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CHAOS IN PERTURBED LOTKA-VOLTERRA SYSTEMS
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Abstract

Lotka-Volterra systems have been used extensively in modelling population dynamics. In
this paper, it is shown mat chaotic behaviour in the sense of Smale can exist in time-
periodically perturbed systems of Lotka-Volterra equations. First, a slowly varying three-
dimensional perturbed Lotka-Volterra system is considered and the corresponding unper-
turbed system is shown to possess a heteroclinic cycle. By using Melnikov's method,
sufficient conditions are obtained for the perturbed system to have a transverse heteroclinic
cycle and hence to possess chaotic behaviour in the sense of Smale. Then a special case
involving a reduction to a two-dimensional Lotka-Volterra system is examined, leading
finally to an application with a model for the self-organisation of macromolecules.

1. Introduction

Lotka-Volterra systems and many of their variants have been the subject of numerous
studies. Many authors have investigated the potential chaotic behaviour of certain
systems of Lotka-Volterra equations (see for instance [4,6,10,11,14-16,20,21]) and
a large number of authors have used computer simulations in their investigations.
There are not many analytical methods available to establish the existence of chaotic
behaviour in systems of differential equations. However, if we have an autonomous
system of ordinary differential equations possessing a heteroclinic cycle or a homo-
clinic orbit, then we can study such systems under a time-periodic perturbation by
using a technique originally due to Melnikov [13]. This technique is called Melnikov's
method and it can be used to establish the existence of a transverse heteroclinic cycle
or a transverse homoclinic point in the dynamics generated by the associated Poincarg
map [7,23]; the existence of such a cycle or point then implies the existence of chaotic
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behaviour in the sense of Smale by the Smale-Birkhoff homoclinic theorem [24,27].
The authors have given an application of Melnikov's method to a sociobiological
system in a recent paper [2].

The study of Lotka-Volterra systems driven by time-periodic external forces is of
considerable interest in applications since almost all communities (macroscopic and
microscopic) of natural populations are in periodic environments (seasons, daylight,
temperature, mating habits, food availability). One of the primary concerns is to
examine and understand how the magnitude of perturbations affect the densities of
various species in different communities. A wide variety of dynamical behaviour of
systems in periodic environments is possible [5]. The primary purpose of this article
is to use Melnikov's method to investigate the potential existence of chaotic behaviour
in certain Lotka-Volterra systems driven by time-periodic perturbations.

The layout of the paper is as follows. In Section 2, we consider a slowly varying
perturbed three-dimensional Lotka-Volterra system and show that the corresponding
unperturbed system has a heteroclinic cycle and a continuous family of periodic orbits.
In Section 3, we use the results of Wiggins and Holmes [25] to apply Melnikov's
method. Sufficient conditions for the existence of chaotic behaviour in the sense of
Smale are obtained. Then, in Section 4, we consider a special case of the three-
dimensional Lotka-Volterra system which we reduce to a two-dimensional system.
Finally, in Section 5, an application is given with a model for the self-organisation of
macromolecules. A sufficient condition for the existence of chaos is provided.

2. The Lotka-Volterra system

Consider the slowly varying time-periodically perturbed Lotka-Volterra system

— = x(c - bx - 2dy + az) + €[ktx + (k2 + k&) sin art],
at
dy
-f- = v(-c + 2bx + dy- az) + €[A.,y + (k2 + k3y) sinart], (2.1)
at

— = ez(k4 + k5 sin cot — k& + k7y — ksz),
at

where 0 < e « 1 denotes the perturbation parameter, co > 0 is the frequency of
the perturbation, a, b, c, d > 0 and kj (j = 1 , . . . , 8) are real parameters. Letting
<f> (t) = <ot (mod T), where T = 2n/a> is the period of the perturbation, we have the
suspended system

- ^ = x(c - bx - 2dy + az) + e[kix + (k2at
dy
-j- = v(-c + 2bx + dy- az) + e[A.,v + (k2 + k3y) sin<£], (2.2)
at
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dz
ez(k4 + ks sin <f> - kex + X1y - A.8z),

at
d<t>

where (x, y, z, 4>) € R3 x S^, in which S^ = R (mod In). Now (2.1) with € = 0
is a one-parameter family of planar Hamiltonian systems with Hamiltonian

H(x,y,z) = xy(c-bx-dy + az) = h. (2.3)

In the plane z = Zo, there are four fixed points: A(0,0), B(0, p/d) and C(p/b, 0) are
saddle points; D(p/(3b), p/(3d)) is a centre, where p = c 4- azo- Consider x > 0,
y > 0 and z > 0. The straight lines x =0,y = 0 and p — dy — bx = 0 are invariant
lines. When h € (0, p3/(21bd)), the family of curves denned by (2.3) is a continuous
periodic family {F*>z} surrounding the centre at D. The system (2.1) for € = 0 has the
phase portrait shown in Figure l(a). There are three heteroclinic orbits consisting of
three straight line segments connecting the three saddle points. The existence of this
heteroclinic cycle enables us to consider an application of Melnikov's method in the
next section. One can derive the following parametric representations for the three
heteroclinic orbits (each orbit lies on the plane z = Zo):

AB: ,.(,, = 0, M t ) = 1 — ^ - — y (2 .4,

C -+" CLZ C -\- QZ
( 0

and the periodic family {rh-z} has parameterisation:

1 - A2 sn2(S2r, k)
_1_ I" by _ 2A2S2 sn(Qt, k) cn(Qt, k) dn(Qf, k) 1

~ 2d[C~ l-A2sn2(fir, k)+°Z 1 - A2sn2(S2r, k) J '
Zk(t) = zo,

where A = (^ - y)/P, J2 = */b(a - y)P/2 and a, 0 and y are the real zeros of the
polynomial

G(u) = M3 - -(c + az)M2 + rz(c + azfu -
O t
-(c + az)M + rz(c + azfu - —,
O tr tr

for fixed z = Zo, and a > p/b > 0 > p/(3b) > y > 0. The functions
sn(-, k), cn(-, £) and dn(-, k) ait Jacobi elliptic functions [1] with elliptic modu-
lus k = V(0 - y)a/l(<* - y)P], 0 < A < k. The period of the family {r*z} is
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Th-Z = 2K(k)/Q, where k € (0,1), in which K(k) is the complete elliptic integral
of the first kind [1]. As h varies from 0 to p*/(27bd), k decreases from 1 to 0 and
{rh'z} contracts to the centre D. The period of {F*iZ} is a monotonic function of k. As
k increases from 0 to 1, the period of {F*z} increases from 0 to oo.

3. Melnikov integrals

Wiggins and Holmes [25,26] have studied periodic orbits and homoclinic or-
bits in slowly varying oscillators (see also [3,18,19,22,27]). Generally, for het-
eroclinic orbits, the Melnikov function for homoclinic orbits cannot work because
(,3H/dz)(q0(-oo)) jL (dH/dz)(q0(oo)), where qo(t) = (xo(t), yo(t), Zo) (see [25]).
However, for the system (2.2) with e = 0, since dH/dz = axy, by (2.4H2.6) we
know that (dH/dz)(q0(-°o)) = (dH/dz)(q0(oo)) = 0, so that we can use the same
formula for the Melnikov function for homoclinic orbits with heteroclinic orbits:

_ f°° /dH dH

J-oo \ dx dy
dH \ dH f°°

+-r-(.qo(t))g3(qo(t), t + to) \dt - —-(y(zo)) / giiqoO), t + to) dt,
oz J az J-oo

where y is the parameterisation of a union of saddle points of the one-parameter
family of planar systems and g = (gi, g2, ft) is the perturbation function (see [25]).
Since the points A, B and C are saddle points of (2.1) with e = 0, when viewed in
the three-dimensional phase space, this system possesses three normally hyperbolic
invariant one-dimensional manifolds Jf, (i = 1,2, 3), given by the union of saddle
points of the one-parameter family of planar systems. For each i = 1,2,3, ^ h a s two-
dimensional global stable and unstable manifolds Ws(*4£) and W(^) respectively
such that U^=1 W

s (Jft p | W"(«/f£) is made up of the union of the heteroclinic orbits
of the one-parameter family of planar systems (2.1) with € = 0 which is shown in
Figure l(b).

For the suspended system (2.2) with e = 0, we denote the normally hyperbolic
invariant sets by ^ = (jVl, $) = jV[ x S^ • By the implicit function theorem,

',(z) = (x(z),y(z), z),fdx, y, z) =fi{x,y,z) = 0,

<O,0€S*r,Z€(O,Z)|,
d(x,y)

for i = 1,2, 3, where (/i ,/2,0) is the unperturbed vector field, and
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(a)

Y,(z) Y,(z)

(b)

FIGURE 1. Phase portrait of the system (2.1) with e = 0.
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and Z > 0 is a constant. By Proposition 2.1 of Wiggins and Holmes [25], we know
that there exists e0 > 0 such that for 0 < e < €0 <S 1 there exist three normally
hyperbolic invariant one-manifolds

;O, <t>) = (y,(z) + O(e), 0 ) : <f> e S^,z € (0, Z)}, i = 1,2,3.

Each Jl(. has local stable and unstable manifolds denoted by W(x{Ji((.) and
respectively, which are C-close to the local stable and unstable manifolds of jfli,
denoted by W'^^i) and W1^c(^), respectively. We now use Proposition 2.2 of
Wiggins and Holmes [25], a result which involves averaging. Let g3(y,(z)) = 0,
i = 1,2, 3, where gj is the time average of g3. Then, using the fact that

g3ix, y, z, 0 = z(A.4 + ks sin art — k& + k7y — A8z),

we have
c + az

= z (A-4 - = 0,

= 0.

Hence we obtain:

(1) When A.4 ̂  ckf,/b, at the points zo = 0 and zo = Zi = (fê -4 — ck6)/(ak6 +
^ O),g3(yi(zo)) = Oandd(g3(yi(z)))/rfz|z=S) ^ 0, so (

is a hyperbolic periodic orbit on ^#ei with period 2n/u>.
(2) When k4 ^ 0, at the points zo = 0 and za = Z2 = >-4/̂ s (if A* ̂  0), ̂ 3(y2(zo)) =

0 and d(g3(y2(z)))/dz\z=!0 £ 0, so (y2(zo) + O(e), <p) is a hyperbolic periodic orbit
on ^f2 with period 2n/co,
(3) WhenA.4 ^ -ck7/d, at the points zo = Oandzo = z3 = (dA.4+cA7)/(dA.8-aA.7)

(if rfX8-aX7 # O),ft(Ki(zb)) = Oand^ 3 (y 3 (z) ) ) / r fz |^ ^ 0, so (y3(zo)+ O(e), <j>)
is a hyperbolic periodic orbit on ^ ( J with period 2n/co.

In order to have the existence of a transverse heteroclinic cycle, we have to assume
that three unperturbed heteroclinic orbits lie on the same zo level, so that we need the
condition Zo = Zi = Zz = z3 or zo = 0. From the first condition, it follows that k6 = 0
and k7 = 0. Hence, z\ = Z2 = Z3 = -̂4 As = z*. say, if X8 # 0.

We now calculate the Melnikov functions. Along with the unperturbed heteroclinic
orbits given by (2.4M2.6), from (3.1) the Melnikov functions are as follows (note that

-FMAB(to) = / {xo(t)(j>-bxo(t)-2dyo(t))[kiyo(t)+(k2+k3yo
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+ yo(t)(p - 2bxo(t) - dyo(t))[)nxo(t) + (X2 + A^oW) sin(a>(f + to))]

k5 sin(o)(f + to)) - A.6X0(0 + hyo(t) - A.8Zb)} dt

= A.2 / yo(t)(p - dyo{t)) sin(a>(f + to))dt
J-oo

k2p
2 f°° sin(a>(? + to)) (' 1 \ ,

= ~rL l + ep> \}-T+*)dt

^2P2 f . f°° /costur cos cot \
= stacoto I I — —r I at

/

°° ( sin cot sina>t \ , 1
I T* ^ I dt

oo \ 1 + ept (1 + ep')2 / J

71(0X2 , {x^x .= —— cosech j — I smcoto,
d \ P )

using a result from [1] and since the integrand of the second integral is odd. Similarly,
we have

f°°
MAC(to) = A.2 / xo(t)(p - fcco(O) sin(o)(f + to))dt

J-oo

^2P2 rsinitojt + to)) / 1 \
b J-oo l+e-r' \ \ + e-P'J

I — I si
\P J

= —-— cosech

Also, we have

MBC(to) = k2 I [xo(t)(p - bxo(t) - 2dyo(t))
J-00

+ yo(O(p - 2bxo(t) - dyo(t))] sin(co(t + to)) dt

- I xo(t)yo(t)p (A., + A.3 sin(a>(t + to))) dt
J-00

f°°
J-oo0

sin(<u(r + to)) / , 1 2 \
1+eP' \ 1 + eP' 1+e-P'J

r°° sinMt + to)) r _ 2 _ 1 \ dt

'* 3 ! m ^ f — ^ - < * f
(1 + C '

Lazop2 f°° k4 + A.; sinjvjt + to)) - kszp

bd J.x (1 + e-"')(l + eP')
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dt

dt3 r°
bd2 J-oo (1 + eP')(l + e-P

' kgZo) k\P O.Z0P'

bd bd 2bd
(hi M
\d"b)

[1 (^ , ^ \ , ^3P ksazo~\ , (xQ>\ .

A.2 I 7 + — I + —— —— na> cosech I — I sm<u/b-
\b d) bd bd j \ p )

Therefore, when zo = 0,

JZ(Ok2

MAB(to) = —-j- cosech
ncoX.2 /ft(')\

MAC(to) = — — cosech ( — I sin coto, (3.2)
b V c /

^- + - j + —J ™ cosech (—

When zo = z* (and hence X6 = A.7 = 0 and X8 ^ 0),

cosech(A4a>) sin tu<b.

cosech(A4w) sincoto, (3.3)

4Co) sin

where

+ aX4)
2 _ 1 1 _ cA-g + aA.4

fcd^ ' A2~b + d' A3~ bdks '
7rX8 aA4

A4 = ——;——, As = —ckg + aA.4 bdk

From (3.2), we know that if A,2 5̂  0 and

b + d. 1
no) cosech ( — ) , (3.4)

then every Melnikov function has simple zeros; hence, there exists a transverse het-
eroclinic cycle to the hyperbolic periodic orbits (K,(0) + O(€), 0), i = 1, 2, 3, for
sufficiently small e. Similarly, from (3.3), if k2 ^0,ks^0 and

Ai|A.i| < |A2A.2 + A3X3 + A5A.5|n-£tJcosech(A4a>), (3.5)
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1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 02 0 02 0.4 0̂ 6 0.8 1 12 1.4 1.6 1.8

FIGURE 2. Anort>itof(2.1)fora = b = c = d = 0.5, eo = 1,X, = - 0 . 0 0 1 , k2 = 1, A.3 = 0, A4 = 1,
A.5 = 1, X* = 0, A.7 = 0, A.g = 1 and € = 0.05. The initial value chosen was (x(0), y(0) , z(0)) =
(0,0,0.01).

then there exists a transverse heteroclinic cycle to the hyperbolic periodic orbits
(Yi(z*) + O(€), <p), i = 1, 2,3, for sufficiently small e. In both cases, the PoincarS
map of (2.2) has transverse homoclinic points; this means that (2.2) and hence (2.1)
have chaotic motions of Smale horseshoe type for sufficiently small € by the Smale-
Birkhoff homoclinic theorem [24,27].

THEOREM 3.1. Suppose x2j^0. If

(1) X4 ^ 0, c\6/b, -c\-,ld and (3.4) holds, or
(2) A.4 # 0, k6 = A.7 = 0, X8 j£ 0 and (3.5) holds,

then chaotic behaviour in the sense of Smale exists in the system (2.1) for sufficiently
small e.

Consider the case when a = b = c = d = 0.5, co — 1, k\ = —0.001, A.2 = 1,
A.3 = 0, X4 = 1, A.5 = 1, A.6 = 0, Xy = 0 and A.8 = 1. These parameter values imply
that Ai = 4, A2 = 4, A3 = 4, A4 — n, A5 = —2 and z* = 1 and it is easily verified
that the hypotheses (1) and (2) in Theorem 3.1 are satisfied, so chaotic behaviour
exists for sufficiently small e. We now present a computer simulation in Figure 2
where we have chosen e = 0.05; this figure shows an orbit of (2.1) near the plane
z = 1. Clearly, the plane z = 0 is invariant so orbits that start on z = 0 never leave
2 = 0 and, in effect, we have a two-dimensional system which is analysed in the next
section.
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4. The two-dimensional case

Consider the system (2.1) with z = 0. We obtain the two-dimensional time-
periodically perturbed Lotka-Volterra system given by

- ^ = x(c - bx - 2dy) + e[A.,;t + (A.2 + M ) siacot], (4.1)
at
dy
-j-=y(-c + 2bx + dy) + e[A,y + (A.2 + k3y) sin <ot].
at

Our analysis in Sections 2 and 3 in the case where Zo = 0 can be applied to the system
(4.1). Hence, from (3.4), if k2 # 0 and

d. 1.
—A.2 H—J

/JtCO\
no) cosech ( — I, (4.2)

then all three Melnikov functions of the system (4.1) have simple zeros. Hence (4.1)
has a transverse heteroclinic cycle for sufficiently small e, so chaotic behaviour exists
for sufficiently small e.

THEOREM 4.1. Suppose \2 ^ 0 and (4.2) holds. Then chaotic behaviour in the
sense ofSmale exists in the system (4.1) for sufficiently small €.

We note that this result could also be obtained using the standard Melnikov's
method for planar systems with a heteroclinic cycle (see [12]). Consider now the case
when b = c = d = 0.5, a> = 1, A.j = — 0.001, A.2 = 1 and X3 = 0. It is easily verified
that these parameter values satisfy the inequality (4.2), so chaotic behaviour exists for
sufficiently small e. We present some computer simulations in Figures 3 and 4 where
we have chosen e = 0.05.

5. A two-dimensional example

In this section we provide an application with a model for the self-organisation of
macromolecules [8,9,17]. We begin by considering a three-dimensional system of
Gauss-Lotka-Volterra type which models self-organisation between three molecular
species 1, 2 and 3 whose densities are xux2 and JC3 respectively [17]:

X,(JC, +ax2 + 0x3 - M),
at

^ x 2 ( P x l + x 2 + a x 3 M ) , (5.1)
at

—f- = x3(axi -f- 0x2 + x3- M),
at
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~ 0.4-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 3. An oibit of (4.1) for * = c = d = 0.5, co = 1, Xi = -0 .001 , k2 = 1, X3 = 0 and e = 0.05.
The initial value chosen was (x(0), y(0)) = (0,0).

where

M = XiOti + ax2 + 0x3) + x2(Pxi +x2 + axj) + Xi(axi + 0x2 + x3).

We consider the case 0 < a < 1 < 0, a + fi < 2. If we let V = Xi + x2 + x%, then

and so orbits in R\ = {(xux2,x3) e R3 : xt > 0, i = 1,2,3} (with the exception of
the fixed orbit at the origin) converge as t -*• oo to the invariant simplex

= 1}.

We consider the dynamics of the system on S3 in the limiting case a + fi = 2. Then
we can show that the system (5.1) reduces to the two-dimensional system (writing
x = xi and y = x2)

at
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>> 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 4. Poincar6 points (minus transients) of (4.1) fmb = c = d = 0.5,w= l,kt = - 0 . 0 0 1 , A.2 = 1,
A.3 = 0 and e — 0.05.

at

This system is identical to the system (4.1) with € = 0 and b = c = d = I —a. Now
consider the perturbed system

— = (1 - a M l - x - 2y) + e[Xix + (X2 + X3x) sincot], (5.2)
at
dy
-j- = (1 - a)y(-l +2x+y)
dt

k3y) sincot],

w h i c h i s i d e n t i c a l t o t h e s y s t e m ( 4 . 1 ) w i t h b = c = d = l — a . F r o m ( 4 . 2 ) , i f k2 # 0
a n d

7TC0
|A, | < |2A.2 + A.3| cosech

1 — a
(5.3)

then chaotic behaviour in the sense of Smale exists in the system (5.2) for sufficiently
small e.
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