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We study the inertial migration of a torque-free neutrally buoyant sphere in wall-bounded
plane Couette flow over a wide range of channel Reynolds numbers Rec in the limit
of small particle Reynolds number (Rep � 1) and confinement ratio (λ� 1). Here,
Rec = VwallH/ν, where H denotes the separation between the channel walls, Vwall denotes
the speed of the moving wall, and ν is the kinematic viscosity of the Newtonian suspending
fluid. Also, λ = a/H, where a is the sphere radius, with Rep = λ2Rec. The channel
centreline is found to be the only (stable) equilibrium below a critical Rec (≈ 148),
consistent with the predictions of earlier small-Rec analyses. A supercritical pitchfork
bifurcation at the critical Rec creates a pair of stable off-centre equilibria, located
symmetrically with respect to the centreline, with the original centreline equilibrium
becoming unstable simultaneously. The new equilibria migrate wall-ward with increasing
Rec. In contrast to the inference based on recent computations, the aforementioned
bifurcation occurs for arbitrarily small Rep provided that λ is sufficiently small. An
analogous bifurcation occurs in the two-dimensional scenario, that is, for a circular
cylinder suspended freely in plane Couette flow, with the critical Rec being approximately
110.

Key words: Stokesian dynamics, suspensions, microfluidics

1. Introduction

Some of the first observations of cross-stream migration of neutrally buoyant spherical
particles, in an ambient shearing flow, were the experiments of Segre & Silberberg
(1962a,b) involving pipe flow of a dilute suspension of such particles. For small
values of the pipe Reynolds number, the spheres were found to accumulate at an
intermediate annulus, about 0.6 times the pipe radius from the centreline, creating a
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‘tubular pinch’ effect. Cross-stream migration of spheres in a unidirectional shearing flow
is prohibited by the time-reversibility of the Stokes equations, and the observed migration
is due to inertial lift forces, occurring only for non-zero particle Reynolds numbers. As
described in more detail in Anand & Subramanian (2023b), a number of theoretical and
numerical studies have since attempted to explain these observations, the first one being
that of Ho & Leal (1974), albeit for a shearing flow in a two-dimensional channel geometry.
Ho & Leal (1974) determined the inertial lift force on a sphere for both the plane Couette
and plane Poiseuille velocity profiles, within a point-particle framework, for Rec � 1,
where Rec is the channel Reynolds number. While the lift force in plane Poiseuille flow
also equalled zero at a location intermediate between the wall and the centreline, consistent
with the observed intermediate equilibrium in the Segre–Silberberg experiments, that in
plane Couette flow always pointed towards the channel centreline, rendering this location
the only stable equilibrium. A subsequent more accurate calculation of the lift force
profiles, again for Rec � 1, was performed by Vasseur & Cox (1976) using a Green’s
function formulation developed earlier by Cox & Brenner (1968).

Later, Feng, Hu & Joseph (1994) carried out finite element computations for a neutrally
buoyant circular cylinder in plane Couette flow for λ = 0.125 with Rep = 0.625 and 1.25.
Here, λ is the confinement ratio, defined as the ratio of the cylinder radius to the inter-wall
spacing, with Rep = λ2 Rec being the particle Reynolds number; the point-particle limit
corresponds to λ� 1, and Rec = 40 and 80 in the effort of Feng et al. (1994), with the
authors still obtaining the channel centreline as the only stable equilibrium, consistent with
the predictions of the aforementioned small-Rec analyses. Very recently, the motion of
both a neutrally buoyant circular cylinder (Fox, Schneider & Khair 2020) and sphere (Fox,
Schneider & Khair 2021), again in plane Couette flow, was studied using lattice-Boltzmann
simulations. The parameter ranges corresponding to 0.1 ≤ Rep ≤ 50 and 0.1 ≤ λ ≤ 0.2
(0.1 ≤ Rep ≤ 50 and 0.0625 ≤ λ ≤ 0.25) were examined for the sphere (cylinder), with
the associated maximum Rec significantly exceeding that in Feng et al. (1994). The
larger-Rec simulations led to the authors finding the emergence of stable off-centre
equilibria via a pitchfork bifurcation. For a given λ, the sphere migrated to the only
(stable) equilibrium at the centreline below a critical Rep, while above this critical
value, a pitchfork bifurcation led to an unstable equilibrium at the centre, with a pair
of symmetrically located stable equilibria on either side of the centreline. While the
simulations pointed to a decrease in the critical Rep with decreasing λ, owing to the limited
range of parameters examined, it remained unclear as to whether the bifurcation was a
signature of a finite Rep (as implied, for instance, in the abstracts of the said articles), or
if it correlated to a threshold level of inertia on scales of order the channel width. Herein,
we show that the latter is the case. That is, the bifurcation threshold in plane Couette flow,
for both a circular cylinder and a sphere, is shown to correspond to a critical Rec rather
than Rep, and this is accomplished via a point-particle formulation similar to that used by
Schonberg & Hinch (1989) to study inertial migration in plane Poiseuille flow at finite Rec.

The paper is organized as follows. Section 2 discusses the governing equations and
boundary conditions for a neutrally buoyant sphere suspended freely in plane Couette flow,
for arbitrary Rec, in the limit Rep � 1 (implying λ� 1). In § 3, the inertial lift velocity
is determined semi-analytically for Rec � 1 using a reciprocal theorem formulation.
Inertia acts as a regular perturbation in this limit, the lift velocity being O(Rep) and its
calculation requiring only knowledge of the velocity fields induced by a Stokeslet and
a stresslet confined between (infinite) parallel plane boundaries. In § 4, the lift velocity
is calculated for Rec � O(1), with inertia now acting as a singular perturbation. Similar
to Schonberg & Hinch (1989), this calculation involves obtaining coupled second-order
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Inertial migration of a sphere in plane Couette flow

ordinary differential equations (ODEs) for the partially Fourier transformed pressure
and normal velocity fields, and then solving the associated boundary value problem
numerically using a shooting method. The results for the equilibrium loci, in § 5, reveal
a supercritical pitchfork bifurcation at Rec ≈ 148; the analogous calculation for a circular
cylinder shows a bifurcation at Rec ≈ 110. We conclude in § 6 by discussing the effects
of finite particle size on the bifurcation surface in seq–Rec–λ space – where seq denotes
the (transverse) equilibrium position of the sphere within the channel – and commenting
briefly on the role of non-neutral buoyancy.

2. Formulation

Figure 1 shows a schematic of a neutrally buoyant sphere suspended in a Newtonian fluid
undergoing plane Couette flow between infinite boundaries separated by a distance H.
Using the sphere radius a and the velocity scale γ̇ a, γ̇ = Vwall/H being the ambient shear
rate, the equations governing the fluid motion, in non-dimensional form, are given by

∇2u − ∇p = Rep u · ∇u, (2.1a)

∇ · u = 0, (2.1b)

where Rep = a2γ̇ /ν is the particle Reynolds number, and ν is the kinematic viscosity of
the suspending fluid. The unsteady acceleration term has been neglected in (2.1a), and the
necessary justification for this is provided at the end of § 4.

For λ� 1, at leading order, the neutrally buoyant sphere translates with the velocity
of the plane Couette flow at its centre, while rotating with half the ambient vorticity. In
a reference frame centred at the sphere, and translating with this velocity, u still satisfies
(2.1a) and (2.1b) with the following boundary conditions:

u = −1
2 13 ∧ r for r ∈ Sp, (2.2a)

u → r211 for r1, r3 → ∞ (r2 fixed), (2.2b)

u = −λ−1s11 at r2 = −sλ−1 (lower wall), (2.2c)

u = −λ−1(1 − s)11 at r2 = (1 − s)λ−1 (upper wall). (2.2d)

Here, Sp denotes the surface of the sphere, and s = d/H denotes its (non-dimensional)
transverse location within the channel; see figure 1. In terms of the corresponding
disturbance fields, u′ = u − u∞, p′ = p − p∞ (u∞ = r211, p∞ being an arbitrary
constant), the governing equations may be written as

∇2u′ − ∇p′ = Rep (u′ · ∇u′ + u′ · ∇u∞ + u∞ · ∇u′), (2.3a)

∇ · u′ = 0, (2.3b)

with boundary conditions (2.2a–d) taking the form

u′ = −1
2 13 ∧ r − r211 for r ∈ Sp, (2.4a)

u′ → 0 for r1, r3 → ∞ (r2 fixed), (2.4b)

u′ = 0 at r2 = −sλ−1, (1 − s)λ−1. (2.4c)

It is well known that one requires a matched asymptotics expansions approach to
solve the Navier–Stokes equations for small but finite Rep (Proudman & Pearson 1957).
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Figure 1. Schematic of a neutrally buoyant sphere suspended in wall-bounded plane Couette flow.

The matching of an inner expansion, valid in the neighbourhood of the particle, and an
outer expansion, valid at distances of order the so-called inertial screening length, is in
general necessary to calculate inertial corrections. For an ambient linear shearing flow,
the screening length is a Re−1/2

p (Saffman 1965), or alternatively H Re−1/2
c . The latter

expression shows that the walls lie in the inner Stokesian region for Rec � 1, with fluid
inertia being a regular perturbation (see § 3). When Rec � O(1), the inertial screening
length is of order the channel width or smaller, and the walls lie in the so-called Oseen
region. Fluid inertial effects now constitute a singular perturbation, and one must solve the
linearized Navier–Stokes equations, with the solution being a function of Rec at leading
order (see § 4).

3. The inertial lift velocity for Rec � 1

In this section, we revisit the inertial lift calculation for Rec � 1, a problem first
addressed by Ho & Leal (1974) and Vasseur & Cox (1976). A generalized reciprocal
theorem formulation yields the following expression for the inertial lift velocity (Anand &
Subramanian 2023b):

Vp = −Rep

∫
u(2) · (u(1)′ · ∇u(1)′ + u(1)′ · ∇u∞ + u∞ · ∇u(1)′) dV. (3.1)

In (3.1), problem (1) denotes the one described in § 2, namely a neutrally buoyant sphere
suspended in wall-bounded plane Couette flow for small but finite Rep, and accordingly,
the disturbance fields (u′, p′) defined in § 2 are denoted as (u(1)′, p(1)′) only in this
section. Problem (2) describes a simpler test problem, with (u(2), p(2)) corresponding to
the Stokesian translation of a torque-free sphere between plane parallel walls, under the
action of a unit force in the wall-normal direction. The test problem is governed by

∇2u(2) − ∇p(2) = 0, (3.2a)

∇ · u(2) = 0, (3.2b)
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Inertial migration of a sphere in plane Couette flow

where u(2) satisfies

u(2) = U (2)
p for r ∈ Sp, (3.3a)

u(2) → 0 for r1, r3 → ∞ (r2 fixed), (3.3b)

u(2) = 0 for r2 = −sλ−1, (1 − s)λ−1. (3.3c)

To O(Rep), u(1)′ in (3.1) may be replaced by its Stokesian approximation u(1)
s , the

resulting volume integral being convergent. To infer the dominant scales contributing
to this integral, it suffices to use estimates of the disturbance fields pertaining to
the interval 1 � r � λ−1. Thus, using u∞ ∼ r, u(2) ∼ 1/r, u(1)′ ≈ u(1)

s ∼ 1/r2 yields
u(2) · (u(1)

s · ∇u∞ + u∞ · ∇u(1)
s ) ∼ 1/r3 and u(2) · (u(1)

s · ∇u(1)
s ) ∼ 1/r6, respectively,

for the linear and nonlinear components of the integrand. Since dV ∼ r2 dr, the dominant
contributions to the integral, due to the nonlinear inertial terms, arise from length scales
of O(a). In contrast, the linearized inertial terms appear to lead to a conditionally
convergent integral, implying that the dominant contribution must arise from scales
intermediate between a and H (or 1 and λ−1, respectively, in non-dimensional terms),
with logarithmically smaller contributions from r ∼ O(1) and O(λ−1). Now, on account
of the inversion symmetry of the plane Couette profile, the inertial lift owes its origin
entirely to the asymmetry of the sphere location with respect to the walls – in the absence
of a symmetry-breaking bifurcation/instability, a neutrally buoyant sphere in unbounded
simple shear flow experiences zero lift regardless of Rep. Hence the contributions from
r � O(λ−1), which must involve unbounded-domain expressions for the disturbance fields
at leading order, are identically zero, and the dominant contribution due to the linearized
inertial terms also arises from scales of O(H). Further, the contribution of the linearized
inertial terms may be shown to be larger, by a factor of O(λ−1), than that of the nonlinear
terms (Anand & Subramanian 2023b). This implies that for the purposes of calculating the
integral in (3.1), one may replace the neutrally buoyant sphere in problem (1) by a stresslet,
and the one in the test problem by a Stokeslet oriented perpendicular to the walls, with the
O(Rep) lift velocity given by the following simplified integral:

Vp = −Rep

∫
V

uSt · (ustr · ∇u∞ + u∞ · ∇ustr) dV, (3.4)

where

uSt = J · 12, (3.5)

ustr = −20πE∞

3
:

∂J
∂y

. (3.6)

Here, y = y111 + sλ−112 + y313 is the position of the Stokeslet relative to the lower
wall, and uSt and ustr are the bounded-domain Stokeslet and stresslet velocity fields,
respectively, with the expression for the second-order tensor J given in Appendix A;
E∞ = 1

2 (1112 + 1211) is the rate of strain tensor of the ambient Couette flow. Note that
(3.4) corresponds to a dimensional lift velocity of O(Rep Vwall λ).

A more general version of (3.4), pertaining to plane Poiseuille flow, has been evaluated
in Anand & Subramanian (2023b), using the convolution theorem to transform the
integrations along the flow and vorticity directions to ones in Fourier space. The expression
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Figure 2. (a) Lift velocity profiles for a sphere in plane Couette flow, for Rec � 1, obtained using (3.7) and
the indicated values of Kmax. The wall asymptotes calculated using (3.8) are denoted by dotted horizontal lines.
(b) Lift velocity profile for a sphere in plane Couette flow for Rec � 1 and Kmax = 10 000 compared against
the data obtained from table 4 in Ho & Leal (1974) and from digitizing figure 3 in Vasseur & Cox (1976); the
pair of wall asymptotes appears as horizontal dashed lines.

specific to plane Couette flow may be obtained by using κ = 1, β = 1 and γ ′′ = 0 in (87)
of Anand & Subramanian (2023b), and is given by

Vp

Rep
= −10π

3

∫ ∞

0
dk′′

⊥
k′′
⊥ exp(−k′′

⊥(27s + 16)) I(k′′
⊥, s)

48π(exp(2k′′
⊥) − 1)[−2 exp(2k′′

⊥) (2k′′2
⊥ + 1) + exp(4k′′

⊥) + 1]2
,

(3.7)

where the expression for I(k′′
⊥, s) is given in Appendix B. The integral in (3.7) is evaluated

readily using Gauss–Legendre quadrature with a suitably large cutoff Kmax for the upper
limit. The choice of Kmax is crucial close to the walls – as shown in figure 2(a), for any
finite Kmax, Vp decreases to zero in the neighbourhood of the walls, the neighbourhood
shrinking with increasing Kmax. For Kmax = 10 000, a numerically converged profile is
obtained for 0.001 ≤ s ≤ 0.999.

In the neighbourhood of the walls (s = 0, 1), the primary contribution to the integral in
(3.7) comes from k⊥ of O(s−1) or O((1 − s)−1), so the dominant length scales are of order
the small separation between the sphere and the wall. This also implies that the limiting
wall value obtained below may be derived as the far-field limit of the single-wall problem
(Cherukat & Mclaughlin 1994). Considering the wall at s = 0, for instance, and using a
rescaled wavenumber kw = k′′

⊥s, gives

Vwall
p = lim

s→0
Vp = 5 Rep

72

∫ ∞

0
dkw exp(−2kw) kw(3k2

w − 2kw + 3), (3.8)

which may be evaluated analytically and gives 55 Rep/576; the O(s) correction to this
asymptote involves scales of O(H). It is important to note here that the actual lift velocity
must go to zero at the wall on account of the diverging lubrication resistance. Thus the
finite wall value obtained above must be interpreted as corresponding to the intermediate
asymptotic interval λ� s � 1 (for small Rec); this aspect is implicit in the connection to
the single-wall problem mentioned above (see Anand & Subramanian 2023b).

Figure 2(b) compares the lift velocity profile obtained from (3.7), with Kmax = 10 000,
against profiles extracted from Ho & Leal (1974) and Vasseur & Cox (1976). Agreement
with the Ho & Leal (1974) profile is poor in general, especially near the walls. In
contrast, a near-exact match is obtained with the Vasseur & Cox (1976) profile throughout
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Inertial migration of a sphere in plane Couette flow

the channel. The wall asymptote above is also shown, and is consistent with the limiting
values of our profile and the one in Vasseur & Cox (1976); note that the aforementioned
asymptote was also mentioned in Vasseur & Cox (1976), albeit without an explanation.
Finally, as is evident from the profiles shown, the only equilibrium for small Rec is the
stable one at the channel centreline.

4. The inertial lift velocity for Rec � O(1)

For a general shearing flow, the primary contribution to the inertial lift for Rec � O(1)

comes from scales of O(H Re−1/2
c ). For plane Couette flow, however, as already pointed

out, the lift arises solely due to the asymmetric interaction of the sphere with the
boundaries, and the relevant scales are O(H) regardless of Rec. Now, for Rep � 1, either H
or H Re−(1/2)

c is much larger than O(a), and determining the lift for Rec � O(1), at leading
order, requires solving the linearized Navier–Stokes equations, with the neutrally buoyant
sphere treated as the same point-singularity (a stresslet) as in § 3. It is appropriate to use
H as the relevant length scale by defining r = λ−1R, with the rescalings u′ = λ2U and
p′ = λ3P for the velocity and pressure fields based on the Stokesian rates of decay for a
stresslet. From (2.3a,b), U and P are seen to satisfy the equations

∇2U − ∇P = Rec U211 + Rec R2
∂U
∂R1

− 20π

3
E∞ · ∇δ(R), (4.1a)

∇ · U = 0, (4.1b)

with

U ∼ −5
2

R(E∞ : RR)

R5 for R → 0, (4.2a)

U = 0 at R2 = −s, 1 − s. (4.2b)

The neutrally buoyant sphere appears as a stresslet forcing, this being the final term on
the right-hand side of (4.1a), with E∞ being the rate of strain tensor of the ambient flow
as before. Relation (4.2a) is the requirement of matching with the Stokesian field in the
inner region, and defined earlier in (3.6). Following Schonberg & Hinch (1989), we define
a partial Fourier transform

f̂ (k1, R2, k3) =
∫ ∞

−∞

∫ ∞

−∞
f (R) exp(ι(k1R1 + k3R3)) dR1 dR3, (4.3)

which yields the following coupled ODEs for the transformed pressure and normal velocity
fields:

d2P̂

dR2
2

− k2
⊥P̂ = 2ιk1 Rec Û2, (4.4a)

d2Û2

dR2
2

− k2
⊥Û2 = dP̂

dR2
− ιk1 Rec R2Û2, (4.4b)

where k2
⊥ = k2

1 + k2
3, with the matching condition

Û2 ∼ −5πιk1 |R2| exp(−k⊥ |R2|)
3

for k1, k3 → ∞ and R2 → 0, (4.5)
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and the wall boundary conditions

Û2 = dÛ2

dR2
= 0 at R2 = −s, 1 − s. (4.6)

The boundary conditions above must be supplemented by the following jump conditions,
which relate the limiting values of the transformed fields above and below the location
(R2 = 0) of the stresslet forcing (Anand & Subramanian 2023b):

P̂+(k1, 0, k3) − P̂−(k1, 0, k3) = −20πιk1

3
, (4.7a)

dP̂+

dR2
(k1, 0, k3) = dP̂−

dR2
(k1, 0, k3), (4.7b)

Û+
2 (k1, 0, k3) = Û−

2 (k1, 0, k3), (4.7c)

dÛ+
2

dR2
(k1, 0, k3) − dÛ−

2
dR2

(k1, 0, k3) = −10πιk1

3
. (4.7d)

Here, the superscripts ‘−’ and ‘+’ pertain to the intervals −s ≤ R2 < 0 and 0 < R2 ≤
(1 − s), respectively. In the matching region, U must reduce to the sum of a singular
stresslet contribution at leading order and a uniform flow in the transverse direction that
arises due to inertia. Since the sphere is force-free, it must be convected by the latter
uniform flow. The lift velocity may be determined via an inverse Fourier transform after
removing (for numerical convenience) the normal component of the stresslet contribution:

Vp = Rep

4π2 Rec
Re

{∫ ∞

−∞

∫ ∞

−∞
Û±

2 (k1, 0, k3; Rec) dk1 dk3

}
, (4.8)

where Re{ · } denotes the real part of a complex-valued function, and automatically
achieves the removal of the purely imaginary stresslet contribution (see (4.5)). As indicated
in (4.8), one may use either Û−

2 or Û+
2 on account of continuity; see (4.7c). The ODEs

(4.4a,b) along with the boundary conditions (4.6) and jump conditions (4.7a–d) are
solved using the shooting method described in Appendix A of Schmid, Henningson &
Jankowski (2002). After computing Û2, the inverse Fourier transform (4.8) is evaluated
using Gauss–Legendre quadrature in a truncated domain that is a circle of a large but
finite radius Km. Note that the dimensional lift velocity corresponding to (4.8) may be
written formally in the form Rep Vwall λF(Rec), where the function F(Rec) includes the
Rec dependence of the Fourier integral; a plot of Vp against Rec (not shown here), for a
fixed s, shows that F(Rec) is bounded by Re−δ(s)

c , with δ(s) ∼ 1.7–1.8 for the range of Rec
examined.

The lift velocity scaling for Rec � O(1) above, and the one given in § 3.4 for Rec � 1,
may now be used to justify the quasi-steady approximation used in the formulation.
Neglect of the unsteady term in (2.1a) requires that the time for momentum to diffuse,
over scales contributing dominantly to the lift, be much smaller than the O(H/V∗

p )

time scale for configurational change, V∗
p here being the dimensional lift velocity. The

dominant scales are O(H) regardless of Rec, and the momentum diffusion time scale
is therefore O(H2/ν). Using V∗

p ∼ O(Rep Vwall λ) for Rec � 1, the configurational time
scale is O(λ−1 Re−1

p H/Vwall), and the ratio of the aforementioned time scales is λRep Rec,
which is the order of magnitude of the unsteady acceleration (∂u′/∂t) in relation to
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Inertial migration of a sphere in plane Couette flow

the viscous terms. The other terms in the inertial acceleration are larger, being only
O(Rec) smaller than the viscous terms. For large Rec, V∗

p ∼ O(Rep Re−δ(s)
c Vwall λ), and

the resulting ratio of the unsteady acceleration to the viscous terms is O(λRep Re1−δ(s)
c ),

which must again be small compared to unity for the quasi-steady assumption to hold.
Note that the unsteady acceleration continues to be small in relation to the other inertial
terms, and will also remain small compared to the viscous terms when λRep Re1−δ(s)

c � 1,
or when λ� O(Re−(2−δ(s))/3

c ). For the δ values quoted above, the minimum value of
Re−(2−δ(s))/3

c is 0.49 (for Rec = 1200, just prior to transition), and the requirement above
is satisfied readily in the small-λ limit. This implies that the unsteady acceleration remains
subdominant over the entire range of Rec examined.

5. Results

We first validate our calculation by comparing the lift velocity profiles, for small Rec,
computed using the shooting method, against the one calculated in § 3, for Rec → 0,
using a reciprocal theorem formulation; note that all profiles from here onwards are
plotted over only half the channel domain on account of their antisymmetry about the
centreline. As is evident from figure 3, the small-Rec limiting form given by (3.7)
remains an excellent approximation up until Rec ≈ 5. Further, the wall value obtained
in (3.8), again within a small-Rec framework, remains valid for Rec � O(1), implying
that the dominant contribution to the near-wall lift comes from scales of order the
small sphere–wall separation regardless of Rec. Interestingly, figure 3 shows that the
inertial lift profile changes qualitatively with increasing Rec. The profiles for Rec < 40
are concave-downward, while those for Rec = 40 and 50 exhibit a concave-upward form.
This change in curvature is accompanied by a flattening of the profile near the centreline,
leading to a progressive decrease in the stability of the centreline equilibrium.

To explore the stability of the centreline equilibrium in more detail, we plot lift
velocity profiles for higher Rec values in figures 4(a,b). As Rec increases further, the
aforementioned flattening becomes more pronounced, culminating in the appearance of
a stable off-centre equilibrium (seq) at Rec ≈ 148, with the original centreline equilibrium
simultaneously becoming unstable (a second equilibrium in the other half of the channel
is implied by symmetry). This validates the original discovery of Fox et al. (2020, 2021)
within the framework of a small-Rep point-particle formulation. The emergence of the new
equilibrium is seen more clearly on the log-log plot in figure 4(b), where the zero crossings
corresponding to equilibria appear as dips to negative infinity (marked by vertical dashed
lines). The inset in this figure, with 0.5 − s as the abscissa, shows the wall-ward (lower
wall) migration of the off-centre equilibrium with Rec increasing beyond 148.

The lift-force equilibria identified above are plotted as a function of Rec in figure 5,
the resulting locus conforming to a supercritical pitchfork bifurcation; the red dots and
black triangles correspond to stable and unstable equilibria, respectively. Thus the central
branch of the pitchfork corresponds to the centreline equilibrium that is stable for Rec �
148, but unstable for larger Rec. The two peripheral branches, consisting entirely of red
dots, mark the emergence and subsequent wall-ward migration of the stable off-centre
equilibria with increasing Rec. The upper inset validates the square-root scaling expected
in the neighbourhood of the bifurcation threshold defined by (Rec − Recritical

c )/Recritical
c �

1 (Recritical
c ≈ 148 as mentioned above). The lower inset shows the analogous bifurcation

for a circular cylinder, with Rec ≈ 110 being the bifurcation threshold; the lower value
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Figure 3. Lift velocity profiles for a neutrally buoyant sphere in plane Couette flow, for Rec � O(1),
compared to the limiting profile for Rec � 1 (defined by (3.7) in § 3).
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Figure 4. Lift velocity profiles for a sphere in plane Couette flow for Rec ≥ 50 on (a) linear and (b) logarithmic
scales. The linear profiles highlight the decrease in the stability of the centreline equilibrium with increasing
Rec; the equilibrium turns unstable for Rec � 148.5. The log-log profiles highlight the emergence of an
off-centre equilibrium (seq), for Rec ≥ 148.5, which then shifts towards the lower wall with increasing Rec,
as is evident from the sequence seq,1 = 0.485, seq,2 = 0.375, seq,3 = 0.234 and seq,4 = 0.152.

of the threshold is consistent with the larger disturbance field, and the resulting stronger
interaction with the walls, in two dimensions.

While the bifurcation in figure 5 is similar to that in figure 6 of Fox et al. (2021),
there is a key distinction that needs emphasis – the emergence of the bifurcation within a
point-particle formulation, valid for small but finite Rep, shows clearly that it corresponds
to a critical Rec, not Rep. Since Rep = λ2 Rec, the bifurcation can occur for arbitrarily
small Rep, provided that the confinement ratio is sufficiently small. The existence of the
bifurcation in a point-particle formulation also implies that it likely owes its origin to a
qualitative change in the disturbance velocity field on length scales larger than a Re−(1/2)

p –
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Inertial migration of a sphere in plane Couette flow
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Figure 5. Equilibrium loci for a neutrally buoyant sphere and cylinder (lower inset) in plane Couette flow
conforming to a supercritical pitchfork bifurcation; the vertical dashed lines denote Recritical

c for the two cases.
The upper inset demonstrates the square-root scaling in the vicinity of the bifurcation threshold for the sphere;
here, ε = ((Rec − Recritical

c )/Recritical
c )1/2.

a change that likely results in a sphere at the centreline experiencing a net attractive
interaction with its wall-induced images beyond Rec ≈ 148.

6. Conclusion

In this paper, we have calculated the lift velocity of a freely rotating neutrally buoyant
sphere suspended in wall-bounded plane Couette flow, in the limit Rep � 1, with Rec
being arbitrary. Following Ho & Leal (1974), a generalized reciprocal theorem was used
to calculate the lift velocity in the limit Rec � 1, with the resulting profile exhibiting
good agreement with the calculation of Vasseur & Cox (1976). For Rec � O(1), the
lift was obtained using a shooting method to solve the boundary value problem for the
partial Fourier transform of the normal velocity and pressure fields obtained from the
linearized Navier–Stokes equations. The numerical results reveal the channel centreline to
be the only (stable) equilibrium for Rec � 148, with a supercritical pitchfork bifurcation
creating a pair of stable equilibria, on either side of the centreline, for larger Rec; the
analogous bifurcation for a circular cylinder occurs for Rec ≈ 110. The Rep thresholds
for these two cases are Recritical

p ≈ 148λ2 and 110λ2, implying that the threshold Rep
can be arbitrarily small for sufficiently small λ. The analogous lift calculation for
plane Poiseuille flow (Schonberg & Hinch 1989; Asmolov 1999; Anand & Subramanian
2023b), within a point-particle formulation, reveals no change in the number of equilibria
with increasing Rec; as first shown by Schonberg & Hinch (1989), the original pair of
equilibria corresponding to the Segre–Silberberg pinch move towards the walls. It is thus
interesting to note that the addition of ambient profile curvature actually simplifies the
inertial migration problem! Further, our calculation, together with the emergence of an
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λ

λmin

seq
Rec

The bifurcation

surface in plane Couette flow

Reccritical|λ>0 ≈ 148

Figure 6. A tentative sketch of the bifurcation surface in seq–Rec–λ space.

inner equilibrium in plane (Anand & Subramanian 2023a) and pipe (Matas, Morris &
Guazzelli 2004; Nakayama et al. 2019) Poiseuille flow, due to finite-size effects, points to
a potentially rich equilibrium landscape for a sphere in Couette–Poiseuille flow.

The point-particle formulation here predicts only the bifurcation curve in the limit
λ→ 0. Thus the locus of equilibrium positions in figure 5 must be interpreted as the
projection, onto the plane λ = 0, of a bifurcation surface in seq–Rec–λ space. Some idea
of the nature of this surface may be obtained from the results of Fox et al. (2020, 2021). In
the latter article, Recritical

c is found to increase from 30 to 44, and then to 70, as λ increases
from 0.1 to 0.15 to 0.2. Note that Recritical

c for the smallest λ (= 0.1) is far smaller than the
threshold value (≈148) found here, suggesting an extremely steep decrease in the threshold
as λ increases to finite values. This pronounced sensitivity to λ is very likely spurious,
and a result of the coarse resolution along the Rec-axis, in the said simulations. This is
also inferred readily from the shapes of the pitchforks found in the simulations, which
do not conform to the expected square-root scaling. The less expensive simulations for a
cylinder (Fox et al. 2020), with a better Rec resolution (although not enough to recover
the square-root scaling), do suggest an initial modest decrease, followed by a subsequent
increase, in Recritical

c with increasing λ; the results for a cylinder also suggest a narrowing
of the pitchfork with increasing λ. The sketch in figure 6 is a tentative depiction of the
bifurcation surface based on the evidence above, and it is hoped that more comprehensive
computations will delineate this surface in more detail.

Extending the locus of equilibrium positions in figure 5 to higher Rec will be limited
by two factors. The first is finite-size effects, which will need to be taken into account
once the off-centre equilibria move sufficiently close to the wall, where one expects
the resistance in the thin lubricating layer between the particle and the wall to retard
and eventually arrest the wall-ward migration. The second factor is the transition to
turbulence, which takes precedence over finite-size effects for sufficiently small λ. This
transition is subcritical, being triggered by finite-amplitude perturbations, and known
to occur for Rec ≈ 1300–1500 (Lundbladh & Johansson 1991; Tillmark & Alfredsson
1992; Dauchot & Daviaud 1995; Bottin & Chaté 1998; Lemoult et al. 2016). Not too far
above the transition threshold, one expects the off-centre inertial equilibria to be smeared
out into bands of a width determined by the amplitude of turbulent fluctuations. For a
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Inertial migration of a sphere in plane Couette flow

suspension of spherical particles in the turbulent regime, one expects a local peak in the
volume fraction profiles sufficiently near the walls, on account of the underlying inertial
equilibria, a feature that seems to have been observed in simulations (Wang, Abbas &
Climent 2017), although one cannot rule out excluded volume effects as also playing a role.
Weak turbulent fluctuations may also play a role in ‘equipartitioning’ spherical particles
among the pair of off-centre equilibria, starting from an arbitrary initial distribution
along the transverse channel coordinate; stochastic position fluctuations arising from
inter-particle hydrodynamic interactions may play an analogous role, in the dilute limit, in
the laminar regime. The analogous role of stochastic orientation fluctuations, in the context
of suspension rheology, has been examined recently (Dabade, Marath & Subramanian
2016; Marath & Subramanian 2017, 2018; Marath, Dwivedi & Subramanian 2017).

One may also comment on the implications for anisotropic particles, specifically
spheroids. It has been shown recently that the Jeffery-orbit-averaged lift velocity profile for
neutrally buoyant spheroids differs from that for spheres by only a proportionality factor
that is a function of the Jeffery orbit constant C and the spheroid aspect ratio (Anand &
Subramanian 2023b), therefore the equilibrium positions for spheroids in plane Poiseuille
flow remain identical to those for a sphere. Since the Jeffery-orbit-averaged approximation
is an accurate one for spheroids with aspect ratios of order unity, the Jeffery-averaged
equilibrium locus, for a neutrally buoyant spheroid in plane Couette flow, should exhibit an
identical bifurcation, with emergence of stable off-centreline equilibria above Rec ≈ 148.
Note, however, that the rate of approach of a spheroid, from an arbitrary initial position to
either of the off-centre equilibria, will depend on the aspect ratio, in general decreasing
with increasing aspect ratio.

Finally, it is worth mentioning briefly the role of non-neutral buoyancy. There have
been earlier calculations examining inertial migration of non-neutrally buoyant spheres,
in plane Poiseuille flow, using a point-particle formulation (Hogg 1994; Asmolov 1999).
A sphere in this framework is accounted for by a combination of Stokeslet and stresslet
forcings, although only the former was included in the aforesaid efforts. The alignment
of gravity relative to the shear flow now enters as an additional parameter, and the cases
of flow- and vorticity-aligned gravity are of the most interest among the canonical ones;
gradient-aligned gravity leads to an obvious departure from symmetry about the centreline.
While the symmetric pitchfork bifurcation will be preserved in the vorticity-aligned case,
the lift force arising for the flow-aligned case, which has been analysed in the limit of
an unbounded simple shear flow by Saffman (1965) and McLaughlin (1991), will lead
to a broken pitchfork bifurcation. Our preliminary calculations show that the resulting
imperfect bifurcation consists of a continuous branch and an additional pair of equilibria
that emerge beyond a threshold Rec, via a saddle-node bifurcation, with this threshold
being an increasing function of the departure from neutral buoyancy. These results, and
their connection to the broken bifurcation scenario identified in the simulations of Fox
et al. (2021), will be reported separately.
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Appendix A

The velocity field due to the Stokeslet confined between plane parallel walls, as in the test
problem, may be written as

uSt = J · 12, (A1)

where J = J∞ + J w, with J∞ being the familiar Oseen–Burger tensor that is given by
J∞ = (1/8π)(I/r + rr/r3). Here, J w is a second-order tensor that characterizes the effect
of the walls, and can be obtained by solving the governing equations in the test problem
and applying the no-slip condition on both walls. This is best done via implementation of
a partial Fourier transform defined by

f̂ (k1, r2, k3) =
∫ ∞

−∞

∫ ∞

−∞
f (r) exp(ι(k1r1 + k3r3)) dr1 dr3. (A2)

The solution of the partially transformed equations so obtained is described in detail in
Anand & Subramanian (2023b) (see also Swan & Brady 2010), and yields

Ĵ w = Cim(k⊥; y2) exp(k⊥r2) + Dim(k⊥; y2) exp(−k⊥r2)

+ 1
4k2

⊥
[Am(k⊥; y2) di exp(−k⊥r2) (2k⊥r2 + 1)

+ Bm(k⊥; y2) d̄i exp(k⊥r2) (2k⊥r2 − 1)]. (A3)

Here, di = k⊥δi2 + ι(k1δi1 + k3δi3) and d̄i = k⊥δi2 − ι(k1δi1 + k3δi3), and r2 is the
transverse coordinate relative to the particle. The second-order tensors Cim and Dim and the
vectors Am and Bm, are each functions of k⊥ ≡ (k1, k3) and the distance of the Stokeslet
y2 from the lower wall, and are defined as follows:

Am = Ym sinh(k⊥λ−1) + Zmk⊥λ−1 exp(k⊥(λ−1 − 2y2))

sinh2(k⊥λ−1) − (k⊥λ−1)2
, (A4)

Bm = Ymk⊥λ−1 exp(−k⊥(λ−1 − 2y2)) + Zm sinh(k⊥λ−1)

sinh2(k⊥λ−1) − (k⊥λ−1)2
, (A5)

Ym = −dj(Ĵ∞
jm |L exp(k⊥(λ−1 − y2)) − Ĵ∞

jm |U exp(−k⊥y2)), (A6)

Zm = −d̄j(Ĵ∞
jm |L exp(−k⊥(λ−1 − y2)) − Ĵ∞

jm |U exp(k⊥y2)), (A7)

Cim = Fim exp(−k⊥(λ−1 − y2)) − Gim exp(k⊥y2)

exp(−k⊥λ−1) − exp(k⊥λ−1)
, (A8)

Dim = Gim exp(−k⊥y2) − Fim exp(k⊥(λ−1 − y2))

exp(−k⊥λ−1) − exp(k⊥λ−1)
, (A9)

Fim = −Ĵ∞
im |L − 1

4k2
⊥

[Amdi exp(k⊥y2) (1 − 2k⊥y2) − Bmd̄i exp(−k⊥y2) (1 + 2k⊥y2)],

(A10)

Gim = −Ĵ∞
im |U − 1

4k2
⊥

[Amdi exp(−k⊥(λ−1 − y2)) (1 + 2k⊥(λ−1 − y2))

+ Bmd̄i exp(k⊥(λ−1 − y2)) (2k⊥(λ−1 − y2) − 1)], (A11)
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Inertial migration of a sphere in plane Couette flow

where the superscripts L and U denote the partially Fourier-transformed Oseen–Burger
tensor evaluated on the lower wall and upper wall, respectively. The Fourier-transformed
Oseen–Burger tensor is given by

Ĵ∞ = 1
8π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 exp(−k⊥|r2|)π(k2
3 + k2

⊥
+ k⊥(k2

3 − k2
⊥)|r2|)

k3
⊥

2ι exp(−k⊥|r2|)k1πr2

k⊥

−2 exp(−k⊥|r2|)k1k3π(k⊥|r2| + 1)

k3
⊥

2ι exp(−k⊥|r2|)k1πr2

k⊥
2 exp(−k⊥|r2|)π(k⊥|r2| + 1)

k⊥
2ι exp(−k⊥|r2|)k3πr2

k⊥

−2 exp(−k⊥|r2|)k1k3π(k⊥|r2| + 1)

k3
⊥

2ι exp(−k⊥|r2|)k3πr2

k⊥

−

2 exp(−k⊥|r2|)
×π(k⊥|r2|k2

3 + k2
3 − 2k2

⊥)

k3
⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A12)

Appendix B

The lift velocity for a sphere in plane Couette flow for Rec � 1 is given by (3.7), with
I(k′′

⊥, s) being defined as:

I(k′′
⊥, s) = − exp(k′′

⊥(25s + 18)) (s − 1)2[3k′′2
⊥ (s − 1)2 − 2k′′

⊥(s − 1) + 3]

+ exp(k′′
⊥(29s + 24)) (s − 1)2[3k′′2

⊥ (s − 1)2 + 2k′′
⊥(s − 1) + 3]

− 2(2s − 1) exp(3k′′
⊥(9s + 8)) [6k′′3

⊥ (s − 1)s − 4k′′2
⊥ (s − 1)s − 3]

− 2(2s − 1) exp(9k′′
⊥(3s + 2)) [6k′′3

⊥ (s − 1)s + 4k′′2
⊥ (s − 1)s + 3]

− s2 exp(k′′
⊥(25s + 26)) (3k′′2

⊥ s2 − 2k′′
⊥s + 3)

+ s2 exp(k′′
⊥(29s + 16)) (3k′′2

⊥ s2 + 2k′′
⊥s + 3)

− 2 exp(k′′
⊥(27s + 20)) [8k′′4

⊥ s(2s2 − 3s + 1)

− 6k′′3
⊥ s(2s2 − 3s + 1) − 12k′′2

⊥ (2s3 − 3s2 + 3s − 1) − 18s + 9]

+ 2 exp(k′′
⊥(27s + 22)) [8k′′4

⊥ s(2s2 − 3s + 1)

+ 6k′′3
⊥ s(2s2 − 3s + 1) − 12k′′2

⊥ (2s3 − 3s2 + 3s − 1) − 18s + 9]

+ exp(5k′′
⊥(5s + 4)) [12k′′4

⊥ (s − 1)2s2 + 4k′′3
⊥ (s − 1)2(4s − 1)

+ 3k′′2
⊥ (4s4 − 12s3 + 14s2 − 12s + 5) − 2k′′

⊥(4s3 − 9s2 + 9s − 3)
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+ 3(4s2 − 6s + 3)] − exp(k′′
⊥(29s + 22)) [12k′′4

⊥ (s − 1)2s2

− 4k′′3
⊥ (s − 1)2(4s − 1) + 3k′′2

⊥ (4s4 − 12s3 + 14s2 − 12s + 5)

+ 2k′′
⊥(4s3 − 9s2 + 9s − 3) + 3(4s2 − 6s + 3)]

+ exp(k′′
⊥(25s + 24)) [12k′′4

⊥ (s − 1)2s2 + 4k′′3
⊥ s2(4s − 3)

+ 3k′′2
⊥ (4s4 − 4s3 + 2s2 + 4s − 1)

+ k′′
⊥(−8s3 + 6s2 − 6s + 2) + 12s2 − 6s + 3]

− exp(k′′
⊥(29s + 18)) [12k′′4

⊥ (s − 1)2s2

− 4k′′3
⊥ s2(4s − 3) + 3k′′2

⊥ (4s4 − 4s3 + 2s2 + 4s − 1)

+ k′′
⊥(8s3 − 6s2 + 6s − 2) + 12s2 − 6s + 3]

− exp(k′′
⊥(25s + 22)) [24k′′4

⊥ (s − 1)2s2

+ 4k′′3
⊥ (2s − 1)3 + 3k′′2

⊥ (6s4 − 12s3 + 10s2 − 4s + 3)

− 6k′′
⊥(2s3 − 3s2 + 3s − 1) + 9(2s2 − 2s + 1)]

+ exp(k′′
⊥(29s + 20)) [24k′′4

⊥ (s − 1)2s2

− 4k′′3
⊥ (2s − 1)3 + 3k′′2

⊥ (6s4 − 12s3 + 10s2 − 4s + 3)

+ 6k′′
⊥(2s3 − 3s2 + 3s − 1) + 9(2s2 − 2s + 1)]. (B1)
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