $a > a_*$ *,*

$$
\int_{\mathbb{R}^2} |\nabla \varphi_a(x)|^2 dx \sim \int_{\mathbb{R}^2} |\varphi_a(x)|^4 dx \sim (a - a_*)
$$
 (3.5)

PROOF. From the Gagliardo–Nirenberg inequality [\(2.1\)](#page-3-2),

$$
\frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi_a(x)|^2 \, dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi_a(x)|^4 \, dx \ge -\frac{a - a_*}{4} \int_{\mathbb{R}^2} |\varphi_a(x)|^4 \, dx. \tag{3.6}
$$

However, by the definition of *e*(*a*) and Lemma [3.1,](#page-4-3)

$$
\frac{1}{2} \int_{\mathbb{R}^2} |\nabla \varphi_a(x)|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |\varphi_a(x)|^4 dx \le E_a(\varphi_a) = e(a) \le -(a - a_*)^2. \tag{3.7}
$$

From the inequalities [\(3.6\)](#page-5-1) and [\(3.7\)](#page-5-2),

$$
\int_{\mathbb{R}^2} |\varphi_a(x)|^4\,dx \gtrsim (a-a_*)
$$

Moreover, by the Gagliardo–Nirenberg inequality [\(2.1\)](#page-3-2) and [\(3.7\)](#page-5-2),

$$
\int_{\mathbb{R}^2} |\nabla \varphi_a(x)|^2 dx \gtrsim \int_{\mathbb{R}^2} |\varphi_a(x)|^4 dx \gtrsim (a - a_*)
$$

From [\(3.1\)](#page-4-2), [\(3.2\)](#page-4-4) and Lemma [3.1,](#page-4-3)

$$
\frac{a^2}{6} \int_{\mathbb{R}^2} |\varphi_a|^6 \, dx = -e(a) \sim (a - a_*)^2. \tag{3.8}
$$

By Hölder's inequality together with [\(3.7\)](#page-5-2) and [\(3.8\)](#page-5-3),

$$
\int_{\mathbb{R}^2} |\nabla \varphi_a(x)|^2 dx \lesssim \int_{\mathbb{R}^2} |\varphi_a(x)|^4 dx \lesssim \left(\int_{\mathbb{R}^2} |\varphi_a|^6 dx \right)^{1/2} \lesssim (a - a_*)
$$

This completes the proof of the lemma.

Let φ_a be a nonnegative minimiser of [\(1.2\)](#page-1-1) and define the L^2 -normalised function

$$
w_{\tau}(x):=\tau\varphi_a(\tau x),
$$

where $\tau := (a - a_*)^{-1/2} > 0$. From [\(3.5\)](#page-5-4) and [\(3.8\)](#page-5-3),

$$
\int_{\mathbb{R}^2} |\nabla w_\tau(x)|^2 dx \sim \int_{\mathbb{R}^2} |w_\tau(x)|^4 dx \sim \int_{\mathbb{R}^2} |w_\tau(x)|^6 dx \sim 1.
$$
 (3.9)

By the Euler–Lagrange equation [\(3.1\)](#page-4-2) and Remark [1.2,](#page-2-3) the functions w_{τ} are nonnegative solutions and satisfy

$$
-\Delta w_{\tau}(x) = \tau^2 \lambda_a w_{\tau}(x) + a w_{\tau}^3(x) - a^2 w_{\tau}^5(x).
$$
 (3.10)

It follows from Lemma [3.2](#page-5-5) and [\(3.3\)](#page-4-5) that $\tau^2 \lambda_a$ is uniformly bounded as $a \searrow a_*$ and strictly negative for *a* close to *a*∗. By passing to a subsequence, if necessary, we can thus assume that

$$
\tau^2 \lambda_a \to -\beta^2 < 0, \quad \text{as } a \searrow a_*.\tag{3.11}
$$

PROOF OF THEOREM [1.3.](#page-2-2) First, [\(1.4\)](#page-2-1) in Theorem [1.3](#page-2-2) comes from [\(3.5\)](#page-5-4). Next, we prove [\(1.5\)](#page-2-4). Note that $\{w_{\tau}\}\$ is radially symmetric, since φ_a is radially symmetric (see Remark [1.2\)](#page-2-3). By [\(3.9\)](#page-6-0), $\{w_{\tau}\}\$ is uniformly bounded in $H_{rad}^{1}(\mathbb{R}^{2})$ and there exists a subsequence $\{w_{\tau}\}$ such that $w_{\tau} \to w_{\tau}$ weekly in $H^{1}(\mathbb{R}^{2})$ where $H^{1}(\mathbb{R}^{2})$ denotes subsequence $\{w_{\tau_k}\}$ such that $w_{\tau_k} \to w_0$ weakly in $H^1_{\text{rad}}(\mathbb{R}^2)$, where $H^1_{\text{rad}}(\mathbb{R}^2)$ denotes the Sobolev space of radial $H^1(\mathbb{R}^2)$ functions. For $2 < p < +\infty$ the embedding the Sobolev space of radial $H^1(\mathbb{R}^2)$ functions. For $2 < p < +\infty$, the embedding $H^1(\mathbb{R}^2) \hookrightarrow L^p(\mathbb{R}^2)$ is compact so $w \to w_0$ strongly in $L^p(\mathbb{R}^2)$. This implies that $H_{\text{rad}}^1(\mathbb{R}^2) \hookrightarrow L^p(\mathbb{R}^2)$ is compact, so $w_{\tau_k} \to w_0$ strongly in $L^p(\mathbb{R}^2)$. This implies that

$$
\int_{\mathbb{R}^2} |w_{\tau_k}|^4 dx \to \int_{\mathbb{R}^2} |w_0|^4 dx \quad \text{and} \quad \int_{\mathbb{R}^2} |w_{\tau_k}|^6 dx \to \int_{\mathbb{R}^2} |w_0|^6 dx. \tag{3.12}
$$

By the Pohozaev identity [\(3.2\)](#page-4-4), $w_{\tau_k}(x)$ satisfies

$$
\int_{\mathbb{R}^2} |\nabla w_{\tau_k}|^2 dx - \frac{a_k}{2} \int_{\mathbb{R}^2} |w_{\tau_k}|^4 dx + \frac{2a_k^2}{3} \int_{\mathbb{R}^2} |w_{\tau_k}|^6 dx = 0
$$

and it follows from [\(3.12\)](#page-6-1) that

$$
\lim_{k \to \infty} \int_{\mathbb{R}^2} |\nabla w_{\tau_k}|^2 dx = \frac{a_*}{2} \int_{\mathbb{R}^2} |w_0|^4 dx + \frac{2a_*^2}{3} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$
 (3.13)

By passing to the weak limit $\tau_k \to 0^+$ in [\(3.10\)](#page-6-2), we see that $w_0(x)$ satisfies

$$
-\Delta w_0(x) = -\beta^2 w_0(x) + a_* w_0^3(x) - a_*^2 w_0^5(x).
$$
 (3.14)

We also have the Pohozaev identity (see [\[1\]](#page-8-6)),

$$
\beta^2 \int_{\mathbb{R}^2} |w_0|^2 \, dx - \frac{a_*}{2} \int_{\mathbb{R}^2} |w_0|^4 \, dx + \frac{a_*^2}{3} \int_{\mathbb{R}^2} |w_0|^6 \, dx = 0,\tag{3.15}
$$

where $\beta^2 \in (0, 3/16)$ since $w_0 \neq 0$ (see [\[1\]](#page-8-6)). From [\(3.14\)](#page-6-3) and [\(3.15\)](#page-7-0),

$$
\int_{\mathbb{R}^2} |\nabla w_0|^2 dx = \frac{a_*}{2} \int_{\mathbb{R}^2} |w_0|^4 dx - \frac{2a_*^2}{3} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$
 (3.16)

It follows from [\(3.13\)](#page-6-4) that

$$
\lim_{k \to \infty} \int_{\mathbb{R}^2} |\nabla w_{\tau_k}|^2 dx = \int_{\mathbb{R}^2} |\nabla w_0|^2 dx.
$$
 (3.17)

However, by (3.11) together with (3.12) and (3.17) ,

$$
\lim_{k \to \infty} \int_{\mathbb{R}^2} |w_{\tau_k}|^2 dx = \lim_{k \to \infty} \frac{1}{\tau_k^2 \lambda_{a_k}} \Big(\int_{\mathbb{R}^2} |\nabla w_{\tau_k}|^2 dx - a_k \int_{\mathbb{R}^2} |w_{\tau_k}|^4 dx + a_k^2 \int_{\mathbb{R}^2} |w_{\tau_k}|^6 dx \Big)
$$

= $-\frac{1}{\beta^2} \Big(\int_{\mathbb{R}^2} |\nabla w_0|^2 dx - a_* \int_{\mathbb{R}^2} |w_0|^4 dx + a_*^2 \int_{\mathbb{R}^2} |w_0|^6 dx \Big)$
= $\int_{\mathbb{R}^2} |w_0|^2 dx$.

Combining this with [\(3.17\)](#page-7-1) shows $w_{\tau_k} \to w_0$ strongly in $H^1(\mathbb{R}^2)$ and this yields [\(1.5\)](#page-2-4). By [\(3.8\)](#page-5-3) and [\(3.12\)](#page-6-1),

$$
\lim_{k \to \infty} \tau_k^4 e(a_k) = - \lim_{k \to \infty} \frac{\tau_k^4 a_k^2}{6} \int_{\mathbb{R}^2} |\varphi_{a_k}|^6 dx
$$

=
$$
- \lim_{k \to \infty} \frac{a_k^2}{6} \int_{\mathbb{R}^2} |w_{\tau_k}|^6 dx = - \frac{a_*^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$
 (3.18)

Finally, by applying the same argument as we used before to [\(3.18\)](#page-7-2), we can take a subsequence $\{\tau_k\}$ with $\tau_k \to +\infty$ as $k \to +\infty$, such that

$$
\liminf_{a \searrow a_*} \tau^4 e(a) = \lim_{k \to \infty} \tau_k^4 e(a_k) = -\frac{a_*^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx,
$$
\n(3.19)

where $w_0(x)$ satisfies [\(3.15\)](#page-7-0) with some $\beta^2 \in (0, 3/16)$ and $\int_{\mathbb{R}^2} |w_0(x)|^2 dx = 1$. However, taking the test function $\phi_{\tau} = \tau^{-1} w_0(\tau^{-1}x)$ in $E_a(\cdot)$, we deduce from [\(3.16\)](#page-7-3) that

$$
\tau^4 e(a) \le \tau^4 E_a(\phi_\tau) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla w_0|^2 dx - \frac{a}{4} \int_{\mathbb{R}^2} |w_0|^4 dx + \frac{a^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx
$$

$$
= \frac{a_* - a}{4} \int_{\mathbb{R}^2} |w_0|^4 dx + \frac{a^2 - 2a_*^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$

This means that

$$
\limsup_{a\setminus a_*} \tau^4 e(a) \le -\frac{a_*^2}{6} \int_{\mathbb{R}^2} |w_0|^6 dx.
$$

Combining this with [\(3.19\)](#page-7-4) gives [\(1.6\)](#page-2-5). This completes the proof of Theorem [1.3.](#page-2-2) \Box

References

- [1] R. Carles and C. Sparber, 'Orbital stability vs. scattering in the cubic-quintic Schrödinger equation', *Rev. Math. Phys.* 33 (2021), Article no. 2150004.
- [2] T. Cazenave, *Semilinear Schrödinger Equations*, Courant Lecture Notes in Mathematics, 10 (New York University Courant Institute of Mathematical Sciences, New York, 2003).
- [3] Y. Deng, Y. Guo and L. Lu, 'Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations', *J. Math. Phys.* 59 (2018), Article no. 011503.
- [4] A. Desyatnikov, A. Maimistov and B. Malomed, 'Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity', *Phys. Rev. E* 61 (2000), 3107–3113.
- [5] Y. Guo and R. Seiringer, 'On the mass concentration for Bose–Einstein condensation with attractive interactions', *Lett. Math. Phys.* 104 (2014), 141–156.
- [6] Y. Guo, Z. Wang, X. Zeng and H. Zhou, 'Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials', *Nonlinearity* 31 (2018), 957–979.
- [7] Y. Guo, X. Zeng and H. Zhou, 'Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials', *Ann. Inst. H. Pioncaré Anal. Non Linéaire* 33 (2016), 809–828.
- [8] T. Hmidi and S. Keraani, 'Blowup theory for the critical nonlinear Schrödinger equations revisited', *Int. Math. Res. Not. IMRN* 46 (2005), 2815–2828.
- [9] R. Killip, T. Oh, O. Pocovnicu and M. Visan, 'Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on \mathbb{R}^3 ³, *Arch. Ration. Mech. Anal.* **225** (2017), 469-548.
- [10] R. Killip, M. Rowan, J. Murphy and M. Visan, 'The initial value problem for the cubic-quintic NLS with nonvanishing boundary conditions', *SIAM J. Math. Anal.* 50 (2018), 2681–2739.
- [11] M. Lewin and S. R. Nodari, 'The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, nondegeneracy and applications', *Calc. Var. Partial Differential Equations* 59 (2020), Article no. 197.
- [12] P. L. Lions, 'The concentration-compactness principle in the calculus of variations. The locally compact case. Part I', *Ann. Inst. H. Poincaré Anal. Non Linéaire* 1 (1984), 109–149.
- [13] B. Malomed, 'Vortex solitons: old results and new perspectives', *Phys. D* 399 (2019), 108–137.
- [14] F. Merler and Y. Tsutsumi, '*L*² concentration of blow-up solutions for the nonlinear Schrödinger equation with the critical power nonlinearity', *J. Differential Equations* 84 (1990), 205–214.
- [15] K. I. Pushkarov, D. I. Pushkarov and I. V. Tomov, 'Self-action of light beams in nonlinear media: soliton solutions', *Opt. Quantum Electron.* 11 (1979), 471–478.
- [16] N. Soave, 'Normalized ground states for the NLS equation with combined nonlinearities', *J. Differential Equations* 269 (2020), 6941–6987.
- [17] N. Soave, 'Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case', *J. Funct. Anal.* 279 (2020), Article no. 108610.
- [18] T. Tao, M. Visan and X. Zhang, 'The nonlinear Schrödinger equation with combined power-type nonlinearities', *Comm. Partial Differential Equations* 32 (2007), 1281–1343.
- [19] Q. Wang and B. Feng, 'On a parameter-stability for normal ground states of two-dimensional cubic-quintic nonlinear Schrödinger equations', *Z. Angew. Math. Phys.* 73 (2022), 1–17.
- [20] M. I. Weinstein, 'Nonlinear Schrödinger equations and sharp interpolations estimates', *Comm. Math. Phys.* 87 (1983), 567–576.

DEKE LI, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China e-mail: lidekemath@163.com

QINGXUAN WANG, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China e-mail: wangqx@zjnu.edu.cn