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Abstract

Objectives: To validate the two-factor structure (i.e., cognitive and somatic) of the Health and Behaviour Inventory (HBI), a widely used post-
concussive symptom (PCS) rating scale, through factor analyses using bifactor and correlated factor models and by examining measurement
invariance (MI). Methods: PCS ratings were obtained from children aged 8–16.99 years, who presented to the emergency department with
concussion (n= 565) or orthopedic injury (OI) (n= 289), and their parents, at 10-days, 3-months, and 6-months post-injury. Item-level HBI
ratings were analyzed separately for parents and children using exploratory and confirmatory factor analyses (CFAs). Bifactor and correlated
models were compared using various fit indices and tested for MI across time post-injury, raters (parent vs. child), and groups (concussion vs.
OI).Results:CFAs showed good fit for both a three-factor bifactor model, consisting of a general factor with two subfactors (i.e., cognitive and
somatic), and a correlated two-factor model with cognitive and somatic factors, at all time points for both raters. Some results suggested the
possibility of a third factor involving fatigue. All models demonstrated strict invariance across raters and time. Group comparisons showed at
least strong or strict invariance. Conclusions: The findings support the two symptom dimensions measured by the HBI. The three-factor bifactor
model showed the best fit, suggesting that ratings on the HBI also can be captured by a general factor. Both correlated and bifactor models showed
substantial MI. The results provide further validation of the HBI, supporting its use in childhood concussion research and clinical practice.
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Introduction

Concussions, a form of mild traumatic brain injury (mTBI), occur
in approximately 1–2 million children/adolescents yearly in the
United States (Bryan et al., 2016), and are frequently associated
with cognitive, somatic, behavioral, and emotional symptoms
(Ayr et al., 2009). For approximately 1 in 3 children, these post-
concussion symptoms (PCS) persist up to 1 month or longer
(Barlow et al., 2010; Zemek et al., 2016). Persistent PCS have a neg-
ative impact on health-related quality of life and wellness
(Beauchamp et al., 2019; Novak et al., 2016). Accurate identifica-
tion of PCS is essential for appropriate management of concussion.

Current guidelines call for the use of age-appropriate and vali-
dated PCS rating scales to assist with diagnosis and monitoring
recovery (Lumba-Brown et al., 2018; Reed et al., 2019). The
Health and Behaviour Inventory (HBI) is a PCS rating scale that

is embedded within the child version of the Sport Concussion
Assessment Tool (Davis et al., 2017) and recommended in the
NINDS Common Data Elements for pediatric TBI and sport-
related concussion (Broglio et al., 2018; McCauley et al., 2012).
The HBI, which is intended for use with 8–17 year old children,
consists of 20 items separated into two subscales that reflect cog-
nitive and somatic symptoms commonly reported after concussion
(Ayr et al., 2009). The 20 items were chosen from a larger pool of 50
items based on the results of common factor analyses using target
rotation (Browne, 2001), which identified cognitive and somatic
symptom factors that consistently replicated based on both child
and parent ratings and over time. The HBI has acceptable psycho-
metric properties, including good-to-excellent internal consistency
and moderate-to-good test–retest reliability (O’Brien et al., 2021),
is sensitive to pediatric mild TBI and sport-related concussion
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(Babl et al., 2017; Patsimas et al., 2020), predicts other outcomes
such as quality of life (Moran et al., 2012; Yeates et al., 2012),
and is sensitive to treatment of concussion (Hilt et al., 2022;
McCarty et al., 2021).

Another approach to validating symptom rating scales such
as the HBI is to examine their factor structure and invariance.
Factor analyses (exploratory or confirmatory) are commonly
used to identify and validate the dimensions of PCS rating scales
because they offer empirical evidence for the validity of symp-
tom interpretation and guide the development of subscales
(Karr & Iverson, 2020). Identifying the dimensions of concus-
sion symptoms also can offer insights into an individually tail-
ored approach to treatment (Brett et al., 2020). To date, factor
analyses of PCS rating scales have yielded somewhat inconsis-
tent results, although factors involving cognitive, somatic, emo-
tional, and sleep symptoms are typically reported (Brett et al.,
2020; Nelson et al., 2018). No universally consistent dimensions
have been identified, as past studies have found PCS ratings to
be both unidimensional and multidimensional (Joyce et al.,
2015; Merritt & Arnett, 2014; Piland et al., 2003; Sady,
Vaughan, & Giogial, 2014; Waljas et al., 2012). In both clinical
and research contexts, total scores are often used in place of
more discrete subscales. The bifactor model has become an
innovative approach to reconciling these inconsistencies, as it
allows for both a dominant general factor and multi-faceted
subfactors. In a bifactor model, a broad comprehensive factor
directly accounts for each item on the symptom rating scale,
and the residual item variance is accounted for by additional
subfactors (Nelson et al., 2018).

To validate factor models, measurement invariance (MI) can be
assessed to test the applicability of the factor model across time,
raters, or groups, by imposing stringent assumptions on the equal-
ity of model parameters. Tests of these assumptions can offer
insights into the nature of underlying constructs and their mea-
surement (Agtarap et al., 2020; Brett et al., 2020); importantly, con-
firmation of MI ensures that researchers and clinicians can be
confident that scores on PCS rating scales are comparable across
time, raters, and different injury types. The four levels of MI
are: (1) configural, which requires equivalence of factor model
structure (i.e., items load onto the same factors); (2) weak, which
requires equivalence of factor loadings; (3) strong, which requires
equivalence of item thresholds or intercepts; and (4) strict, which
requires equivalence of item residuals or unique variances (Putnick
& Bornstein, 2016).

The factor structure of the HBI has not been validated since its
original derivation (Ayr et al., 2009) and no research has inves-
tigated its MI. Therefore, this study had three main goals: (1) to
validate the two dimensions of the HBI identified in previous
research using both exploratory and confirmatory approaches,
(2) to test whether a bifactor model with a general factor and cog-
nitive and somatic subfactors achieves better fit than the corre-
lated two-factor model, and (3) to evaluate MI for all factor
models across time (10-days, 3-months, and 6-months post-
injury), raters (child vs. parent), and groups (concussion vs.
orthopedic injury [OI]). Analyses used data collected from a pro-
spective multicenter, longitudinal cohort study of children aged
8–16.99 years who presented to emergency departments (EDs) at
five pediatric hospitals across Canada with either concussion or
OI (Yeates et al., 2017). We predicted that analyses would con-
firm the two-dimensional model of the HBI, but anticipated that
a bifactor model might provide a better overall fit than a

correlated two-factor model. We also expected to find at least
weak MI across all comparisons (time, rater, group) for both
bifactor and correlated two-factor models.

Methods

Participants

The study included 967 children and adolescents aged 8 to 16.99
with mTBI or OI. They were recruited for the Advancing
Concussion Assessment in Pediatrics (A-CAP) study (Yeates
et al., 2017), conducted at five sites from the Pediatric
Emergency Research Canada network (Bialy et al., 2018):
Alberta Children’s Hospital (Calgary, Alberta), Children’s
Hospital of Eastern Ontario (Ottawa, Ontario), Sainte-Justine
Hospital (Montreal, Quebec), Stollery Children’s Hospital
(Edmonton, Alberta), and British Columbia Children’s Hospital
(Vancouver, British Columbia).

Children were eligible for the concussion group if they pre-
sented to the ED within 48 h of sustaining a blunt head trauma
and met at least one of the three following criteria, consistent with
theWHO definition of mTBI (Carroll et al., 2004): (1) an observed
loss of consciousness (LOC), (2) a Glasgow Coma Scale (GCS)
score of 13 or 14, or (3) at least one acute sign or symptom of con-
cussion such as post-traumatic amnesia, focal neurological deficits,
skull fracture, post-traumatic seizure, vomiting, headache, dizzi-
ness, and other mental status changes. Children were eligible for
the OI group if they sustained upper or lower extremity fractures,
sprains, or strains due to blunt force/physical trauma, associated
with a score of 4 or less on the Abbreviated Injury Scale
(Medicine, 1990), within 48 h of presentation to the ED.
Exclusion criteria for the concussion group were delayed neuro-
logical deterioration as indicated by a GCS score less than 13,
LOC> 30 min, or post-traumatic amnesia > 24 h. OI group exclu-
sion criteria included any head trauma or symptoms of concussion
reported during screening for recruitment, as well as any injury
requiring surgical intervention or procedural sedation. For both
groups, additional exclusion criteria were hypoxia, hypotension,
or shock during or following the injury; non-English-speaking
child or parents (non-English and non-French-speaking in
Quebec or Ottawa); previous TBI requiring overnight hospitali-
zation; previous concussion within the past 3 months; previous
severe neurological or neurodevelopmental disorder such as epi-
lepsy, intellectual disability, or autism (history of attention deficit
hyperactivity disorder, learning disability, or Tourette’s syndrome
was not an exclusion); hospitalization in the previous year for psy-
chiatric disorder; administration of sedative medication prior to
ED data collection (fentanyl was not an exclusion if used for pain
management only); obvious alcohol or drug ingestion associated
with injury; injury related to abuse or assault; and legal guardian
not present or child in foster care. Table 1 shows demographic
and injury characteristics of the sample.

Measures

TheHBI consists of 20 items (Table 2), with each item rated on a 4-
point scale (0 =Never, 1= Rarely, 2 = Sometimes, 3=Often). The
items form two subscales, with the first 11 constituting the cogni-
tive scale and the remaining 9 constituting the somatic scale (Ayr
et al., 2009). The wording of child and parent proxy forms differ
slightly to reflect first- versus third-person perspective, but the
items are otherwise equivalent.
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Procedures

The study was approved by the research ethics boards of all par-
ticipating institutions. Parents and capable adolescents provided
written informed consent, and all other children provided written
assent. Designated staff screened for all eligible participants who
presented to the EDs. Recruitment took place from September
2016 to December 2018. Figure 1 shows a total of 3051 participants
were eligible, and 967 (32%) consented (644 with concussion and
334 with OI).

HBI ratings were directly entered into REDCap databases by
both the parent and the child during three face-to-face follow-
up visits post-injury. A post-acute assessment was completed
within three weeks of the injury (M = 8.39 days, SD= 3.13) by
828 (86%) parents and 829 (86%) children. Ratings were com-
pleted by 722 (75%) parents and 728 (75%) children at 3-months
post-injury (M = 96.21 days, SD = 9.74) and by 685 (71%) parents
and 701 (72%) children at 6-months post-injury (M= 186.06 days,

Table 1. Sample demographic and injury characteristics

Demographics

mTBI (N= 565) OI (N= 289)

Injury characteristics

mTBI (N= 565) OI (N= 289)

n (%) or mean (SD) n (%) or median (IQR)

Age (y) 12.38 (2.52) 12.58 (2.21) Previous concussion
Sex: female 228 (40.35%) 132 (45.67%) 0 382 (67.97%) 202 (70.38%)
Child’s race 1 110 (19.57%) 52 (18.12%)
White 385 (69.75%) 195 (70.4%) ≥2 68 (12.1%) 31(10.8%)
Indigenous 13 (2.36%) 3 (1.08%) Unknown 2 (0.36%) 2 (0.7%)
Asian 51 (9.24%) 22 (7.94%) Mechanism of injury
Hispanic 13 (2.36%) 12 (4.33%) Assault 4 (0.71%) 1 (0.35%)
Black 21 (3.8%) 7 (2.53%) Fall 250 (44.48%) 147 (51.04%)
Other/multi-racial 69 (12.5%) 38 (13.72%) Struck object 177 (31.49%) 60 (20.83%)

Parent’s education Struck person 100 (17.79%) 29 (10.07%)
High school or less 85 (15.54%) 42 (15.44%) Bicycle related 9 (1.6%) 12 (4.17%)
Trade school/2-year college 164 (29.98%) 81 (29.78%) MVC 9 (1.6%) 0
University bachelor’s degree 205 (37.48%) 93 (34.19%) Other 6 (1.07%) 21 (7.29%)
Higher than bachelor’s degree 93 (17%) 56 (20.59%) Not documented 7 (1.25%) 18 (6.25%)

Site Injury setting
Calgary 136 (24.07%) 62 (21.45%) Sports/recreation 460 (81.85%) 237 (83.16%)
Edmonton 110 (19.47%) 59 (20.42%) Non-sport related 102 (18.15%) 48 (16.84%)
Montreal 62 (10.97%) 25 (8.65%) Reliable change cognitive
Ottawa 140 (24.78%) 47 (16.26%) Child PA1 226 (41.17%) 23 (8.33%)
Vancouver 117 (20.71%) 96 (33.22%) Child 3M2 58 (12.21%) 18 (7.5%)

Child 6M3 47 (10.4%) 19 (7.79%)
Parent PA4 140 (25.41%) 14 (5.05%)
Parent 3M5 49 (10.47%) 13 (5.37%)
Parent 6M6 48 (10.61%) 18 (8%)
Reliable change somatic
Child PA1 294 (53.55%) 17 (6.16%)
Child 3M2 76 (16%) 15 (6.25%)
Child 6M3 72 (15.93%) 19 (8.23%)
Parent PA4 326 (59.17%) 17 (6.14%)
Parent 3M7 61 (12.95%) 11 (4.56%)
Parent 6M8 46 (10.31%) 18 (8%)
Loss of consciousness9 88 (16.79%) 2 (0.69%)
GCS< 1510 9 (1.67%) 0
Number of acute symptoms in ED (possible range 0–22) 8 (6–11) 1.5 (1–3)

mTBI = mild traumatic brain injury; OI = orthopedic injury; SD = standard deviation; PA = post-acute; 3M= 3 month; 6M= 6 month. ED = emergency department.
1mTBI= 549, OI= 276.
2mTBI= 475, OI= 240.
3mTBI= 452, OI= 231.
4mTBI= 551, OI= 277.
5mTBI= 468, OI= 242.
6mTBI= 443, OI= 225.
7mTBI= 471, OI= 241.
8mTBI= 446, OI= 225.
9mTBI= 524, OI= 288.
10mTBI= 538.

Table 2. Health and behavior inventory subscale items

Cognitive Somatic

1. Has trouble sustaining attention 12. Has headaches
2. Is easily distracted 13. Feels dizzy
3. Has difficulty concentrating 14. Has a feeling that the room

is spinning
4. Has problems remembering what
he/she is told

15. Feels faint

5. Has difficulty following directions 16. Has blurred vision
6. Tends to daydream 17. Has double vision
7. Gets confused 18. Experiences nausea
8. Is forgetful 19. Gets tired a lot
9. Has difficulty completing tasks 20. Gets tired easily
10. Has poor problem-solving skills
11. Has problems learning
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SD= 11.49). Of the parent ratings, 75% were completed by the
mother, 21% by the father, and the remaining 4% by adoptive, step,
and grandparents. Item-level missingness was less than 5% for the
parent’s rating at the 3- and 6-month assessments, with no miss-
ingness at the first follow-up post-injury visit. No item-level miss-
ingness was detected in children’s ratings at any time point.

Statistical analysis

Factor analyses
Based on the ordinal nature of the HBI ratings, polychoric corre-
lations were computed to examine inter-item correlation (Agtarap
et al., 2020; Karr & Iverson, 2020; Rodriguez et al., 2016) Next, we
conducted exploratory factor analyses (EFA) to verify the two fac-
tors identified in previous research (Ayr et al., 2009). Because the
HBI is intended to measure PCS after concussion, EFAs were con-
ducted separately for mTBI andOI groups and for child and parent
ratings. Models adopted Geomin rotation, an oblique method that
allows correlations between factors (Agtarap et al., 2020; Brett
et al., 2020; Nelson et al., 2018). Factors with eigenvalues > 1, scree
plot inflections, and high factor loadings (> 0.7) were all consid-
ered to determine candidate models. Confirmatory factor analyses
(CFAs) included correlated two-factor and three-factor models, as
well as a three-factor bifactor model using two subfactors for the
cognitive and somatic items (Figure 2). A four-factor bifactor
model could not be examined in confirmatory analyses due to con-
vergence issues. Factors were set to be orthogonal in the bifactor
model but were allowed to correlate with one another in the corre-
lated models.

Models were compared using multiple fit indices. Absolute fit
was assessed using the root mean square error of approximation
(RMSEA). Incremental fit was evaluated using comparative fit
index (CFI) and Tucker-Lewis index (TLI). Models with

RMSEA < 0.05 and CFI/TLI > 0.95 were considered good fit,
and RMSEA < 0.08 and CFI/TLI > 0.9 were considered acceptable
fit. A weighted least squares with mean and variance adjusted
(WLSMV) estimator was incorporated to accommodate for the
ordinal nature of the HBI items (Agtarap et al., 2020; Karr &
Iverson, 2020; Nelson et al., 2018). Theta parameterization was
used to allow for the inclusion of residual variances as parameters
to permit testing strict MI (Karr & Iverson, 2020). Model-based
reliability measures of omega, omega hierarchical (omegaH),
and relative omega were computed, with a particular focus on
omegaH, to estimate the proportion of observed variance in total
and subscale scores that could be attributed to the underlying gen-
eral and subfactors (Reise, 2012). In addition, Pearson correlations
were computed between predicted factor scores and calculatedHBI
scores to explore their association.

Measurement invariance
MI is a stepwise approach that compares nested models by adding
increasingly stringent constraints to model parameters. The analy-
ses test whether a given scale measures the same construct at differ-
ent time points or between different groups of people. We tested
MI across time (post-acute vs. 3-months vs. 6-months), raters
(parent vs. child), and groups (concussion vs. OI). MI is defined
as four progressively more stringent levels: configural, weak,
strong, and strict. In configural invariance, the pattern of factor
loading is consistent across time/groups/raters, and each item
should load most highly onto the same respective factor. Weak
invariance constrains item loadings on the factors to be equal
across time/groups/raters. It allows for the comparison of factor
variances and covariances, meaning the proportion of variance
in each HBI item accounted for by each factor is similar over time
and across groups/raters. Strong invariance constrains item thresh-
olds to be equivalent across time/groups/raters. Factor means
between groups or within-person mean factor scores across time
can be compared at this level, with differences in factor means
reflecting true differences in the construct measured. Lastly, strict
invariance further constrains the residual variances of items to be
the same across time/groups/raters. In this case, differences in item
parameters (i.e., means, variance, and covariance) are entirely
attributable to differences in factor means over time or between
groups/raters. Because of model complexity, and to ensure conver-
gence, the test of configural invariance across time for the corre-
lated two-factor model had to be defined differently for parent
versus child ratings; no constraints were necessary for the analysis
based on child ratings, but one item was constrained to be equal
across time for the analysis based on parent ratings. Given the con-
straint at the configural level is consistent with weak, strong, and
strict invariance, our subsequent tests for MI are valid.

MI is established when the fit of the more stringent model (e.g.,
strong invariance) is no worse compared to the one with more
relaxed assumptions (e.g., weak invariance), as indicated by fit sta-
tistics. Consistent with prior studies, we rejected the more
restricted model if CFI decreased by> 0.01 or RMSEA increased
by> 0.015. Chi-square differences were not calculated due to their
oversensitivity in large samples and a lack of an appropriate test to
handle scaled chi-square differences from theWLSMV estimators.
We examined factor scores once strong invariance was achieved to
assess differences in mean scores between raters, groups, and time
points; factor scores were estimated based on the strict invariance
model and expressed in standardized units (i.e., Z scores). To test
for groupMI, the two highest categories in symptom ratings had to
be combined for a few items because the OI group did not select

Figure 1. Participant enrollment. mTBI=mild traumatic brain injury, OI= orthopedic
injury.
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“often” as a response. However, categories were collapsed for only
three items for parent ratings at all three time points and two and
one item for child ratings at 3 and 6 months, respectively. Factor
analyses were implemented in R (version 4.0.3) and descriptive
analyses were conducted in Stata (version 15.0/MP, StataCorp,
College Station, Texas).

Results

Exploratory factor analyses

EFA analyses showed consistent loadings of the first 11 items,
involving cognitive symptoms, onto the first factor across the three
time points for both child and parent ratings. This was further evi-
dent in the polychoric correlations, which showed strong inter-
item correlations among items 1–11 (Figure 3). Items 12–20

involving somatic symptoms loaded onto two different factors
when based on eigenvalues > 1, with items 19 and 20 loading sep-
arately from the others, suggesting the possibility of a third fatigue
factor; however, the eigenvalues for the third factor were relatively
low and scree plots suggested a 2-factor solution. When EFA were
constrained to 2 factors, items 1–11 loaded onto factor 1 and items
12–20 onto factor 2 across all time points for each group and rater.
Occasional loadings of items 19 and 20 onto the first factor were
also observed, again suggesting the possibility of a third fatigue
factor.

Confirmatory factor analyses

Fit statistics for the correlated two-factor, correlated three-factor,
and three-factor bifactor models are presented in Table 3. At each

Figure 2. Factor models.
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time point, the correlated three-factor model consistently achieved
the best absolute and incremental fit, although no model estab-
lished good fit due to RMSEA> 0.05.

Correlated two-factor model

The correlated two-factor model had the worst fit at post-acute for
both raters. All RMSEA were > 0.08 and the fit indices were worse
than the other two models at all time points for child’s ratings. Fit
indices were better for the parent ratings at all time points except
for RMSEA post-acutely.

Correlated three-factor model

The correlated three-factor model demonstrated improved fit
compared to the more parsimonious two-factor model. Loadings
of items 19 and 20 on the third factor, reflecting fatigue, were
0.92 and 0.934, 0.974 and 0.967, and 0.965 and 0.966 at post-acute,
3-months, and 6-months respectively; these loadings were

consistently higher than their loadings on the second factor in
the correlated two-factor model, which were 0.883 and 0.894.,
0.954 and 0.953, 0.95 and 0.953 at post-acute, 3-months, and 6-
months respectively. Parent ratings displayed better comparative
fit statistics post-acutely and the child ratings showed better abso-
lute fit than parent ratings (RMSEA 0.081 vs. 0.094) post-acutely,
with no apparent differences at other time points.

Bifactor model

The three-factor bifactor model for parent ratings resulted in the
worst fit indices at post-acute and 6-months compared to the other
two models. For child ratings, absolute and incremental fit were
better than the correlated two-factor model at all time points.
The bifactor model failed to achieve acceptable fit at any time point
for both raters because RMSEA> 0.08; however, comparative fit
indices (CFI/TLI) were greater than 0.95. The omegaH for the
parent model were 0.89, 0.81, and 0.87 at post-acute, 3-months,
and 6-months, respectively. For the child model, omegaH were

Figure 3. Polychoric correlation of HBI items at post-acute. Correlations above diagonal line are from children’s ratings and correlations below the diagonal line are from
parents’ ratings.
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Table 4. Fit statistics for measurement invariance of two-factor models across raters within time points

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated two-factor
PA
Configural 2644.435** 714 0.966 — 0.963 0.057 (0.055–0.059)** —

Weak 2710.169** 732 0.966 −0.001 0.963 0.057 (0.055–0.059)** 0
Strong 2875.147** 770 0.963 −0.002 0.963 0.057 (0.055–0.059)** 0
Strict 2899.178** 790 0.963 0 0.964 0.057 (0.054–0.059)** −0.001

3M
Configural 2269.66** 714 0.971 — 0.968 0.054 (0.052–0.057)* —

Weak 2315.533*** 732 0.97 −0.001 0.968 0.054 (0.051–0.056)* 0
Strong 2404.715** 770 0.969 −0.001 0.969 0.053 (0.051–0.056)* −0.001
Strict 2442.199** 790 0.969 0 0.97 0.053 (0.051–0.055)* 0

6M
Configural 2055.799** 714 0.978 — 0.976 0.052 (0.049–0.054) —

Weak 2094.897** 732 0.978 0 0.976 0.051 (0.049–0.054) 0
Strong 2171.62** 770 0.977 −0.001 0.977 0.051 (0.048–0.053) −0.001
Strict 2206.606** 790 0.977 0 0.977 0.05 (0.048–0.053) −0.001

Bifactor-two subfactors
PA
Configural 2102.297** 670 0.975 — 0.971 0.051 (0.048–0.053) —

Weak 2079.032** 707 0.976 0.001 0.974 0.048 (0.046–0.051) −0.002
Strong 2304.042** 745 0.973 −0.003 0.972 0.05 (0.048–0.052) 0.002
Strict 2305.954** 765 0.973 0 0.973 0.049 (0.047–0.051) −0.001

3M
Configural 1921.702** 670 0.977 — 0.973 0.05 (0.047–0.053) —

Weak 1768.808** 707 0.98 0.004 0.978 0.045 (0.042–0.047) −0.005
Strong 1918.335** 745 0.978 −0.002 0.977 0.046 (0.043–0.048) 0.001
Strict 1988.057** 765 0.977 −0.001 0.977 0.046 (0.044–0.049) 0

6M
Configural 1812.246** 670 0.981 — 0.978 0.049 (0.046–0.052) —

Weak 1626.726** 707 0.985 0.004 0.983 0.043 (0.04–0.046) −0.006
Strong 1735.248** 745 0.984 −0.001 0.983 0.043 (0.041–0.046) 0
Strict 1726.072** 765 0.984 0 0.984 0.042 (0.04–0.045) −0.001

X2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; TLI = Tucker-Lewis index.Note: **p-value <0.001,
*0.001 ≤ p-value <0.05. Δ: current model subtract the previous (the one above) model.

Table 3. Fit statistics for confirmatory factor models at each time point across raters

Rater X2 df CFI TLI RMSEA (90% CI)

Parent
Post-acute
Correlated two-factor 1096.842** 169 0.966 0.962 0.1 (0.094–0.106)**

Correlated three-factor 978.043** 167 0.97 0.966 0.094 (0.088–0.1)**

Bifactor – two-factor 1192.708** 150 0.962 0.952 0.112 (0.107–0.118)**

3 Months
Correlated two-factor 724.542** 169 0.979 0.976 0.082 (0.076–0.089)**

Correlated three-factor 689.011** 167 0.98 0.978 0.08 (0.074–0.087)**

Bifactor – two-factor 666.706** 150 0.981 0.975 0.084 (0.078–0.091)**

6 Months
Correlated two-factor 672.473** 169 0.983 0.98 0.081 (0.074–0.087)**

Correlated three-factor 582.083** 167 0.986 0.984 0.074 (0.067–0.08)**

Bi-factor – two-factor 708.42** 150 0.981 0.976 0.09 (0.084–0.097)**

Child
Post-acute
Correlated two-factor 962.383** 169 0.945 0.939 0.092 (0.087–0.098)**

Correlated three-factor 768.862** 167 0.959 0.953 0.081 (0.075–0.087)**

Bifactor – two-factor 714.288** 150 0.961 0.951 0.083 (0.077–0.089)**

3 Months
Correlated two-factor 858.083** 169 0.975 0.972 0.092 (0.086–0.098)**

Correlated three-factor 714.229** 167 0.98 0.978 0.083 (0.077–0.089)**

Bi-factor – two-factor 718.773** 150 0.979 0.974 0.089 (0.083–0.096)**

6 Months
Correlated two-factor 773.233** 169 0.978 0.975 0.088 (0.082–0.094)**

Correlated three-factor 567.524** 167 0.985 0.983 0.072 (0.066–0.079)**

Bifactor – two-factor 627.243** 150 0.983 0.978 0.083 (0.076–0.09)**

X2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; TLI = Tucker-Lewis index.
Note: model fitted for mTBI group only.
**p-value≤ 0.001.
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Table 5. Fit statistics for measurement invariance of three-factor models across raters within time points

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated three-factor
PA
Configural 2260.503** 705 0.973 — 0.97 0.051 (0.049–0.054) —

Weak 2321.172** 722 0.972 −0.001 0.97 0.051 (0.049–0.054) 0
Strong 2478.59** 759 0.97 −0.002 0.969 0.052 (0.05–0.054) 0.001
Strict 2549.216** 779 0.969 −0.001 0.969 0.052 (0.05–0.054) 0

3M
Configural 2019.029** 705 0.975 — 0.973 0.05 (0.047–0.053) —

Weak 2061.955** 722 0.975 0 0.973 0.05 (0.047–0.052) 0
Strong 2142.312** 759 0.974 −0.001 0.973 0.049 (0.047–0.052) 0
Strict 2158.150** 779 0.974 0 0.974 0.049 (0.046–0.051) −0.001

6M
Configural 1691.612** 705 0.984 — 0.982 0.045 (0.042–0.047) —

Weak 1731.025** 722 0.984 0 0.982 0.045 (0.042–0.047) 0
Strong 1810.533** 759 0.983 −0.001 0.982 0.044 (0.042–0.047) 0
Strict 1848.652** 779 0.983 0 0.983 0.044 (0.042–0.047) 0

Bifactor-three subfactors
PA
Configural 2046.508** 663 0.976 — 0.972 0.05 (0.048–0.052) —

Weak 2108.361** 699 0.976 0 0.973 0.049 (0.047–0.052) −0.001
Strong 2304.799** 736 0.973 −0.003 0.971 0.05 (0.048–0.053) 0.001
Strict 2315.815** 756 0.973 0 0.972 0.05 (0.047–0.052) −0.001

3M
Configural 1694.03** 663 0.981 — 0.977 0.046 (0.043–0.048) —

Weak 1729.231** 699 0.981 0 0.979 0.044 (0.042–0.047) −0.001
Strong 1832.276** 736 0.98 −0.001 0.978 0.044 (0.042–0.047) 0
Strict 1836.882** 756 0.98 0 0.979 0.044 (0.041–0.046) −0.001

6M
Configural 1624.578** 663 0.984 — 0.982 0.045 (0.043–0.048) —

Weak 1623.299** 699 0.985 0.001 0.983 0.043 (0.041–0.046) −0.002
Strong 1705.552** 736 0.984 −0.001 0.983 0.043 (0.041–0.046) 0
Strict 1689.267** 756 0.985 0.001 0.984 0.042 (0.039–0.045) −0.001

X2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; TLI = Tucker-Lewis index.
Note: **p-value <0.001, Δ: current model subtract the previous (the one above) model.

Table 6. Fit statistics for measurement invariance of two-factor models within raters across time points

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated two-factor
Parent
Configural 3815.219** 1635 0.974 — 0.972 0.04 (0.038–0.041) —

Weak 3865.991** 1667 0.974 0.000 0.973 0.039 (0.038–0.041) −0.001
Strong 3979.752** 1742 0.974 0.000 0.973 0.039 (0.037–0.041) 0
Strict 4002.196** 1782 0.974 0.001 0.974 0.038 (0.037–0.04) −0.001

Child
Configural 3800.63** 1639 0.970 — 0.967 0.039 (0.038–0.041) —

Weak 3857.096** 1672 0.970 0 0.968 0.039 (0.038–0.042) 0
Strong 3814.95** 1747 0.971 0.002 0.971 0.037 (0.036–0.039) 0
Strict 3776.118** 1787 0.972 0.001 0.973 0.036 (0.035–0.038) −0.001

Bifactor-two subfactors
Parent
Configural 3364.59** 1561 0.979 — 0.976 0.037 (0.035–0.039) —

Weak 3379.764** 1635 0.98 0.001 0.978 0.035 (0.034–0.037) −0.001
Strong 3492.985** 1710 0.979 0 0.979 0.035(0.033–0.037) 0
Strict 3465.564** 1750 0.98 0.001 0.98 0.034 (0.032–0.036) −0.001

Child
Configural 2865.502** 1561 0.982 — 0.979 0.031 (0.03–0.033) —

Weak 2978.988** 1635 0.981 −0.001 0.98 0.031 (0.029–0.033) 0
Strong 3087.659** 1711 0.981 0 0.98 0.031 (0.029–0.033) 0
Strict 3095.291** 1751 0.981 0 0.981 0.03 (0.028–0.032) −0.001

X2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; TLI = Tucker-Lewis index.
Note: **p-value <0.001, Δ: current model subtract the previous (the one above) model.
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0.68, 0.86, and 0.64 at post-acute, 3-months, and 6-months, respec-
tively. These high omega values for the general factor suggest that
64% to 89% of the reliable variance in the HBI can be attributed to
this factor. However, some substantive variance was explained by
the subfactors, especially for the child ratings. Pearson correlations
between the predicted general factor score and the total HBI score
for the child and parent ratings were large and significant across all
three time points. Correlations between predicted subfactor scores
and the calculated cognitive and somatic scores were all significant
but ranged from 0.13 to 0.89 (supplementary Table 1).

Measurement invariance
Invariance of the three models in the CFA was tested across raters,
time points, and groups. Additionally, a bifactor model with three
subfactors was tested across raters and time points as it was able to
converge.

Rater invariance

Tables 4 and 5 present the fit statistics for tests of MI across raters
for each of the models, with statistics for each of the increasingly
more stringent assumptions. All models at all time points demon-
strated CFI/TLI > 0.96 and RMSEA < 0.08, indicating acceptable
fit. Consistent with the criteria for MI, no CFI decreasedmore than
0.01 and none of the RMSEA increased more than 0.015; therefore,
strict invariance across child and parent ratings was established at
each time point for all four models. Analogous to the results in the
CFA, the correlated three-factor model had slightly better fit indi-
ces than the correlated two-factor model. For the bifactor models,
differences in fit between models with three versus two subfactors
were less apparent.

Longitudinal invariance

Tables 6 and 7 display the fit statistics for tests of MI across time
points separately for child and parent ratings. Model parameters
were constrained to be equal across all three time points. Strict
invariance was achieved across all time points for all models for

both raters. All models retained good fit with CFI/TLI > 0.97
and RMSEA < 0.04. At each level of invariance, fit indices were
either similar or better for child than parent ratings for all models
except for CFI and TLI for the correlated two-factor model. Model
fit was better when comparing the three-factor bifactor model to
the correlated two-factor model, particularly for children’s ratings
(ΔCFI between 0.009 to 0.012 and ΔRMSEA between 0.003 to
0.008). The same difference was apparent but smaller when com-
paring the three-factor correlated model with the four-factor bifac-
tor model. For each rater, absolute and incremental fit improved as
more constraints were imposed on model parameters.

Group invariance

Tables 8 and 9 present the fit statistics forMI across the concussion
and OI groups for parents and children, respectively. The bifactor
model with three subfactors was unable to converge; hence, fit indi-
ces were not derived. For parent ratings, delta parameterization
was used at 6-months for the correlated two-factor and bifactor
model with two subfactors, precluding testing for strict invariance
as residual variances are not included in the model under delta
parameterization. For child ratings, delta parameterization was
used at post-acute for the bifactor model. Strict invariance was
established for all models at each time point separately for child
and parent ratings, except for models that used delta parameteriza-
tion, for which strong invariance was achieved.

The correlated two-factor model at 6-months and correlated
three-factor model at 3-months and 6-months achieved acceptable
fit at each invariance level for parent ratings. For child ratings, the
correlated three-factor and bifactor model achieved acceptable fit
at post-acute and 6-months at each invariance level. In turn, no
model showed good fit at the configural level due to
RMSEA > 0.05. Child ratings demonstrated a consistent pattern
of better model fit as more constraints were imposed at all time
points. The same pattern was apparent for parent ratings except
for the correlated three-factor model at 3-months, with the strong
invariance model showing better fit than strict invariance model.

Table 7. Fit statistics for measurement invariance of three-factor models within raters across time points

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated three-factor
Parent
Configural 3508.201** 1614 0.978 — 0.976 0.037 (0.036–0.039) —

Weak 3560.345** 1648 0.978 0 0.976 0.037 (0.035–0.039) 0
Strong 3676.652** 1721 0.977 −0.001 0.976 0.037 (0.035–0.038) 0
Strict 3671.341** 1761 0.978 0.001 0.977 0.036 (0.034–0.037) −0.001

Child
Configural 3123.351** 1614 0.979 — 0.977 0.033 (0.031–0.035) —

Weak 3186.344** 1648 0.979 0 0.977 0.033 (0.031–0.035) 0
Strong 3296.354** 1722 0.978 −0.001 0.978 0.033 (0.031–0.035) 0
Strict 3300.212** 1762 0.979 0.001 0.979 0.032 (0.03–0.034) −0.001

Bifactor-three subfactors
Parent
Configural 3397.272** 1540 0.978 — 0.975 0.038 (0.036–0.039) —

Weak 3484.09** 1613 0.978 0 0.976 0.037 (0.035–0.039) −0.001
Strong 3050.253** 1676 0.984 0.006 0.983 0.031 (0.029–0.033) −0.006
Strict 3036.812** 1716 0.984 0.001 0.984 0.03 (0.028–0.032) −0.001

Child
Configural 2824.293** 1540 0.982 — 0.98 0.031 (0.03–0.033) —

Weak 2785.086** 1612 0.984 0.002 0.982 0.029 (0.027–0.031) −0.002
Strong 2884.916** 1686 0.983 0 0.983 0.029 (0.027–0.031) 0
Strict 2952.185** 1726 0.983 0 0.983 0.029 (0.027–0.031) 0

X2 = chi-square statistic; df = degrees of freedom; RMSEA = root mean square error of approximation statistic; CFI = comparative fit index; TLI = Tucker-Lewis index.Note: ** p-value <0.001,
Δ: current model subtract the previous (the one above) model.
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Incremental fit for parent ratings at 6-months was excellent for
each model (CFI> 0.99, TLI > 0.988). Every CFI/TLI in Table 9
(child) was equal to or greater than 0.95, reflecting good incremen-
tal fit. The largest improvement in absolute fit was observed in the
bifactor model at 3-months and 6-months for both raters; RMSEA
decreased between 0.017 to 0.021 moving from configural to weak
invariance. The correlated three-factor model showed the best
overall fit at the configural level at post-acute, followed by the
bifactor model with two subfactors. The three-factor bifactor
model, whenmoving fromweak to strict invariance, retained better
fit than the correlated three-factor model at 6-months for child
ratings.

Comparison of means

The achievement of at least strong invariance indicates that factor
means can be compared between different groups and across time.

Table 10 illustrates the mean differences between factors by raters/
groups/time based on the strict invariance three-factor bifactor
model, which we chose for this purpose because it had the most
acceptable fit indices. When comparing child and parent ratings,
the mean of the general factor was significantly higher for child
ratings at each time point. The cognitive subfactor showed an
opposite pattern, indicating that children rate themselves lower
on cognitive symptoms after accounting for general differences
in symptom ratings. On the somatic subfactor, ratings differed sig-
nificantly only at 3-months, with child ratings lower than parent
ratings. In group comparisons, the concussion group consistently
scored higher than the OI group on the general factor according to
both raters. Group differences on the cognitive subfactor were not
significant at any time for parent ratings but were higher in the
concussion group at post-acute and 3-months for child ratings.
The concussion group scored significantly higher on the somatic
subfactor at post-acute based on parent ratings and at 3-months

Table 8. Fit statistics for measurement invariance across groups for parent rating

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated two-factor
PA
Configural 1310.509** 338 0.976 — 0.973 0.083 (0.079–0.088)** —

Weak 1319.058** 356 0.976 0 0.974 0.081 (0.076–0.086)** −0.003
Strong 1389.518** 391 0.975 0.001 0.976 0.079 (0.074–0.083)** −0.002
Strict 1421.839** 411 0.975 0 0.977 0.077 (0.073–0.082)** −0.001

3M
Configural 1187.129** 338 0.979 — 0.976 0.083 (0.077–0.088)** —

Weak 1123.128** 356 0.981 0.002 0.98 0.076 (0.071–0.081)** −0.006
Strong 1213.329** 391 0.98 −0.001 0.98 0.075 (0.071–0.08)** −0.001
Strict 1177.029** 411 0.981 0.001 0.983 0.071 (0.066–0.076)** −0.004

6M1

Configural 1028.106** 338 0.991 — 0.99 0.077 (0.071–0.082)** —

Weak 1038.464** 356 0.991 0 0.991 0.074 (0.069–0.08)** −0.002
Strong 1072.696** 390 0.991 0 0.992 0.071 (0.066–0.076)** −0.003

Correlated three-factor
PA
Configural 1140.34** 334 0.98 — 0.977 0.076 (0.072–0.081)** —

Weak 1114.39** 351 0.981 0.001 0.979 0.073 (0.068–0.077)** −0.004
Strong 1192.557** 385 0.98 −0.001 0.98 0.071 (0.067–0.076)** −0.001
Strict 1191.943** 405 0.98 0.001 0.98 0.069 (0.064–0.073)** −0.003

3M
Configural 993.119** 334 0.984 — 0.981 0.073 (0.068–0.078)** —

Weak 935.201** 351 0.986 0.002 0.984 0.067 (0.062–0.072)** −0.006
Strong 1012.136** 385 0.985 −0.001 0.985 0.066 (0.061–0.071)** −0.001
Strict 1177.029** 411 0.981 0.001 0.983 0.071 (0.066–0.076)** −0.004

6M
Configural 847.381** 334 0.993 — 0.993 0.067 (0.061–0.072)** —

Weak 858.452** 351 0.994 0 0.993 0.065 (0.059–0.07)** −0.002
Strong 888.411** 384 0.994 0 0.994 0.062 (0.056–0.067)** −0.003
Strict 921.387** 404 0.993 −0.001 0.994 0.061 (0.056–0.066)** −0.001

Bifactor-two subfactors
PA
Configural 1136.845** 300 0.979 — 0.973 0.082 (0.077–0.087)** —

Weak 1058.407** 337 0.982 0.003 0.98 0.072 (0.067–0.077)** −0.01
Strong 1123.573** 371 0.981 −0.001 0.981 0.7 (0.065–0.075)** −0.002
Strict 1063.071** 391 0.983 0.002 0.984 0.064 (0.06–0.069)** −0.006

3M
Configural 1031.037** 300 0.982 — 0.977 0.081 (0.076–0.087)** —

Weak 830.895** 337 0.988 0.006 0.986 0.063 (0.058–0.068)** −0.018
Strong 940.273** 371 0.986 −0.002 0.986 0.064 (0.059–0.07)** 0.001
Strict 864.533** 391 0.988 0.002 0.989 0.057 (0.052–0.062)* −0.007

6M1

Configural 993.805** 300 0.991 — 0.989 0.082 (0.076–0.087)** —

Weak 769.035** 337 0.995 0.003 0.994 0.061 (0.055–0.067)* −0.021
Strong 862.634** 370 0.994 −0.001 0.994 0.062 (0.057–0.067)** 0.001

Note: 1due to convergence issues, delta parameterization was used; therefore, strict invariance cannot be fitted.
**p-value< 0.001.*p-value< 0.05. Δ: current model subtracts the previous (the one above) model.
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based on child ratings. General factor means decreased signifi-
cantly over time for both raters. Cognitive subfactor means did
not change significantly for either rater, while somatic subfactor
means decreased significantly over time for both child and parent
ratings.

Discussion

The current study validated and supported the two underlying
dimensions of the HBI (cognitive and somatic symptoms) estab-
lished in its original derivation study (Ayr et al., 2009). A third fac-
tor, represented by fatigue symptoms, may serve as an additional
dimension; however, its inclusion in a four-factor bifactor model
was constrained by convergence issues. At the configural level,
almost all models achieved either acceptable or good fit, reflecting
the robustness of the basic cognitive and somatic factor structure.

When comparing correlated factor models to the bifactor model,
however, the bifactor model consistently achieved better fit, and
this difference was most apparent when using two subfactors.
Fit indices for the bifactor model with two subfactors and the cor-
related three-factor model were similar; therefore, the three-factor
bifactor model may be the better solution based on parsimony,
although the negative item-level loadings of items 19 and 20 onto
the somatic subfactor suggests the possibility of further dividing
this subfactor into vestibular and fatigue components. However,
when comparing factor loadings of the correlated two-factor
and three-factor bifactor models, the high, consistent, and distinct
loadings of the correlated model provide an easier interpretation of
the underlying dimensions. In summary, the three-factor bifactor
model achieved the most consistent acceptable fit indices across
groups, raters, and time, while the correlated two-factor model
achieved greater parsimony. Either model can reasonably be used
to interpret ratings on the HBI.

Table 9. Fit statistics for measurement invariance across groups for child rating

Model X2 df CFI ΔCFI TLI RMSEA (90% CI) ΔRMSEA
Correlated two-factor
PA
Configural 1258.789** 338 0.955 — 0.95 0.081 (0.076–0.086)** —

Weak 1138.545** 356 0.962 0.007 0.959 0.073 (0.068–0.078)** −0.008
Strong 1261.732** 394 0.958 −0.004 0.959 0.073 (0.068–0.078)** 0
Strict 1236.439** 414 0.96 0.002 0.963 0.069 (0.065–0.074)** −0.004

3M
Configural 1347.476** 338 0.973 — 0.969 0.091 (0.086–0.096)** —

Weak 1224.54** 356 0.976 0.004 0.975 0.082 (0.077–0.087)** −0.009
Strong 1342.339** 392 0.974 −0.002 0.975 0.082 (0.077–0.087)** 0
Strict 1266.805** 412 0.977 0.003 0.979 0.076 (0.071–0.08)** −0.006

6M
Configural 1210.892** 338 0.977 — 0.974 0.086 (0.081–0.91)** —

Weak 1104.475** 356 0.98 0.003 0.979 0.078 (0.072–0.083)** −0.008
Strong 1203.952** 393 0.979 −0.002 0.979 0.077 (0.072–0.082)** −0.001
Strict 1143.543** 413 0.981 0.002 0.982 0.071 (0.066–0.076)** −0.006

Correlated three-factor
PA
Configural 974.092** 334 0.969 — 0.965 0.068 (0.063–0.073)** —

Weak 899.673** 351 0.973 0.004 0.971 0.061 (0.057–0.066)** −0.007
Strong 959.517** 388 0.972 −0.001 0.973 0.06 (0.055–0.064)** −0.002
Strict 974.121** 408 0.972 0 0.974 0.058 (0.053–0.063)* −0.002

3M
Configural 1149.293** 334 0.978 — 0.975 0.082 (0.077–0.087)** —

Weak 1049.576** 351 0.981 0.003 0.979 0.074 (0.069–0.079)** −0.008
Strong 1147.473** 386 0.979 −0.002 0.98 0.074 (0.069–0.079)** 0
Strict 1094.788** 406 0.981 0.002 0.982 0.068 (0.064–0.073)** −0.005

6M
Configural 926.156** 334 0.984 — 0.982 0.071 (0.066–0.077)** —

Weak 862.96** 351 0.987 0.002 0.985 0.065 (0.059–0.07)** −0.007
Strong 928.633** 387 0.986 −0.001 0.986 0.063 (0.058–0.069)** −0.001
Strict 900.861** 407 0.987 0.001 0.988 0.059 (0.054–0.064)* −0.004

Bifactor-two subfactor
PA1

Configural 973.571** 300 0.967 — 0.959 0.074 (0.069–0.079)** —

Weak 850.197** 337 0.975 0.008 0.972 0.061 (0.056–0.066)** −0.013
Strong 928.426** 374 0.973 −0.002 0.973 0.06 (0.055–0.066)** −0.001

3M
Configural 1015.505** 300 0.981 — 0.975 0.081 (0.076–0.087)** —

Weak 765.986** 337 0.988 0.008 0.987 0.059 (0.054–0.065)* −0.022
Strong 940.792** 372 0.985 −0.004 0.984 0.065 (0.06–0.07)** 0.006
Strict 844.583** 392 0.988 0.003 0.988 0.056 (0.051–0.062)* −0.009

6M
Configural 906.302** 300 0.984 — 0.98 0.076 (0.07–0.082)** —

Weak 747.69** 337 0.989 0.005 0.988 0.059 (0.053–0.065)** −0.017
Strong 829.308** 373 0.988 −0.001 0.988 0.059 (0.054–0.065)* 0
Strict 784.694** 393 0.99 0.002 0.99 0.053 (0.048–0.059) −0.006

Note: 1due to convergence issues, delta parameterization was used; therefore, strict invariance cannot be fitted.
**p-value< 0.001.*p-value< 0.05. Δ: current model subtracts the previous (the one above) model.
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Both the bifactor and correlated factor models align with other
studies regarding the dimensions represented by PCS. The Sport
Concussion Assessment Tool-3, the Post-Concussion Symptom
Scale, and the Rivermead Postconcussion Symptoms
Questionnaire are often used to measure PCS ratings. A specific
cognitive factor has been consistently identified in previous
research studies that used the bifactor model to examine the struc-
ture of those tools (Agtarap et al., 2020; Brett et al., 2020; Joyce
et al., 2015; Karr & Iverson, 2020). A specific somatic or physical
factor was also identified in four of the studies (Agtarap et al., 2020;
Ayr et al., 2009; Joyce et al., 2015; Karr & Iverson, 2020), while
fatigue was identified in one study (Brett et al., 2020). Some pre-
vious studies also identified a specific vestibular symptom dimen-
sion, but that was not apparent on the HBI (Franke et al., 2015;
Taylor et al., 2010). The differences in factor structure across rating
scales likely depend largely on the types of items included in vari-
ous instruments (e.g., the HBI does not include emotional symp-
toms), and perhaps on the nature of the responses required,
ranging from yes-no to 7 point Likert-type scales.

Tests of MI demonstrated strict invariance across raters, time,
and groups for all comparisons in the absence of convergence
issues, and at least strong invariance when convergence could
not be achieved. Thus, clinicians and researchers using the HBI
can confidently assume that its scores are measuring the same con-
structs in these different groups, raters, and over time. Indeed,
strict invariance across child and parent ratings signifies that the
HBI items measure the same constructs on the same scales in both
children and parents, and any difference in the means, variances,
and covariances of the individual items are solely due to differences
in the common factors (Liu et al., 2017). Although past studies have
found only moderate agreement between child and parent ratings
on the HBI (Ayr et al., 2009; Hajek et al., 2011; Taylor et al., 2010),
our findings suggest that the constructs measured by child and
parent ratings are the same. Thus, mean differences between child
and parent ratings are likely reflections of true differences in child
and parent perceptions, rather than differences in what the scales
are measuring.

Our study has several limitations. Attrition occurred over time,
and the data may have been not missing at random (MAR), which
can bias WLSMW estimates. However, we have previously tested
for differences between those who returned for follow-up assess-
ments versus those who did not across a broad range of variables
and did not find any significant differences, suggesting the data are
MAR. Another limitation is that we needed to collapse symptom
ratings on several items in the concussion group to test group MI.
However, ratings were collapsed for no more than two items for
child ratings and no more than three items for parent ratings at
any given time point. Finally, the study sample was largely white
and well-educated, so the results may not be generalizable to the
general population. Future research is needed to determine
whether theMI demonstrated in this study extends tomore diverse
samples.

The good fit of the bifactor model and the strong correlation
between the predicted general factor score and the computed total
HBI score suggest that clinicians can use a total score when meas-
uring concussion symptoms with the HBI. However, the strong
loadings of the correlated two-factor model, as well as the subfac-
tors in the bifactor model, suggest that clinicians may also want to
use subscales to isolate specific symptom dimensions to guide indi-
vidualized treatment and rehabilitation. Indeed, the bifactor model
provides a justification for assessing both overall symptom severity
and the severity of cognitive and somatic symptoms, which may
have distinct diagnostic and prognostic value beyond the total
score. Using a total score can obscure the severity of specific symp-
tom types. Two individuals with the same total score could exhibit
different scores on the cognitive and somatic subscales; therefore,
assessing specific subscales may improve detection of more subtle
concussion-related sequelae (Brett et al., 2020). Notably, the gen-
eral and subfactors of the bifactor model are independent, so the
model estimates the unique contribution of the subfactors (Chen
et al., 2012). The omegaH values and the factor loadings of the
bifactor model signify that a general factor is a good representation
of all HBI items, but the subfactors are also needed to account for
the remaining variance, providing strong evidence for the use of

Table 10. Mean differences assuming strict measurement invariance for the three-factor bifactor model by rater, group, and time

Model factor Post-acute 3 months 6 months

Rater Parent Child p-value Parent Child p-value Parent Child p-value

General factor 0.00 0.745 <0.001 0.00 0.17 0.041 0.00 0.532 <0.001
Cognitive 0.00 −0.224 <0.001 0.00 −0.55 0.006 0.00 −0.666 <0.001
Somatic 0.00 −0.02 0.19 0.00 −0.554 0.006 0.00 0.005 0.879
Group OI mTBI p-value OI mTBI p-value OI mTBI p-value
Parent
General factor 0.00 2.559 <0.001 0.00 0.847 0.002 0.00 0.1121 0.067
Cognitive 0.00 0.312 0.071 0.00 0.019 0.923 0.00 0.0651 0.47
Somatic 0.00 1.342 <0.001 0.00 0.197 0.06 0.00 −0.0231 0.676

Child
General factor 0.00 0.3981 <0.001 0.00 6.103 <0.001 0.00 0.357 0.038
Cognitive 0.00 0.2871 <0.001 0.00 3.371 <0.001 0.00 −0.075 0.695
Somatic 0.00 0.0181 0.115 0.00 0.472 <0.001 0.00 0.1 0.079

Time p-value p-value p-value
Parent
General factor 0.00 — −0.875 <0.001 −0.945 <0.001
Cognitive 0.00 — 0.127 0.178 0.127 0.263
Somatic 0.00 — −0.085 0.036 −0.086 0.047

Child
General factor 0.00 — −1.251 <0.001 −1.294 <0.001
Cognitive 0.00 — −0.038 0.683 0.087 0.352
Somatic 0.00 — −0.048 0.038 −0.048 0.053

Note: 1strong invariance model used instead.
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both a total score and subscale scores. Use of the bifactor model
could allow for a more precise assessment of specific symptom
types and allow for more targeted intervention through selection
of specific treatment modalities based on subfactor elevations.
However, the inconsistent correlations between the predicted fac-
tor scores and calculated subscale scores indicate that simply rely-
ing on the raw subscale scores as a reflection of the true factor
scores might be inadvisable.

Future study is needed to examine the stability of the three-fac-
tor bifactor and correlated two-factor models across different post-
injury time points and groups (e.g., healthy children, younger chil-
dren, and children with concussion recruited from settings other
than the ED) to validate the HBI’s underlying dimensions and
to inform clinical applications. A factor consisting of emotional
symptoms has sometimes been identified in past factor analytic
studies of concussion symptom ratings, but this emerged only
for parent ratings in the original derivation study of the HBI,
and not for child ratings; validated rating scales of emotional symp-
toms may be included as a supplement to the HBI for specific
research or clinical purposes. Similarly, ratings of behavioral diffi-
culties did not cohere in the derivation of the HBI but may be rel-
evant for younger children (Dupont et al., 2021). Future research
also should continue to examine the relative contributions of injury
and non-injury factors as predictors of the general and subfactors,
or the two correlated factors (cognitive and somatic), of the HBI
(O’Neill et al., 2021).

Our study indicates that the HBI structure is best represented
either by a three-factor bifactor model that captures an essentially
unidimensional general component of concussion symptom
severity along with distinct, but related, dimensions of cognitive
and somatic symptoms, or by a correlated two-factor model that
contains cognitive and somatic subscales. The HBI can be used
to measure PCS consistently over time by both parents and chil-
dren, and in individuals with concussion or other injuries, for com-
parison across various phases of concussion recovery, at least for
children who are originally seen in the ED. Efforts to characterize
individuals based on profiles across the dimensions of thesemodels
may facilitate a more precise approach to classifying and treating
children with concussion.
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