
J. Fluid Mech. (2024), vol. 999, R1, doi:10.1017/jfm.2024.995

On the boundary-layer asymmetry in
two-dimensional annular Rayleigh–Bénard
convection subject to radial gravity

Abhiroop Bhadra1, Olga Shishkina2 and Xiaojue Zhu1,†
1Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
2Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

(Received 12 September 2024; revised 8 October 2024; accepted 10 October 2024)

Radial unstable stratification is a potential source of turbulence in the cold regions of
accretion disks. To investigate this thermal effect, here we focus on two-dimensional
Rayleigh–Bénard convection in an annulus subject to radially dependent gravitational
acceleration g ∝ 1/r. Next to the Rayleigh number Ra and Prandtl number Pr, the radius
ratio η, defined as the ratio of inner and outer cylinder radii, is a crucial parameter
governing the flow dynamics. Using direct numerical simulations for Pr = 1 and Ra in the
range from 107 to 1010, we explore how variations in η influence the asymmetry in the flow
field, particularly in the boundary layers. Our results show that in the studied parameter
range, the flow is dominated by convective rolls and that the thermal boundary-layer (TBL)
thickness ratio between the inner and outer boundaries varies as η1/2. This scaling is
attributed to the equality of velocity scales in the inner (ui) and outer (uo) regions. We
further derive that the temperature drops in the inner and outer TBLs scale as 1/(1 + η1/2)
and η1/2/(1 + η1/2), respectively. The scalings and the temperature drops are in perfect
agreement with the numerical data.
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1. Introduction

Thermal convection is a pivotal process in astrophysical and geophysical systems, critically
influencing energy transport in a variety of environments. It drives the convective zones
within stars (Hotta & Kusano 2021; Vasil, Julien & Featherstone 2021), shapes the
interiors of planets (Samuel et al. 2021), governs atmospheric dynamics in gas giants
(Christensen 2001; Christensen & Wicht 2008) and plays a significant role in the behaviour

† Email address for correspondence: zhux@mps.mpg.de

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 999 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:zhux@mps.mpg.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.995&domain=pdf
https://doi.org/10.1017/jfm.2024.995


A. Bhadra, O. Shishkina and X. Zhu

of protoplanetary disks (Klahr 2006; Hirose et al. 2014). Recent research has highlighted
convection driven by radial stratification, with gravity pointing to the centre, as a potential
driver of turbulence within the cold regions in protoplanetary disks, especially within
the 1–10 AU range (Teed & Latter 2021). The cold regions inside protoplanetary disks,
often modelled as cylindrical systems with central heating sources, present a unique
challenge for understanding convection dynamics. To address this, our study employs
two-dimensional (2-D) direct numerical simulations (DNS) within an annular geometry to
investigate convection driven by radially dependent gravity, g ∝ 1/r. While planar thermal
convection, particularly Rayleigh–Bénard convection (RBC) between horizontal plates,
has been extensively studied (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà
& Schumacher 2012; Shishkina 2021; Lohse & Shishkina 2024), convection in annular
configurations remains comparatively underexplored. Because of the relatively cheap
computational cost, the 2-D simulations can provide valuable insights into annular RBC
across a broad parameter space, advancing our understanding of the complex dynamics at
play.

A key focus of this study is the asymmetry in thermal boundary-layer (TBL) thickness
that arises in annular systems due to curvature effects. This asymmetry can significantly
impact flow dynamics and heat transfer, making it essential for accurately characterizing
convection processes. Our research examines these asymmetries using data from DNS,
considering critical control parameters such as the Rayleigh number (Ra) and the Prandtl
number (Pr). The radius ratio η ≡ ri/ro, where ri and ro are the inner and outer radii of the
domain, respectively, serves as the primary geometric variable influencing the convection
behaviour.

In comparison, previous studies have focused mainly on the boundary-layer (BL)
asymmetry within the spherical shell convection (see Sharpe & Peltier 1978; Schubert
& Zebib 1980; Zebib et al. 1983; Tilgner 1996). For instance, Jarvis (1993) attributed
this asymmetry to differences in BL Rayleigh numbers (Raλ) for marginally stable BLs,
following the criteria established by Malkus (1954). Extending this work, Vangelov
& Jarvis (1994) explored 2-D axisymmetric convection and similarly observed TBL
asymmetries, which they explained satisfactorily through the same marginal stability
criteria. However, later work by Deschamps, Tackley & Nakagawa (2010) in spherical
convection simulations challenged these findings. Their study revealed that the ratio of
inner to outer Raλ scales as η2, diverging from the previous assumption of equality.
Notably, these earlier studies focused on simulating Earth’s mantle conditions, assuming
infinite Pr and a constant gravitational acceleration g. Recently, Gastine, Wicht & Aurnou
(2015) conducted simulations of thermal convection in spherical geometries, with radius
ratios η ranging from 0.2 to 0.95, Ra spanning from 103 to 109, and Pr fixed at 1. They
explored various gravity profiles; including g ∝ r, 1, 1/r2, 1/r5. Their results revealed
that none of the previously established scaling arguments could adequately explain the
asymmetry observed in their data. Instead, they proposed a new scaling argument based
on the equality of interplume areas in the inner and outer shells, which explained the
asymmetry. The only study that specifically addresses BL asymmetry in cylindrical
geometry was conducted by Wang et al. (2022). In this work, they performed numerical
simulations where a cold inner shell and a hot outer shell rotated coaxially, with centrifugal
force serving as the buoyancy source. Their research explored a range of η from 0.3 to 0.9
and Ra from 106 to 108, using Pr of 4.3. To quantify the TBL asymmetry observed in their
system, they employed the scaling methodology developed by Wu & Libchaber (1991) for
non-Oberbeck–Boussinesq (NOB) RBC, providing valuable insights into the complexities
of TBL behaviour in such configurations.
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Thermal boundary layers in 2-D annular Rayleigh–Bénard flow

Outer shell: T = 0 (r = ro)

g = – r
ro er

Inner shell:

      T = 1 (r = ri)

Figure 1. Sketch of the geometry used in the DNS with a hot inner shell at the inner radius ri and a cold outer
shell at the outer radius ro.

The present study aims to quantify the asymmetry of TBL within a 2-D annular
RBC system driven by radial gravity which is directed toward the centre and inversely
proportional to the distance from the centre, as opposed to the centrifugal-force-driven
convection explored by Wang et al. (2022). While previous studies have proposed various
scaling laws for TBL asymmetry in different geometries, these scalings do not adequately
describe the behaviour observed in our system. Therefore, the main motivation of this
work is to derive new scaling laws tailored to this specific configuration, providing a
more comprehensive understanding of the mechanisms driving TBL asymmetry in radially
stratified convection systems.

2. Numerical model

The configuration considered in this study consists of a heated inner shell and a cooler
outer shell, with radially inward gravity providing the buoyancy (see figure 1). This differs
from set-ups that use the outward centrifugal force as the buoyancy source (see Jiang et al.
2020, 2022; Wang et al. 2022, 2023; Zhong, Wang & Sun 2023; Zhong, Li & Sun 2024;
Yao et al. 2025) where the outer shell is heated and the inner shell is cooled. Since the
considered gravitational acceleration equals g ≡ −ger , where g ≡ ro/r and er is the unit
vector in the radial direction, the dimensionless equations governing the system are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u + gTer, (2.2)

∂T
∂t

+ u · ∇T =
√

1
PrRa

∇2T, (2.3)

where u, p, T and t denote the velocity, pressure, temperature and time, respectively.
The control parameters include the Rayleigh number Ra = αgo�L3/(νκ), the Prandtl
number Pr = ν/κ , and the radius ratio η = ri/ro. The non-dimensionalizing parameters
are the characteristic length L = ro − ri, temperature Δ = Ti − To, and free-fall velocity
U = √

αgo�L. Here, α denotes the isobaric expansion coefficient, go is the gravitational
constant at the outer shell, (ν) is the kinematic viscosity and (κ) is the thermal diffusivity
while ri and ro are the inner and outer radii. We used a second-order finite-difference
code, as referenced in Verzicco & Orlandi (1996), Van Der Poel et al. (2015) and
Zhu et al. (2018b). All simulations enforce no-slip and isothermal boundary conditions.
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Figure 2. Azimuthally (φ) and temporally (t) averaged temperature fields for (a) Ra = 107 and (b) Ra = 1010,
and varying η. In (a), data from Zhu et al. (2018a) are added for comparison with planar RBC for the aspect
ratio Γ = 2.

3. Flow field

In our simulations, Ra and η span from 107 to 1010 and 0.2 to 0.8, respectively. The
averaged temperature fields, shown in figure 2, reveal that the midpoint temperature
deviates from the average boundary temperatures, with this deviation becoming more
pronounced at lower η. Additionally, the inner TBL width is smaller than the outer TBL
width, with this asymmetry increasing as η decreases. Notably, for Ra = 107 at η = 0.2, a
slight temperature gradient is observed in the bulk region of the flow.

Due to the 2-D nature of our simulations, the flow is dominated by convective rolls, as
depicted in figure 3. These rolls are distorted by the flow geometry, becoming narrower
near the inner shell and wider near the outer shell. At lower η, due to the increasing
asymmetry in the flow field, the cold plume becomes fragmented. This is due to the
shearing of the cold plume by the convective roll. Mass conservation requires any radially
outward mass flux to be balanced by radial inflow. Since the plume widths scale with TBL
widths (Ching et al. 2004), the radial flow velocity in the inner plume exceeds that in the
outer plume. The convective rolls, driven by the hot inner plume, exhibit higher velocities
compared with the outer plume. At lower η, this shear effect fragments the outer plume.
This also causes cold fluid from the outer BL to be mixed into the bulk flow. Although
higher Ra levels lead to increased mixing and temperature homogenization, at low η and
low Ra (e.g. η = 0.2 and Ra = 107), the temperature gradient persists in the bulk region.
As Ra increases, both inner and outer plumes break up, forming vortices that eventually
merge into the convective rolls.

4. Boundary layers

For an annular geometry, the mismatch between the circumferences of the inner and outer
shells leads to unequal heat fluxes through them. In our simulations, we have detected the
BLs using the slope method, see e.g. Shishkina et al. (2010). Assuming purely conductive
heat transfer through the TBLs, the following relation holds true in 2-D annular RBC:

η
�Ti

λi
= �To

λo
, (4.1)
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Figure 3. Instantaneous temperature fields for different η at Ra = 108: (a) η = 0.2, (b) η = 0.4, (c) η = 0.6,
(d) η = 0.8.

where λi(λo) is the TBL width near the inner (outer) wall, and �Ti(�To) is the
temperature drop within the corresponding TBLs. Moreover, based on our simulations
(see figure 2) we conclude that, similar to planar RBC, the temperature drop across the
shells occurs only in the BLs if the flow is turbulent (Ra is large). Hence, the following
relation also holds true:

�Ti + �To = 1. (4.2)

By the definition of Nu, evaluated at the walls, we have Nu = r(∂T/∂r) ln η. From this,
we obtain

�Ti

λi
≈ 1 − η

η

Nu
ln η

, (4.3)

�To

λo
≈ (1 − η)

Nu
ln η

. (4.4)

Equations (4.3) and (4.4) combine to give (4.1). In order to quantify the variables �Ti,
�To, λi and λo, (4.1), (4.2), (4.3) and (4.4) are not sufficient. Additional relations between
the parameters are required.

4.1. Wu & Libchaber assumption
An asymmetric temperature field is also observed in planar NOB RBC (Wu & Libchaber
1991; Zhang, Childress & Libchaber 1997; Bodenschatz, Pesch & Ahlers 2000; Ahlers
et al. 2006; Weiss, Emran & Shishkina 2024). Several authors have previously attempted
to quantify the asymmetry of the temperature field due to the effects of NOB conditions
on planar RBC systems (see Ahlers et al. 2006; Horn, Shishkina & Wagner 2013; Horn &
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Shishkina 2014; Weiss et al. 2018; Yik, Valori & Weiss 2020). Possibly the simplest model
was proposed in the seminal work of Wu & Libchaber (1991). Based on their experimental
results, they inferred that in the central region, temperature fluctuation scales of the colder
region are equal to that of the hotter region and obtained the following equality:

θi ≡ νκ

αgiλi
3 = νκ

αgoλo
3 ≡ θo. (4.5)

Here, (gi) and (go) are the gravitational accelerations at the inner and the outer TBLs,
respectively. The proposed model could predict both the midpoint temperature and the heat
transfer rate in an RBC cell with NOB effects. Wang et al. (2022) used this model to obtain
relations between different BL parameters for RBC in a rotating cylindrical geometry. For
the present flow configuration, it results in the following expressions:

λi = η ln η

(1 + η2/3)(1 − η)Nu
, �Ti = 1

1 + η2/3 , (4.6a)

λo = η2/3 ln η

(1 + η2/3)(1 − η)Nu
, �To = η2/3

1 + η2/3 . (4.6b)

Figure 4(c) shows the comparison of the analytical expression with the results from the
present simulations. A significant deviation can be seen towards the lower η. Gastine et
al. (2015) demonstrated that in spherical geometries, this model deviated from observed
results under various gravity profiles, including uniform gravity. In the original study by
Wu & Libchaber (1991), the model’s validity was confirmed for Pr ∼ 1, and Zhang et
al. (1997) extended this to Pr values ranging from 300 to 7000. Thus, it appears that
the Pr should not significantly impact the model’s applicability. We hypothesize that the
geometry of the container and in particular its curvature has a stronger impact. It influences
the plume thickness along its path through the bulk, leading to changes in the temperature
fluctuation scales and contributing to the observed deviations from the above model.

4.2. Gastine et al. assumption
Based on the disparity between the sizes of the plumes ejected from the inner and outer
shells, Gastine et al. (2015) proposed that the average plume spacing in the inner and
outer shells are equal. Their hypothesis was based on the observance that the plumes
ejected from the outer BL are thicker than those ejected from the inner BL. To prove the
hypothesis, they obtained probability distributions of the interplume area in both the inner
and outer shells and found them to be overlapping. Furthermore, as the interplume area
is proportional to the interplume spacing, they derived an expression for the interplume
spacing in the inner (outer) shell as li =

√
αgi�Tiλi

5/(νκ) (lo =
√

αgo�Toλo
5/(νκ))

which when equated leads to the following:√
αgi�Tiλi

5

νκ
=

√
αgo�Toλo

5

νκ
. (4.7)

Using (4.7) along with (4.1) and (4.2) we obtain that λi/λo = η1/3. This leads to the
same set of equations as (4.6a)–(4.6b). We have already seen that these equations do not
concur with the results of present simulations. We conjecture that this might be due to the
dominance of convective rolls in our set-up. Moreover, this model is based on geometrical
constraints and does not depend on the gravity profile; it was efficient across various
gravity profiles in Gastine et al. (2015). However, it has only been applied to the case
of Pr = 1. Hence, it is unknown how it depends on Pr.
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Figure 4. Comparison of the various scaling criteria with the present data. (a) Ratio of the BL Ra based on
the argument of Jarvis (1993). (b) Ratio of average plume spacings in the inner and outer shells (Gastine et al.
2015). (c) Fluctuating temperature scales as defined in Wu & Libchaber (1991). (d) Ratio of the velocity scales
of the inner and outer BLs.

4.3. Jarvis assumption
Based on the argument of marginal BL stability (Malkus 1954), Jarvis (1993) equate the
BL Rayleigh numbers (Rai = αgi�Tiλi

3/(νκ) and Rao = αgo�Toλo
3/(νκ)) and obtain

αgi�Tiλi
3

νκ
= αgo�Toλo

3

νκ
. (4.8)

Equations (4.1), (4.2) and (4.8) lead to the following equations:

λi = η ln η

(1 + η1/2)(1 − η)Nu
, �Ti = 1

1 + η1/2 , (4.9a)

λo = η1/2 ln η

(1 + η1/2)(1 − η)Nu
, �To = η1/2

1 + η1/2 . (4.9b)

Figure 5(a) shows that the ratio of the TBLs follow λi/λo ∼ η1/2, indeed. Validation of
the TBL thickness is further supported in figure 6(b). While the assumption Rai = Rao
can explain these observations, we find no solid physical justification for this assumption
(see figure 4a). This model was originally validated for mantle convection with an infinite
Prandtl number. However, since it is based on the marginal stability of the BLs, it is
possible that the deviations between the model and our data are due to the lack of
turbulence in the studied 2-D flows. Indeed, Gastine et al. (2015) found that this model
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Figure 5. The TBL ratio compensated by (a) η1/2 and (b) η1/3. Temperature drop in the inner (c) and outer
(d) TBL compared with the analytical results in (4.6a) and (4.6b) as well as (4.9a) and (4.9b).

did not match their simulation results for any of the gravity profiles they simulated.
As a result, we refrain from adopting this argument and instead proceed with an alternative
approach.

4.4. Proposed model
The flow is dominated by convective rolls which interact with the BLs and plumes. We
assume that the viscous term of the temperature equation scales with the advective term
at the BL width uφ((1/r)(∂T/∂φ)) ∼ κ((1/r)(∂/∂r)(r(∂T/∂r))). Here, (r) and (φ) are
the radial and azimuthal coordinate, respectively. This assumption is derived from the
balance of the leading terms in the temperature equation (2.3). At the edge of the TBL,
the magnitude of the azimuthal velocity component uφ is significantly larger than the
radial velocity component ur. As a result, uφ((1/r)(∂T/∂φ)) � ur(∂T/∂r). Similarly, for
the diffusive term, the radial gradient of T dominates the azimuthal gradient. Therefore,
κ((1/r)(∂/∂r)(r(∂T/∂r))) � κ((1/r2)(∂2T/∂φ2)). Hence we define an advective length
scale for the inner (outer) shells as Li ∼ ri dφ (Lo ∼ ro dφ) and take the BL thickness for
the inner (outer) shell to be the vertical length scale. We define ui (uo) to be the velocity
scale for the convective roll near the inner (outer) shell; we then obtain the following
scaling relations:

ui�Ti

Li
∼ κ�Ti

λ2
i

and
uo�To

Lo
∼ κ�To

λ2
o

. (4.10a,b)
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Figure 6. (a) A schematic of the velocity and length scales chosen to obtain scaling arguments.
(b) Comparison of the normalized TBL width with the analytical result, (4.9a) and (4.9b).

Therefore,
ui

uo
∼ Liλ

2
o

Loλ
2
i
, (4.11)

where Li/Lo = η, see figure 6. We further propose that the velocity scales of the
convective roll near the inner and outer shells are equal, i.e. ui = uo (see figure 4d). The
ratio ui/uo shown in figure 4(d) is that of the peaks of the root-mean-squared velocity near
the inner and outer shell. The equality ui = uo can be justified as the 2-D nature of the flow
ensures the azimuthal mass flux near the outer shell equals that towards the inner shell, and
as the convective roll is symmetrically placed along the radial direction the velocity scales
should be equal. Figure 4(d) shows that at lower η, there is a higher scatter of the ratio
of ui and uo and of the ratio of the TBL thickness (figure 5a). This might be attributed
to the breaking of the cold plume at lower radius ratios as discussed in § 3. Thus from
(4.11), ui = uo and Li/Lo = η we conclude that λi/λo∼η1/2, which is supported by our
DNS results, see figure 5(a). This physics-based model can also lead to the derivations of
(4.9a) and (4.9b).

5. Conclusion

In this study, we derived scaling laws for the TBL width ratio in RBC within a 2-D annulus,
focusing on radius ratios ranging from 0.2 to 0.8 and Rayleigh numbers (Ra) from 107 to
1010. The system features a gravity profile g ∝ 1/r with a fixed Pr = 1. We observed an
asymmetry in the TBL widths between the inner and outer shells, consistent with previous
studies. However, existing scaling laws failed to quantify this asymmetry. To address this,
we proposed a new scaling argument based on the assumptions of the isothermal bulk
and constant velocity along the path of all large-scale convection rolls that develop in the
annulus RBC. This new scaling successfully predicted the temperature drops and TBL
widths across the parameter range studied.
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Appendix

Table 1 lists the simulation data.

Ra Nu Nuerror% NU
BL,i NU

BL,o NT
BL,i NT

BL,o
r�θmax

ηK

�rmax

ηK
τavg Nr × Nθ

η = 0.2
1 × 107 14.33 0.18 10 16 17 26 0.68 0.57 6039 256 × 1152
2.15 × 107 17.16 0.20 9 15 14 23 0.86 0.72 3430 256 × 1152
4.64 × 107 21.04 0.19 9 15 14 22 1.1 0.95 3397 256 × 1152
1 × 108 26.35 0.21 8 13 12 18 1.46 1.25 3340 256 × 1152
2.15 × 108 32.28 0.34 7 11 11 16 1.92 1.64 2921 256 × 1152
4.64 × 108 39.73 0.04 9 17 15 25 1.25 1.04 929 512 × 2304
1 × 109 49.27 0.3 9 16 14 22 1.61 1.35 557 512 × 2304
2.15 × 109 61.11 0.13 8 14 14 20 2.08 1.77 592 512 × 2304
4.64 × 109 75.40 2 9 16 15 22 1.78 1.50 1534 768 × 3456
1 × 109 94.56 1.43 16 27 24 35 1.72 1.50 500 1024 × 4608

η = 0.4
1 × 107 15.4 0.16 12 15 19 24 0.57 0.55 3342 256 × 1800
2.15 × 107 18.77 0.2 11 13 17 21 0.73 0.70 4256 256 × 1800
4.64 × 107 22.06 0.2 10 12 15 19 0.93 0.91 3791 256 × 1800
1 × 108 27.71 0.3 8 10 12 14 1.20 1.16 3788 256 × 1800
2.15 × 108 34.09 0.3 7 9 11 12 1.56 1.52 3442 256 × 1800
4.64 × 108 41.81 0.28 12 16 19 23 1.02 1 923 512 × 3600
1 × 109 51.87 0.97 10 14 16 19 1.33 1.29 1002 512 × 3600
2.15 × 109 64.61 0.49 9 12 14 15 1.72 1.67 777 512 × 3600
4.64 × 109 79.54 1.71 12 16 18 21 1.48 1.45 1149 768 × 5400
1 × 1010 99.01 2.8 21 27 29 34 1.42 1.45 327 1024 × 7200

η = 0.6
1 × 107 15.28 0.13 13 15 21 23 0.53 0.48 815 256 × 3072
2.15 × 107 18.96 0.21 11 12 19 19 0.68 0.61 499 256 × 3072
4.64 × 107 22.80 0.21 10 11 16 17 0.87 0.78 499 256 × 3072
1 × 108 27.72 0.35 9 9 14 14 1.1 1 1023 256 × 3072
2.15 × 108 33.98 0.37 8 9 13 12 1.45 1.31 499 256 × 3072

Table 1. For caption see next page.
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Ra Nu Nuerror% NU
BL,i NU

BL,o NT
BL,i NT

BL,o
r�θmax

ηK

�rmax

ηK
τavg Nr × Nθ

4.64 × 108 41.48 0.34 13 15 21 22 0.96 0.86 1100 512 × 6144
1 × 109 51.48 0.83 12 14 18 19 1.24 1.12 2722 512 × 6144
2.15 × 109 63.28 0.87 10 11 15 16 1.61 1.45 2482 512 × 6144
4.64 × 109 80.02 1.84 14 16 20 21 1.4 1.24 606 768 × 9216
1 × 109 99.28 0.61 23 26 31 33 1.42 1.22 130 1024 × 12 288

η = 0.8
1 × 107 14.74 0.17 14 14 23 22 0.41 0.51 1208 256 × 6912
2.15 × 107 18.16 0.18 13 12 20 19 0.52 0.66 1311 256 × 6912
4.64 × 107 22.33 0.25 11 11 17 17 0.67 0.83 1245 256 × 6912
1 × 108 26.19 0.35 9 9 15 14 0.86 1.06 1131 256 × 6912
2.15 × 108 33.54 0.40 9 8 13 12 1.12 1.39 1030 256 × 6912
4.64 × 108 39.72 0.61 15 15 23 22 0.74 0.92 1406 512 × 13 824
1 × 109 49.71 1.01 13 13 19 18 0.96 1.19 1199 512 × 13 824
2.15 × 109 62.08 1.35 11 11 16 15 1.25 1.55 1032 512 × 13 824
4.69 × 109 77.25 0.33 15 15 21 20 1.07 1.35 1707 768 × 5184∗
1 × 1010 95.78 1.97 25 25 34 33 1.03 1.35 525 1024 × 6912∗

Table 1. Simulation details. Here, Ra is the Rayleigh number; Nu is the average of the Nusselt numbers
computed from the thermal dissipation, kinetic dissipation and inner and outer shell heat flux; Nuerror% is the
percentage of relative error between the maximum and minimum of the previously mentioned Nu; NU

BL,i/o is
the number of grid points in the inner/outer UBL; NT

BL,i/o is the number of grid points in the inner/outer TBL;
r�θmax/ηK and �rmax/ηK is the ratio of the maximum grid spacing in the azimuthal and radial direction,
respectively, to the global Kolmogorov length scale in the bulk region of the flow; τavg is the averaging
time; and Nr and Nθ represent the resolution of the grid in radial and azimuthal directions. At η = 0.8 for
Ra = 4.69 × 109 and Ra = 1 × 1010 (indicated by an asterisk in the last column), only a quarter of the cylinder
is simulated.
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