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Abstract

Let F be a non-Archimedean locally compact field of residual characteristic p with
Weil groupWF . Let σ be an irreducible smooth complex representation ofWF , realized
as the Langlands parameter of an irreducible cuspidal representation π of a general
linear group over F . In an earlier paper we showed that the ramification structure
of σ is determined by the fine structure of the endo-class Θ of the simple character
contained in π, in the sense of Bushnell and Kutzko. The connection is made via the
Herbrand function ΨΘ of Θ. In this paper we concentrate on the fundamental Carayol
case in which σ is totally wildly ramified with Swan exponent not divisible by p. We
show that, for such σ, the associated Herbrand function satisfies a certain functional
equation, and that this property essentially characterizes this class of representations.
We calculate ΨΘ explicitly, in terms of a classical Herbrand function arising naturally
from the classification of simple characters. We describe exactly the class of functions
arising as Herbrand functions ΨΞ , as Ξ varies over the set of totally wild endo-classes of
Carayol type. In a separate argument, we derive a complete description of the restriction
of σ to any ramification subgroup and hence a detailed interpretation of the Herbrand
function. This gives concrete information concerning the Langlands correspondence.
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1. Let F be a non-Archimedean, locally compact field with residual characteristic p. Let WF

be the Weil group of a separable closure F̄ /F . For a real variable x > 0, let RF (x) = Wx
F
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be the corresponding ramification subgroup of WF and R+
F (x) the closure of

⋃
y>xRF (y).

We use the conventions of [Ser68] here, so that RF (0) is the inertia group IF and R+
F (0) is the

wild inertia group PF in WF . If G is any of this list of locally profinite groups, Ĝ will denote
the set of equivalence classes of irreducible, smooth, complex representations of G. We shall
be concerned with the ramification structure of certain σ ∈ ŴF , that is, the structure of the
restricted representations σ |RF (x) and σ |R+

F (x), for x > 0.
On the other side, let A0

n(F ) denote the set of equivalence classes of irreducible, cuspidal,

complex representations of the general linear group GLn(F ), n > 1, and set ĜLF =
⋃
n>1 A

0
n(F ).

For π ∈ ĜLF , write gr(π) = n to indicate π ∈ A0
n(F ). Such a representation π contains a simple

character θπ in GLn(F ) [BK93] and, up to conjugation, only one [BH13]. The endo-class Θπ
of θπ is therefore uniquely determined by π. Let EEE(F ) denote the set of endo-classes of simple
characters over F . (For the notion of endo-class, see [BH96] or the summary in any of [Bus14,
BH03, BH13].)

Denote by π 7→ Lπ the Langlands correspondence ĜLF → ŴF [HT01, Hen00, LRS93,
Sch13]. Writing σ = Lπ, the fine structure of the endo-class Θπ and the ramification structure
of σ determine each other [BH17, 6.5 Corollary]. The relationship is expressed via a certain
Herbrand function ΨΘπ attached to the endo-class Θπ. In this paper we consider a particularly
interesting class of representations, comprising what we call Carayol representations. We
compute the associated Herbrand functions. We list the functions which arise as Herbrand
functions. We interpret the results in terms of the ramification structure of the associated Galois
representations, from which we extract information about the Langlands correspondence.

2. We review the background from [BH17] with as little formality as possible. If π ∈ ĜLF and

σ = Lπ ∈ ŴF , the endo-class Θπ determines the restriction σ |PF . More precisely, σ defines an

element [σ]+0 of the orbit space WF \P̂F , namely the orbit of irreducible components of σ |PF .
The Langlands correspondence induces a canonical bijection ([BH03, 8.2 Theorem], [BH14b, 6.1])

EEE(F ) −→ WF \P̂F ,
Θ 7−→ LΘ

(A)

by
[ Lπ]+0 = LΘπ, π ∈ ĜLF .

Results developed in [BH96, BH99, BH03, BH05a, BH05b, BH10] and particularly [BH14b] show
that the map (A) is central to understanding of the Langlands correspondence.

3. The starting point of [BH17] is that each of the sets EEE(F ), WF \P̂F carries a canonical
ultrametric. That on EEE(F ), denoted by A, is built on the fact that simple characters are characters
of compact groups carrying canonical filtrations, and those filtrations provide a medium via
which the characters may be compared. The ultrametric A relates to Swan exponents of pairs of
representations, as defined from the local constants of [JPS83, Sha84]. Let Θ ∈ EEE(F ) and choose

π ∈ ĜLF such that Θπ = Θ. There is a unique continuous function ΦΘ(x), x > 0, such that

ΦΘ(A(Θ,Θρ)) =
sw(π̌ × ρ)

gr(π) gr(ρ)
,

for any ρ ∈ ĜLF . The function ΦΘ is piecewise linear, strictly increasing and convex. It is given by
an explicit formula [BH17, (4.4.1)] derived from the conductor formula of [BHK98, 6.5 Theorem].
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We call ΦΘ the structure function of Θ.
The ultrametric on WF \P̂F , denoted by ∆, is defined by comparing representations via the

canonical filtration of PF by ramification groups: for σ, τ ∈ ŴF ,

∆([σ]+0 , [τ ]+0 ) = inf{x > 0 : HomRF (x)(σ, τ) 6= 0}.

The ultrametric ∆ likewise relates to Swan exponents of tensor products of pairs of
representations of WF [Hei96]. For σ ∈ ŴF , there is a unique continuous function Σσ(x),
x > 0, such that

Σσ(∆([σ]+0 , [τ ]+0 )) =
sw(σ̌ ⊗ τ)

dimσ · dim τ
,

for all τ ∈ ŴF . The function Σσ is piecewise linear, strictly increasing and convex. It is given
by a formula derived from the ramification structure of σ, reproduced in (2.2.2) below. If Σσ is
smooth at x, its derivative satisfies

Σ′σ(x) = dim EndRF (x)(σ)/(dimσ)2.

We call Σσ the decomposition function of σ: it depends only on the orbit [σ]+0 .

If Θ ∈ EEE(F ), set ΨΘ = Φ−1
Θ ◦ Σσ, for any σ ∈ ŴF such that [σ]+0 = LΘ. The Langlands

correspondence respects Swan exponents of pairs and dim( Lπ) = gr(π), π ∈ ĜLF , so

ΨΘ(∆( LΘ, LΞ)) = A(Θ,Ξ), Ξ ∈ EEE(F ).

The function ΨΘ is called the Herbrand function of Θ. It is continuous, strictly increasing and
piecewise linear.

If we take the view that Θ ∈ EEE(F ) has been given, in terms of the standard classification
from [BK93], it is a simple matter to write down the function ΦΘ. The Interpolation Theorem
[BH17, 7.5] shows, in principle, how to compute ΨΘ directly from Θ, without reference to LΘ.
It yields the decomposition function Σσ and therefore a numerical account of the ramification
structure of σ, just in terms of Θ. The Interpolation Theorem is not easy to apply directly, but
it is the foundation of much of what we do here.

4. We specify the classes of representation on which we focus.
Let Θ ∈ EEE(F ). Assuming, as we invariably do, that Θ is non-trivial, it is the endo-class of

a simple character θ ∈ C(a, β) attached to a simple stratum [a,m, 0, β] in some matrix algebra
Mn(F ) (following the conventions of [BK93]). In particular, β ∈ GLn(F ) and the algebra F [β] is
a field: one says that F [β] is a parameter field for Θ. The positive integers degΘ = [F [β] :F ] and
eΘ = e(F [β]|F ) are invariants of Θ. The slope ςΘ of Θ, defined by ςΘ = m/ea, where ea is the

period of the hereditary oF -order a, is likewise an invariant of Θ. If π ∈ ĜLF satisfies Θπ = Θ,
then ςΘ = sw(π)/gr(π). However, neither θ nor Θ determines the parameter field F [β]: see the
later parts of § 6.

Say that Θ ∈ EEE(F ) is totally wild if degΘ = eΘ = pr, for an integer r > 0. If Θ is totally
wild, say that it is of Carayol type if degΘ > 1 and the integer eΘςΘ is not divisible by p. Let
EEEC(F ) denote the set of endo-classes Θ ∈ EEE(F ) that are totally wild of Carayol type. We aim to
calculate ΨΘ for all Θ ∈ EEEC(F ).

We concentrate on this case for two reasons. First, [BH17, 7.1 Proposition] reduces the
problem of calculating Herbrand functions to the totally wild case. Second, we have to work
with simple characters. The definition of simple character in [BK93] is rigidly hierarchical in
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nature and proofs are almost always inductive along this hierarchy. The first inductive step
concerns the case where the element β (as above) is minimal over F [BK93, (1.4.14)]. For totally
wild endo-classes, this is the Carayol case.

On the other side, say that σ ∈ ŴF is totally wild if the restriction σ |PF is irreducible. In

particular, dimσ = pr, for some r > 0. Denote by Ŵwr
F the set of totally wild elements of ŴF . An

endo-class Θ ∈ EEE(F ) is then totally wild if and only if there exists σ ∈ Ŵwr
F such that [σ]+0 = LΘ

(cf. [BH14b, § 6]). Say that σ ∈ Ŵwr
F is of Carayol type if dimσ 6= 1 and p does not divide sw(σ).

Thus σ ∈ Ŵwr
F is of Carayol type if and only if [σ]+0 = LΘ, for some Θ ∈ EEEC(F ). We shall see

that these representations σ exhibit a family of quite singular properties, reflecting the special
nature of the endo-classes Θ ∈ EEEC(F ).

5. We review our main results. They are organized into three principal theorems, that
complement and support each other, followed by a substantial application.

For any Θ ∈ EEE(F ), the Herbrand function ΨΘ(x) satisfies ΨΘ(0) = 0 and ΨΘ(x) = x for
x > ςΘ [BH17, 6.2 Proposition]. The derivative Ψ′Θ(x) has only finitely many discontinuities in
the interesting region 0 < x < ςΘ: we call them the jumps of ΨΘ. When Θ ∈ EEEC(F ), the function
ΨΘ(x) is convex in the region 0 6 x 6 ςΘ. The reasons for this are simple (§ 2.4), but the property
is very useful.

Theorem 1. Let Θ ∈ EEEC(F ). The graph y = ΨΘ(x), 0 6 x 6 ςΘ, is symmetric with respect to
the line x+y = ςΘ. That is,

ςΘ − x = ΨΘ(ςΘ −ΨΘ(x)), 0 6 x 6 ςΘ. (B)

Theorem 1 has a satisfying converse. The group of characters of U1
F acts on the set EEE(F )

following the natural twisting action of characters of F× or WF on ĜLF or ŴF . We denote this
action by (χ,Θ) 7→ χΘ. It has the property ΨχΘ = ΨΘ [BH17, 7.4 Proposition]. We obtain the
following corollary.

Corollary. Let Θ ∈ EEE(F ) be totally wild of degree pr, for some r > 1, and suppose that
ςΘ 6 ςχΘ for all characters χ of U1

F . The function ΨΘ then has the symmetry property (B) if and
only if Θ ∈ EEEC(F ).

Theorem 1, together with some preliminary calculations, suggests the definition of a family
of elementary functions. Let r > 1 and let E/F be a totally ramified field extension of degree
pr. Let m be a positive integer not divisible by p and set ς = m/pr. Let ψE/F be the classical
Herbrand function of E/F [Del84, Ser68]. Define c by the equation c+ p−rψE/F (c) = ς. There is
then a unique function 2Ψ(E/F,ς)(x), defined for 0 6 x 6 ς, such that the graph y = 2Ψ(E/F,ς)(x)
is symmetric with respect to the line x+y = ς and 2Ψ(E/F,ς)(x) = p−rψE/F (x), for 0 6 x 6 c.
Functions of this form will be called bi-Herbrand functions.

Our strategy is to identify ΨΘ, Θ ∈ EEEC(F ), as a specific bi-Herbrand function. Let degΘ = pr.
There is a simple stratum [a,m, 0, α] in Mpr(F ) such that Θ is the endo-class of some θ ∈ C(a, α).
Thus F [α]/F is totally ramified of degree pr and p does not divide m = −υF [α](α). In this
notation, ςΘ = m/pr. If ‖C(a, α)‖ denotes the set of endo-classes of elements of C(a, α), then
‖C(a, α)‖ ⊂ EEEC(F ).

The set ‖C(a, α)‖ is not well adapted to our purposes, because the function Θ 7→ ΨΘ is
not constant there. Indeed, it may vary widely: see 7.2 Theorem 1. To overcome this problem,

1962

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

we specify a non-empty subset C?(a, α) of C(a, α), using an explicit formula given in 7.1 below:
we say that θ conforms to α to indicate θ ∈ C?(a, α). Let ‖C?(a, α)‖ denote the set of endo-classes
of characters θ ∈ C?(a, α).

Theorem 2. Let Θ ∈ EEEC(F ) have degree pr and ςΘ = m/pr. There is a simple stratum [a,m, 0, α]
in Mpr(F ) such that Θ ∈ ‖C?(a, α)‖. For any such stratum,

ΨΘ(x) = 2Ψ(F [α]/F,ςΘ)(x), 0 6 x 6 ςΘ. (C)

Theorem 2 has the following consequence.

Corollary. Let E/F be a totally ramified field extension of degree pr, r > 1, and let m be a
positive integer not divisible by p. There exists Θ ∈ EEEC(F ), with parameter field E/F , such that

ΨΘ(x) = 2Ψ(E/F,m/pr)(x), 0 6 x 6 m/pr = ςΘ.

The corollary is an effective tool for constructing representations of WF with specified
ramification properties. An application of the technique is given in 9.7.

6. Our third result looks at the problem from the Galois side. Let σ ∈ Ŵwr
F be of Carayol type

and dimension pr. Define Θ ∈ EEEC(F ) by [σ]+0 = LΘ. As r > 1, the function ΨΘ has at least one
jump [BH17, 7.7]. If ΨΘ has exactly one jump, we say that σ is H-singular. In § 8, we analyse
the structure of such representations in some detail: they belong to a rather special class of
‘Heisenberg representations’ (as one says).

Without restriction on the number of jumps, define a number cΘ by the equation

cΘ + ΨΘ(cΘ) = ςΘ, Θ ∈ EEEC(F ).

By the symmetry of Theorem 1, cΘ is a jump of ΨΘ if and only if ΨΘ has an odd number of
jumps and, in that case, cΘ is the middle one.

Theorem 3. Let σ ∈ Ŵwr
F be of Carayol type and dimension pr. Let Θ ∈ EEEC(F ) satisfy

LΘ = [σ]+0 .

(1) The restriction σ |R+
F (cΘ) is a direct sum of characters.

(2) Let ξ be a character of R+
F (cΘ) occurring in σ, let WLξ be the WF -stabilizer of ξ, and let

σξ be the natural representation of WLξ on the ξ-isotypic subspace of σ |R+
F (cΘ). The field

extension Lξ/F is totally ramified of degree dividing pr and σ = IndLξ/F σξ. Moreover,

ΨΘ(x) = p−rψLξ/F (x), 0 6 x 6 cΘ. (D)

(3) If ΨΘ has an odd number of jumps, then σξ is irreducible, totally wild, H-singular, of Carayol
type and of dimension pr

/
[Lξ :F ] 6= 1.

(4) If ΨΘ has an even number of jumps, then σξ is a character and [Lξ :F ] = pr.

By symmetry, relation (D) determines ΨΘ completely. Any two choices of the character ξ
are WF -conjugate, so the same applies to the field Lξ. The field extension Lξ/F is not usually
Galois but, after a suitable tamely ramified base field extension, it has a canonical presentation
as a tower of elementary abelian extensions faithfully reflecting the ramification structure of σ.
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The canonical presentation of σ as an induced representation,

σ = IndLξ/F σξ = IndWF
WLξ

σξ,

is derived from arithmetic considerations. It can claim to be more natural than anything provided
by a purely group-theoretic approach.

The restrictions σ |RF (x), σ |R+
F (x) follow a clear pattern, underlying the symmetry property

of Theorem 1. To give the flavour, suppose there are at least two jumps. Let j be the least and ̄
the greatest. The restriction σ |RF (j) is irreducible, while σ |R+

F (̄) is a multiple of a character.
The restriction σ |R+

F (j) is a multiplicity-free direct sum of irreducible representations while
σ |RF (̄) is a direct sum of characters, its isotypic components being the restrictions of the
irreducible components of σ |R+

F (j). The pattern repeats for the second and penultimate jump,
and so on.

7. We now have two expressions, (C) and (D), for the Herbrand function ΨΘ of Θ ∈ EEEC(F ).
Together they show how to read the algebraic structure of the decompositions σ |RF (x), x > 0,
directly from the presentation Θ ∈ ‖C?(a, α)‖. Our final tranche of results treats this in some
detail.

In the same context, the number cΘ (as in part 6 above) and the function ΨΘ, as Θ ranges over
‖C?(a, α)‖, depend only on α. We therefore denote them by cα and Ψα, respectively. Let j∞(α) =
j∞(F [α]|F ) be the largest jump of the classical Herbrand function ψF [α]/F . The definition of
2Ψ(F [α]/F,ςΘ) and Theorem 2 show that Ψα has an even number of jumps if and only if j∞(α)< cα.

Let G?(α) be the set of σ ∈ Ŵwr
F such that [σ]+0 ∈ L‖C?(a, α)‖.

Theorem 4A. If σ, τ ∈ G?(α), the representations σ |R+
F (cα), τ |R+

F (cα) are equivalent. In
particular, any character ξ of R+

F (cα) occurring in σ |R+
F (cα) also occurs in τ |R+

F (cα).

All representations σ ∈ G?(α) therefore give rise to the same conjugacy class of field extensions
Lξ/F and the associated representations σξ all have the same dimension pr/[Lξ :F ].

To go further, there is a second field extension to be taken into account. If ρ ∈ ŴF has
dimension n, let ρ̄ : WF → PGLn(C) be the associated projective representation. The kernel
of ρ̄ is of the form WE , where E/F is finite and Galois. One calls E/F the centric field of ρ.
Returning to the main topic, let L̃σ,ξ/Lξ be the centric field of the H-singular representation

σξ ∈ Ŵwr
Lξ

. The extension L̃σ,ξ/Lξ is Galois. It is non-trivial if and only if dimσξ > 1, that is,
2Ψ(F [α]/F,ςΘ) has an odd number of jumps.

Let wα = wF [α]/F be the wild exponent (1.6.1) of the field extension F [α]/F . We consider
two cases. Say that α is ?-exceptional if j∞(α) = cα and the integer lα = m−wα is even and
positive. Otherwise, say that α is ?-ordinary. (This terminology is suggested by the usage of
[Kut84], but is not equivalent to it.)

For our next result, we fix a character ξ of R+
F (cα) occurring in σ ∈ G?(α) and abbreviate

L = Lξ, L̃σ = L̃σ,ξ. Let Tσ/F be the maximal tame sub-extension of L̃σ/L. Let dσ be the number
of characters χ of WL such that φ⊗ σξ ∼= σξ.

Theorem 4B.

(1) If α is ?-ordinary, then L̃σ = L̃τ , for all σ, τ ∈ G?(α).

(2) If α is ?-exceptional, then Tσ = Tτ and dσ = dτ , for all σ, τ ∈ G?(α). There are at most dσ
Galois extensions of the form L̃τ/L, τ ∈ G?(α).
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The bound in part (2) is achieved when [Tσ :L] is not divisible by p. (In general, we do not
know what happens here, but p can divide [Tσ :L]: see 9.6 Example.) In part (1), the set G?(α)
bears a canonical structure as principal homogeneous space over an easily described group of
characters of L×.

8. We give an overview of our methods and the layout of the paper.
Section 1 is a free-standing account of the classical Herbrand functions ψE/F , ϕE/F of a finite

field extension E/F . For Galois extensions E/F , much of what we need can be deduced from
the standard account in [Ser68]. We develop the same level of detail for non-Galois extensions,
starting from Deligne’s notes [Del84].

The development proper starts with § 2. We introduce the main players and fix the basic
notation. We take a simple stratum [a,m, 0, α] in the matrix algebra Mpr(F ), r > 1, as in part 4
above, and a simple character θ ∈ C(a, α) of endo-class Θ. Thus Θ ∈ EEEC(F ) and ςΘ = m/pr. The
Interpolation Theorem of [BH17] readily yields ΨΘ(x) = p−rψF [α]/F (x) in the range 0 6 x6 ςΘ/2.
In the region ςΘ/2 < ΨΘ(x) 6 ςΘ it interprets the value ΨΘ(x) in terms of intertwining properties
of certain simple strata.

Section 3 is devoted to the proof of Theorem 1. The argument is couched almost entirely in
terms of Galois representations. Take σ ∈ Ŵwr

F of dimension greater than 1. After a tame base
field extension, [BH17, 8.3 Theorem] gives a sufficiently canonical presentation σ = IndK/F τ ,
where K/F is cyclic of degree p. After an elementary change of variables, the jumps of Στ are
among those of Σσ but one or two of them are ‘flattened’, in an obvious sense. One of these is
invariably the first. If σ is of Carayol type, the other is the last: this follows from an application of
the conductor formula of [BHK98, 6.5 Theorem], which also gives a relation between the first and
last jumps. One may then assume that τ has the symmetry property and proceed by induction
on dimension.

Section 4 makes a transition back to the GL side. The combination of convexity and symmetry
imposes significant restrictions on the piecewise linear graph y = ΨΘ(x) in the relevant region
0 6 x 6 ςΘ. We abstract these properties in the definition of the bi-Herbrand function 2Ψ(E/F,ς).
Much of the section is devoted to listing elementary, but useful, geometric properties of the
graphs of ΨΘ and 2Ψ(E/F,ς). Our strategy is to identify ΨΘ as a bi-Herbrand function. In many
cases, one can do that immediately; see 4.6 Example. This simple case also has a role in the
more complicated arguments that follow.

Sections 5 and 6 are highly technical in nature, preparing the way for the arguments of § 7. In
§ 5, we use the Interpolation Theorem to identify, via some delicate intertwining and conjugacy
arguments, a subset of ‖C(a, α)‖ on which the Herbrand function ΨΘ takes the expected value
2Ψ(F [α]/F,ςΘ). The specification of this set, which we temporarily call Lα, is quite subtle. There
is nothing canonical or natural about Lα, but it is a vital computational device.

The set C(a, α) does not determine α, although it does determine a and the integer m.
Let P(a, α) be the set of β ∈ GLpr(F ) for which [a,m, 0, β] is a simple stratum satisfying
C(a, β) = C(a, α). In § 6 we examine various ways in which one can construct elements β of
P(a, α) while keeping track of the relation between the sets Lα and Lβ.

In § 7 we first define the subset C?(a, α) of simple characters θ ∈ C(a, α) that conform to α.
We show that, if θ′ ∈ C(a, α), there exists α′ ∈ P(a, α′) to which θ′ conforms. The calculations
in §§ 5 and 6 give a first result (7.2 Theorem 1) from which Theorem 2 follows.

With § 8 we return to the Galois side. We first recast the general theory of representations
of, loosely speaking, Heisenberg type and so identify the class of representations with Herbrand
function having a single jump. This is in preparation for § 9, where we prove Theorem 3.
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That result is given in two tranches. In the first, (9.2), we assume that σ is ‘absolutely wild’, in
the sense that its centric field extension is totally wildly ramified. The argument there develops
the method of § 3.

The general case is presented separately as 9.5 Corollary. The transition to the general case
is, we found, surprising in both its simplicity and its exactness. It marks a change in direction in
the paper. Until the end of § 7 we rely on the fact that, when using the Interpolation Theorem to
compute the Herbrand function, one can impose an arbitrary finite, tamely ramified, base field
extension while losing no control: the method is illustrated in the proof of 2.6 Proposition and
then used repeatedly until the end of the proof of 9.2 Theorem. From 9.5 Corollary on, we have
to take account of the tame structures destroyed by such a process. Theorems 4A and 4B follow
in § 10, where we combine and compare the main results of §§ 7 and 9.

Some parts of Theorems 4 are foreshadowed, often in more detail, in the classical literature
of dimension p [Hen84, Kut80, Kut84, Mœ90]. There is a device from [Mœ90] that allows us
to remove the distinction between ordinary and exceptional elements α, provided p 6= 2. We
summarize this in 10.6, and then briefly review the historical context.

Background and notation

General notations are quite familiar: oF is the discrete valuation ring in F , pF is the maximal
ideal of oF and υF is the normalized additive valuation. For k > 1, UkF is the congruence unit
group 1+pkF . Similarly, if a is a hereditary oF -order in some matrix algebra, then Uka = 1+pk,
where p is the Jacobson radical rad a of a. For real x, x 7→ [x] is the greatest integer function.

If E/F is a finite field extension, then ψE/F , ϕE/F are the classical Herbrand functions
discussed in § 1. If E/F is Galois and Γ = Gal(E/F ), then Γa, Γ

a, a > 0, are the ramification

subgroups of Γ in the lower, upper numbering conventions of [Ser68]. The symbols WF , ŴF , PF ,

P̂F , ĜLF , EEE(F ), LΘ, [σ]+0 , RF (x), R+
F (x) all retain the meaning given them in the introduction.

Notation concerned with simple characters is all taken from [BK93, BH96]. For the special cases
considered here, full definitions are given in 2.1–2.3. The broader summary in [Bus14] may be
found helpful. Certain special notations recur sporadically. Their definitions may be found as
follows: ςΘ (2.1), ςσ (2.2), Ŵwr

F (3.2), Ŵawr
F (3.2), EEEC(F ) (2.3), j∞(E|F ) (1.5), wE/F (1.6), C? (7.1).

1. Classical Herbrand functions

Let E/F be a finite, separable field extension. As we go through the paper, we rely on properties
of the classical Herbrand function ψE/F and its inverse ϕE/F . For Galois extensions E/F , many
of these are to be found in [Ser68]. In the general case, we develop them from the outline in
[Del84]. Beyond that, we need estimates of the jumps of ψE/F , that is, the discontinuities of
the derivative ψ′E/F (x), x > 0. With only minor changes, the formalism applies equally well to

inseparable extensions E/F : we indicate how this is done in 1.7.
We conclude the section with what seems to be a novel result on the structure of a broad

class of totally ramified extensions. We do not need this until near the end of the paper but it
fits well in the present context. The reader may wish to skip that, or even the entire section,
referring back to it as needed.

1.1 Let E/F be a finite Galois extension. The Herbrand function ψE/F (x) is defined, for x > −1,
in [Ser68, IV § 3] but we shall always assume x > 0. If K/F is a Galois extension contained in E,
the fundamental transitivity property ψE/F = ψE/K ◦ψK/F holds. If the finite separable extension

1966

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

E/F is not Galois, we follow [Del84]. Let E′/F be a finite Galois extension containing E. The
function ψE′/E is positive and strictly increasing, so we may set

ψE/F = ψ−1
E′/E ◦ ψE′/F . (1.1.1)

Because of the transitivity property for Galois extensions, this definition does not depend on the
choice of E′/F . The relation

ψE/F = ψE/K ◦ ψK/F (1.1.2)

then holds for any tower F ⊂ K ⊂ E of finite separable extensions. In all cases, ϕE/F shall be
the inverse function for ψE/F ,

ϕE/F ◦ ψE/F (x) = x = ψE/F ◦ ϕE/F (x), x > 0. (1.1.3)

Lemma.

(1) If K/F is finite and tamely ramified, then ψK/F (x) = ex, where e = e(K|F ).

(2) If E/F is finite separable and K/F is finite and tamely ramified, with e(K|F ) = e, then
ψEK/K(x) = e(EK|E)ψE/F (x/e). If E/F is totally wildly ramified, then ψEK/K(x) =
eψE/F (x/e).

Proof. Part (1) follows immediately from the definitions here and in [Ser68]. By (1.1.2) and
part (1), ψEK/F (x) = ψEK/K ◦ψK/F (x) = ψEK/K(ex). On the other hand, ψEK/F (x) = ψEK/E ◦
ψE/F (x) = e(EK|E)ψE/F (x), whence part (2) follows. 2

The lemma reduces most questions to the totally wildly ramified case.

1.2 We list some properties of the graph y = ψE/F (x), x > 0.

Proposition 1. Let E/F be a finite separable extension and write e = e(E|F ) = e0p
r, where

e0 is an integer not divisible by p.

(1) The function ψE/F is continuous, piecewise linear, strictly increasing and convex.

(2) If x is sufficiently large, then ψ′E/F (x) = e.

(3) There exists ε > 0 such that ψE/F (x) = e0x, for 0 6 x < ε.

(4) The derivative ψ′E/F is continuous except at a finite number of points.

Proof. All assertions are standard when E/F is Galois, and (2)–(4) then follow from (1.1.2) in
general. In (1), the first two properties are clear while, by (3), ψ′E/F (x) = e0 > 1 for x positive

and sufficiently small. It is enough, therefore, to show that ψE/F is convex. By 1.1 Lemma (2),
we need only prove that ψEK/K is convex for some finite tame extension K/F . We choose K/F
to be the maximal tame sub-extension of the normal closure E′/F of E/F . This reduces us to
the case in which E′/F is totally wildly ramified. If E = F , there is nothing to prove, so assume
otherwise. The proper subgroup Gal(E′/E) of the finite p-group Gal(E′/F ) is contained in a
normal subgroup of index p. That is, there is a Galois sub-extension F ′/F of E/F of degree p.
In the relation ψE/F = ψE/F ′ ◦ ψF ′/F , the function ψF ′/F is convex since F ′/F is Galois. By
induction on degree, ψE/F ′ is convex, whence so is ψE/F . 2

This technique of the proof of the proposition will be used again, so we make a formal
definition.

1967

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


C. J. Bushnell and G. Henniart

Definition. Let E/F be a finite separable extension, with normal closure E′/F . Say that E/F
is absolutely wildly ramified if E′/F is totally wildly ramified.

In the notation of the definition, let K/F be the maximal tame sub-extension of E′/F . The
extension EK/K is then absolutely wildly ramified. From the proof of Proposition 1, we extract
a useful property.

Gloss. If E/F is absolutely wildly ramified, there exists a Galois extension F ′/F , of degree p,
such that F ′ ⊂ E.

We give a second application.

Proposition 2. Let E/F be finite, separable and totally wildly ramified. If ψE/F is smooth at
x, then the value ψ′E/F (x) is a non-negative power of p.

Proof. The result is standard when E/F is Galois. Otherwise, let K/F be finite and tamely
ramified. Part (2) of 1.1 Lemma implies that the result holds for E/F if and only if it holds
for EK/K. It is therefore enough to treat the case of E/F absolutely wild. As in the Gloss, let
F ′/F be a sub-extension of E/F that is Galois of degree p. The extension F ′/F has the desired
property since it is Galois. By induction on the degree, we may assume that it holds equally for
E/F ′. The proposition then follows from the transitivity relation ψE/F = ψE/F ′ ◦ ψF ′/F . 2

1.3 As in the Galois case, the function ψE/F reflects properties of the norm map NE/F :
E× → F×.

Proposition. Let E/F be a finite separable extension. Let χ be a character of F× such that
sw(χ) = k > 1. The character χ ◦NE/F of E× then has the following properties:

(1) sw(χ ◦NE/F ) 6 ψE/F (k);

(2) if ψ′E/F is continuous at k, then sw(χ ◦NE/F ) = ψE/F (k).

Proof. The result is standard when E/F is Galois [Ser68, V Proposition 9].
Suppose next that E/F is tamely ramified and set e = e(E|F ). Thus ψE/F (x) = ex, x > 0.

If χ is a character of F× with sw(χ) = k > 1, then sw(χ ◦ NE/F ) = ek and there is nothing to
prove.

Transitivity now reduces us to the case where E/F is totally wildly ramified. Also, if K/F
is a finite tame extension, the result holds for E/F if and only if it holds for EK/K. We may
therefore assume that E/F is absolutely wildly ramified. Let F ′ be a field, F ⊂ F ′ ⊂ E, such
that F ′/F is Galois of degree p (as in 1.2 Gloss). The result holds for the extension F ′/F and
so, in general, by induction on [E :F ]. 2

Definition. A jump of ψE/F is a point x > 0 at which the derivative ψ′E/F is not continuous.
Let JE/F denote the set of jumps of ψE/F .

The set JE/F is finite by 1.2 Proposition 1(4).

Corollary. Let E/F be totally wildly ramified, and let K/F be a finite tame extension, with
e = e(K|F ). If χ is a character of K× with sw(χ) = k > 1, such that e−1k /∈ JE/F , then

sw(χ ◦NEK/K) = ψEK/K(k) = eψE/F (e−1k).
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Proof. The second equality is 1.1 Lemma, whence JEK/K = eJE/F . The result now follows from
the proposition. 2

1.4 Another familiar property extends to the general case.

Proposition. Let E/F be a finite separable extension. If ε > 0, then

RF (ε) ∩WE = RE(ψE/F (ε)),

R+
F (ε) ∩WE = R+

E(ψE/F (ε)).

Proof. If E/F is Galois, the result follows from [Ser68, IV Proposition 14]. The case of E/F
tame readily follows. If K/F is a finite tame extension, the result therefore holds for E/F if
and only if it holds for EK/K (cf. 1.1 Lemma). Thus we need only treat the case where E/F is
absolutely wildly ramified. There is a Galois sub-extension F ′/F of E/F of degree p. If F ′ = E,
there is nothing to do, so we assume otherwise. We have

RF (ε) ∩WE = RF (ε) ∩WF ′ ∩WE

= RF ′(ψF ′/F (ε)) ∩WE

= RE(ψE/F ′(ψF ′/F (ε)))

= RE(ψE/F (ε)),

by induction on [E :F ]. The second assertion follows. 2

For a sharper result of this kind, see 1.9 Corollary 2 below.

1.5 Let j∞(E|F ) be the largest element of JE/F .

Proposition. Let E/F be separable and totally wildly ramified. If Ē/F is the normal closure
of E/F , then j∞(Ē|F ) = j∞(E|F ).

Proof. Let K/F be a finite tame extension. The result then holds for E/F if and only if it holds
for EK/K. We may therefore assume that E/F is absolutely wildly ramified.

The relation ψĒ/F = ψĒ/E ◦ ψE/F implies that

JĒ/F = JE/F ∪ ψ−1
E/F (JĒ/E).

We have to show that j∞(E|F ) is the largest element of this set. Set Γ = Gal(Ē/F ) and ∆ =
Gal(Ē/E). The definition of Γx [Ser68, IV § 1] gives ∆x = Γx ∩∆, for all x > 0. Let k∞ be the
largest jump of Γ in this numbering. Thus Γk∞ 6= {1} = Γk∞+ε, for all ε > 0. As Ē/F is the
least Galois extension containing E, so

⋂
γ∈Γ γ∆γ

−1 = 1. That is, ∆ has no non-trivial subgroup

normal in Γ . Since Ē/F is totally wildly ramified, Γk∞ is central in Γ , so ∆k∞ = Γk∞ ∩ ∆
is normal in Γ , whence ∆k∞ = 1. The largest jump of ∆ is therefore strictly less than k∞.
Translating back, the largest jump j∞(Ē|E) of ψĒ/E is strictly less than ψE/F (j∞(E|F )). 2

1.6 Let E/F be a finite separable extension. Denote by dE/F the differental exponent of E/F :

thus p
dE/F
E is the different of E/F . Define the wild exponent wE/F of E/F by

wE/F = dE/F + 1− e(E|F ). (1.6.1)

We record, for use throughout the paper, some basic facts involving the wild exponent.
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Lemma. Let E/F be finite, with E ⊂ F̄ .

(1) If F ⊂ K ⊂ E, then
wE/F = e(E|K)wK/F + wE/K .

(2) If τ is an irreducible representation of WE , then

sw(IndE/F τ) = (sw(τ) + wE/F dim τ) f(E|F ).

In particular,
wE/F = sw(IndE/F 1E)/f(E|F ),

where 1E is the trivial character of WE .

Proof. Assertion (1) follows from the multiplicativity property of the different and a short
calculation. Part (2) follows from the corresponding properties of the Artin exponent [Ser68,
ch. VI § 2]. 2

The main business of the subsection concerns estimates relating the wild exponent wE/F to
the largest jump j∞(E|F ) of ψE/F .

Proposition. If E/F is separable and totally wildly ramified of degree pr, then

ψE/F (x) = prx− wE/F , x > j∞(E|F ).

Proof. Let K/F be tamely ramified with e = e(K|F ). Thus wEK/K = ewE/F by the lemma.
The result therefore holds for E/F if and only if it holds for EK/K. Taking K/F to be the
maximal tame sub-extension of the normal closure of E/F , we reduce to the case where E/F
is absolutely wildly ramified. Part (2) of 1.2 Proposition 1 implies that there is a constant cE/F
such that ψE/F (x) = prx− cE/F , for x > j∞(E|F ). We show that cE/F = wE/F .

Let F ′/F be a sub-extension of E/F that is Galois of degree p. In this case, j∞(F ′|F ) is the
only jump of ψF ′/F , and it equals wF ′/F /(p−1) [Ser68, V § 3]. The proposition thus holds for
F ′/F . If E/F is Galois, we may assume inductively that cE/F ′ = wE/F ′ . So, taking x sufficiently
large, we get

prx− cE/F = ψE/F ′(ψF ′/F (x)) = ψE/F ′(px− wF ′/F )

= prx− pr−1wF ′/F − wE/F ′ = prx− wE/F ,
by the lemma. Thus cE/F = wE/F when E/F is Galois.

Suppose that E/F is not Galois. The normal closure E′/F of E/F is totally wildly ramified
by hypothesis. So, with ps = [E′ :F ] and x sufficiently large, we get

ψE′/F (x) = psx− wE′/F = ψE′/E(ψE/F (x))

= ps−r(prx− cE/F )− wE′/E .
Thus wE′/F = e(E′|E)cE/F − wE′/E , and the lemma implies cE/F = wE/F . 2

Corollary. Let E/F be totally wildly ramified of degree pr. If j∞ = j∞(E|F ) is the largest
jump of ψE/F , then

(pr−1)j∞ > wE/F > pr−1(p−1)j∞ > prj∞/2.

Moreover, wE/F = (pr−1)j∞ if and only if j∞ is the only jump of ψE/F .

Proof. Since ψE/F (x) > x for all x > 0, the first inequality follows directly from the proposition,
likewise the final remark.

Observe that ψ′E/F (x) 6 pr−1, for all points 0 < x < j∞ at which the derivative is defined

(1.2 Proposition 2). The function ϑ(x) = ψE/F (x)−pr−1x is therefore decreasing on the interval
0 < x < j∞. Thus ϑ(j∞) 6 0, or prj∞ − wE/F 6 pr−1j∞, as required. 2
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1.7 If E/F is a finite, purely inseparable extension, we set ψE/F (x) = x, x > 0. If E/F is a
finite extension, define

ψE/F = ψE/E0
◦ ψE0/F = ψE0/F , (1.7.1)

where E0/F is the maximal separable sub-extension of E/F . Assuming E 6= E0, the derivative
of ψE/F satisfies ψ′E/F (x) < [E :F ] for all x. We therefore set j∞(E|F ) = ∞ when E/F is not
separable. With these definitions, all the results of 1.1–1.3, 1.5 and 1.6 remain valid.

1.8 We anticipate a phenomenon arising later on, in §§ 5 and 6.
Let E/F be totally ramified of degree pr, r > 1. Thus E = F [α], where α is a root of

an Eisenstein polynomial f(X) = Xpr + a1X
pr−1 + · · · + apr−1X + apr ∈ oF [X], and one has

dE/F = υE(f ′(α)).
Set a0 = 1. If E/F is inseparable, the coefficient aj is zero unless j ≡ 0 (mod p). Each term

(pr−j)ajαj−1 in f ′(α) vanishes, giving dE/F = wE/F =∞.

Proposition. Suppose E/F is separable and totally ramified of degree pr. There is an integer
k such that 0 6 k 6 pr−1, and

dE/F = min
06j6pr−1

υE((pr−j)ajαj−1) ≡ k−1 (mod pr).

In particular, wE/F ≡ k (mod p). If F has characteristic p, then k 6≡ 0 (mod p).

Proof. For 0 6 j 6 pr−1, the term (pr−j)ajαj−1 is either zero or

υE((pr−j)ajαj−1) ≡ j−1 (mod pr).

This gives the expression for dE/F . If F has characteristic p, any term with j ≡ 0 (mod p) has
valuation ∞ and the second assertion follows. 2

If F has characteristic zero, an Eisenstein polynomial f(X) = Xp−a gives a field extension
E/F of degree p such that wE/F ≡ 0 (mod p).

1.9 We prove a simple, but under-appreciated, result concerning absolutely wildly ramified
extensions E/F (1.2 Definition). It reappears naturally in the analysis of representations in § 9.

Let E/F be a finite separable extension. As before, let JE/F be the set of jumps of the
piecewise linear function ψE/F . For x > 0, define

wx(E|F ) = lim
ε→0

ψ′E/F (x+ε)/ψ′E/F (x−ε).

By 1.2 Proposition 2, wx(E|F ) is a non-negative power of p while wx(E|F ) > 1 if and only if
x ∈ JE/F .

If E/F is a finite Galois extension with Gal(E/F ) = Γ , we use the notation Γ y+ =
⋃
z>y Γ

z,
and similarly for the lower numbering.

Proposition. Let E/F be separable and absolutely wildly ramified. Let a be the least element
of JE/F .

(1) The number a is an integer and there exists a character χ of F× such that sw(χ) = a
and χ ◦NE/F = 1.

1971

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


C. J. Bushnell and G. Henniart

(2) Let D = D(1)(E|F ) be the group of characters χ of F× such that sw(χ) 6 a and

χ ◦NE/F = 1. All non-trivial elements of D have Swan exponent a, and D is elementary abelian

of order wa(E|F ).

(3) If E1/F is class field to the group D, then F ⊂ E1 ⊂ E, ψE1/F (a) = a and

JE/E1
= ψE1/F (JE/F ) r {a}.

Proof. We proceed by induction on [E :F ]. If [E :F ] = p then, since E/F is absolutely wild, it is

Galois and there is nothing to do. Assume, therefore, that [E :F ] > p2. Since E/F is absolutely

wild, there is a Galois extension F ′/F , of degree p, contained in E (1.2 Gloss). There is a

character φ of F×, of order p, that vanishes on the group of norms from F ′. Choose F ′ so as to

minimize sw(φ). The integer c = sw(φ) is a jump of ψE/F (1.3 Proposition), so c > a. We show

that c = a.

Suppose, for a contradiction, that c > a. Thus a = ψF ′/F (a) is a jump of ψE/F ′ and indeed

its least jump. By inductive hypothesis, a is an integer and there is a character χ of F ′× such

that χ ◦NE/F ′ = 1. Since c > a, there is a unique character χ1 of F× such that χ = χ1 ◦NF ′/F .

The character χ1 has order p, while sw(χ1) = a and χ1 ◦NE/F = 1. The extension F ′1/F that is

class field to χ1 has the properties required of F ′/F but sw(χ1) < sw(φ). This contradicts our

hypothesis, and proves (1).

In (2), the group D is an abelian p-group, since [E :F ] is a power of p. Let χ be a character

of F× and suppose that sw(χ) = b, 1 6 b < a. Since b /∈ JE/F , χ ◦ NE/F is not trivial

by 1.3 Proposition, so χ /∈ D. This proves the first assertion in (2). On the other hand, if

χ ∈ D, χ 6= 1, then χp ∈ D and sw(χp) < sw(χ). Therefore χp = 1 and it follows that D is

elementary abelian.

To calculate the order of D, we first use part (1) to choose χ ∈ D, χ 6= 1. Let F ′/F be class

field to χ. In particular, F ′ ⊂ E and F ′/F is cyclic of degree p. The Herbrand function ψF ′/F
has one jump, lying at a, and wa(F

′|F ) = p. Composition with NF ′/F gives a homomorphism

D(1)(E|F ) →D(1)(E|F ′) with kernel of order p, generated by χ. The function ψE/F ′ has no jump

strictly less than a, and wa(E|F ′) = p−1wa(E|F ). If wa(E|F ′) = 1, then D(1)(E|F ′) is trivial,

whence D(1)(E|F ) has order p = wa(E|F ). Assume therefore that D(1)(E|F ) has order at least

p2, whence D(1)(E|F ′) has order at least p.

Let E′1/F
′ be class field to the character group D(1)(E|F ′). Inductively, we can assume that

|D(1)(E|F ′)| = wa(E|F ′), so ψE/E′1 has least jump strictly greater than a. If ∆ = Gal(F ′/F ),

then ∆ = ∆a = ∆a. Thus ∆ acts trivially on U1
F ′/U

1+a
F ′ . It follows that the extension E′1/F is

Galois, of degree pwa(E|F ′) = wa(E|F ) and ψE′1/F has a unique jump, lying at a. Therefore

Gal(E′1/F ) is elementary abelian and class field to a subgroup of D(1)(E|F ). Comparing orders,

this subgroup is the whole of D(1)(E|F ), so E′1 = E1 and D(1)(E|F ) has order wa(E|F ).

This completes the proof of (2).

We now have

ψE1/F (x) =

{
x, 0 6 x 6 a,

a+ ps(x−a), a 6 x,
(1.9.1)

where ps = [E1 :F ] = wa(E|F ). The function ψE/E1
has no jump j such that j < a. At a =

ψE1/F (a), wa(E|E1) = 1 = wa(E|F )/wa(E1|F ), so a /∈ JE/E1
. On the other hand, if b > a, then

b is not a jump of ψE1/F and therefore wψE1/F
(b)(E|E1) = wb(E|F ). In other words, b is a jump

of E/F if and only if ψE1/F (b) is a jump of E/E1. Part (3) follows immediately. 2
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Corollary 1. Let E/F be separable and absolutely wildly ramified. Let

j1 < j2 < · · · < jt

be the set of jumps of ψE/F . There is a unique tower of fields

F = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et = E (1.9.2)

with the following properties.

(1) For 1 6 k 6 t, the extension Ek/Ek−1 is elementary abelian of degree wjk(E|F ).

(2) For 1 6 k 6 t, the function ψEk/Ek−1
has a unique jump, namely ψEk−1/F (jk).

Proof. One applies the proposition to the absolutely wildly ramified extension E/E1 and iterates.
2

We refer to the tower (1.9.2) as the elementary resolution of the absolutely wild extension
E/F . It gives a factorization

ψE/F = ψEt/Et−1
◦ ψEt−1/Et−2

◦ · · · ◦ ψE2/E1
◦ ψE1/F (1.9.3)

in which each factor ψEk/Ek−1
, 1 6 k 6 t, has exactly one jump.

We conclude with an application needed in § 10.

Corollary 2. Let E/F be a finite separable extension that is not tamely ramified. If j∞ =
j∞(E|F ) is the largest jump of ψE/F then

j∞(E|F ) = inf{x ∈ R : RF (x) ⊂WE}.

In particular, WE contains R+
F (j∞) but not RF (j∞).

Proof. The assertion is unaffected by tamely ramified base field extension, so we may assume
that E/F is absolutely wild. We use the notation of Corollary 1 and proceed by induction on
the number, t say, of jumps. If t = 1, then E = E1/F is elementary abelian with a single jump
j1 = j∞(E|F ). Every non-trivial character χ ∈ D(1)(E|F ) has Swan exponent j1 and so is trivial

on R+
F (j1), but not on RF (j1). Since WE is the intersection of the kernels of all χ ∈ D(1)(E|F ),

the assertion follows.
So we take t > 1. Inductively we may assume that

inf{x : RE1(x) ⊂WE} = j∞(E|E1) = ψE1/F (j∞(E|F )).

For x > j1 = ψE1/F (j1), we have RF (x) = RE1(ψE1/F (x)) by the first case and 1.4 Proposition.
The assertion now follows. 2

2. Certain simple characters

The first part of this section provides a brief aide-mémoire for those facts and methods from
[BH96, BH17, BK93] that will be used frequently. It relies on parts 2 and 3 of the introduction
for background but is focused on the detail of the special cases with which we are concerned.
The later §§ 2.4–2.7 give partial results concerning Herbrand functions in those special cases.
The notation we set out here remains standard throughout the paper.
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2.1 Let EEE(F ) be the set of endo-classes of simple characters over F . When working with this
set, we follow the scheme of [BH17, 4.2] (apart from one minor adjustment of notation).

To each Θ ∈ EEE(F ) one attaches positive integer invariants degΘ, eΘ and a non-negative
rational invariant ςΘ. (In [BH17], ςΘ is mΘ.) We will never be concerned with the case ςΘ = 0,
so assume ςΘ > 0. Let µF be a character of F of level one. By definition, µF is trivial on pF , but
not trivial on oF . There exist a simple stratum [a,m, 0, β] in a matrix ring Mn(F ) and a simple
character θ ∈ C(a, 0, β, µF ) of endo-class Θ. (Here, we have used the full notation of [BK93,
(3.2.1), (3.2.3)], but we almost invariably abbreviate it to C(a, β).) The algebra E = F [β] is a
field and

degΘ = [E :F ], eΘ = e(E|F ), ςΘ = m/ea,

where ea is the oF -period of the hereditary oF -order a. We shall say that θ is a realization of Θ
on [a,m, 0, β], and that E/F is a parameter field for Θ.

While degΘ, eΘ and ςΘ are invariants of Θ, there will often be many choices for the field
extension E/F , even up to isomorphism. The number ςΘ has a useful interpretation. If π ∈ ĜLF
contains a simple character of endo-class Θ, then, in the notation of the introduction, ςΘ =
sw(π)/gr(π).

Let σ ∈ Ŵwr
F . Thus σ = Lπ, for some π ∈ ĜLF . If Θ is the endo-class of a simple character

contained in π, then sw(σ) = sw(π) and

sw(σ)/dimσ = sw(π)/gr(π) = ςΘ. (2.1.1)

2.2 Attached to Θ ∈ EEE(F ) is a structure function ΦΘ(x), x > 0, as defined in the introduction. It
is given by the explicit formula (4.4.1) of [BH17] which we do not need to repeat: for the special

cases considered here, see (2.4.1) below. If π ∈ ĜLF contains a simple character of endo-class Θ,
the definition gives

ΦΘ(0) = sw(π̌ × π)/gr(π)2. (2.2.1)

Let σ ∈ ŴF . The orbit [σ]+0 ∈ WF \P̂F and the canonical map EEE(F ) → WF \P̂F , Θ 7→ LΘ,
are as in the introduction.

Attached to σ is a decomposition function Σσ(x), x > 0, defined as follows [BH17, (3.1.2)].
Let σ act on the vector space V , so that the semisimple representation σ̌⊗σ acts on X = V̌ ⊗V .
For δ > 0, let X(δ) be the space of R+

F (δ)-fixed points in X. This has a unique R+
F (δ)-complement

X ′(δ) in X. The spaces X(δ), X ′(δ) provide semisimple, smooth representations of WF . One sets

Σσ(δ) = (dimσ)−2(δ dimX(δ) + swX ′(δ)). (2.2.2)

The function Σσ depends only on the orbit [σ]+0 ∈WF \P̂F .

Obviously, Σσ(0) = sw(σ̌⊗σ)/(dimσ)2. Let σ = Lπ, π ∈ ĜLF , and let Θ be the endo-class of
a simple character contained in π. Since the Langlands correspondence preserves Swan exponents
of pairs, we have

Σσ(0) =
sw(σ̌ ⊗ σ)

(dimσ)2
=

sw(π̌ × π)

gr(π)2
= ΦΘ(0).

Definition 1. Let Θ ∈ EEE(F ) and let σ ∈ ŴF satisfy [σ]+0 = LΘ. Define the Herbrand function
ΨΘ of Θ by ΨΘ = Φ−1

Θ ◦Σσ.

The function ΨΘ is continuous, strictly increasing and piecewise linear. It does not depend
on the choice of σ in its definition. It satisfies ΨΘ(0) = 0 and ΨΘ(x) = x for x > ςΘ.
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Definition 2. A jump of ΨΘ is a point x, 0 < x < ςΘ, at which Ψ′Θ is not continuous.

In many cases, the derivative Ψ′Θ has a discontinuity at ςΘ, but it holds no interest so we

exclude it as a jump. The derivative Ψ′Θ takes only finitely many values, and the function ΨΘ

has only finitely many jumps.

We often use the following property. Let K/F be a finite, tamely ramified field extension and

set e = e(K|F ). Let ΘK ∈ EEE(K) be a K/F -lift of Θ [BH96, 9.7]. By [BH17, 7.1 Proposition],

ΨΘ(x) = ΨΘK (ex)/e, x > 0. (2.2.3)

In Galois-theoretic terms, if σ ∈ ŴF and [σ]+0 = LΘ, then L(ΘK) = [τ ]+0 ∈ WK\P̂K , for some

irreducible component τ of σ |WK : this follows from [BH14b, 6.2 Proposition].

2.3 Let Θ ∈ EEE(F ). Say that Θ is totally wild if degΘ = eΘ = pr, for an integer r > 0. So if Θ

is totally wild and if E/F is a parameter field for Θ, then E/F is totally ramified of degree pr.

If Θ is totally wild and K/F is a finite tame extension, then Θ has a unique K/F -lift and that

lift is totally wild.

Suppose that Θ ∈ EEE(F ) is totally wild of degree pr. Say that Θ is of Carayol type if r > 1

and the integer prςΘ is not divisible by p (cf. [Car84]).

Notation. Let EEEC(F ) denote the set of Θ ∈ EEE(F ) that are totally wild of Carayol type.

Let Θ ∈ EEEC(F ) have degree pr. There is a simple stratum [a,m, 0, α] in M = Mpr(F ) carrying

a realization of Θ. We describe this following the definitions in [BK93, ch. 3]. The integer m is

prςΘ, the field extension E = F [α]/F is totally ramified of degree pr and a is the unique hereditary

oF -order in M that is stable under conjugation by E×. The integer m = −υE(α) is not divisible

by p, so the element α is minimal over F , in the sense of [BK93, (1.4.14)]. We form the group

H1(α, a) = U1
E U

1+[m/2]
a .

Set µM = µF ◦ trM , where trM : M → F is the matrix trace. Define a function µM ∗α on M by

µM ∗ α(x) = µM (α(x−1)), x ∈M. (2.3.1)

In particular, µM ∗ α represents a character of the group U
1+[m/2]
a . It is trivial on U1+m

a but

non-trivial on Uma . The set C(a, α) = C(a, 0, α, µM ) consists of all characters ϑ of H1(α, a) such

that ϑ
∣∣U1+[m/2]

a = µM ∗ α
∣∣U1+[m/2]

a . By hypothesis, there exists θ ∈ C(a, α) of endo-class Θ.

Remarks.

(1) The endo-class of any ϑ ∈ C(a, α) is totally wild of Carayol type.

(2) Characters ϑ1, ϑ2 ∈ C(a, α) are endo-equivalent if and only if they are equal; this follows

from [BK93] (3.3.2) and is peculiar to this situation.

(3) In the same vein, let t be an integer, 0 6 t 6 [m/2]. The restricted characters ϑi |H1+t(α, a)

intertwine if and only if they are equal.

In (3), H1+t(α, a) means H1(α, a) ∩ U1+t
a .
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2.4 We specialize to the case of Θ ∈ EEEC(F ).

Proposition. Let Θ ∈ EEEC(F ) have degree pr. Choose σ ∈ ŴF such that [σ]+0 = LΘ.

(1) The function ΦΘ satisfies

ΦΘ(x) =

{
ΦΘ(0) + p−rx, 0 6 x 6 ςΘ,

x, x 6 ςΘ.
(2.4.1)

(2) ΨΘ(0) = 0 and ΨΘ(x) = x, for x > ςΘ.

(3) There exists ε > 0 such that

Ψ′Θ(x) =

{
p−r, 0 < x < ε,

pr, ςΘ−ε < x < ςΘ.

(4) The function ΨΘ is convex in the region 0 < x < ςΘ.

(5) If 0 < x < ςΘ, then 0 < ΨΘ(x) < x.

(6) The jumps of ΨΘ are the discontinuities of Σ′σ(x).

(7) If ςΘ = m/pr then
ΦΘ(0) = Σσ(0) = m(pr−1)/p2r. (2.4.2)

Proof. Part (1) is the definition (4.4.1) in [BH17], and part (2) has already been noted. Part (3)
is an instance of [BH17, 7.6 Proposition]. The function Σσ is convex (2.2.2), and so (4) follows
from (1). Part (5) now follows from (4) and (3). Part (6) follows from (1). Part (7) follows from
(2.2.1) and [BH17, 4.1 Proposition]. 2

2.5 Key arguments will rely on the Interpolation Theorem of [BH17, 7.5]. We give an overview
of that result, as it applies to Θ ∈ EEEC(F ).

Definition. A twisting datum over F is a triple (k, c, χ) in which

(1) k > 1 is an integer;

(2) c is an element of F such that υF (c) = −k;

(3) χ is a character of F×, of Swan exponent k, such that

χ(x) = µF ∗ c(x), x ∈ U1+[k/2]
F .

Let Θ ∈ EEEC(F ) have degree pr. Suppose that Θ is the endo-class of θ ∈ C(a, α), exactly as
in 2.3. If (k, c, χ) is a twisting datum over F , the character χ ◦ det of GLpr(F ) satisfies

χ(detx) = µM ∗ c(x), x ∈ U1+[prk/2]
a .

Following the discussion in [BH17, 7.4], the quadruple [a,m, 0, α+c] is a simple stratum in M ,
such that H1(α+c, a) = H1(α, a). The character χθ : x 7→ χ(detx)θ(x), x ∈ H1(α, a), lies in
C(a, α+c). Denote by χΘ the endo-class of χθ.

Let A be the ultrametric on EEE(F ) defined in [BH17, 5.1] (see also the Notes below). We first
give a preliminary version of the result, which follows from [BH17, 7.3 Proposition].

Proposition 1. Let k > 1 be an integer that is not a jump of ΨΘ. If (k, c, χ) is a twisting datum
over F , then ΨΘ(k) = A(χΘ,Θ). In particular, A(χΘ,Θ) depends only on k, but not on c or χ.
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Notes.

(1) In the context of the proposition, A(χΘ,Θ) = t/pr, where t is the least integer such that
the characters θ |H1+t(α, a), χθ |H1+t(α, a) intertwine in GLpr(F ); that is the definition of
A in this case.

(2) The characters θ |H1+t(α, a), χθ |H1+t(α, a) intertwine in GLpr(F ) if and only if they are
conjugate in GLpr(F ) [BK93, (3.5.11)]. If this holds, the conjugation can be implemented
by an element of U1

a .

(3) When k is a jump of ΨΘ, A(χΘ,Θ) may depend on χ, not only on k.

We recall more about the notion of tame lifting, as it applies to Θ ∈ EEEC(F ). Let K/F be
a finite, tamely ramified field extension with e(K|F ) = e. We form simple characters over K
relative to the character µK = µF ◦ TrK/F of K. There is a unique simple stratum in Mpr(K)

of the form [aK , em, 0, α]. Setting EK = K[α] ⊂ Mpr(K), there is a unique θK ∈ C(aK , α) such
that θK(x) = θ(NEK/E(x)), x ∈ U1

EK . The endo-class ΘK of θK lies in EEEC(K) and is the unique
K/F -lift of Θ. Combining Proposition 1 with (2.2.3), we obtain the following result.

Proposition 2. Let K/F be a finite tame extension with e = e(K|F ), and let AK be the
canonical ultrametric on EEE(K). Let k > 1 be an integer such that k/e is not a jump of ΨΘ. If
(k, c, χ) is a twisting datum over K, then

ΨΘ(k/e) = ΨΘK (k)/e = AK(χΘK , ΘK)/e.

Proposition 2 summarizes the Interpolation Theorem.

2.6 Again let Θ ∈ EEEC(F ) be of degree pr. Choose a simple stratum [a,m, 0, α] in M = Mpr(F )
carrying a realization θ ∈ C(a, α) of Θ (as in 2.3). We use the Interpolation Theorem to determine
ΨΘ on half of (the interesting part of) its domain.

Proposition. Writing E = F [α]/F , the Herbrand function ΨΘ satisfies

ΨΘ(x) = p−r ψE/F (x), 0 6 x 6 ςΘ/2,

where ψE/F is the classical Herbrand function of 1.1, 1.7.

Proof. Let k be an integer, 0 < k < ςΘ/2, which is not a jump of either function ψE/F , ΨΘ.

Let (k, χ, c) be a twisting datum over F . The character χ ◦ det of GLpr(F ) is trivial on U1+prk
a .

Since prk 6 [m/2], it is also trivial on the group U
1+[m/2]
a . The character χθ : y 7→ χ(det y)θ(y),

y ∈ H1(α, a), thus lies in C(a, α) (2.3). The characters χθ, θ intertwine on a group H1+t(α, a) =
H1(α, a)∩U1+t

a , t > 0, if and only if they are equal there (2.3 Remark (3)). So, recalling 2.5
Note 1, A(Θ,χΘ) = t/pr where t is the least non-negative integer such that χ ◦ det is trivial
on U1+t

E . We have χ ◦ det(y) = χ ◦ NE/F (y), y ∈ E×. That k is not a jump of ψE/F implies
t = ψE/F (k) (1.3 Proposition) and the result follows from 2.5 Proposition 1 in this case.

In general, it is enough to prove the desired identity on a dense set of points x satisfying
0 < x < ςΘ/2. Take x = a/b, for positive integers a and b with b not divisible by p. Assume
that x is not a jump of ψE/F or ΨΘ. Let K/F be a finite, tamely ramified field extension with

e(K|F ) = b. If ΘK is the unique K/F -lift of Θ, then bx is not a jump of ψEK/K or ΨΘK . The
first case of the argument, 2.5 Proposition 2 and 1.1 Lemma together yield

ΨΘ(x) = ΨΘK (a)/b = p−rψEK/K(a)/b = p−rψE/F (x),

as required. 2
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Remark. In the context of the proposition, there is no reason to demand that E/F be separable.

This condition can be imposed, at the cost of a technical argument, but it is easier and more

natural to extend the definition of the classical Herbrand function as in 1.7.

2.7 Remaining in the situation of 2.6, we refine the other part of 2.4 Proposition (3). We use

the concept of formal intertwining of strata (as in [BK93, 2.6]).

Proposition. Let k be an integer, 0 < k < ςΘ, which is not a jump of ΨΘ. Let t = prΨΘ(k).

If 2t > m, then t is the least integer such that the strata [a,m, t, α], [a,m, t, α+c] intertwine

formally.

Proof. Let l be an integer such that 2l > m. We have

θ(x) = µM ∗ α(x),

χθ(x) = µM ∗ (α+c)(x),

}
x ∈ H1+l(α, a) = U1+l

a .

In this situation, an element g of GLpr(F ) intertwines θ |U1+l
a with χθ |U1+l

a if and only if

g−1(α+p−l)g ∩ (α+c+p−l) 6= ∅, that is, g intertwines the strata [a,m, l, α], [a,m, l, α+c] formally.

The result thus follows from 2.5 Proposition 1. 2

3. Functional equation

Let Θ ∈ EEEC(F ) (2.3 Notation) be of degree pr. In particular, r > 1. In this section, we uncover

a profound and surprising property of the function ΨΘ.

3.1 The main result is the following theorem.

Theorem. Let Θ ∈ EEEC(F ) be of degree pr, r > 1. The Herbrand function ΨΘ satisfies

ςΘ − x = ΨΘ(ςΘ −ΨΘ(x)), 0 6 x 6 ςΘ. (3.1.1)

For many arguments, it is convenient to have an alternative formulation of (3.1.1).

Symmetry. The function ΨΘ satisfies 0 6 ΨΘ(x) 6 x, for 0 6 x 6 ςΘ. In that range, the graph

y = ΨΘ(x) is symmetric with respect to the line x+y = ςΘ.

The first assertion here is 2.4 Proposition (5). Reflection in the line x+y = ςΘ is the map

iςΘ : (x, y) 7−→ (ςΘ−y, ςΘ−x),

so the two formulations are indeed equivalent.

Before embarking on the proof of (3.1.1), we observe that it has a converse. As recalled in 2.5,

the set EEE(F ) carries a canonical action (χ,Θ) 7→ χΘ of the group of characters χ of U1
F . It has

the property ΨχΘ = ΨΘ [BH17, 7.4 Proposition].

Corollary. Let Θ ∈ EEE(F ) be totally wild, with degΘ = pr, r > 1. Suppose that ςΘ 6 ςχΘ, for

all characters χ of U1
F . The function ΨΘ satisfies (3.1.1) if and only if Θ ∈ EEEC(F ).
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Proof. The hypothesis on Θ is equivalent to ςΘ = apt−r, for integers a 6≡ 0 (mod p), 0 6 t < r
[BH17, 7.6 Remark]. In particular, Θ ∈ EEEC(F ) if and only if t = 0. By [BH17, 7.6 Proposition],
there exist ε > 0, δ > 0, such that

Ψ′Θ(x) =

{
p−r, 0 < x < ε,

pr−t, ςΘ−δ < x < ςΘ.

If the functional equation holds for Θ, then t = 0 and so Θ ∈ EEEC(F ). The converse is the
theorem. 2

The proof of (3.1.1) occupies the entire section. The first intermediate result, 3.4 Theorem,
is entirely Galois-theoretic and applies to a relatively wide class of representations. The
second, 3.5 Theorem, applies only to representations of Carayol type, and its proof depends
on an intervention from the GL side, in the form of a case of the conductor formula of [BHK98].
That result forms the first step in an inductive proof of the theorem above.

3.2 Let σ ∈ ŴF . Let ςσ be the slope of σ. That is,

ςσ = inf{ε > 0 : RF (ε) ⊂ Kerσ}
= sw(σ)/ dimσ,

(3.2.1)

by [Hen80, Théorème 3.5]. If ςσ > 0, then σ |RF (ςσ) does not contain the trivial character.

Definition. Let σ ∈ ŴF .

(1) Say that σ is totally wild if the restriction σ |PF of σ to PF is irreducible. Let Ŵwr
F be the

set of totally wild elements σ of ŴF . Say that σ ∈ Ŵwr
F is of Carayol type if p does not

divide sw(σ) and dimσ 6= 1.

(2) Let σ ∈ Ŵwr
F have dimension pr. Say that σ is absolutely wild if the associated projective

representation σ̄ : WF → PGLpr(C) factors through a finite Galois group Gal(E/F ), with

E/F totally wildly ramified. Write Ŵawr
F for the set of absolutely wild elements σ of Ŵwr

F .

We remark that, if σ ∈ Ŵwr
F , then dimσ = pr, for some r > 0.

Lemma. Let σ ∈ Ŵwr
F . Let K/F be a finite, tamely ramified field extension and set e(K|F ) = e.

The representation σK = σ |WK is irreducible. It lies in Ŵwr
K and

Σσ(x) = e−1ΣσK (ex), x > 0.

One may choose K/F so that σK ∈ Ŵawr
K .

Proof. The relation between decomposition functions is [BH17, 3.2 Proposition]. The projective
representation σ̄ factors through a finite Galois group Gal(E/F ). The second assertion holds
when K/F is the maximal tame sub-extension of E/F . 2

3.3 Let σ ∈ Ŵwr
F . Directly from the definition recalled in (2.2.2), Σσ(x) = x, for x > ςσ−ε and

some ε > 0. Thus all discontinuities of Σ′σ(x) lie in the region 0 < x < ςσ. We call such points
the jumps of Σσ.

We assemble some properties of absolutely wild representations.
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Lemma 1. Let σ ∈ Ŵawr
F have dimension pr, r > 1. Let a be the least jump of the function Σσ.

(1) The jump a is an integer and there exists a character χ of WF , with sw(χ) = a, such that
χ⊗ σ ∼= σ.

(2) If χ′ is a non-trivial character of WF such that χ′ ⊗ σ ∼= σ, then sw(χ′) > a.

(3) The character χ of (1) has order p. If K/F is the cyclic extension such that WK = Kerχ,

there exists τ ∈ Ŵawr
K such that σ ∼= IndK/F τ . The representation τ is uniquely determined

up to conjugation by Gal(K/F ).

(4) Suppose, in (3), that r > 2. The representation τ is then of Carayol type if and only if σ is
of Carayol type.

Proof. Parts (1)–(3) are [BH17, 8.3 Theorem]. Let wK/F be the wild exponent of the extension
K/F (1.6.1). The formula sw(σ) = sw(τ) + dim(τ)wK/F (1.6 Lemma) gives sw(σ) ≡ sw(τ)
(mod p) and part (4) follows. 2

Continuing in the situation of Lemma 1, we gather some standard facts from § 1 and [Ser68],
for convenience of reference.

Lemma 2.

(1) The point a is the unique ramification jump of the extension K/F , in either upper or lower
numbering.

(2) The group WK ∩ RF (a) is of index p in RF (a) and R+
F (a) ⊂WK , while WF = WKRF (a).

(3) The following relations hold:

RK(ε) =

{
RF (ε) ∩WK , 0 < ε 6 a,

RF (ϕK/F (ε)), a < ε;

R+
K(ε) = R+

F (ϕK/F (ε)), a 6 ε.

(4) The Herbrand function ϕK/F is given by

ϕK/F (x) =

{
x, 0 6 x 6 a,

a+ (x−a)/p, a 6 x.

3.4 As in the first part of the proof of 3.1 Theorem, we develop 3.3 Lemma 1 using the same
notation. The first jump of Σσ is at a, χ is a character of WF such that sw(χ) = a and χ⊗σ ∼= σ.

Again, WK = Kerχ and σ = IndK/F τ , τ ∈ Ŵawr
K .

For ε > 0, set

dε(σ) = dim EndRF (ε)(σ),

d+
ε (σ) = dim EndR+

F (ε)(σ).

Since RF (ε), R+
F (ε) are normal subgroups of the pro-p group PF , the integers dε(σ), d+

ε (σ) are
non-negative powers of p. Referring back to the definition (2.2.2) of Σσ, p−2rdε(σ) is the left
derivative of the piecewise linear function Σσ at the point ε. Likewise, p−2rd+

ε (σ) is the right
derivative of Σσ at ε. It follows that dε(σ) = d+

ε (σ) unless ε is a jump of Σσ. If ε is a jump of
Σσ, then wε(σ) = d+

ε (σ)/dε(σ) is a positive power of p. Since

Σ′σ(x) =

{
p−2r, 0 < x < δ,

1, ςσ−δ < x,
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for some δ > 0, we have ∏
ε>0

wε(σ) =
∏
ε>0

d+
ε (σ)/dε(σ) = p2r.

We make parallel definitions,

Fdε(τ) = dim EndRF (ε)∩WK
(τ),

Fd
+
ε (τ) = dim EndR+

F (ε)∩WK
(τ),

Fwε(τ) = Fd
+
ε (τ)/Fdε(τ).

The quotient wε(σ)/Fwε(τ) is a power of p, and∏
ε>0

wε(σ)/Fwε(τ) = p2. (3.4.1)

Remark. One can define dε(τ), etc., exactly as before, relative to the base field K. One then
has Fdε(τ) = dψK/F (ε)(τ) (cf. 3.3 Lemma 2), and similarly for the other functions. We use the

notation Fdε(τ) to simplify comparison between the two base fields F and K.

We continue with the notation from the start of the subsection: in particular, σ ∈ Ŵawr
F . We

prove the following theorem.

Theorem. Let γ ∈ Gal(K/F ), γ 6= 1. The quantity

c = cK/F (σ) = inf{ε > 0 : HomRF (ε)∩WK
(τ, τγ) 6= 0} (3.4.2)

is independent of the choice of γ. The following properties hold.

(1) c > a.

(2) If c > a, then wa(σ)/Fwa(τ) = wc(σ)/Fwc(τ) = p, while wε(σ)/Fwε(τ) = 1 for all other
values of ε > 0.

(3) If c = a, then wa(σ)/Fwa(τ) = p2, while wε(σ)/Fwε(τ) = 1 for all other values of ε > 0.

Proof. Let ε > 0. The irreducible components of the semisimple representation τ |WK ∩ RF (ε)
are all WK-conjugate and occur with the same multiplicity. Likewise for τγ |WK ∩ RF (ε).
Consequently,

HomRF (ε)∩WK
(τ, τγ) 6= 0 ⇐⇒ τγ |RF (ε) ∩WK

∼= τ |RF (ε) ∩WK .

This condition is surely independent of γ 6= 1. If 0 < ε < a, the function Σσ is smooth at ε,
whence σ |RF (ε) is irreducible. It is induced from τ |WK ∩RF (ε), whence follows part (1) of the
theorem.

To proceed, we need another litany of notation. Let ε > 0 and choose an irreducible
component σε of σ |RF (ε). Let lε(σ) be the number of distinct WF -conjugates of σε, andmε(σ) the
multiplicity of σε in σ |RF (ε). Thus dε(σ) = lε(σ)mε(σ)2 while lε(σ)mε(σ) is the Jordan–Hölder
length of σ |RF (ε). All of these numbers are non-negative powers of p.

Similarly, choose an irreducible component σ+
ε of σε |R+

F (ε) and define l+ε (σ), m+
ε (σ) in

the same manner. Thus d+
ε (σ) = l+ε (σ)m+

ε (σ)2 and l+ε (σ)m+
ε (σ) is the Jordan–Hölder length of

σ |R+
F (ε), all being non-negative powers of p.

In exactly the same way, let τε be an irreducible component of τ |WK ∩ RF (ε) and τ+
ε an

irreducible component of τε |WK ∩ R+
F (ε). We take σε = τε for ε > a and σ+

ε = τ+
ε for ε > a

(cf. 3.3 Lemma 2).
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Lemma 1. If Σσ is smooth at a point ε > 0 then Στ is smooth at ψK/F (ε).

Proof. Suppose first that ε < a, so that ψK/F (ε) = ε. The definition of a ensures that the function
Σσ is smooth at ε. The representation τ is irreducible on RK(a) = RF (a) ∩WK , and so also on
RK(ε). It follows that Στ is smooth at ε.

The function Σσ is not smooth at a, so take ε > a. Since Σσ is smooth at ε, [BH17,
8.1 Proposition] shows that the representation σε is irreducible on R+

F (ε) and that σε is not
WF -conjugate to χ⊗ σε, for any character χ 6= 1 of RF (ε)/R+

F (ε). We have taken τε = σε, so τε
is irreducible on R+

F (ψK/F (ε)) = R+
F (ε), and it is not WK-conjugate to τε⊗φ, for any non-trivial

character φ of RF (ψK/F (ε))/R+
F (ψK/F (ε)) = RF (ε)/R+

F (ε). Therefore Στ is smooth at ψK/F (ε),
as required. 2

We assume henceforth that ε > a and use the notation introduced for Lemma 1. The WF -
stabilizer of (the isomorphism class of) σε is of the form Gε = WEε , for a finite field extension
Eε/F . Likewise, let G+

ε = WE+
ε

denote the WF -stabilizer of σ+
ε . The WK-stabilizer of τε = σε is

then WK ∩Gε = WKEε , and similarly for the objects labelled +.

Lemma 2. If ε > a, then
d+
ε (σ)

dε(σ)
=

Fd
+
ε (τ)

Fdε(τ)

[K ∩ Eε : F ]

[K ∩ E+
ε : F ]

.

The quotient of field degrees takes only the values 1 and p.

Proof. Since ε > a,

mε(σ) =
∑

γ∈Gal(K/F )

dim HomRF (ε)(σε, τ
γ)

=
∑

γ∈Gal(K/F )

dim HomRF (ε)(σ
γ
ε , τ).

If σγε occurs in τ , then σγε = σδε , for some δ ∈WK , and conversely. The sum is therefore effectively
taken over γ ∈WKWEε/WK = Gal(K/K ∩ Eε), so

mε(σ) = Fmε(τ) p/[K ∩ Eε : F ].

By definition, lε(σ) = [Eε : F ] and Flε(τ) = [KEε : K] = [Eε : F ]/[K ∩ Eε : F ]. That is,

lε(σ) = Flε(τ) [K ∩ Eε : F ].

Consequently,
dε(σ) = Fdε(τ) p2/[K ∩ Eε : F ]

and, likewise,
d+
ε (σ) = Fd

+
ε (τ) p2/[K ∩ E+

ε : F ].

This proves the first assertion of the lemma.
As [K :F ] = p, the quotient [K ∩Eε :F ]/[K ∩E+

ε :F ] may take only the values 1, p±1. It
remains to show that the case [K ∩Eε :F ]/[K ∩E+

ε :F ] = p−1 cannot arise. In other words, we
have to show that K ∩Eε = F implies K ∩E+

ε = F .
Suppose, therefore, that K ∩Eε = F or, as amounts to the same, GεWK = WF . The

restriction of τ to RF (ε) is a multiple of
∑

δ σ
δ
ε , with δ ranging over Gε ∩ WK\WK , while
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σ |RF (ε) is a multiple of
∑

β σ
β
ε , with β ∈ Gε\WF . Our hypothesis K ∩ Eε = F implies that

the natural map Gε ∩WK\WK → Gε\WF is bijective. We conclude that σ |RF (ε) = p τ |RF (ε),
whence σ |R+

F (ε) = p τ |R+
F (ε). Put another way,

d+
ε (σ)

dε(σ)
=

Fd
+
ε (τ)

Fdε(τ)
,

so K ∩ E+
ε = F , as required. 2

For c as in (3.4.2), observe that

HomRF (c)∩WK
(τ, τγ) = 0. (3.4.3)

Otherwise, the representation τ̌ ⊗ τγ would have an irreducible component λ for which Kerλ
contained RF (c)∩WK = RK(c′), where c′ = ψK/F (c). In that case, Kerλ would contain RK(c′′),
for some c′′ < c′ ([BH17, 2.1 Proposition 1]). That is, HomRK(c′′)(τ, τ

γ) 6= 0, contrary to the
definition of c.

Lemma 3. If φ > c, then wφ(σ)/Fwφ(τ) = 1. If c > a, then wc(σ)/Fwc(τ) = p.

Proof. Let φ > c, so that HomRF (φ)(τ, τ
γ) 6= 0. It follows that τ is RF (φ)-isomorphic to τγ , for

all choices of γ. Therefore σ |RF (φ) is a sum of p copies of τ |RF (φ) and so σ |R+
F (φ) is a sum

of p copies of τ |R+
F (φ). This implies wφ(σ) = Fwφ(τ).

Suppose c > a. We have HomRF (c)∩WK
(τ, τγ) = 0 while HomR+

F (c)(τ, τ
γ) 6= 0. The second

property implies that G+
c WK = WF , whence K∩E+

c = F (notation as in the proof of Lemma 2).
The first property implies GcWK 6= WF , giving K ⊂ Ec. From Lemma 2, we deduce that
wc(σ)/Fwc(τ) = p. 2

Consider now the situation at the point a.

Lemma 4. Let γ generate Gal(K/F ).

(1) If HomR+
F (a)(τ, τ

γ) = 0, then c > a and wa(σ)/Fwa(τ) = p.

(2) If HomR+
F (a)(τ, τ

γ) 6= 0, then c = a and wa(σ)/Fwa(τ) = p2.

Proof. The representation σ |RF (a) is irreducible and

σ |RF (a) =
∑

x∈WK\WF /RF (a)

Ind
RF (a)
WK∩RF (a) τ

x | (WK ∩ RF (a))

= Ind
RF (a)
WK∩RF (a) τ | (WK ∩ RF (a)).

It follows that τ is irreducible on RK(a) = RF (a)∩WK , and that the representations τγ |RK(a),
γ ∈WK\WF , are distinct.

Next,

σ |R+
F (a) =

∑
x∈WK\WF /R

+
F (a)

Ind
R+
F (a)

WK∩R+
F (a)

τx | (WK ∩ R+
F (a))

=
∑

γ∈WK\WF

τγ |R+
F (a).
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The restrictions τγ |R+
F (a) are either disjoint or identical. If they are disjoint, then

l+a (σ) = Fl
+
a (τ)p and m+

a (σ) = Fm
+
a (τ).

In this case,
d+
a (σ) = Fd

+
a (τ)p and τγ |R+

F (a) 6∼= τ |R+
F (a), γ 6= 1.

If the τγ |R+
F (a) are identical, then

l+a (σ) = Fl
+
a (τ), m+

a (σ) = Fm
+
a (τ)p,

yielding
d+
a (σ) = Fd

+
a (τ)p2 and τγ |R+

F (a) ∼= τ |R+
F (a).

Since da(σ) = Fda(τ) = 1, the lemma follows. 2

We prove the theorem. Part (1) has been done. Part (2) is given by Lemma 3, Lemma 4(1)
and (3.4.1). Part (3) follows from (3.4.1) and Lemma 4(2). 2

3.5 We continue in the situation of 3.4, except that we now specialize to representations of
Carayol type. Take K/F and cK/F (σ) as in 3.4 Theorem.

Theorem. Let σ ∈ Ŵawr
F be of Carayol type and dimension pr. Let aσ be the least jump of the

function Σσ. The largest jump zσ of Σσ is then

zσ = cK/F (σ) =
sw(σ)− aσ

pr
.

Proof. We proceed by induction on r. Take r = 1. We then have Σσ(0) = (p−1)sw(σ)/p2 (2.4.2)
and Σσ(x) = x for x > ςσ = sw(σ)/p. In particular, 0 < aσ 6 zσ < ςσ. In the region 0 < x < ςσ,
the derivative Σ′σ(x) takes the values p−2, 1 and, possibly, p−1 (as follows from (2.2.2)). If
only the values p−2, 1 occur, then aσ is the only jump. It lies at the intersection of the lines
y = p−2x+(p−1)sw(σ)/p2 and y = x, that is, aσ = sw(σ)/(1+pr) = (sw(σ)−aσ)/pr, as required.
If, on the other hand, Σ′σ takes the value p−1 on some interval, then zσ is given by the intersection
of the lines y = x and y−Σσ(aσ) = (x−aσ)/p. Since Σσ(aσ) = p−2aσ +Σσ(0), the result follows
from a quick calculation.

Assume r > 2. From 3.3 Lemma 1 we recall the following result.

Lemma 1. The representation τ is absolutely wild of Carayol type and dimension pr−1.

We may therefore assume inductively that

zτ = (sw(τ)−aτ )/pr−1,

where aτ 6 zτ are the first and last jumps of Στ . We calculate a list of Swan exponents.

Lemma 2.

(1) sw(σ̌ ⊗ σ) = (pr−1) sw(σ).

(2) sw(τ̌ ⊗ τ) = (pr−1−1) sw(τ).

(3) If γ generates Gal(K/F ), then sw(τ̌ ⊗ τγ) = pr−1(sw(τ)−aσ).

1984

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

Proof. The representations σ, τ are of Carayol type, so (1) and (2) are given by (2.4.2) and
(2.1.1). As in [BH17, (2.5.3)], set

∆K(ρ1, ρ2) = inf{x > 0 : HomRK(x)(ρ1, ρ2) 6= 0}.

Thus [BH17, 3.1.4]
sw(ρ̌1 ⊗ ρ2)

dim(ρ1) dim(ρ2)
= Σρ1(∆K(ρ1, ρ2)), ρi ∈ ŴK .

We started the proof of 3.4 Theorem by observing that, in effect, ∆K(τ, τγ) is independent of
γ ∈ Gal(K/F ), γ 6= 1. It follows that sw(τ̌ ⊗ τγ) does not depend on γ. With this in mind, we
apply the induction formula for the Swan conductor (1.6 Lemma) to the relations

τ̌ ⊗ σ |WK =
∑

γ∈Gal(K/F )

τ̌ ⊗ τγ ,

σ̌ ⊗ σ = IndK/F (τ̌ ⊗ σ |WK).

By 1.6 Proposition, wK/F = (p−1)aσ. So, for any γ 6= 1,

(p−1) sw(τ̌ ⊗ τγ) = sw(σ̌ ⊗ σ)− sw(τ̌ ⊗ τ)− p2r−1(p−1)aσ,

whence (3) follows. 2

Remark. The formulae in parts (1) and (2) of Lemma 2 rely ultimately on the conductor formula
of [BHK98]. This is the only intervention from the GL side in the proofs of the theorems of 3.4
and 3.5. It is, however, crucial.

The definition of c = cK/F in (3.4.2) gives ψK/F (c) = ∆K(τ, τγ). Since c > aσ
(3.4 Theorem (1)), we have ψK/F (c) = aσ + p(c−aσ).

Lemma 3. If γ ∈ Gal(K/F ), γ 6= 1, then ∆K(τ, τγ) > zτ . Equality holds here if and only if
aσ = aτ .

Proof. The relation Στ (∆K(τ, τγ)) = p2−2rsw(τ̌ ⊗ τγ) reduces us to proving

sw(τ̌ ⊗ τγ) > p2r−2Στ (zτ ).

Since zτ is the last jump of Στ , we have Στ (y) = y, for y > zτ . In particular, Στ (zτ ) = zτ . The
inductive hypothesis therefore yields

p2r−2Στ (zτ ) = pr−1(sw(τ)− aτ ).

On the other hand, sw(τ̌ ⊗ τγ) = pr−1sw(τ)−pr−1aσ by Lemma 2(3). By 3.4 Lemma 1, we have
aσ 6 aτ , whence the result follows. 2

Lemma 4. The element c = cK/F (σ) satisfies c = zσ > ϕK/F (zτ ).

Proof. By definition, the number ϕK/F (zτ ) is the infimum of ε > 0 such that τ |WK ∩ RF (ε) is
a multiple of a character. Only numbers ε > aσ enter and, by 3.3 Lemma 2, RF (ε) ⊂ WK for
such ε. That is, ϕK/F (zτ ) is the infimum of ε > 0 such that τ |RF (ε) is a multiple of a character.
Lemma 3 gives

c = ϕK/F (∆K(τ, τγ)) > ϕK/F (zτ ) (3.5.1)

1985

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


C. J. Bushnell and G. Henniart

while, on the other hand, c is the infimum of numbers ε such that τ |RF (ε) ∼= τγ |RF (ε). Thus
(3.5.1) implies that c is the infimum of numbers ε such that σ |RF (ε) is a multiple of a character.
That is, c = zσ > ϕK/F (zτ ), as required. 2

Lemma 4 yields the first assertion of the theorem. We prove the second. To complete the
induction, we have to show that

c = zσ = p−r(sw(σ)− aσ).

Abbreviating ∆ = ∆K(τ, τγ), (3.5.1) asserts that

ψK/F (c) = aσ + p(c−aσ) = ∆. (3.5.2)

We have Στ (y) = y, for y > zτ , while Lemma 3 gives ∆ > zτ . So,

∆ = Στ (∆) = sw(τ̌ ⊗ τγ)/p2r−2 = p1−r(sw(τ)− aσ).

Combining with (3.5.2), we obtain

prc = sw(τ) + (pr−pr−1−1)aσ.

However, sw(τ) = sw(σ)− pr−1(p−1)aσ, whence

zσ = c = p−r(sw(σ)− aσ), (3.5.3)

as required. 2

Keeping the notation of the theorem, we exhibit a consequence.

Corollary 1. Let σ ∈ Ŵawr
F be of Carayol type and degree pr, r > 1. Set a = aσ. If

wa(σ)/Fwa(τ) = p2, then a is the unique jump of the function Σσ.

Proof. Lemma 4(2) of 3.4 implies c = aσ. We have just shown that c = zσ. The function Σσ thus
has a unique jump. 2

Remark. The conclusion of the corollary has strong implications for the structure of the
representation σ; see 8.4 Proposition below.

To finish, we note that, because of (2.2.3), the theorem and its corollary apply equally to
totally wild representations that are not absolutely wild. In particular, we have the following
result.

Corollary 2. Let σ ∈ Ŵwr
F be of Carayol type and dimension pr. If aσ and zσ are the first and

last jumps of the function Σσ respectively, they are related by

zσ =
sw(σ)− aσ

pr
.

3.6 We start the proof of the functional equation (3.1.1). The argument occupies the rest of the
section.

1986

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

In 3.4, 3.5, we effectively worked with decomposition functions. We must now pass to

Herbrand functions. To avoid the need for more notation, we work with endo-classes. Nonetheless,

the underlying technique is entirely Galois-theoretic and could be phrased in those terms. We

start with the necessary translation.

Proposition. Let Θ ∈ EEEC(F ) be of degree pr, r > 1. If aΘ 6 zΘ are the first and last jumps of

ΨΘ, then

zΘ = ςΘ − aΘ/pr = ςΘ −ΨΘ(aΘ). (3.6.1)

Proof. There exists an irreducible cuspidal representation π of GLpr(F ) that contains a simple

character of endo-class Θ. The representation σ = Lπ is therefore totally wild of dimension pr.

Moreover, sw(σ) = prςσ = prςΘ is not divisible by p, so σ is of Carayol type. The formula in

part (1) of 2.4 Proposition implies that the functions ΨΘ, Σσ have the same jumps. In particular,

aΘ = aσ and zΘ = zσ. The first equality in (3.6.1) thus follows from 3.5 Corollary 2. In the range

0< x < aΘ, we have Ψ′Θ(x) = p−r and so aΘ/p
r = ΨΘ(aΘ), as required for the second equality. 2

3.7 Let Θ ∈ EEE(F ) be totally wild. Say that Θ is absolutely wild if there exists σ ∈ Ŵawr
F such

that LΘ = [σ]+0 . The relation [σ]+0 = LΘ determines σ up to tensoring with a tame character of

WF [BH14b, 1.3 Proposition]. So, if one choice of σ is absolutely wild, then all are.

For given Θ, there surely exists a finite tame extension T/F so that the unique T/F -lift ΘT

of Θ is absolutely wild. We have ςΘT = e(T |F )ςΘ. From (2.2.3) we deduce that if (3.1.1) holds

for ΘT it also holds for Θ. We therefore proceed on the basis that the given endo-class Θ is

absolutely wild.

For the next result, take Θ ∈ EEEC(F ) absolutely wild of degree pr. Choose σ ∈ Ŵawr
F so that

[σ]+0 = LΘ. Define a = aσ, K/F and τ , relative to σ, as in 3.3 Lemma 1. Let c = cK/F (σ) as in

(3.4.2), and note that a = aΘ.

Proposition. There exists a unique Υ ∈ EEE(K) such that [τ ]+0 = LΥ . If r > 2, the endo-class Υ

is absolutely wild of degree pr−1, while otherwise deg Υ = 1. In either case, it satisfies

ΨΘ(x) = p−1ΨΥ (ψK/F (x)), 0 6 x 6 c.

Proof. The existence and uniqueness of Υ are clear. If r > 2, then τ is absolutely wild, whence

so is Υ . In the region 0 6 x 6 a, we have ΨΘ(x) = p−rx while ΨΥ (ψK/F (x)) = ΨΥ (x) = p1−rx.

The required relation therefore holds in this range. In the case a = c, there is nothing left to do

so we assume a < c.

If a < x < c, 3.4 Theorem gives wx(σ) = Fwx(τ). In other words, the ratio of the derivatives

of ΨΘ and ΨΥ ◦ ψK/F is constant on the interval a < x < c. For a < x < a+δ, with δ small and

positive, this ratio is equal to p: this follows from the relation wa(σ)/Fwa(τ) = p. Integrating the

derivative relation, the result follows. 2

3.8 We prove (3.1.1). Let Θ ∈ EEEC(F ) be absolutely wild of degree pr. We first dispose of a

singular case.

Proposition. Suppose that ΨΘ has a unique jump a. The functional equation (3.1.1) then

holds for Θ and a = prςΘ/(1+pr).
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Proof. Appealing to 2.4 Proposition part (3), the graph of ΨΘ, in the range 0 6 x 6 ςΘ,
comprises only segments of the two lines y = p−rx, y = prx−(pr−1)ςΘ. The latter has slope
pr and passes through the point (ςΘ, ςΘ). These two lines intersect at the point (a, p−ra), where
a = prςΘ/(1+pr). Using the symmetry formulation of 3.1, the result is clear in this case. 2

We assume henceforth that ΨΘ has at least two jumps and proceed by induction on r. Suppose
r = 1. In this case, ΨΘ has exactly two jumps, and they are related as in 3.6 Proposition. The
graph consists of segments of the two lines y = p−1x, y = px−(p−1)ςΘ and a non-empty segment
of a third line of slope 1. Using the symmetry formulation, the result is clear in this case.

Suppose therefore that r > 2 and that ΨΘ has at least two distinct jumps. Let a = aΘ be
the least jump. There exists a character χ of F×, of Swan exponent a and order p, such that
χΘ = Θ (as follows from 3.3 Lemma 1). View χ as a character of WF and let WK = Kerχ. Take
Υ ∈ EEEC(K) as in 3.7 Proposition. By the inductive hypothesis,

ςΥ − y = ΨΥ (ςΥ −ΨΥ (y)), 0 6 y 6 ςΥ .

Let z = zΘ be the largest jump of ΨΘ and zK that of ΨΥ ◦ ψK/F . It follows from 3.5 Lemma 4
that zK 6 z. In the range z < x < ςΘ, we have

ΨΘ(x) = ςΘ − pr(ςΘ−x).

Also, ςΘ−x < ςΘ−z = a/pr, by 3.5 Theorem. Therefore

ΨΘ(ςΘ −ΨΘ(x)) = ΨΘ(pr(ςΘ−x)) = ςΘ−x,

as desired. If, on the other hand, 0 < x < a, then ΨΘ(x) = x/pr, whence

ςΘ −ΨΘ(x) = ςΘ − x/pr > ςΘ − a/pr = z.

Therefore ΨΘ(ςΘ−ΨΘ(x)) = ςΘ−x.
It remains to treat the range a < x < z. Here, ςΘ−ΨΘ(x) < ςΘ−ΨΘ(a) = ςΘ−a/pr = z.

We may therefore apply 3.7 Proposition and (3.5.3) to obtain

ΨΘ(ςΘ −ΨΘ(x)) = p−1 ΨΥ (ψK/F (ςΘ−ΨΘ(x))).

We have
ΨΘ(x) < ΨΘ(z) = ςΘ − pr(ςΘ−z) = ςΘ − a.

That is, ςΘ−ΨΘ(x) > a. It follows that

ψK/F (ςΘ−ΨΘ(x)) = ψK/F (ςΘ)− pΨΘ(x)

= ςΥ − pΨΘ(x).

Therefore,

ΨΘ(ςΘ −ΨΘ(x)) = p−1 ΨΥ (ςΥ − pΨΘ(x))

= p−1 ΨΥ (ςΥ −ΨΥ (ψK/F (x)))

= p−1(ςΥ − ψK/F (x)),

applying the inductive hypothesis at the last step. Finally,

p−1(ςΥ − ψK/F (x)) = p−1(ψK/F (ςΘ)− ψK/F (x)) = ςΘ − x,

and the proof is complete. 2
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4. Symmetry and the bi-Herbrand function

We turn attention to the GL side. Let Θ ∈ EEEC(F ) be of degree pr (in the notation of 2.3). In

particular, r > 1. We observed in 3.1 that the functional equation (3.1.1) can be interpreted as

a symmetry property of the graph of ΨΘ. This leads us to define a family of more transparent

‘bi-Herbrand functions’ with the same properties of symmetry and convexity. Our objective,

realized in § 7, is to calculate ΨΘ explicitly as a bi-Herbrand function. However, 4.6 Example at

the end of the section does exactly that in a substantial family of cases.

4.1 We draw out some useful features of the graph y = ΨΘ(x). For λ > 0, letiλ be the reflection

in the line x+y = λ. That is,

iλ : (x, y) 7−→ (λ−y, λ−x).

Proposition. Let Θ ∈ EEEC(F ) be of degree pr and abbreviate ς = ςΘ.

(1) The graph y = ΨΘ(x), 0 6 x 6 ς, is stable under the reflection iς .

(2) There is a unique point cΘ such that cΘ+ΨΘ(cΘ) = ς. The following conditions are

equivalent.

(a) The point cΘ is not a jump of ΨΘ.

(b) The function ΨΘ has an even number of jumps.

(c) The function Ψ′Θ takes the value 1 on a non-empty open subset of the region 0 < x < ς.

(d) The set I of x for which Ψ′Θ(x) = 1 is an open interval containing cΘ.

(3) If conditions (2)(a)–(d) hold, then

ΨΘ(x) = x− 2cΘ + ς, x ∈ I.

(4) Let 0 6 x 6 ς. In all cases, Ψ′Θ(x) 6 1 if x+ΨΘ(x) 6 ς, while Ψ′Θ(x) > 1 if x+ΨΘ(x) > ς.

Proof. Part (1) has been proved in 3.1, as a consequence of (3.1.1). The function ΨΘ is strictly

increasing, giving the first assertion in (2). The equivalence of (a), (b) and (d) follows from the

symmetry of part (1). Suppose (c) holds, and let I be the set of x, 0 < x < ς, for which Ψ′Θ(x) = 1.

The convexity of ΨΘ implies that I is an interval and symmetry implies cΘ ∈ I. Thus (c) implies

(d), and surely (d) implies (c).

In part (3), there is a neighbourhood of cΘ on which ΨΘ(x) = x−b, for some constant b. Thus

ς = cΘ+ΨΘ(cΘ) = 2cΘ−b, whence b = 2cΘ−ς, as required. Part (4) follows from the convexity

of ΨΘ and the symmetry property of (1). 2

Remark. The function ΨΘ is continuous and strictly increasing. The condition x+ΨΘ(x) 6 ς of

part (4) is therefore equivalent to x 6 cΘ.

We frequently use the following simple observation, so we exhibit it as a corollary.

Corollary. The function ΨΘ has an odd number of jumps if and only if cΘ is a jump. In that

case, cΘ is the middle one.

Proof. The reflection iς stabilizes the set of jumps of ΨΘ but fixes the point (cΘ,ΨΘ(cΘ)). 2
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4.2 We construct a family of iς -symmetric functions using more transparent data. They have

properties analogous to those in 4.1 Proposition. To specify them, we need two families of

auxiliary functions defined using the classical Herbrand functions ψE/F , ϕE/F of § 1.

Definition. Let E/F be a totally ramified field extension of degree pr, r > 1. Let ς = m/pr,

where m is a positive integer not divisible by p. Define

Ψ×(E/F,ς)(x) = p−rψE/F (x),

Ψ+
(E/F,ς)(x) = ς − ϕE/F (pr(ς−x)),

}
0 6 x 6 ς. (4.2.1)

The functions Ψ×(E/F,ς), Ψ+
(E/F,ς) are continuous, strictly increasing, convex and piecewise

linear in the region 0 6 x 6 ς. They have only finitely many jumps there.

Lemma.

(1) The functions Ψ×(E/F,ς), Ψ+
(E/F,ς) satisfy

ς − x = Ψ+
(E/F,ς)(ς −Ψ×(E/F,ς)(x))

= Ψ×(E/F,ς)(ς −Ψ+
(E/F,ς)(x)).

(2) There is a unique point c = c(E/F,ς) such that c+Ψ×(E/F,ς)(c) = ς. It further satisfies

c+Ψ+
(E/F,ς)(c) = ς.

(3) Let j∞ = j∞(E|F ) be the largest jump of ψE/F . If j∞ < ς then j∞ is the largest jump of

Ψ×(E/F,ς) and

̄∞ = ς −Ψ×(E/F,ς)(j∞) (4.2.2)

is the least jump of Ψ+
(E/F,ς). If j∞ < c, then c < ̄∞ < ς.

Proof. Part (1) follows from a simple manipulation of the definition (4.2.1). In (2), the function

Ψ×(E/F,ς) is strictly increasing and Ψ×(E/F,ς)(0) = 0, giving the first assertion. For the second, we

abbreviate the notation in the obvious way. From (1), ς−c = Ψ+(ς−Ψ×(c)) = Ψ+(c), as required.

The graphs y = Ψ×(E/F,ς)(x), y = Ψ+
(E/F,ς)(x) are interchanged by the involutioniς , whence (3)

follows. 2

We define the bi-Herbrand function 2Ψ(E/F,ς) by

2Ψ(E/F,ς)(x) = max
{

Ψ×(E/F,ς)(x),Ψ+
(E/F,ς)(x)

}
, 0 6 x 6 ς. (4.2.3)

When speaking of the jumps of 2Ψ(E/F,ς), we mean the discontinuities of its derivative in the

region 0 < x < ς.

Proposition. Let j∞ = j∞(E|F ) and write c = c(E/F,ς), as in the lemma.

(1) The function 2Ψ(E/F,ς) is continuous, strictly increasing, piecewise linear and convex, with

only finitely many jumps. The graph y = 2Ψ(E/F,ς)(x) is symmetric with respect to the line

x+y = ς.
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(2) Suppose j∞ > c. The function 2Ψ(E/F,ς) has an odd number of jumps, of which c is the
middle one. The derivative 2Ψ′(E/F,ς) does not take the value 1. Moreover,

2Ψ(E/F,ς)(x) =

{
Ψ×(E/F,ς)(x) > Ψ+

(E/F,ς)(x), 0 < x < c,

Ψ+
(E/F,ς)(x) > Ψ×(E/F,ς)(x), c < x < ς.

(3) Suppose j∞ < c. Defining ̄∞ as in (4.2.2), we have j∞ < c < ̄∞.

(a) If j∞ < x < ̄∞, then

2Ψ′(E/F,ς)(x) = Ψ×′(E/F,ς)(x) = Ψ+′
(E/F,ς)(x) = 1,

2Ψ(E/F,ς)(x) = Ψ×(E/F,ς)(x) = Ψ+
(E/F,ς)(x) = x−p−rwE/F .

(b) If 0 < x < j∞, then Ψ+′
(E/F,ς)(x) = 1 > Ψ×′(E/F,ς)(x) and

2Ψ(E/F,ς)(x) = Ψ×(E/F,ς)(x) > Ψ+
(E/F,ς)(x).

(c) If ̄∞ < x < ς, then Ψ×′(E/F,ς)(x) = 1 < Ψ+′
(E/F,ς)(x) and

2Ψ(E/F,ς)(x) = Ψ+
(E/F,ς)(x) > Ψ×(E/F,ς)(x).

In particular, 2Ψ(E/F,ς) has an even number of jumps.

Proof. In (1), only convexity requires comment, and that is obvious from parts (2) and (3).
The index (E/F, ς) will be constant throughout, so we omit it for the rest of this argument.

We have Ψ×(c) = Ψ+(c) = 2Ψ(c). We examine the functions in a small neighbourhood of x = c.
The values of Ψ×′(x) are of the form p−s, and those of Ψ+′(x) are ps, for various integers s
such that 0 6 s 6 r. In part (2), the left derivative of Ψ× at c is, at most, p−1, while the right
derivative of Ψ+ at c is at least p. So, c is a jump of 2Ψ. The other assertions in (2) follow from
the convexity of the functions Ψ× and Ψ+.

In part (3), the functions Ψ×, Ψ+ agree, and have derivative 1, on the interval j∞ < x < ̄∞
(which contains c). The derivative relations are clear from the definitions, and readily imply the
main points. 2

Remark. By 1.6 Proposition, the condition j∞ > c amounts to

j∞+Ψ×(E/F,ς)(j∞) = 2j∞ − p−rwE/F > ς.

By 1.6 Corollary, this will hold if wE/F > m(pr−1)/(pr+1).

4.3 We restate 2.6 Proposition in terms of the bi-Herbrand function.

Proposition. Let Θ ∈ EEEC(F ) be of degree pr. Let θ ∈ C(a, α) be a realization of Θ on a simple
stratum [a,m, 0, α] in Mpr(F ). If ς = ςΘ = m/pr and E = F [α] then

ΨΘ(x) = 2Ψ(E/F,ς)(x) = Ψ×(E/F,ς)(x), 0 6 x 6 ς/2,

ΨΘ(x) = 2Ψ(E/F,ς)(x) = Ψ+
(E/F,ς)(x), ς/2 6 Ψ+

(E/F,ς)(x) 6 ς.

Proof. The first assertion combines 2.6 Proposition with 4.2 Proposition. The second follows
from the symmetry properties of ΨΘ and 2Ψ(E/F,ς). 2
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4.4 We record the effect of tame lifting on these functions.

Proposition. Let E/F be totally ramified of degree pr and let ς = m/pr, for a positive integer
m not divisible by p. If K/F is a finite tame extension and e = e(K|F ), then

Ψ×(E/F,ς)(x) = Ψ×(EK/K,eς)(ex)/e,

Ψ+
(E/F,ς)(x) = Ψ+

(EK/K,eς)(ex)/e,

2Ψ(E/F,ς)(x) = 2Ψ(EK/K,eς)(ex)/e,

 0 6 x 6 ς.

Proof. This combines the definitions (4.2.1), (4.2.3) with 1.1 Lemma. 2

4.5 The second assertion of 4.3 Proposition determines ΨΘ where ΨΘ(x)> ς/2. That has already
been done in 2.7 Proposition, but in a rather different way. Reconciliation of the two approaches
reveals a fundamental property of Ψ+

(E/F,ς). See 2.5 Definition for the notion of ‘twisting datum’.

Proposition. Let [a,m, 0, α] be a simple stratum in Mpr(F ), in which E = F [α]/F is totally
ramified of degree pr and m is not divisible by p. Set ς = m/pr. If (k, c, χ) is a twisting datum
over F such that k < m/pr is not a jump of Ψ+

(E/F,ς) then

Ψ+
(E/F,ς)(k) = t/pr,

where t is the least integer for which the congruence

u−1αu ≡ α+c (mod p−t) (4.5.1)

admits a solution u ∈ U1
a .

Proof. Assume initially that 2t > m. For comparison purposes, choose θ ∈ C(a, α) and let Θ be
the endo-class of θ. Thus Θ is totally wild and of Carayol type. By 4.3 Proposition, k is not
a jump of ΨΘ and so, by 2.7 Proposition, t/pr = ΨΘ(k) = Ψ+

(E/F,ς)(k). Because of the jump

condition, t depends on k but not on the element c ∈ p−kF r p1−k
F .

We now admit the possibility 2t 6 m. The integer t depends on α and c, so we define
a function T (α, c) = p−rt where, as before, t is the least integer for which (4.5.1) admits a
solution. Let n be a positive integer and take ν ∈ F with υF (ν) = −n. Thus [a,m+prn, 0, να] is
a simple stratum in Mpr(F ). The congruences

u−1αu ≡ α+c (mod p−t),

u−1ναu ≡ ν(α+c) (mod p−(t+prn))

have the same sets of solutions u ∈ U1
a . Consequently,

T (να, νc) = T (α, c) + n.

Provided 2T (να, νc) > ς+n, we therefore have

T (να, νc) = Ψ+
(E/F,ς+n)(k+n).

The definition of the functions Ψ+
(E/F,ς) implies

Ψ+
(E/F,ς+n)(x+n) = Ψ+

(E/F,ς)(x) + n,

so k+n is not a jump of Ψ+
(E/F,ς+n)(x+n). The condition 2T (να, νc) > ς+n thus reduces to

2T (α, c) > ς − n. So, for integers k = −υF (c) satisfying 2T (να, νc) > k > ς+n, we have
Ψ+

(E/F,ς)(k) = T (α, c). Allowing n to increase without bound, we see that Ψ+
(E/F,ς)(k) = T (α, c),

for all integers k that are not jumps of Ψ+
(E/F,ς). 2
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Remark. The relation between the function Ψ+
(E/F,ς) and intertwining properties of simple strata

was observed in more general work of Zink [Zin88, Zin92] on a corresponding problem in F -
division algebras.

4.6 To finish the section with an example, we calculate ΨΘ in a large family of cases.

Example. Let Θ ∈ EEEC(F ) be of degree pr, r > 1. Let θ ∈ C(a, α) be a realization of Θ on a
simple stratum [a,m, 0, α] in Mpr(F ). Write ς = ςΘ = m/pr and E = F [α]. If j∞(E|F ) < ς/2,
then

ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

Proof. By 4.3 Proposition, ΨΘ(x) = 2Ψ(E/F,ς)(x) for 0 6 x6 ς/2. Likewise for ς−ΨΘ(ς/2) 6 x6 ς
by symmetry. In particular, Ψ′Θ(x) = 2Ψ′(E/F,ς)(x) = 1 for j∞ < x < ς/2. Thus 4.1 Proposition (2)

applies. It shows that Ψ′Θ(x) = 1 on the set j∞ < x < ς−ΨΘ(j∞). The same argument,
using 4.2 Proposition, applies to 2Ψ(E/F,ς), whence ΨΘ(x) = 2Ψ(E/F,ς)(x) on this range. Overall,
ΨΘ(x) = 2Ψ(E/F,ς)(x) for 0 6 x 6 ς. 2

Gloss. The hypothesis j∞ < ς/2 holds if wE/F < (p−1)m/2p.

Proof. By 1.6 Corollary, j∞ 6 p1−rwE/F /(p−1). 2

5. Characters of restricted level

Let [a,m, 0, α] be a simple stratum in M = Mpr(F ), r > 1, satisfying the usual conditions:

(1) E = F [α]/F is totally ramified of degree pr;

(2) m is not divisible by p and ς = m/pr.

Let ‖C(a, α)‖ be the set of endo-classes of simple characters θ ∈ C(a, α). Thus any Θ ∈
‖C(a, α)‖ lies in EEEC(F ) and has degree pr. In this section we fix α and identify a set of
Θ ∈ ‖C(a, α)‖ for which ΨΘ = 2Ψ(F [α]/F,ς). This will be the set called Lα in the introduction.
In substance, the section is a sequence of increasingly delicate conjugacy calculations. These
are progressively interpreted in terms of intertwining properties of simple characters, using the
elementary properties of the graphs of the various functions ‘Ψ’ laid out in § 4.

5.1 We recall, in the special case to hand, some of the machinery of [BK93, ch. 1]. Let p be the
Jacobson radical of a. Define

Aα : M −→ M,

x 7−→ αxα−1−x.

Let sE/F : M → E be a tame corestriction on M , relative to E/F . By definition, sE/F is an
(E,E)-bimodule homomorphism M → E such that sE/F (a) = oE . For integers i < j, we have
exact sequences

0 → piE −→ pi
Aα−−−→ pi

sE/F−−−−→ piE → 0,

0 → piE/p
j
E −→ pi/pj

Aα−−−→ pi/pj
sE/F−−−−→ piE/p

j
E → 0.

(5.1.1)

As in 2.1, let µF be a character of F of level one and set µM = µF ◦ trM . Let wE/F denote
the wild exponent of the field extension E/F (1.6.1).
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Lemma.

(1) There is a unique character µE of E, of level one, such that

µM (x) = µE(sE/F (x)), x ∈M. (5.1.2)

(2) There is a unique d ∈ E, of valuation wE/F , such that sE/F (y) = yd, y ∈ E.

Proof. Part (1) is [BK93, (1.3.7)]. Part (2) follows from [BK93, (1.3.8)]. 2

5.2 We introduce a new parameter.

Definition. Let θ ∈ C(a, α). Define lE(θ) as the least integer l > 0 for which the character
θ |U l+1

E is trivial.

Proposition. Abbreviate w = wE/F and let θ ∈ C(a, α).

(1) If m > 2w, then lE(θ) = m−w.

(2) If m 6 2w, then 0 6 lE(θ) 6 m/2. If l is an integer, 0 6 l 6 m/2, there exists ϑ ∈ C(a, α)
such that lE(ϑ) = l.

Proof. Let y ∈ E, υE(y) > [m/2]+1. The description (2.3.1) of θ gives

θ(1+y) = ψM ∗ α(1+y) = µE(αsE/F (y)),

for a tame corestriction sE/F and a character µE of E, as in 5.1 Lemma. Also, υE(sE/F (y)) =

υE(y)+w. Consequently, if 2w < m, the character θ is non-trivial on U
1+[m/2]
E and lE(θ) = m−w.

Otherwise, θ is trivial on U
1+[m/2]
E and assertion (2) follows from the description in 2.3. 2

Warning. The variation of lE(θ) with E is unstable and quite subtle. We explore and exploit
this in § 6.

5.3 We use the notation j∞, ̄∞ of (4.2.2). We spend the rest of this section proving the following.

Theorem. Let [a,m, 0, α] be a simple stratum in M = Mpr(F ), r > 1, in which E = F [α]/F
is totally ramified of degree pr and p does not divide m. Set ς = m/pr and let w = wE/F . Let
θ ∈ C(a, α) have endo-class Θ and suppose that

lE(θ) 6 max {0,m−w}. (5.3.1)

(1) If 2Ψ(E/F,ς)(x) has an odd number of jumps, then ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

(2) If m > 2w, then lE(θ) = m−w and ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

(3) If w is divisible by p, then ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

(4) Suppose that m > w > m/2, that w is not divisible by p, and that 2Ψ(E/F,ς) has an even

number of jumps. There is a unique character φ of Um−wE , trivial on U1+m−w
E , with the

following property.

(a) The relation ΨΘ(x) = 2Ψ(E/F,ς)(x) holds for all x, 0 6 x6 ς, if and only if θ |Um−wE 6= φ.

(b) If θ |Um−wE = φ, then

ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 j∞, ̄∞ 6 x 6 ς,

ΨΘ(x) < 2Ψ(E/F,ς)(x), j∞ < x < ̄∞.
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Remarks.

(1) The hypothesis of part (1) holds if and only if 2Ψ′(E/F,ς)(x) 6= 1 for 0 < x < ς

(4.2 Proposition). It is valid if w > m(pr−1)/(pr+1) (4.2 Remark). In particular, if w > m
then part (1) applies.

(2) In part (2), hypothesis (5.3.1) holds for all θ ∈ C(a, α) (5.2 Proposition). This case therefore
subsumes 4.6 Example (but we will use this example in the proof of the theorem).

(3) Regarding (3), the case w ≡ 0 (mod p) can only occur when F has characteristic 0 (1.8).

(4) A form of the character φ in part (4) is written down in (5.12.3) below. A different version
is given in 7.3 Remark below, showing that it may or may not be trivial.

In the theorem, the division into cases (1)–(4) is not exclusive. Certainly (3) can overlap
either (1) or (2). When p = 2, (1) and (2) can overlap (6.2 Example below). Case (4) overlaps
no other.

After preparatory work, part (1) of the theorem is proved in 5.6. Following more preparation
in 5.8 and 5.9, parts (2), (3) and (4) are proved in 5.10, 5.11 and 5.12, respectively.

5.4 Let p be the Jacobson radical of a. Let c ∈ F , with υF (c) = −k and k < ς = m/pr. Let
t < prk be an integer. As a first step, we consider formal intertwining between the simple strata
[a,m, t, α] and [a,m, t, α+c]. That is, we analyse the congruence

u−1αu ≡ α+c (mod p−t), u ∈ U1
a . (5.4.1)

Lemma. The set of solutions u ∈ U1
a of (5.4.1) is either empty or constitutes one coset

uU1
EU

m−t
a ∈ U1

EU
m−prk
a /U1

EU
m−t
a .

Proof. Let u ∈ U1
a satisfy (5.4.1). Thus u conjugates the equivalence class of the simple stratum

[a,m, t, α] to that of [a,m, t, α+c]. If v ∈ U1
a and uv satisfies (5.4.1), then v conjugates the

equivalence class of the stratum [a,m, t, α+c] to itself. Equivalently, v ∈ U1
EU

m−t
a [BK93, (1.5.8)],

so the coset uU1
EU

m−t
a is uniquely determined by (5.4.1). On the other hand, u conjugates the

equivalence class of [a,m, prk, α] to itself, so u ∈ U1
EU

m−prk
a [BK93, (1.5.8)]. 2

Remark. Since U1
E commutes with α, we need only ever consider solutions u of (5.4.1) that satisfy

u ∈ Um−p
rk

a .

5.5 We continue with the same notation. In (5.4.1), write u = 1+a, a ∈ pm−p
rk. In this form,

(5.4.1) amounts to
(1+a)−1α(1+a) ≡ α+c (mod p−t) (5.5.1)

or, equivalently,
αa−aα ≡ c(1+a) (mod p−t). (5.5.2)

We use the standard notation [x, y] = xy−yx, for x, y ∈M .

Proposition. Let a ∈ pm−p
rk satisfy (5.5.1). If y ∈ E, υE(y) = b > 1, then

(1+a)(1+y)(1+a)−1 ≡ 1+ȳ (mod pb+m−t),

for an element ȳ ∈ E such that ȳ ≡ y (mod pb+m−p
rk

E ).
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Proof. We rearrange the conjugation as

(1+a)(1+y)(1+a)−1 = 1 + y + [a, y](1+a)−1.

Applying the defining relations (5.5.1), (5.5.2), we get[
α, [a, y](1+a)−1

]
= α[a, y](1+a)−1 − [a, y](1+a)−1α

≡ α[a, y](1+a)−1 − [a, y](α+c)(1+a)−1 (mod pb+m−p
rk−t)

≡ ([α, a]y − y[α, a]− [a, y]c)(1+a)−1 (mod pb+m−p
rk−t)

≡ (c(1+a)y − yc(1+a)− [a, y]c)(1+a)−1 (mod pb−t)

≡ 0 (mod pb−t).

The exact sequences (5.1.1) imply [a, y](1+a)−1 = v+h, for v ∈ pb+m−p
rk

E and h ∈ pb+m−t, as
required. 2

5.6 We continue with the same notation, especially ς = m/pr and w = wE/F .

Proposition 1. Let I be an open sub-interval of (0, ς) on which Ψ×(E/F,ς) and Ψ+
(E/F,ς) are both

smooth and satisfy

Ψ×(E/F,ς)(x) > Ψ+
(E/F,ς)(x), x ∈ I. (5.6.1)

Let θ ∈ C(a, α), and suppose

l = lE(θ) 6 max{0,m−w}. (5.6.2)

If θ has endo-class Θ, then

ΨΘ(x) = Ψ×(E/F,ς)(x) = 2Ψ(E/F,ς)(x), x ∈ I.

Proof. By (4.2.1), (4.2.3), we have Ψ×′(E/F,ς)(x) 6 1 6 Ψ+′
(E/F,ς)(x), 0 < x < ς. By 4.2 Proposition,

hypothesis (5.6.1) implies that Ψ×′(E/F,ς)(x) < 1, x ∈ I. The convexity of ψE/F = prΨ×(E/F,ς)
and 1.6 Proposition now imply Ψ×(E/F,ς)(x) > x−p−rw, x ∈ I.

As in the proof of 2.6 Proposition, the tame lifting properties of 4.4 Proposition and 2.5
Proposition 2 show it is enough to prove the result when x is an integer. So, let k be an integer,
k ∈ I, that is not a jump of ΨΘ. Let (k, c, χ) be a twisting datum (2.5). We apply 5.5 Proposition
with t = prΨ+

(E/F,ς)(k). By 4.5 Proposition, t is the least integer for which the congruence (5.5.1)

admits a solution a. By 5.4 Lemma, we may take a ∈ pm−p
rk. The definition of I implies that k

is not a jump of ψE/F , so ψE/F (k) = sw(χ ◦NE/F ) is an integer (1.3 Proposition).
Write v = ψE/F (k) and let y ∈ E have valuation 1+v. In particular, χ ◦ det(1+y) = 1

(cf. 1.3 Proposition). Our hypothesis (5.6.1) amounts to

ψE/F (k) = prΨ×(E/F,ς)(k) > prΨ+
(E/F,ς)(k) = t,

so v > t. Thus 5.5 Proposition gives

(1+a)(1+y)(1+a)−1 ≡ 1+ȳ (mod p2+m),
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whence 1+a normalizes the group H1+v(α, a) and θ1+a(1+y) = θ(1+ȳ). Taking first the case
l = 0, we get θ1+a(1+y) = θ(1+ȳ) = 1 = χθ(1+y). In the other case 0 < l 6 m−w,

υE(ȳ−y) > 1+v+m−prk = 1 + ψE/F (k) +m− prk > 1 +m− w,

since ψE/F (k) > prk−w. It follows that θ1+a(1+y) = θ(1+ȳ) = θ(1+y) = χθ(1+y). By hypothesis
(5.6.1), t < v so the definition of a ensures that 1+a conjugates θ to χθ on H1+v(α, a). Therefore
ΨΘ(k) 6 v/pr = 2Ψ(E/F,ς)(k).

We go through the same process with υE(y) = v = ψE/F (k). We choose y so that χ ◦
det(1+y) = χ ◦NE/F (1+y) 6= 1. If m > w, then

υE(ȳ−y) > v+m−prk > m−w > l,

whence θ1+a(1+y) = θ(1+y) 6= χθ(1+y). The element 1+a therefore normalizes Hv(α, a) but
does not conjugate θ to χθ on that group. If m 6 w then l = 0 and the same conclusion holds.

Suppose there exists 1+b ∈ U1
a that intertwines θ with χθ on Hv(α, a): that is, it conjugates

θ to χθ on that group. It therefore conjugates θ to χθ on H1+v(α, a) and so is of the form
1+b = u(1+a), where u ∈ U1

a conjugates θ |H1+v(α, a) to itself.

Lemma. We have v 6 [m/2].

Proof. Hypothesis (5.6.1) implies that k is strictly less that the largest jump of ψE/F . Therefore
v = ψE/F (k) 6 pr−1k. On the other hand, k < ς = m/pr. Suppose that v > [m/2]. Since v is an
integer, this implies v > m/2 and so

m/2 < v 6 pr−1k < m/p,

which is ridiculous. 2

Following the lemma, the element u conjugates θ to itself on H1(α, a), as follows from [BK93,
(3.3.2)]. Therefore,

θ1+a |Hv(α, a) = θ1+b |Hv(α, a) = χθ |Hv(α, a),

which is false. We conclude that θ does not intertwine with χθ on Hv(α, a), and so ΨΘ(k) =
A(Θ,χΘ) = v/pr = 2Ψ(E/F,ς)(k), as required. 2

Proposition 1 has a ‘mirror image’ as follows.

Proposition 2. Let I be an open sub-interval of (0, ς) on which Ψ×(E/F,ς), Ψ+
(E/F,ς) are smooth

and satisfy
Ψ×(E/F,ς)(x) < Ψ+

(E/F,ς)(x), x ∈ I. (5.6.3)

Let θ ∈ C(a, α), and suppose

l = lE(θ) 6 max{0,m−w}. (5.6.4)

If θ has endo-class Θ, then

ΨΘ(x) = Ψ+
(E/F,ς)(x) = 2Ψ(E/F,ς)(x), x ∈ I.

Proof. The symmetry property of ΨΘ (3.1.1) and the corresponding properties (4.2 Lemma)
connecting Ψ× with Ψ+ together show that this proposition is equivalent to Proposition 1. 2
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Proof of 5.3 Theorem (1). Here, 2Ψ(E/F,ς) has an odd number of jumps. The interval 0 < x < ς,
with the jumps of 2Ψ(E/F,ς) removed, is covered by a finite union of open intervals Ij on which
either (5.6.1) or (5.6.3) holds. The propositions imply that ΨΘ(x) = 2Ψ(E/F,ς)(x) for x ∈

⋃
j Ij .

By continuity, the functions are equal for 0 6 x 6 ς. 2

The argument used to prove part (1) of 5.3 Theorem has broader applicability. As before, Θ
is the endo-class of a simple character θ ∈ C(a, α) satisfying (5.3.1).

Corollary 1. If 2Ψ(E/F,ς) has an even number of jumps, then

ΨΘ(x) = 2Ψ(E/F,ς)(x)

for all x such that 0 6 x 6 j∞ or ̄∞ 6 x 6 ς.

Proof. In the region 0 < x < j∞, we have Ψ×(E/F,ς)(x) > Ψ+
(E/F,ς)(x) by 4.2 Proposition.

Proposition 1 then implies ΨΘ(x) = Ψ×(E/F,ς)(x) = 2Ψ(E/F,ς)(x) for 0 6 x 6 j∞. Proposition 2

implies ΨΘ(x) = Ψ+
(E/F,ς)(x) = 2Ψ(E/F,ς)(x) for ̄∞ 6 x 6 ς. 2

We can push this train of thought a little further.

Corollary 2. If 2Ψ(E/F,ς) has an even number of jumps, then

ΨΘ(x) 6 2Ψ(E/F,ς)(x), j∞ < x < ̄∞.

The following conditions are equivalent.

(1) ΨΘ(x0) = 2Ψ(E/F,ς)(x0), for some x0 such that j∞ < x0 < ̄∞.

(2) ΨΘ(x) = 2Ψ(E/F,ς)(x) for all x such that j∞ < x < ̄∞.

Proof. For j∞ 6 x 6 ̄∞, we have 2Ψ(E/F,ς)(x) = x−p−rw. The functions ΨΘ, 2Ψ(E/F,ς) agree at
the end-points j∞, ̄∞. As ΨΘ is convex in this region, (1) implies (2). The converse is trivial. 2

Corollary 2 provides the basis of a strategy for proving the remaining assertions
of 5.3 Theorem.

5.7 Before we can develop this strategy, we need a minor result derived from elementary linear
algebra.

Let k be a field and V a k-vector space of finite dimension n. Let n be a regular nilpotent
endomorphism of V . The n-stable subspaces of V are then Vj = nj(V ), 0 6 j 6 n.

Lemma 1. Let n′ be a nilpotent endomorphism of V that commutes with n. There exists a =
a(V, n, n′) ∈ k such that

n′(v) ≡ an(v) (mod Vj+2), v ∈ Vj ,

for 0 6 j 6 n−2. The element a is non-zero if and only if n′ is regular.

Proof. Let m ∈ Endk(V ) commute with n. There is a unique polynomial φ(X) ∈ k[X], of degree
at most n−1, such that m = φ(n). The endomorphism m is nilpotent if and only if φ(0) = 0. If this
holds, the linear coefficient a = φ′(0) satisfies m(v) ≡ an(v) (mod Vj+2), v ∈ Vj , as required. 2

1998

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

We apply Lemma 1 in the following context. Let [a,m, 0, α] be a simple stratum in M =
Mpr(F ), E = F [α], as in the theorem. Let kF = oF /pF be the residue field of F . If p is the

Jacobson radical of a, the kF -algebra a/p is isomorphic to kp
r

F and α acts on it by conjugation.

Lemma 2. The endomorphism of a/p, induced by Aα, is regular nilpotent.

Proof. As an endomorphism of the kF -space a/p, Aα = Adα − 1 satisfies (Aα)p = Aαp , and so
(Aα)p

r
= Aαpr . However, αp

r ∈ F×Ua, whence Adαp
r

induces the identity map on a/p. That is,
(Aα)p

r
= 0 and so Aα is nilpotent. By (5.1.1), KerAα is the one-dimensional subspace oE/pE of

a/p, so Aα is regular. 2

Proposition. Let Vj = Ajα(a/p). Let s be an integer and write ζ = s/m ∈ oF . If β ∈ E has
valuation υE(β) = −s, then

Aβ(v) ≡ ζAα(v) (mod Vj+2),

for v ∈ Vj , 0 6 j 6 pr−2.

Proof. The set of indecomposable idempotents of the kF -algebra a/p provides a kF -basis that
is permuted cyclically by Adα, with period pr. We have Aα = Adα − 1. Similarly for Aβ, and
Aβ+1 = (Aα+1)t, for an integer t, 0 6 t 6 ps−1, such that s ≡ mt (mod ps). The linear term
in (Aα+1)t is tAα, whence the result follows. 2

5.8 We return to the proof of 5.3 Theorem, as it was left at the end of 5.6. We may now assume
that 2Ψ(E/F,ς) has an even number of jumps. Let I be the non-empty open interval j∞ < x < ̄∞.
So, for x ∈ I,

2Ψ(E/F,ς)(x) = Ψ×(E/F,ς)(x) = Ψ+
(E/F,ς)(x) = x−p−rw,

where w = wE/F . Let (k, c, χ) be a twisting datum with k ∈ I; in particular, w < prk. Our aim,
in this subsection and the next, is to refine 5.5 Proposition in this more restricted context.

By 4.5 Proposition, the congruence

(1+a)−1α(1+a) ≡ α+c (mod p−t) (5.8.1)

admits a solution a if and only if t > prΨ+
(E/F,ς)(k) = prk−w. We examine these solutions a more

closely when t = prk−w. As in 5.4 Remark, we need only consider elements a ∈ pm−p
rk.

Rewrite (5.8.1) in the form

Aα(a) ≡ (1+a)cα−1 (mod pm−p
rk+w), (5.8.2)

and set

ε = Aα(a)− (1+a)cα−1 ∈ pm−p
rk+w. (5.8.3)

By 4.5 Proposition, the congruence

Aα(a′) ≡ (1+a′)cα−1 (mod p1+m−prk+w) (5.8.4)

has no solution a′.

Lemma. The element ε of (5.8.3) satisfies υE(sE/F (ε)) = m− prk+w and so υE(sE/F (a)) > w.
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Proof. Write t = prk−w. Suppose, for a contradiction, that υE(sE/F (ε)) >m−t. Take a ∈ pm−p
rk

satisfying (5.8.2): the element a is then determined modulo pm−p
rk

E +pm−t (5.4 Lemma). Let
y ∈ pm−t and consider the congruence

Aα(a+y) ≡ (1+a+y)cα−1 (mod p1+m−t).

Since m > prk, we can neglect the term ycα−1, so this congruence amounts to

Aα(a+y) ≡ (1+a)cα−1 (mod p1+m−t),

that is,
Aα(y) ≡ −ε (mod p1+m−t).

We have assumed that υE(sE/F (ε)) > m−t so, by (5.1.1), this last congruence admits a solution
y ∈ pm−t. The element a′ = a+y then satisfies (5.8.4), which is impossible. This proves the first
assertion. Now apply sE/F to the definition (5.8.3). Since sE/F (1) has valuation w, the second
assertion follows directly. 2

5.9 We continue in the situation of 5.8. In particular, (k, c, χ) is a twisting datum such that
j∞ < k < ̄∞; and prk > w, by 4.2 Proposition (3)(a). Going forward, we impose the following
simplification.

Assumption. We henceforward assume that 2Ψ(E/F,ς)(̄∞) 6 ς/2.

Justification. If 2Ψ(E/F,ς)(̄∞) > ς/2, the functional equation implies j∞ < ς/2 and we are in the
situation of 4.6 Example. In that case, we know that ΨΘ(x) = 2Ψ(E/F,ς)(x) for 0 6 x 6 ς, as
demanded by part (2) of the theorem. 2

Proposition 1. Let θ ∈ C(a, α) satisfy lE(θ) 6 m−w. Let a ∈ pm−p
rk be a solution of (5.8.2).

Define ε by (5.8.3) and set ζ = w/m ∈ oF . If y ∈ E and υE(y) > prk−w, then

θ1+a(1+y)/θ(1+y) = θ(1−ζcα−1y)µM (−αζεy). (5.9.1)

Proof. Suppose first that υE(y) > prk−w. This implies θ(1−ζcα−1y) = 1, while µM (−αζεy) = 1
by 5.8 Lemma. The right-hand side of (5.9.1) thus equals 1. Application of 5.5 Proposition gives
the same for the left-hand side. Assume now that υE(y) = prk−w.

Lemma 1. If y ∈ E and υE(y) = prk−w, then

(1+a)(1+y)(1+a)−1 = 1+ȳ + h,

for elements ȳ of E and h of pm such that

ȳ ≡ y (mod pm−wE ),

h ≡ −ζεy (mod Aα(pm) + pm+1).

Proof. We rewrite the defining relation (5.8.1), with t = prk−w, as

(1+a)−1α(1+a) = α+c+δ. (5.9.2)

Thus δ ∈ pw−p
rk and

[α, a] = (1+a)(c+δ),

Aα(a) = (1+a)(c+δ)α−1.
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Therefore ε = (1+a)δα−1. We start from the identity

(1+a)(1+y)(1+a)−1 = 1 + y + [a, y](1+a)−1 (5.9.3)

and evaluate, using (5.9.2). We find

[α, [a, y](1+a)−1] = α[a, y](1+a)−1 − [a, y](1+a)−1α

= α[a, y](1+a)−1 − [a, y](α+c+δ)(1+a)−1

= ([α, a]y − y[α, a]− [a, y](c+δ))(1+a)−1

= ((1+a)(c+δ)y − y(1+a)(c+δ)− [a, y](c+δ))(1+a)−1

= ((1+a)δy − y(1+a)δ − [a, y]δ)(1+a)−1

= (1+a)[δ, y](1+a)−1.

Substituting for δ, we get

(1+a)[δ, y](1+a)−1 = (1+a)
[
(1+a)−1εα, y

]
(1+a)−1

= (1+a)((1+a)−1εαy − y(1+a)−1εα)(1+a)−1

≡ [εα, y] (mod p),

since [εα, y] ∈ a and a ∈ p. Thus

Aα((1+a)(1+y)(1+a)−1) = Aα([a, y](1+a)−1)

≡ [εα, y]α−1 ≡ [ε, y] (mod pm+1).

We have [a, y](1+a)−1 ∈ pm−w and [ε, y] ∈ pm. It follows that

(1+a)(1+y)(1+a)−1 = 1 + ȳ + h,

where ȳ ∈ pp
rk−w
E satisfies ȳ ≡ y (mod pm−wE ) and h ∈ pm satisfies

Aα(h) ≡ [ε, y] (mod p1+m).

By 5.7 Proposition,

[ε, y] = −Ay(ε)y ≡ −ζAα(ε)y (mod A2
α(pm) + pm+1).

Adjusting ȳ by an element of pmE , which changes nothing, we may choose h to satisfy

h ≡ −ζεy (mod Aα(pm) + p1+m),

as required. 2

The elementary identity (5.9.3) implies

(1+a)(1+y)(1+a)−1 ≡ 1 + y + [a, y] (mod p1+m−w). (5.9.4)

Lemma 2. Let υE(y) = prk−w. If ζ = w/m ∈ oF , then [a, y] ≡ −ζAα(a)y (mod p1+m−w).

Proof. The defining relation Aα(a) ≡ (1+a)cα−1 (mod pm−p
rk+w) implies that A2

α(a) ∈
p1+m−prk. That is,

Aα(a) ∈ pm−p
rk

E +p1+m−prk = Ap
r−1
α (pm−p

rk)+p1+m−prk.

Therefore a ∈ Ap
r−2
α (pm−p

rk)+p1+m−prk. We apply 5.7 Proposition to get

[a, y] = −Ay(a)y ≡ −ζAα(a)y (mod Ap
r

α (pm−w) + p1+m−w).

Since Ap
r

α (pm−w) ⊂ p1+m−w, we have the result. 2
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Lemmas 1 and 2 imply [a, y] ≡ −ζAα(a)y ≡ −ζcα−1y (mod p1+m−w), and the proposition
follows from (5.9.4). 2

Remark. Consider the right-hand side of equation (5.9.1). The dependence on a enters only via

the element ε, and the expression depends only on sE/F (ε) modulo p1+m−prk+w
E . The element

a ∈ pm−p
rk is only determined, as a solution of (5.8.2), modulo pm−p

rk
E +pm−p

rk+w (5.4 Lemma).

The definition (5.8.3) of ε implies that sE/F (ε) + p1+m−prk+w
E , does not depend on the choice of

the solution a. It follows that (5.9.1) holds equally for all solutions a of (5.8.2).

Corollary. In the notation of Proposition 1, the following conditions are equivalent.

(1) ΨΘ(k) < k−p−rw = 2Ψ(E/F,ς)(k).

(2) θ(1−ζcα−1y)µM (−αζεy) = µM (cy), for all y ∈ pp
rk−w
E .

Proof. If y ∈ p1+prk−w
E , the proposition gives

θ1+a(1+y)/θ(1+y) = 1 = µM (cy).

Our Assumption implies θ1+a(1+x) = χθ(1+x), for x ∈ p1+[m/2]. Therefore 1+a conjugates θ
to χθ on H1+prk−w(α, a). For the same reason, if (2) holds, then 1+a conjugates θ to χθ on
Hprk−w(α, a), which implies (1).

Conversely, suppose that (1) holds; there exists 1+b ∈ U1
a that conjugates θ to χθ on

Hprk−w(α, a). Thus (1+b) = u(1+a), for some u ∈ U1
a that conjugates θ |H1+prk−w(α, a) to

itself. By the Assumption again, any such u conjugates θ to itself, whence θ1+a |Hprk−w(α, a)
= χθ |Hprk−w(α, a) and this implies (2). 2

We shall apply Proposition 1 in combination with the following result.

Proposition 2. Let k ∈ I be an integer and suppose that ΨΘ is smooth at k. The following
conditions are equivalent.

(1) There is a twisting datum (k, c, χ) relative to which

θ1+ac(1+y)/θ(1+y) = µM (cy),

for all y ∈ E such that υE(y) > prk−w and all ac ∈ pm−p
rk such that

(1+ac)
−1α(1+ac) ≡ α+c (mod pw−p

rk).

(2) ΨΘ(k) < 2Ψ(E/F,ς)(k).

(3) ΨΘ(x) < 2Ψ(E/F,ς)(x) for all x, j∞ < x < ̄∞.

(4) For any twisting datum (h, d, φ), where h ∈ I is an integer at which ΨΘ is smooth, we have

θ1+ad(1+y)/θ(1+y) = µM (dy),

for all y ∈ E such that υE(y) > prh−w and all ad ∈ pm−p
rh such that

(1+ad)
−1α(1+ad) ≡ α+d (mod pw−p

rh).

Proof. The equivalence of (1) and (2) is the preceding corollary. The equivalence of (2) and (3)
is 5.6 Corollary 2.

Certainly (4) implies (1), so suppose that (4) fails: there is a twisting datum (h, d, φ) such

that θ1+ad(1+y)/θ(1+y) 6= µM (dy), for some y ∈ pp
rh−w
E . Thus A(φΘ,Θ) = ΨΘ(h) = h−p−rw =

2Ψ(E/F,ς)(h). Corollary 2 of 5.6 now implies that (3) fails. 2
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5.10 We start the proofs of the parts of 5.3 Theorem that allow 2Ψ(E/F,ς) to have an even
number of jumps, the case of an odd number of jumps having been dispatched in 5.6. In this
subsection, we prove part (2) of the theorem.

Proposition. Suppose m > 2wE/F . If θ ∈ C(a, α) has endo-class Θ, then ΨΘ(x) = 2Ψ(E/F,ς)(x),
0 6 x 6 ςΘ.

Proof. If 2Ψ(E/F,ς) has an odd number of jumps, the result follows from part (1) of the theorem,
proved in 5.6. We therefore assume that 2Ψ(E/F,ς) has an even number of jumps and continue
with the notation of 5.8, 5.9. As argued at the beginning of 5.9, we may assume that ΨΘ(̄∞) =
2Ψ(E/F,ς)(̄∞) 6 ς/2.

The line segment y = x−w/pr = 2Ψ(E/F,ς)(x), x ∈ I, crosses the axis of symmetry x+y = ς
where prx = (m+w)/2. So, we choose an integer k, at which ΨΘ is smooth, to satisfy j∞ < k <
(m+w)/2pr. That is,

m−prk > (m−w)/2 > w/2. (5.10.1)

Let (k, c, χ) be a twisting datum over F . Define ac as in 5.9 Proposition 2. We apply the definition
(5.8.3), with υE(y) > prk−w, to get

θ(1−ζcα−1y)µM (−αζεy) = θ(1−ζcα−1y)µM (αζcα−1y)µM (αζaccα
−1y)

= µM (−αζcα−1y)µM (αζcα−1y)µM (αζaccα
−1y)

= µM (accζy).

So, by 5.9 Proposition 1,

θ1+ac(1+y)/θ(1+y) = µM (accζy).

We show that the character

1+y 7−→ µM ((1−ζac)cy), y ∈ pp
rk−w
E , (5.10.2)

is not trivial, for some choice of c ∈ p−kF /p1−k
F r {0}. The proposition will then follow from 5.9

Proposition 2.
The defining relation Aα(ac)≡(1+ac)cα

−1 (mod pm−p
rk+w) (5.8.2) implies υE(sE/F (ac))>w.

If υE(sE/F (ac)) > w, (5.10.2) reduces to 1+y 7→ µM (cy), which is surely not trivial. We therefore

assume that sE/F (ac) has valuation w for all c ∈ p−kF /p1−k
F , c 6= 0. We show that this hypothesis

is untenable.
We put a0 = 0 and let c, c′ ∈ p−kF /p1−k

F . Conjugating the defining relation

(1+ac)
−1α(1+ac) ≡ α+c (mod pw−p

rk)

by (1+ac′), condition (5.10.1) yields

ac+c′ ≡ ac + ac′ (mod pw+1),

sE/F (ac+c′) ≡ sE/F (ac + ac′) (mod pw+1
E ),

}
c, c′ ∈ p−kF /p1−k

F .

Thus c 7→ sE/F (ac) is a homomorphism p−kF /p1−k
F → pwE/p

1+w
E . By 5.8 Lemma, sE/F (1+ac) /∈

p1+w
E . That is, the non-zero element −sE/F (1) of pwE/p

1+w
E is not of the form sE/F (ac). So the

homomorphism p−kF /p1−k
F → pwE/p

1+w
E , c 7→ sE/F (ac), cannot be surjective. It therefore has a

non-trivial kernel, contradicting our hypothesis, and the proposition follows. 2
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5.11 We prove part (3) of 5.3 Theorem.

Proposition. Suppose that m/2 < w < m and that w ≡ 0 (mod p). Let θ ∈ C(a, α) satisfy
lE(θ) 6 m−w. If Θ is the endo-class of θ, then ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

Proof. We may again assume that 2Ψ(E/F,ς) has an even number of jumps and proceed as before.
In formula (5.9.1),

θ1+a(1+y)/θ(1+y) = θ(1−ζcα−1y)µM (−αζεy),

we have ζ ≡ 0 (mod pF ), so it reduces to

θ1+a(1+y)/θ(1+y) = 1 6= χ ◦NE/F (1+y) = µM (cy),

for some choice of y ∈ pp
rk−w
E . The result now follows from 5.9 Proposition 2. 2

5.12 We prove part (4) of 5.3 Theorem. Thus 2Ψ(E/F,ς) has an even number of jumps, and we
may continue with the notation of 5.8, 5.9. In particular, I is the interval j∞ < x < ̄∞. Here,
the element ζ of 5.9 Proposition 1 is a unit in F . We have to prove the following proposition.

Proposition. Suppose that m > w >m/2 and that w 6≡ 0 (mod p). Assume that 2Ψ(E/F,ς) has

an even number of jumps. There is a unique character φ of Um−wE /U1+m−w
E with the following

property: a character θ ∈ C(a, α), with lE(θ) 6 m−w and endo-class Θ, satisfies ΨΘ = 2Ψ(E/F,ς)

if and only if θ |Um−wE 6= φ.
If θ |Um−wE = φ, then ΨΘ(x) < 2Ψ(E/F,ς)(x) for all x ∈ I.

Proof. We again write out formula (5.9.1),

θ1+ac(1+y)/θ(1+y) = θ(1−ζcα−1y)µM (−αζεcy), (5.12.1)

where ac ∈ pm−p
rk is a solution of congruence (5.8.1),

(1+ac)
−1α(1+ac) ≡ α+c (mod pw−p

rk) (5.12.2)

and εc is given by (5.8.3), relative to the element ac.
We use (5.8.3) to rewrite the last factor in (5.12.1) as

µM (−αζεcy) = µM (ζcy)µM (ζaccy).

For 1+y ∈ Up
rk−w
E /U1+prk−w

E , write

Ξθ,c(1+y) = θ(1−α−1ζcy)µM (ζcy)µM (ζaccy)µM (−cy).

That is, Ξθ,c(1+y) is the product of the right-hand side of (5.12.1) and µM (−cy). Therefore,
invoking 5.9 Proposition 2, we have the following lemma.

Lemma. The character Ξθ,c is trivial if and only if ΨΘ(x) < 2Ψ(E/F,ς)(x) for all x ∈ I. This

condition holds for one element c ∈ p−kF /p1−k
F r {0} if and only if it holds for all.

Write z = ζα−1cy. Thus y 7→ z induces an isomorphism of Up
rk−w
E /U1+prk−w

E with
Um−wE /U1+m−w

E and
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Ξθ,c(1+y) = θ(1−z)µM (αz)µM (αacz)µM (−ζ−1αz)

= θ(1+z)−1 µM ((1 + ac − ζ−1)αz).

Since υE(sE/F (ac)) > w (5.8 Lemma), the formula

ξc(1+z) = µM ((1 + ac − ζ−1)αz)

defines a character of Um−wE /U1+m−w
E which is independent of the character θ ∈ C(a, α) such that

lE(θ) 6m−w. For fixed θ, the character θ−1ξc |Um−wE is either trivial for all c ∈ p−kF /p1−k
F r{0},

or else it is non-trivial for all such c, by the lemma. Given any character φ of Um−wE /U1+m−w
E ,

there exists θ ∈ C(a, α) agreeing with φ on Um−wE . We conclude that if c, c′ ∈ p−kF /p1−k
F r {0},

then ξc = ξc′ .
The proposition therefore holds for the character

φ(1+z) = ξc(1+z) = µM ((1 + ac − ζ−1)αz), z ∈ pm−wE , (5.12.3)

for any non-trivial element c of p−kF /p1−k
F . 2

We have completed the proof of 5.3 Theorem. 2

Remark. We have noted that the character φ of (5.12.3) does not depend on the parameter c ∈
p−kF /p1−k

F r{0}. Indeed, any twisting datum (h, b, ξ) with j∞ < h < ̄∞ will, by 5.9 Proposition 2,
give rise to the same character.

6. Variation of parameters

In § 5 we fixed the stratum [a,m, 0, α] and calculated ΨΘ, in many cases, under the restriction
(5.3.1). Here, we investigate the scope for changing the stratum without changing the set C(a, α),
in order to avoid the condition (5.3.1) and to clarify the dichotomy in part (4) of the theorem.

6.1 Let [a,m, 0, α] be a simple stratum in M = Mpr(F ), r > 1, satisfying the usual conditions:
F [α]/F is totally ramified of degree pr and m is not divisible by p. Set ς = m/pr. Define P(a, α)
as the set of β ∈ GLpr(F ) for which [a,m, 0, β] is a simple stratum such that C(a, β) = C(a, α).
We summarize the main properties of such elements β. As usual, p is the Jacobson radical of a.

Proposition. Write E = F [α].

(1) If β ∈ P(a, α), the field extension F [β]/F is totally ramified of degree pr. Moreover,

β ≡ α (mod p−[m/2]).

(2) Let k 6 [m/2] be an integer and let b ∈ p−k. The element β = α+b then lies in P(a, α).

Proof. In (1), the first assertion is an instance of [BK93, (3.5.1)], while the second follows from
the definition in 2.3. In (2), the stratum [a,m, 0, β] is simple with the required properties, as
follows from [BK93, (2.2.3)]. 2

Remarks.

(1) Any element of P(a, α) arises as in part (2) of the proposition [BK93, (2.4.1)].

(2) If β ∈ P(a, α), then P(a, β) = P(a, α).
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(3) Let [a, q, 0, γ] be a simple stratum in M . If the set C(a, α) ∩ C(a, γ) is non-empty, then
q = m and C(a, α) = C(a, γ) [BK93, (3.5.8), (3.5.11)], whence ‖C(a, α)‖ = ‖C(a, γ)‖.

(4) Let Ka be the group of x ∈ GLpr(F ) such that xax−1 = a. For β1, β2 ∈ P(a, α), say that
β1 ∼ β2 if β1U

m
a is Ka-conjugate to β2U

m
a . It is shown in [BK94] that the sets P(a, α)/∼

and ‖C(a, α)‖ are in (non-canonical) bijection.

6.2 We give a first application of this concept.

Proposition. Suppose that m > 2wF [α]/F . If β ∈ P(a, α) then wF [β]/F = wF [α]/F .

Proof. Let p = rad a. Abbreviate wα = wF [α]/F , wβ = wF [β]/F . By hypothesis, m−wα > [m/2]+1.

A character θ ∈ C(a, α), by definition (2.3.1), agrees with µM ∗ α on the group H1+[m/2](α, a)

= U
1+[m/2]
a . The integer lE(θ) is the least integer k > 0 such that θ is trivial on U1+k

E U1+m
a =

1+p1+k
E +p1+m. In this case, lE(θ) = m−wα, as in 5.2 Proposition. However, p1+k

E +p1+m is the
kernel of the adjoint map Aα on p1+k/p1+m, so lE(θ) is the least integer k > 0 such that µM ∗α
is trivial on 1 + KerAα | p1+k/p1+m. The same analysis applies relative to β in place of α.

By hypothesis, θ also agrees with µM ∗ β on U
1+[m/2]
a , so β ≡ α (mod p−[m/2]). The maps

Aα, Aβ therefore agree on the group p1+[m/2]/p1+m, and the result follows. 2

The following corollary does not form part of the main development, but is included to
illuminate the division into cases in 5.3 Theorem; see Example below.

Corollary. In the context of the proposition, we have

2Ψ(F [β]/F,ς)(x) = 2Ψ(F [α]/F,ς)(x), 0 6 x 6 ς,

ψF [β]/F = ψF [α]/F .

If p > 3, the function ΨΘ has an even number of jumps.

Proof. Let Θ ∈ ‖C(a, α)‖. Part (2) of 5.3 Theorem gives

ΨΘ(x) = 2Ψ(F [α]/F,ς)(x) = 2Ψ(F [β]/F,ς)(x), 0 6 x 6 ς, (6.2.1)

whence the first assertion follows.
If Ψ denotes any of the functions appearing in (6.2.1), define c by c+Ψ(c) = ς, so that

ψF [α]/F (x) = ψF [β]/F (x) for 0 6 x 6 c. Let j∞ be the last jump of ψF [α]/F .

Lemma. If j∞ < c, then ψF [β]/F = ψF [α]/F and ΨΘ has an even number of jumps.

Proof. The second assertion follows from 4.2 Proposition and 5.3 Theorem (2). For 0 < x < c, we
have prΨΘ(x) = ψF [α]/F (x) = ψF [β]/F (x). Thus ψF [β]/F has a jump at j∞ and ψ′F [β]/F (x) = pr,

for j∞ < x < c. Therefore j∞ is the last jump of ψF [β]/F (cf. 1.6 Proposition) and the lemma
follows. 2

We use 1.6 Corollary:

j∞ 6
wα

pr−1(p−1)
,

where wα = wF [α]/F . Invoking also 1.6 Proposition, we obtain

j∞ + p−rψF [α]/F (j∞) = 2j∞ − p−rwα 6
2wα

pr−1(p−1)
− wα
pr

=
wα
pr

p+1

p−1
<

m

2pr
p+1

p−1
= ς

p+1

2(p−1)
,
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since wα < m/2. So, if p > 3, the point (j∞, p
−rψF [α]/F (j∞)) lies strictly below the line x+y = ς.

That is, j∞ < c and, in this case, the corollary follows from the lemma.
Suppose therefore that p = 2. If r = 1, the graph of ψF [α]/F consists of segments of the two

lines y = x and y = 2x−wF [α]/F . Likewise for β. The proposition gives wα = wβ, whence the
result in this case.

Consider next the case where r > 2 and j∞ is the only jump of ψF [α]/F . Here, j∞ = wα/(2
r−1)

(1.6 Corollary) and so 2−rψF [α]/F (j∞) = 2−rj∞. Therefore

j∞ + 2−rψF [α]/F (j∞) =
wα
2r

2r+1

2r−1
<
ς

2

2r+1

2r−1
6 ς.

Thus j∞+2−rψF [α]/F (j∞) < ς, so j∞ < c, and the result in this case also follows from the lemma.
We are left with the case where r > 2 and ψF [α]/F has at least two jumps. If j∞ < c, there

is nothing more to do, so we assume j∞ > c. Let j′ be the penultimate jump of ψF [α]/F . In
particular,

2−rψF [α]/F (x) 6 x/4, 0 6 x 6 j′.

We show that j′ < c.
Abbreviate a = wα/2

r, so that 2−rψF [α]/F (x) = x−a for x > j∞, while 2−rψF [α]/F (x) > x−a
when 0 6 x < j∞. Thus

x−a < 2−rψF [α]/F (x) 6 x/4, 0 6 x 6 j′.

The lines y = x−a, y = x/4 meet at the point (4a/3, a/3), so j′ < 4a/3. Since 4a/3 + a/3 =
5a/3 < 2a < ς, this point of intersection lies below the line x+y = ς. Therefore j′ < 4a/3 < c.

We have ψF [α]/F (x) = ψF [β]/F (x) in the region 0 6 x < c. The same analysis applies with

β replacing α, so j′ is also the penultimate jump of ψF [β]/F . Let ψ̃(x) be the piecewise linear
function agreeing with ψF [α]/F (x) = ψF [β]/F (x) for x < c and smooth for x > j′. In the region
x > 0, we then have

ψF [α]/F (x) = max{ψ̃(x), x−2−rwα}
= max{ψ̃(x), x−2−rwβ} = ψF [β]/F (x),

as required. 2

Example. Suppose p = 2 and let Θ ∈ EEEC(F ) have degree 2. Thus ΨΘ has an odd number
of jumps (in fact one jump) if and only if j∞ > c, using the notation of the Corollary.
By 3.8 Proposition, this is equivalent to m 6 3w (cf. Kutzko [Kut84]). So, for pr = 2, there
are examples of endo-classes Θ for which m > 2w while ΨΘ has an odd number of jumps.

6.3 We use the notation from the start of 6.1, except that we write E = F [α] and assume
m 6 2wE/F . This case is more complex and interesting. We first investigate the possibility of
changing α to raise the exponent wE/F .

Let p be the Jacobson radical rad a of a. Let sE/F : M → E be a tame corestriction.

Proposition. Suppose that m/2 6 wE/F < m and that w = wE/F 6≡ 0 (mod p). Let ζ =
(w−m)/m ∈ oF . There exists b ∈ pw−m such that

(ζ+1)sE/F (b) ≡ sE/F (α) (mod p1+w−m
E ). (6.3.1)

For any such b, the element β = α−b lies in P(a, α) and wF [β]/F > w.
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Proof. The hypothesis w 6≡ 0 (mod p) implies that ζ 6≡ −1 (mod pF ). The exact sequences
(5.1.1) then give an element b with the necessary properties.

The hypothesis m 6 2w implies β ≡ α (mod p−[m/2]) and, following 6.1 Proposition,
β ∈ P(a, α). Write E′ = F [β].

Lemma.

(1) Let y ∈ pm−wE . There exist y′ ∈ pm−wE′ and h ∈ pm such that

y = y′ + h, (6.3.2)

the map y 7→ y′ induces an isomorphism pm−wE /pmE → pm−wE′ /pmE′ .

(2) The decomposition (6.3.2) may be chosen so that, additionally,

h ≡ ζbyβ−1 (mod pm+1+Aβ(pm)). (6.3.3)

Proof. In (1), the relation H1(β, a) = H1(α, a) implies that any y ∈ pm−wE takes the form
y = y′+h, with y′ ∈ pm−wE′ and h ∈ p1+[m/2]. The element [β, y] = [β, h] = −[b, y] lies in a.
By (5.1.1), we may choose the decomposition so that h ∈ pm. The second assertion is immediate.

In (2), 5.7 Proposition gives

[β, h] = −[b, y] = Ay(b)y ≡ ζAβ(b)y (mod p+A2
β(a)).

So we may further refine (6.3.2) to get (6.3.3). 2

In multiplicative terms, the definition of β gives β ≡ α (mod Uwa ) and therefore β−1 ≡ α−1

(mod pm+w). It follows that

ζbyα−1 ≡ ζbyβ−1 (mod pm+1), and

Aα(pm)+pm+1 = Aβ(pm)+pm+1.
(6.3.4)

Relation (6.3.2) gives µM (βy) = µM (βy′)µM (βh), while (6.3.3), (6.3.4) yield µM (βh) = µM (ζby).
On the other hand, µM (βy) = µM ((α−b)y) by definition, so

µM (βy′) = µM ((α−(ζ+1)b)y) = µE(sE/F (α− (ζ+1)b)y) = 1,

for all y ∈ pm−wE , by (6.3.1). Part (1) of the lemma now shows that µM (βy′) = 1 for all y′ ∈ pm−wE′ .
Therefore wE′/F > w, as required. 2

Corollary. Suppose that m 6 2wE/F . There exists β = α−b ∈ P(a, α), where b ∈ pwE/F−m

satisfies (6.3.1), with the following property. If E′ = F [β], then either

(1) wE′/F > wE/F and wE′/F ≡ 0 (mod p), or

(2) wE′/F > m.

Proof. If wE/F is divisible by p, there is nothing to do. Otherwise, we construct E1 = F [β]
following the proposition. If either wE1/F > m or wE1/F ≡ 0 (mod p), we are finished. So,
assume that wE1/F < m and wE1/F 6≡ 0 (mod p). Set w1 = wE1/F . Following the procedure as
before, we construct an element γ ≡ β (mod pw1−m) such that wF [γ]/F > w1. The congruence
condition on γ ensures that b1 = α−γ satisfies (6.3.1). We iterate this procedure as necessary
until we achieve either (1) or (2). 2
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6.4 We retain the notation of 6.3, in particular E = F [α] and w = wE/F . The elements β
of 6.3 Proposition have useful properties relative to certain simple characters.

Proposition. Let β = α−b ∈ P(a, α), where b ∈ pw−m satisfies (6.3.1).

(1) If ξ ∈ C(a, α) satisfies ξ(1+y) = µM (αy), y ∈ pm−wE , then

lF [β](ξ) = lE(ξ) = m−w.

(2) If ξ ∈ C(a, α) satisfies lE(ξ) > m−w, then

lF [β](ξ) = lE(ξ).

Proof. For part (1), we use (6.3.4) to evaluate

ξ(1+y′) = µM (αy)µM (αh) = µM ((α−ζb)y),

where y ∈ pm−wE , y′ ∈ pm−wE′ and h ∈ pm are related as in 6.3 Lemma. As 1+ζ is a unit of oF , we
have ζsE/F (b) ≡ ζsE/F (α)(ζ+1)−1 (mod p1+w−m

E ) and so, by (6.3.1),

ξ(1+y′) = µE((ζ+1)−1sE/F (α)y), y′ ∈ pm−wF [β] .

We may choose y so that ξ(1+y′) 6= 1 and part (1) of the proposition follows.
In part (2), let l = lE(ξ). Let y ∈ plE . Since l > m−w, we use 6.3 Lemma to write y = y′+h,

where y′ ∈ plF [β] and h ∈ pm+1. Thus ξ(1+y′) = ξ(1+y) and we may choose y so that ξ(1+y) 6= 1.

If, however, y ∈ p1+l
E , then ξ(1+y′) = ξ(1+y) = 1, so lF [β](ξ) = l, as required. 2

Note the very restrictive hypothesis on ξ in this corollary.

6.5 We turn to the question of lowering of the exponent wE/F . Following 6.2 Proposition,
we are restricted to the case where 2wE/F > m. The consequences for simple characters are
complementary to those of 6.4, but we get much more detail.

Theorem. Let [a,m, 0, α] be a simple stratum in M = Mpr(F ) in which E = F [α]/F is totally
ramified of degree pr and p does not divide m. Suppose m < 2wE/F . Let d be an integer such
that

1 6 d 6 m/2, d > max{0,m−wE/F },
d 6≡ m (mod p).

(6.5.1)

Let b ∈ p−d satisfy υE(sE/F (b)) = −d. The element β = α+b lies in P(a, α) and

wE′/F = m−d < wE/F , E′ = F [β]. (6.5.2)

Let θ ∈ C(a, α) and write l = lE(θ). For any such β, the following results hold.

(1) Suppose l < d.

(a) If d 6≡ 0 (mod p), then lE′(θ) = d.

(b) If d ≡ 0 (mod p), then lE′(θ) < d.

(2) If l > d, then lE′(θ) = l.

(3) Suppose l = d.

(a) If d 6≡ 0 (mod p), then lE′(θ) 6 d, with both equality and inequality occurring.

(b) If d ≡ 0 (mod p), then lE′(θ) = d.
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Proof. Writing p = rad a, let b ∈ p−d satisfy υE(sE/F (b)) =−d. As in 6.1 Proposition, the element
β = α+b lies in P(a, α). Put E′ = F [β].

Lemma.

(1) Let y ∈ pdE . There exist y′ ∈ pdE′ and h ∈ pm such that y = y′+h. The map y 7→ y′ induces
an isomorphism pdE/p

m
E → pdE′/p

m
E′ .

(2) If y ∈ pd+1
E , then y′ ∈ pd+1

E′ and one may take h ∈ pm+1.

Proof. This is identical to the proof of part (1) of 6.3 Lemma, so we omit the details. 2

Set w′ = wE′/F . We first show that µM (βz) = 1, for z ∈ p1+d
E′ . By the lemma, there exist

y ∈ p1+d
E and h ∈ pm+1 such that y = z+h. The condition d > m−wE/F implies µM (αy) = 1.

Since by ∈ p, we have µM (by) = 1. Altogether, µM (βy) = µM (αy)µM (by) = 1. Therefore 1 =
µM (βz)µM (βh) = µM (βz), as asserted. It follows that d > m−w′.

Now take z ∈ E′ with υE′(z) = d. Thus z = y−h, where y ∈ E satisfies υE(y) = d and h ∈ pm.
Consequently, [β, h] = [β, y] = [b, y]. Setting ζ = −d/m, 5.7 Proposition gives

[b, y] = −Ay(b)y ≡ −ζAα(b)y (mod A2
α(a) + p).

Since α ≡ β (mod Um−da ), we have

Aα(a) ≡ Aβ(a) (mod pk+m−d), a ∈ pk,

for any integer k. So
[β, h] = [b, y] ≡ −ζAβ(b)y (mod A2

β(a) + p).

We may therefore choose the decomposition y = z+h so that

h ≡ −ζbyβ−1 ≡ −ζbyα−1 (mod Aβ(pm) + pm+1). (6.5.3)

We apply the character µM ∗ β to the relation y = z+h. Since µM (αy) = 1 (because d > m−w),
we get

µM (by) = µM (βy) = µM (βz)µM (βh)

= µM (βz)µM (αh)

= µM (βz)µM (−ζby),

whence µM ((1+ζ)by) = µM (βz). Our hypothesis d 6≡ m (mod p) implies that ζ 6≡ −1 (mod p)
so, for some choice of z, we get µM (βz) 6= 1. In combination with the previous argument, this
proves that w′ = m−d and the first assertion (6.5.2) of the theorem.

Let θ ∈ C(a, α) = C(a, β) and suppose l = lE(θ) < d = m−w′. We calculate the E′-level
lE′(θ). If y ∈ E, υE(y) = 1+d, we write y = z+h as above, with z ∈ E′ of valuation 1+d and
h ∈ Aα(pm)+pm+1. This gives 1 = θ(1+y) = θ(1+z)θ(1+h) = θ(1+z). Thus lE′(θ) 6 d. Now
take y ∈ E of valuation d and write y = z+h, where υE′(z) = d and h ∈ pm. Indeed, we may
take h ≡ −ζbyα−1 (mod Aα(pm)+pm+1) as before. This gives

1 = θ(1+y) = θ(1+z)µM (αh)

and
µM (αh) = µM (−ζby) = µE(−ζysα(b)).
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Suppose d 6≡0 (mod p). Thus ζ 6≡0 (mod pF ) and we may choose y ∈ pdE so that µE(−ζysα(b)) 6=1.
Thus θ(1+z) 6= 1, whence lE′(θ) = d as required for (1)(a). If d≡ 0 (mod p), then ζ ≡ 0 (mod pF )
and θ(1+z) = 1. Thus lE′(θ) < d, as required for (1)(b).

Part (2) follows from a similar, but easier, argument.
Part (3) is given by a counting argument as follows. Let q be the cardinality of the residue

field oF /pF . For an integer k 6 [m/2], let C(α; 6k) be the set of θ ∈ C(a, α) such that lF [α](θ) 6 k.

We use the obvious variations. Note that C(α; 6k) has exactly qk elements while C(α; >k) has
q[m/2]−k elements.

Part (2) gives C(α; >d) ⊂ C(β; >d), hence C(α; >d) = C(β; >d) and also C(α; 6d) =
C(β; 6d). Assertions (3)(a) and (3)(b) now follow from (1)(a) and (1)(b), respectively. 2

We refine the final step of the argument, retaining the notation of the theorem.

Corollary 1.

(1) There is a unique character ξ of UdE′/U
1+d
E′ with the following property: if θ ∈ C(a, α) has

lE′(θ) = d, then lE(θ) < d if and only if θ |UdE′ = ξ.

(2) Let θ0 be the unique element of C(a, α) such that lE(θ0) = 0. It satisfies lE′(θ0) 6 d and the
character ξ of (1) is given as ξ = θ0 |UdE′ .

(3) The character ξ is trivial if and only if d ≡ 0 (mod p).

Proof. Let θ0 ∈ C(a, α) have lE(θ0) = 0 and endo-class Θ0. Let ξ be the restriction of θ0 to UdE′ .
By assertion (1) of the theorem, this character ξ is trivial if and only if d ≡ 0 (mod p). Let
θ′ ∈ C(a, α) have endo-class Θ′. If A is the canonical ultrametric on EEE(F ), then lE(θ′) < d if and
only if A(Θ0, Θ

′) < p−rd. This condition is also equivalent to θ′ agreeing with θ0 on UdE′ . 2

Corollary 2. Let θ ∈ C(a, α) satisfy lE(θ) = d. In the theorem, one may choose β so that
lE′(θ) = d.

Proof. If d ≡ 0 (mod p), there is nothing more to do, so we assume the contrary. Let
y ∈ pdE , and write y = z+h, for z ∈ pdE′ and h ∈ pm, satisfying (6.5.3). Thus θ(1+y) =
θ(1+z)µM (αh) = θ(1+z)µM (−ζby). The function 1+y 7→ µM (−ζby) represents a non-trivial
character of UdE/U

1+d
E . We may choose b at the beginning so that µM (−ζby) 6= θ(1+y), for some

y ∈ pdE . This gives θ(1+z) 6= 1 and lE′(θ) = d, as required. 2

7. The Herbrand function

We continue with a simple stratum [a,m, 0, α] as in the previous sections. We recall that ‖C(a, α)‖
is the set of endo-classes of simple characters θ ∈ C(a, α) and that the canonical map C(a, α)
→ ‖C(a, α)‖ is a bijection (2.3 Remark (2)).

In this section we state and prove the main results concerning the Herbrand function ΨΘ,
Θ ∈ ‖C(a, α)‖. In 7.2 Theorem 1 and the supplementary 7.5 Proposition, we describe these
functions in coherent families, rather along the lines of 5.3 Theorem but exploiting the flexibility
gained in § 6. In 7.2 Theorem 2, we take a rather different approach. We fix α and specify, via
an explicit formula, a non-empty subset C?(a, α) of C(a, α), the elements of which are the simple
characters that conform to α. If Θ is the endo-class of θ ∈ C?(a, α), we show ΨΘ = 2Ψ(F [α]/F,ς). All

Herbrand functions ΨΘ, Θ ∈ EEEC(F ), are captured this way. The description given by Theorem 2
has particularly good properties with respect to the Langlands correspondence (§ 10 below), but
its proof relies on Theorem 1.
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7.1 We introduce a new concept.

Definition. Let Θ ∈ EEEC(F ) have degree pr. Let θ ∈ C(a, α) be a realization of Θ, on a simple
stratum [a,m, 0, α] in M = Mpr(F ). Let E = F [α] and l = lE(θ) (5.2). Say that α is θ-conformal
if

θ(1+y) = µM (αy), y ∈ p
1+[l/2]
E .

Say α is weakly θ-conformal if

θ(1+y) = µM (αy), y ∈ plE .

In this situation, we might equally say that θ is α-conformal. Let C?(a, α) be the set of
α-conformal θ ∈ C(a, α). Surely C?(a, α) is not empty.

Let ‖C?(a, α)‖ be the set of endo-classes of elements of C?(a, α). The canonical map
C?(a, α) → ‖C?(a, α)‖ is a bijection.

Proposition. Let Θ ∈ EEEC(F ) be of degree pr. The endo-class Θ has a realization θ ∈ C(a, α), on
a simple stratum [a,m, 0, α] in M = Mpr(F ), such that α is θ-conformal. That is, Θ ∈ ‖C?(a, α)‖.

Proof. Let θ ∈ C(a, α) be a realization of Θ and let p = rad a. Let νθ(α) be the least integer ν for
θ(1+y) = µM (αy), y ∈ p1+ν

E . Certainly ν 6 [m/2] (2.3.1). Write E = F [α] and dα = m−wE/F .

We have ν > [dα/2] since, otherwise, the function µM ∗α does not represent a character of U1+ν
E .

If ν = [dα/2], there is nothing more to do.

Lemma. Set ν = νθ(α), and assume that ν > [dα/2]. There exists β ∈ P(a, α) such that β ≡ α
(mod p−ν) and νθ(β) 6 ν−1. This condition determines the stratum [a,m, ν−1, β] uniquely, up
to formal intertwining.

Proof. Recall that ν 6 [m/2]. By hypothesis, the function

ξ(1+x) = θ(1+x)µM (−αx), x ∈ pνE ,

represents a non-trivial character of UνE , trivial on U1+ν
E . Consequently, there exists z ∈ p−ν such

that

ξ(1+x) = µM (zx), x ∈ pνE . (7.1.1)

Choose a tame corestriction sE/F :M → E and let µE be the character of E for which µE◦sE/F =
µM . Thus (7.1.1) reads ξ(1+x) = µE(sE/F (z)x), for all x as before. As ξ defines a non-trivial

character of UνE/U
1+ν
E , we have that υE(sE/F (z)) = −ν and sE/F (z) is uniquely determined,

by θ, modulo p1−ν
E . We invoke [BK93, (2.2.3)]: the stratum [a,m, ν−1, α+z] is simple (whence

β ∈ P(a, α)) and uniquely determined up to formal intertwining [BK93, (2.2.1)].
Set L = F [β]. We show that

θ(1+x) = µM (βx), x ∈ pνL. (7.1.2)

This will imply νΘ(β) 6 ν−1, as required to complete the proof of the lemma.
Since x ∈ L = F [β], there is a polynomial f(T ) ∈ F [T ], of degree at most pr−1, such that

x = f(β). Write

f(T ) = a0 + a1T + · · ·+ apr−1T
pr−1.
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The L-valuations of the terms aiβ
i, 0 6 i6 pr−1, are distinct. The condition υL(x) = ν translates

as ν 6 prυF (ai)−mi for all i, with equality for exactly one value of i. So, if we put y = f(α), we
get υE(y) = ν. Consider the element

t = x−y = f(β)− f(α) =
∑

16i<pr
ai((α+z)i−αi).

Expand ((α+z)i−αi). Any fractional a-ideal pk, k ∈ Z, is stable under conjugation by α, so every
term in the expansion of (α+z)i−αi lies in αi−1za = p(1−i)m−ν . Since prυF (ai) >mi+ν, the term
ai((α+z)i−αi) lies in pm, whence t = f(β)−f(α) = x−y ∈ pm.

With this element t, and setting

u = (1+t)−1(1+y)−1yt,

we have

1+x = (1+y)(1+t)(1−u).

We use this expression to evaluate θ(1+x). Our choice of z gives θ(1+y) = µM (βy) and, since
t ∈ pm, we have θ(1+t) = µM (αt). As yt ∈ pm+1, so θ(1−u) = 1. Therefore,

θ(1+x) = θ(1+y)θ(1+t) = µM (βy)µM (αt).

On the other hand, zt ∈ pm−ν and m−ν = (m−2ν)+ν > 1, whence µM (zt) = 1. Altogether,

µM (βx) = µM (βy)µM (αt)µM (zt) = θ(1+y) θ(1+t) = θ(1+x),

as required for (7.1.2). This completes the proof of the lemma. 2

The proposition now follows. 2

Note that, while the proposition is an existence statement, the proof is constructive.

7.2 To state our first result, it is convenient to have a looser concept reflecting the structure
of 5.3 Theorem. We consider a datum (E/F,m) in which E/F is a totally ramified field extension
of degree pr, r > 1, and m is a positive integer not divisible by p.

Definition. Say that (E/F,m) is standard if at least one of the following conditions holds:

(a) m > 2wE/F ;

(b) m 6 wE/F ;

(c) m 6 2wE/F and wE/F ≡ 0 (mod p).

Case (c) can only arise when F has characteristic 0 (1.8). We remark that, in case (b), the
function 2Ψ(E/F,m/pr) has an odd number of jumps (4.2 Remark). In case (c), we actually have
m < 2wE/F , since m is not divisible by p. We can always reduce to one of these cases, as follows.

Lemma. Let Θ ∈ EEEC(F ) have degree pr. There is a simple stratum [a,m, 0, α] in Mpr(F ) such
that

(1) C(a, α) contains a character θ of endo-class Θ, and

(2) the datum (F [α]/F,m) is standard.
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Proof. Choose a simple stratum [a,m, 0, β] in Mpr(F ) such that Θ ∈ ‖C(a, α)‖. If m > 2wF [β]/F ,
then (F [β]/F,m) is standard. Otherwise, the lemma follows from 6.3 Corollary. 2

We state our main results.

Theorem 1. Let Θ ∈ EEEC(F ) have degree pr. Let θ ∈ C(a, α) be a realization of Θ on a simple
stratum [a,m, 0, α] in Mpr(F ) for which the datum (F [α]/F,m) is standard. Write E = F [α],
l = lE(θ) and ς = m/pr = ςΘ. For any such realization, the following statements hold.

(1) If l 6 max{0,m−wE/F }, then ΨΘ(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς.

(2) If l > max{0,m−wE/F } and l 6≡ m (mod p), then

ΨΘ(x) = max
{

2Ψ(E/F,ς)(x), x− p−r(m−l)
}
, 0 6 x 6 ς. (7.2.1)

(3) In part (2), the class Θ admits a parameter field E′/F as follows:

(i) E′ = F [β], where β ∈ P(a, α) and β ≡ α (mod p−l);

(ii) wE′/F = m−l and lE′(θ) = l.

For any such β, ΨΘ(x) = 2Ψ(E′/F,ς)(x), 0 6 x 6 ς.

That Θ has a realization of the required form is 7.2 Lemma. We shall see in the course of
the proof that (7.2.1) also holds in the situation of part (1), but says nothing new there. We
comment in 7.5 below on the restrictive hypothesis in part (2) of the theorem.

Theorem 2. Let Θ ∈ EEEC(F ) have degree pr. Let [a,m, 0, α] be a simple stratum in M = Mpr(F )
such thatΘ has a realization θ ∈ C?(a, α). For any such realization, lF [α](θ) = max{0,m−wF [α]/F }
and

ΨΘ(x) = 2Ψ(F [α]/F,ςΘ)(x), 0 6 x 6 ςΘ. (7.2.2)

Remark. The endo-class Θ has a realization of the required form, by 7.1 Proposition. When
proving Theorem 2, we show that (7.2.2) holds provided only that Θ has a realization θ ∈ C(a, α)
such that α is weakly θ-conformal (7.1 Definition). We will not use that version in the rest of
the paper.

Before embarking on the proofs of the theorems, we give a consequence of Theorem 2.

Corollary. Let E/F be a totally ramified field extension of degree pr, and let m be a positive
integer not divisible by p. There exists Θ ∈ EEEC(F ), of degree pr, with parameter field E/F and
ςΘ = m/pr, such that ΨΘ(x) = 2Ψ(E/F,m/pr)(x), 0 6 x 6 m/pr.

Proof. View E as a subfield of M = Mpr(F ) and take α ∈ E such that υE(α) = −m. There is a
unique hereditary oF -order a in M such that [a,m, 0, α] is a simple stratum in M . By Theorem 2,
any Θ ∈ ‖C?(a, α)‖ has the required property. 2

7.3 We prove 7.2 Theorem 1. In part (1) of the theorem, suppose that (E/F,m) is standard
of type (a) (respectively, (b); respectively, (c)). The assertion is then equivalent to part (2)
(respectively, (1); respectively, (3)) of 5.3 Theorem.

The hypothesis in part (2) implies that m < 2wE/F , so the standard datum (E/F,m) is of
type (b) or (c). To prove part (2), we first use 6.5 Corollary 2 to choose an element β ∈ P(a, α)
such that

wF [β]/F = m−l and lF [β](θ) = l.

Consequently, wF [β]/F < wE/F and wF [β]/F 6≡ 0 (mod p).
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Let θ0 be the unique element of C(a, α) with lE(θ0) = 0 and let Θ0 be the endo-class of θ0.
The hypotheses of part (1) of the theorem apply to θ0 as an element of C(a, α), so

ΨΘ0(x) = 2Ψ(E/F,ς)(x), 0 6 x 6 ς. (7.3.1)

We compare θ and θ0 from the standpoint of the element β. From 6.5 Theorem 1(1), we have
lF [β](θ0) 6 l, with equality if and only if l 6≡ 0 (mod p).

If the function 2Ψ(F [β]/F,ς) has an odd number of jumps, then

2Ψ(E/F,ς) = ΨΘ0 = 2Ψ(F [β]/F,ς) = ΨΘ,

by (7.3.1) and 5.3 Theorem (1) applied to Θ0 and to Θ. Moreover,

x−p−r(m−l) = x−p−rwF [β]/F 6 2Ψ(F [β]/F,ς)(x), 0 6 x 6 ς,

so we are done in this case.
Assume therefore that 2Ψ(F [β]/F,ς) has an even number of jumps. Let I be the set of points

x such that 2Ψ′(F [β]/F,ς)(x) = 1. Since 2Ψ(F [β]/F,ς) has an even number of jumps, the set I is a

non-empty open interval and (4.2 Proposition)

2Ψ(F [β]/F,ς)(x) = x− p−rwF [β]/F , x ∈ I. (7.3.2)

By 5.6 Corollary 1, the functions ΨΘ0 , 2Ψ(F [β]/F,ς) agree outside I. By 5.6 Corollary 2, the only
possibilities are that ΨΘ0(x) = 2Ψ(F [β]/F,ς)(x) for all x ∈ I, or else ΨΘ0(x) < 2Ψ(F [β]/F,ς)(x)
for all x ∈ I. The first alternative is untenable: if Ψ′Θ0

= 1 on an interval I ′, then (by (7.3.1))
ΨΘ0(x) = x−p−rwE/F , x ∈ I ′. But, if ΨΘ0(x) equalled 2Ψ(F [β]/F,ς)(x) on I, we would have
ΨΘ0(x) = x−p−rwF [β]/F there. Since wE/F > wF [β]/F , this is impossible. Therefore,

2Ψ(F [β]/F,ς)(x) > ΨΘ0(x), x ∈ I, (7.3.3)

and
2Ψ(F [β]/F,ς)(x) = max

{
ΨΘ0(x), x− p−rwF [β]/F

}
, 0 6 x 6 ς. (7.3.4)

In terms of the ultrametric A on EEE(F ), we have A(Θ,Θ0) = l/pr > 0. It follows that the characters
θ, θ0 do not agree on U lF [β]. Theorem 5.3(4) now implies ΨΘ = 2Ψ(F [β]/F,ς) and Part (2) follows

from (7.3.1) and (7.3.4).
Part (3) holds relative to the same choice of β, so we have completed the proof of 7.2

Theorem 1. 2

Remark. The argument following (7.3.4) shows that the character φ of 5.3 Theorem (4), relative
to l and β, is θ0 |U lF [β]. It is trivial if and only if l ≡ 0 (mod p).

7.4 We prove 7.2 Theorem 2. Let θ ∈ C(a, α) be a realization of Θ for which α is weakly
θ-conformal and set E = F [α]. Thus l = lE(θ) = m−wE/F or 0.

If either m > 2wE/F or wE/F ≡ 0 (mod p), the desired relation ΨΘ = 2Ψ(E/F,ς) is given
by 5.3 Theorem (2) or (3), respectively. We therefore assume that m 6 2wE/F and that
wE/F 6≡ 0 (mod p). In particular, l 6≡ m (mod p). If 2Ψ(E/F,m/pr) has an odd number of jumps,
then ΨΘ = 2Ψ(E/F,ς) by 5.3 Theorem (1).

We therefore assume that 2Ψ(E/F,ς) has an even number of jumps (whence (E/F,m) is not
standard). Let I be the open interval on which 2Ψ′(E/F,ς)(x) = 1, 0 < x < ς. For 0 6 x 6 ς, we

have (5.3 Theorem (4))
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ΨΘ(x) = 2Ψ(E/F,ς)(x), x /∈ I,
ΨΘ(x) 6 2Ψ(E/F,ς)(x) = x− p−r(m−l), x ∈ I.

Consequently, ΨΘ(x) = 2Ψ(E/F,ς)(x) at any point where these functions are smooth and have
derivative other than 1.

We use 6.3 Corollary to construct from α a standard datum (F [β]/F,m); this will be of
type (b) or (c) in the scheme of 7.2 Definition. Since (E/F,m) is not standard, wF [β]/F > wE/F .
By 6.4 Proposition, lF [β](θ) = l. By 7.2 Theorem 1(2),

ΨΘ(x) = max
{

2Ψ(F [β]/F,ς)(x), x− p−r(m−l)
}
, 0 6 x 6 ς.

So, if ΨΘ is smooth at x and Ψ′Θ(x) 6= 1, then ΨΘ(x) = 2Ψ(F [β]/F,ς)(x) = 2Ψ(E/F,ς)(x). Suppose,
on the other hand, that Ψ′Θ(x) = 1. If 2Ψ′(F [β]/F,ς)(x) = 1, then

2Ψ(F [β]/F,ς)(x) = x− p−rwF [β]/F < x− p−r(m−l).

Therefore ΨΘ(x) = x−p−r(m−l) = 2Ψ(E/F,ς)(x) at such points. Altogether, ΨΘ(x) = 2Ψ(E/F,ς)(x)
for 0 6 x 6 ς. We have proved 7.2 Theorem 2. 2

7.5 Now that Theorem 2 has been proved, Theorem 1 has no further direct role in the paper.
However, Theorem 2 gives no idea of how ΨΘ varies as Θ ranges over ‖C(a, α)‖ while Theorem 1
does just that, modulo some limitations in part (2). For the sake of tidiness, we show that all
Herbrand functions ΨΘ, Θ ∈ ‖C(a, α)‖, are captured within the scheme of Theorem 1.

Proposition. Suppose that m 6 2wF [α]/F . Let Θ ∈ ‖C(a, α)‖. There exists β ∈ P(a, α), say
F [β] = E, with the following properties:

(1) the datum (E/F,m) is standard and

(2) either

(a) lE(θ) 6 max{0,m−wE/F } or

(b) lE(θ) 6≡ m (mod p).

Proof. We first choose β so that Θ is the endo-class of some θ ∈ C?(a, β), as we may
by 7.1 Proposition. Writing E = F [β], suppose wF [β]/F ≡ 0 (mod p). Thus (E/F,m) is standard
and lE(θ) = max{0,m−wE/F }, so option (a) applies.

Suppose then that wE/F 6≡ 0 (mod p). Thus lE(θ) = max{0,m−wE/F }, so lE(θ) 6≡
m (mod p). If (E/F,m) is standard, there is nothing to do, so suppose otherwise. We
use 6.2 Corollary to find γ ∈ P(a, β) such that, if L = F [γ], then either wL/F > m or
wL/F ≡ 0 (mod p) and wL/F > wE/F . In all cases, (L/F,m) is standard. By 6.3 Proposition,
lL(θ) = lE(θ) 6≡ m (mod p), so option (b) applies. 2

Recall that, in the proposition, there is nothing to say when m > 2wE/F (5.3 Theorem (2)).
Otherwise, ΨΘ is given by 7.2 Theorem 1.

Remark. The theorems of 7.2 and the proposition above leave open the following question. What
are the functions 2Ψ(F [β]/F,ς), where β ranges over elements of P(a, α) subject to the condition
that the datum (F [β]/F,m) is standard?

8. Representations with a single jump

We consider here representations σ ∈ Ŵwr
F for which the decomposition function Σσ of (2.2.2)

has a unique jump: these play a central role in what follows.
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8.1 For the moment, let G be a finite p-group with centre Z 6= G. Say that G is H-cyclic if
Z is cyclic and G/Z is elementary abelian. Equivalently, G is an extra-special p-group of class
2. We introduce this new terminology to avoid ambiguous usage that has accumulated here.
In particular, we do not need to specify G from among the various possibilities listed in, for
instance, [Gor00, p. 203]. The material of this subsection is generally familiar, but we choose to
give a complete, albeit brief, account.

If G is H-cyclic, the commutator group [G,G] is the subgroup Zp of Z of order p. We may
view the pairing G/Z×G/Z → Zp, induced by the commutator (x, y) 7→ [x, y], as an alternating
form on the Fp-vector space G/Z. If x, y ∈ G, then [x, y] = 1 if and only if x centralizes y. The
alternating form is therefore non-degenerate: if [x, y] = 1 for all y ∈ G, then x ∈ Z.

We first give a technical result, needed in 8.4.

Lemma. Let G be an H-cyclic finite p-group with centre Z. Let α be an automorphism of G
which is trivial on Z and induces the trivial automorphism of G/Z. The automorphism α is then
inner.

Proof. Consider the map G→ Zp given by x 7→ xαx−1. This induces a map G/Z → Zp which is a
homomorphism: (xy)αy−1x−1 = xαx−1yαy−1. The non-degeneracy property of the commutator
pairing gives a unique y ∈ G/Z such that xαx−1 = [y, x], for all x. This relation says xα = yxy−1,
as required. 2

Proposition. Let G be an H-cyclic finite p-group with centre Z, and let χ be a faithful character
of Z.

(1) There exists a unique irreducible representation σ of G such that σ
∣∣Z contains χ. The

representation σ is faithful of dimension (G :Z)1/2 and σ
∣∣Z is a multiple of χ.

(2) A character ξ of G satisfies ξ ⊗ σ ∼= σ if and only if ξ is trivial on Z. If D(σ) denotes the
group of such characters, then

σ̌ ⊗ σ =
∑

ξ∈D(σ)

ξ. (8.1.1)

Proof. Denote by h the alternating form on G/Z induced by the commutator pairing (x, y) 7→
χ[x, y], x, y ∈ G. The non-degenerate alternating Fp-space G/Z has even dimension 2r, say. Let
L be a Lagrangian subspace of G/Z, that is, a subspace on which h is null and is maximal for
this property. Thus L has dimension r.

Let L̃ be the inverse image of L in G. As h is null on L, the subgroup L̃ of G is abelian and
maximal for this property. The character χ therefore admits extension to a character χL of L̃.
Let y ∈ GrL. There exists x ∈ L such that [x, y] 6= 1. This implies that χyL(x) 6= χL(x), whence
ρχ = IndG

L̃
χL is irreducible. We form the usual inner product of characters,

1 = 〈tr ρχ, tr ρχ〉 = |G|−1
∑
g∈G
| tr ρχ(g)|2.

As tr ρχ(z) = prχ(z), for z ∈ Z, it follows that tr ρχ(g) = 0, for all g ∈ G r Z. Therefore ρχ
is independent of the choice of χL. The function tr ρχ takes the value pr = dim ρχ only at the
identity, so ρχ is faithful.

Let σ be an irreducible representation of G that contains χ. With L as before, the restriction
σ | L̃ is a sum of characters φ (since L̃ is abelian), each of which satisfies φ |Z = χ. However, any
such character induces the representation ρχ, so σ ∼= ρχ, as asserted. This deals with (1).
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A character ξ of G such that ξ ⊗ σ ∼= σ is surely trivial on Z. That is, ξ is the inflation of
a character of G/Z. The trace calculation ensures that any such character ξ satisfies ξ ⊗ σ = σ.
Thus ξ occurs in the representation σ̌ ⊗ σ. The number of such characters ξ is p2r = dim σ̌ ⊗ σ,
whence (8.1.1) follows. 2

8.2 Let σ ∈ Ŵwr
F have dimension pr, and let σ̄ : WF → PGLpr(C) be the projective

representation defined by σ.

Definition 1. The centric field Z = Zσ/F of σ is defined by WZ = Ker σ̄. The tame centric
field Tσ/F of σ is the maximal tame sub-extension of Zσ/F .

Thus σ is absolutely wild if and only if Tσ = F . Observe that if K/F is a finite tame extension

and σK = σ |WK ∈ Ŵwr
K , then ZσK = ZσK and TσK = TσK.

Define D(σ) to be the group of characters χ of WF such that χ⊗ σ ∼= σ.

Since σ ∈ Ŵwr
F , the restriction σ+

0 = σ
∣∣PF is irreducible. LetD+(σ) be the group of characters

φ of PF such that φ ⊗ σ+
0
∼= σ+

0 . Since σ+
0 factors through a representation of a finite p-group,

the group D+(σ) is non-trivial. A character φ of PF lies in D+(σ) if and only if it is a component
of σ̌+

0 ⊗ σ
+
0 , whence D+(σ) has order at most p2r. The group WF acts on D+(σ) in a natural

way, with PF acting trivially.
If K/F is a finite tame extension, then PK = PF . We may identify (σK)+

0 with σ+
0 and

D+(σK) with D+(σ).

Lemma. Let σ ∈ Ŵwr
F .

(1) If K/F is a finite, tamely ramified field extension, the restriction map D(σK) → D+(σ) is
an isomorphism of D(σK) with the group of WK-fixed points in D+(σ).

(2) There is a unique minimal tame extension TI(σ)/F such that the map D(σTI(σ)) → D+(σ)
is an isomorphism.

(3) The field extension TI(σ)/F is Galois and contained in Tσ.

Proof. The lemma summarizes the discussion in [BH17, 8.2]. 2

We refer to TI(σ) as the imprimitivity field of σ.

Definition 2. Let σ ∈ Ŵwr
F . Say that σ is H-cyclic if the finite p-group σ(PF ) is H-cyclic.

Proposition. If σ ∈ Ŵwr
F is H-cyclic then TI(σ) = Tσ.

Proof. Let Zσ/F be the centric field of σ. Since Tσ contains TI(σ), nothing is changed if we
extend the base field to TI(σ) and assume TI(σ) = F . According to the lemma, the group
D(σ) is then isomorphic to D+(σ) and so has order p2r, where pr = dimσ. The non-trivial
characters in D(σ) are wildly ramified of order p. The sum

∑
φ∈D(σ) φ is a sub-representation of

σ ⊗ σ̌, of the same dimension, so σ̌ ⊗ σ =
∑

φ∈D(σ) φ. We show that σ̌ ⊗ σ provides a faithful
representation of Gal(Zσ/F ). Let σ act on the vector space V . So, if x ∈ Ker σ̌⊗σ, the operator
1 = σ̌(x) ⊗ σ(x) ∈ EndC(V̌ ⊗ V ) is, in particular, a non-zero scalar. Each of the operators
σ(x) ∈ EndC(V ), σ̌(x) ∈ EndC(V̌ ), is therefore scalar. In particular, x ∈Ker σ̄ = WZσ , as asserted.

Define K/F by WK =
⋂
φ∈D(σ) Kerφ. The extension K/F is totally wildly ramified, and

elementary abelian of degree p2r. By definition, every φ ∈ D(σ) is trivial on Gal(Zσ/K), whence
K = Zσ and so Tσ = F . 2
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Remark. Following the proposition, it is natural to ask whether there exists a representation
σ ∈ Ŵwr

F for which the tame centric field and the imprimitivity field are distinct. We produce an
example of such a representation σ in 9.7 below.

The following device is not central to our current concerns, but we include it here for its
utility in constructing examples (as in 8.4 below).

Example. Let σ, σ′ ∈ Ŵwr
F be H-cyclic. The following are equivalent:

(1) D+(σ) ∩D+(σ′) = {1};
(2) σ ⊗ σ′ is irreducible and totally wild.

When these conditions hold, the representation σ ⊗ σ′ is H-cyclic.

Proof. If τ is a smooth, finite-dimensional representation of PF , then τ is irreducible if and only
if the space HomPF (1, τ ⊗ τ̌) has dimension 1. Here, σ ⊗ σ̌ |PF =

∑
φ∈D+(σ) φ, and similarly for

σ′. Therefore
(σ ⊗ σ′)⊗ (σ̌ ⊗ σ̌′) |PF =

∑
φ∈D+(σ),
φ′∈D+(σ′)

φφ′.

The trivial character occurs exactly once in the sum if and only if D+(σ)∩D+(σ′) = {1}, so (1)
is equivalent to σ ⊗ σ′ being irreducible on PF : this is the same as (2).

Abbreviate τ = σ ⊗ σ′, and assume τ to be irreducible. Let C and C ′ be respectively the
centres of σ(PF ) and σ′(PF ). For x ∈ PF , the operator τ(x)p = σ(x)p ⊗ σ′(x)p is scalar and
lies in CC ′ = {z ⊗ z′ : z ∈ C, z′ ∈ C ′}. In particular, CC ′ consists of scalars and is central in
τ(PF ). Thus τ(PF ) is of exponent p modulo its centre. Since τ is irreducible on PF , this centre
is cyclic. 2

8.3 Let χ be a character of PF . Define the F -slope slF (χ) of χ by

slF (χ) = inf{x > 0 : RF (x) ⊂ Kerχ}. (8.3.1)

If χ extends to a character χ̃ of WF , then slF (χ) = sw(χ̃) = ςχ̃.

Let σ ∈ Ŵwr
F be H-cyclic, with dimσ > 1. Say that σ is H-singular if there exists a > 0 such

that slF (χ) = a, for all non-trivial χ ∈ D+(σ).

Proposition. Let σ ∈ Ŵwr
F be H-singular and let a= slF (χ), for χ ∈D+(σ), χ 6= 1. The function

Σσ has a unique jump, lying at the point a.

Proof. This is immediate, on applying (2.2.2) and (8.1.1) to σ. 2

8.4 The converse of 8.3 Proposition is more interesting.

Proposition. Let σ ∈ Ŵwr
F have dimension pr, r > 1. Suppose that the decomposition function

Σσ has exactly one jump, at the point a, say. The following properties then hold:

(1) the representation σ is H-singular and slF (χ) = a, for every χ ∈ D+(σ), χ 6= 1;

(2) sw(σ̌ ⊗ σ) = p2rΣσ(0) = (p2r−1)a;

(3) if σ is of Carayol type, then a = sw(σ)/(1+pr).
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Proof. The definition (2.2.2) of Σσ implies that

Σ′σ(x) =

{
p−2r, 0 < x < a,

1, x > a.
(8.4.1)

Consequently, the restriction of σ to RF (a) is irreducible and its restriction to R+
F (a) is a multiple

of a character. The group S+ = σ(R+
F (a)) is therefore cyclic and central in S = σ(RF (a)). The

finite p-group S/S+ is a quotient of RF (a)/R+
F (a), so it is elementary. Since σ is irreducible on

RF (a), the centre of S is cyclic. Consequently, the group S = σ(RF (a)) is H-cyclic with centre
containing S+.

Let C be the centralizer of S in P = σ(PF ). Again, C is finite cyclic. Let y ∈ PF . The
representations σ, σy are equivalent, particularly on RF (a). The element y must therefore act
trivially on the centre of S. The commutator group [y,RF (a)] is contained in [PF ,RF (a)] ⊂
R+
F (a), so y acts trivially on S modulo its centre. By 8.1 Lemma, there exists x ∈ RF (a) such

that σ(xy) centralizes S. Therefore P = SC, implying that σ is H-cyclic.
It follows from (8.1.1) that σ̌ ⊗ σ |PF =

∑
χ∈D+(σ) χ. A non-trivial character χ ∈ D+(σ) is

non-trivial on PF but it is trivial on the centre C of σ(PF ), so χ is determined by its restriction
to RF (a). It is certainly trivial on R+

F (a), so it has F -slope a. Thus σ is H-singular and (1) is
proven. Part (2) now follows from (8.1.1). Part (3) is 3.8 Proposition. 2

We exhibit some implications of the preceding argument.

Corollary. Let Z = Zσ, T = Tσ = TI(σ) and σT = σ |WT .

(1) The field Z is given by

WZ =
⋂

χ∈D(σT )

Kerχ.

(2) The Herbrand function ψZ/T has a unique jump, lying at e(T |F )a. Moreover,

(a) R+
F (a) ⊂WZ and

(b) WT = RF (a)WZ .

(3) The group WT is the WF -centralizer of σ̄(RF (a)).

Proof. Define a field extension Y/T by WY =
⋂
χ Kerχ, with χ ranging over D(σT ). It follows

from 8.1 Proposition that Y/T is the centric field for the representation σT and hence that
Y ⊃ Z. We have to check that WF acts trivially on σ(WY ). However, σ |WY = σT |WY is a
multiple of a character, so that character is necessarily stable under WF . Therefore, Y = Z, as
required for (1).

Every non-trivial element of D(σT ) has Swan exponent e(T |F )a, whence follows the first
assertion of (2). The same observation proves (a), while (b) follows from the definition of Z via
the group D(σT ). In (3), the group σ̄(RF (a)) is the quotient of the H-cyclic group by its centre.
The dual of this quotient is the character group D(σT ). Under the natural action of WF , the
centralizer of this dual is WT , by 8.2 Lemma, implying the result. 2

We finish with an example derived from [BH14a] and 8.2 Example.

Example. Take p = 2, and suppose that F contains a primitive cube root of unity. For i = 1, 2,
let σi ∈ Ŵwr

F have dimension 2 and satisfy sw(σi) = 1. [BH14a, Theorem 5.1] gives the recipe for
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TI(σi) and D+(σi). From that information and 8.2 Example, one sees it is possible to choose σ1,
σ2 so that σ = σ1 ⊗ σ2 is irreducible and H-singular. It is not of Carayol type, as sw(σ) = 2. If
[σ]+0 = LΘ, Θ ∈ EEE(F ), then ΨΘ has two jumps and is not convex; see 8.5 Example 1 of [BH17]
for the formula.

9. Ramification structure

Let σ ∈ Ŵwr
F be of Carayol type. We return to the methods of § 3 to work out the structure of

σ when restricted to an arbitrary ramification group of WF . If [σ]+0 = LΘ, Θ ∈ EEEC(F ), we get
a formula for ΨΘ to set against those of § 7. Despite appearances to the contrary, everything in
this section relies on the local Langlands correspondence and the conductor formula of [BHK98],
since we use the main results of § 3.

9.1 To avoid carrying an irrelevant variable, we make a minor adjustment to our notation.

If σ ∈ Ŵwr
F and if Θ ∈ EEE(F ) satisfies [σ]+0 = LΘ, we now write Ψσ = ΨΘ.

Let σ ∈ Ŵwr
F be of Carayol type, and set ς = ςσ. If 0 < x < ς, define

wσ(x) = lim
ε→0

Ψ′σ(x+ε)/Ψ′σ(x−ε). (9.1.1)

Thus wσ(x) is a non-negative power of p, and wσ(x) > 1 if and only if x is a jump of Ψσ.
We then call wσ(x) the height of the jump x.

Symmetry, as in 4.1 Proposition, gives an order-reversing involution j 7→ ̄ on the set of jumps
of Ψσ. If Ψσ has an even number of jumps, this involution has no fixed point. If the number of
jumps is odd, it fixes the middle one. In the notation of (9.1.1), the symmetry property of Ψσ

gives
wσ(̄) = wσ(j). (9.1.2)

We will occasionally have to deal with the case of a one-dimensional representation σ. There,
Σσ(x) = Ψσ(x) = x and the functions Σσ, Ψσ have no jumps. Indeed, the converse also holds
[BH17, 7.7].

9.2 Throughout the section, we use the following notation.

Notation. Let σ ∈ Ŵwr
F be of Carayol type and dimension pr, r > 1. Define cσ by cσ+Ψσ(cσ) = ςσ.

Let
j1 < j2 < · · · < js < (cσ) < ̄s < ̄s−1 < · · · < ̄1 (9.2.1)

be the jumps of Ψσ with the understanding that

(a) the term cσ is included only if Ψσ has an odd number of jumps and

(b) s = 0 when Ψσ has only one jump.

For the first version of the main result, we assume that σ is absolutely wild, written σ ∈ Ŵawr
F ,

in the sense of 3.2 Definition. We deduce the final version, for σ ∈ Ŵwr
F , in 9.5.

Theorem. Let σ ∈ Ŵwr
F be absolutely wild of Carayol type and dimension pr, r > 1.

(1) The restriction σ |R+
F (cσ) is a direct sum of characters.

(2) Let ξ be a character of R+
F (cσ) occurring in σ and let WLξ be the WF -stabilizer of ξ. Let

σξ be the natural representation of WLξ on the ξ-isotypic subspace of σ.
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(a) The field extension Lξ/F is absolutely wildly ramified (cf. 1.2) of degree prwσ(cσ)−1/2

and WLξ contains R+
F (cσ).

(b) The representation σξ is irreducible, absolutely wild and

σ = IndLξ/F σξ.

(c) If cσ is not a jump of Ψσ, then σξ is a character. Otherwise, σξ is H-singular, of Carayol
type and dimension wσ(cσ)1/2. The unique jump of Ψσξ lies at ψLξ/F (cσ).

Remarks.

(1) The triple (ξ, Lξ, σξ) is uniquely determined by σ, up to WF -conjugation.

(2) The function Ψσ has no jump lying strictly between cσ and ̄s. So, if ξ and ξ′ are components
of σ |R+

F (cσ), then ξ = ξ′ if and only if ξ |RF (̄s) = ξ′ |RF (̄s). If cσ is not a jump then, in
the same way, σ |R+

F (js) is a sum of characters, two of which are equal if and only if their
restrictions to RF (̄s) are equal.

As we prove the theorem, we uncover further features of interest that we now list.

Complement 1. Let 1 6 k 6 s.

(1) The restriction σ |R+
F (jk) is a multiplicity-free direct sum of irreducible representations.

(2) The restriction σ |RF (̄k) is a direct sum of characters. The isotypic components of σ |RF (̄k)
are the subspaces τ |RF (̄k), as τ ranges over the irreducible components of σ |R+

F (jk).

In light of Remark (2) above, one can equally relate the decompositions of σ |RF (jk) and
σ |R+

F (̄k). In the next result, we use the concept of elementary resolution from 1.9.

Complement 2. For 1 6 k 6 s, choose an irreducible component τk of the restriction σ |R+
F (jk)

so that τk+1 is a component of τk |R+
F (jk+1), 1 6 k < s. Let WEk be the WF -stabilizer of τk.

(a) If ξ is a character of R+
F (cσ) occurring in τs |R+

F (cσ), then Es = Lξ.

(b) The Herbrand function satisfies

Ψσ(x) = p−rψLξ/F (x), 0 6 x 6 cσ. (9.2.2)

(c) The tower of fields
F ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Es = Lξ (9.2.3)

is the elementary resolution of Lξ/F .

Following 4.1 Proposition, symmetry implies that the relation (9.2.2) determines Ψσ(x) for
0 6 x 6 ςσ. The tower of fields (9.2.3) is uniquely determined by σ, up to WF -conjugacy.

The proofs of these results occupy 9.3 and 9.4.

9.3 The theorem of 9.2 is proved by induction on the number of jumps. If Ψσ has no jumps,
then dimσ = 1 and this case has been excluded. If Ψσ has just one jump, the theorem and its
complements follow from 8.4 Proposition with Lξ = F .

In this subsection, we assume that Ψσ has at least two jumps and give a reduction step
concerned only with the outermost jumps. As in 8.2, let D(σ) be the group of characters χ of
WF such that χ⊗ σ ∼= σ.

2022

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

Proposition. Let σ ∈ Ŵawr
F be of Carayol type. Suppose that Ψσ has at least two jumps, of

which a is the first and z the last. Let Da(σ) be the group of χ ∈ D(σ) for which sw(χ) 6 a. Let
E1/F be class field to Da(σ).

(1) The group Da(σ) is elementary abelian of order wσ(a).

(2) The group R+
F (a) is contained in WE1 and WF = RF (a)WE1 .

(3) There exists σ1 ∈ Ŵawr
E1

such that σ = IndE1/F σ1. Moreover,

σ |R+
F (a) =

∑
γ∈Gal(E1/F )

σγ1 |R
+
F (a). (9.3.1)

The representations σγ1
∣∣R+

F (a), γ ∈ Gal(E1/F ), are distinct and irreducible. The WF -
stabilizer of σ1

∣∣R+
F (a) is WE1 .

(4) The jumps of Ψσ1 are ψE1/F (j), as j ranges over the jumps of Ψσ, j 6= a, z. Indeed, wσ(y) =
wσ1(ψE1/F (y)), for y 6= a, z.

(5) The restriction σ |RF (z) is a direct sum of characters ξ. The WF -stabilizer of any such ξ is
WE1 .

Proof. The group Da(σ) is non-trivial (3.3 Lemma 1), so choose χ ∈ Da(σ), χ 6= 1. Set WK =
Kerχ. The extension K/F is cyclic of degree p, and ψK/F has a unique jump, lying at a. As

in 3.3 Lemma 2, WK ∩RF (a) = RK(a) is of index p in RF (a) and R+
K(a) = R+

F (a). There exists

τ ∈ Ŵwr
K with σ = IndK/F τ , the representation τ being either absolutely wild of Carayol type

(3.3 Lemma 1) or a character. By 3.4 Theorem (2) and 3.5 Theorem, wσ(y) = wτ (ψK/F (y)),
provided y 6= a, z. On the other hand, the same results give wσ(a) = pwτ (a) and wσ(z) =
pwτ (ψK/F (z)).

Note. Since σ has at least two jumps, 3.5 Corollary 1 shows that the case of 3.4 Theorem (3)
need not be considered here.

Lemma.

(1) The restriction τ
∣∣RK(a) is irreducible and

σ
∣∣R+

F (a) =
∑

δ∈Gal(K/F )

τ δ
∣∣R+

F (a). (9.3.2)

(2) The representations τ δ
∣∣R+

F (a), δ ∈ Gal(K/F ), are disjoint.

Proof. Since a is the first jump of Σσ, the restriction σ
∣∣RF (a) is irreducible. The Mackey formula

implies that this restriction is Ind
RF (a)
RK(a) τ |RK(a), whence the first assertion follows. The relation

(9.3.2) again follows from the Mackey formula.
Since σ |RF (a) is irreducible, the irreducible components of σ |R+

F (a) are all conjugate and
occur with the same multiplicity. So, in (2), the representations τ δ |R+

F (a) are either disjoint or
identical. We show they are disjoint.

Let ∆K be the canonical ultrametric on WK\P̂K . Let δ ∈ Gal(K/F ), δ 6= 1. By 3.5 Theorem
(and recalling the definition (3.4.2)) we have

∆K(τ, τ δ) = ψK/F (z) > ψK/F (a) = a. (9.3.3)

The representations τ δ |R+
F (a), τ |R+

F (a) are therefore disjoint, as asserted. 2
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Remark. Relation (9.3.3) implies that τ and τ δ are disjoint on RF (z).

We proceed by induction on the integer wσ(a). Suppose first that wσ(a) = p, whence
wτ (a) = 1. We prove the proposition with E1 = K and σ1 = τ . As a is not a jump of Στ
(giving point (4)), we have that τ is irreducible on R+

F (a) = R+
K(a). It follows that D(τ) has

no element of Swan exponent a. The conjugates τ δ, δ ∈ Gal(K/F ), are disjoint on R+
K(a), by

the lemma. Consequently, Da(σ) has order p = wσ(a). The point ψK/F (z) is not a jump of Στ ,

by 3.4 Theorem again. It follows that τ
∣∣RF (z) is a multiple of a character. Thus

σ
∣∣RF (z) =

∑
δ∈Gal(K/F )

τ δ
∣∣RF (z)

is a sum of characters. Since z is a jump of Ψσ, these characters cannot all be the same: they
fall into p distinct orbits under WF . Assertion (5) follows, and the proof is complete in the case
wσ(a) = p.

Suppose next that wσ(a) is divisible by p2. In particular, τ is not a character. Inductively, we

may assume that the result holds for the representation τ ∈ Ŵawr
K . For convenience, we expand

this assumption and fix some notation.

Inductive hypothesis. Let E/K be class field to the group Da(τ). Let ζ ∈ Ŵawr
E satisfy

IndE/K ζ = τ .

(1) The group Da(τ) is elementary abelian of order wτ (a).

(2) The group R+
K(a) is contained in WE and WK = RK(a)WE .

(3) In the expansion

τ |R+
K(a) =

∑
γ∈Gal(E/K)

ζγ |R+
K(a), (9.3.4)

the terms ζγ
∣∣R+

F (a), γ ∈ Gal(E/K), are distinct and irreducible. The WK-stabilizer of
ζ
∣∣R+

K(z) is WE .

(4) The jumps of Ψζ are ψE/K(k), as k ranges over the jumps of Ψτ , k 6= a, ψK/F (z). Indeed,
wτ (y) = wζ(ψE/K(y)), for y 6= a, ψK/F (z).

(5) The restriction of τ to RF (z) = RK(ψK/F (z)) is a direct sum of characters ξ. The WK-
stabilizer of any such ξ is WE .

We prove that E/F is class field to Da(σ). Each of the functions ψK/F , ψE/K has a unique
jump, lying at a. The same therefore applies to ψE/F . The field E appears as a subfield of the
centric field of σ, so E/F is absolutely wild. As ψE/F has a unique jump, lying at a, the case k = 1
of 1.9 Corollary 1 implies that E/F is elementary abelian and so every element φ of D(1)(E|K)

(in the notation of 1.9 Proposition) extends to a character φ̃ of WF lying in D(1)(E|F ). We have

φ̃⊗σ = IndK/F φ⊗ τ = IndK/F τ = σ. That is, φ̃ ∈ Da(σ), whence Da(σ) = D(1)(E|F ) and this
group has order pwτ (a) = wσ(a).

We have proved part (1) of the proposition, with E1 = E. Part (2) follows from the relation
ψE/F (a) = a. The lemma applies equally here, so the irreducible representations

ζγδ |R+
F (a), γ ∈ Gal(E/K), δ ∈ Gal(K/F ),

are disjoint. Part (3) of the proposition now follows by induction.
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Part (4) of the proposition follows directly from part (4) of the inductive hypothesis. It

remains to prove part (5). By part (5) of the inductive hypothesis, σ
∣∣RF (z) is a sum of characters.

The representations τ δ, δ ∈ Gal(K/F ), are disjoint on RF (z) by the remark following (9.3.3).

The result follows from the inductive hypothesis, with E1 = E and σ1 = ζ. 2

9.4 We prove 9.2 Theorem and its complements. We proceed by induction on the number of

jumps of Ψσ.

Proof of Theorem. When Ψσ has at most one jump, there is nothing more to say. We therefore

assume, in the notation of (9.2.1), that s > 1. We apply 9.3 Proposition to get a Galois extension

E1/F and a representation σ1 ∈ Ŵawr
E1

such that σ = IndE1/F σ1. The extension E1/F has a

unique jump, lying at j1, so R+
F (x) ⊂WE1 for x > j1. The function Ψσ1 has jumps at ψE1/F (j),

where j ranges over all jumps of Ψσ, subject to j 6= j1, ̄1.

Suppose the number of jumps to be even. Assume to start with that this number is 2, that is,

s = 1. In 9.3 Proposition, the representation σ1 is a character. The conjugates σγ1 , γ ∈Gal(E1/F ),

agree on R+
F (̄1) but are distinct on RF (̄1). All assertions of the theorem follow readily in this

case. We therefore assume that s > 2. By inductive hypothesis, σ1 |R+
F (js) is a sum of characters,

so the same applies to σ |R+
F (js). Part (1) is done in this case. The field L = Lξ appears as a

subfield of the centric field of σ, so L/F is absolutely wild. The inductive hypothesis gives a

character ρ1 of WL which induces σ1. It follows that IndL/F ρ1 = σ, and ρ1 has the necessary

properties relative to σ. This proves part (2) of the theorem when the number of jumps is even.

Suppose that the number of jumps is odd. Thus, by inductive hypothesis, σ1 |RE1(cσ1) is

not a sum of characters, while σ1 |R+
E1

(cσ1) is such. Since RE1(cσ1) = RF (ϕE1/F (cσ1)), the point

ϕE1/F (cσ1) is a jump of Ψσ. That is, cσ = ϕE1/F (cσ1) and we have proved part (1) of the

theorem. Assertions (2)(a)–(c) now follow by induction, exactly as in the first case, on noting

that dimσξ = wσ(cσ)1/2 by 8.1 Proposition. 2

Proof of Complement 1. We follow 9.3 Proposition to write σ = IndE1/F σ1. That result also

shows that σ |R+
F (j1) is multiplicity-free. For 2 6 k 6 s, the restriction σ1 |R+

F (jk) is multiplicity-

free by the inductive hypothesis. The relation wσ1(ψE1/F (jk)) = wσ(jk) shows that σ |R+
F (jk) is

multiplicity-free, and we have proved part (1).

The first assertion of (2) follows from part (1) of the theorem. Since ̄1 is the last jump

of Ψσ, the restriction σ1 |RF (̄1) is a multiple of a character while σ |RF (̄1) is a direct sum

of characters. The number of isotypic components in σ |RF (̄1) is wσ(̄1) = wσ(j1) = [E1 :F ],

by 9.3 Proposition, whence the result follows. 2

Proof of Complement 2. Recall that E1/F was defined in 9.3 as class field to the group Dj1(σ)

of characters χ of WF such that χ ⊗ σ ∼= σ and sw(χ) 6 j1. Thus E1/F is Galois and, by 9.3

Proposition (3), WE1 is the WF -stabilizer of any irreducible component of σ |R+
F (j1). In the first

instance, we may therefore choose the extension L = Lξ/F of the theorem, within its conjugacy

class, so that E1 ⊂ Lξ. Since all choices of ξ are WF -conjugate and E1/F is Galois, we have

E1 ⊂ Lξ for all ξ. That is, E1 ⊂ L.

Because of the relation σ = IndL/F ρξ, a character φ of WF with φ |WL trivial must satisfy

φ ⊗ σ ∼= σ. The definition of E1 in 9.3 implies that j1 is the least jump of ψL/F . By 1.9

Proposition (3), E1/F is the first step in the elementary resolution of L/F . Parts (a) and (c) of

Complement 2 now follow by induction.
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In the proof of the theorem, we showed that cσ1 = ψE1/F (cσ). From 3.4 Theorem we conclude
that the jumps of Ψσ1 are

ψE1/F (j2) < ψE1/F (j3) < · · ·< ψE1/F (js)

< (ψE1/F (cσ1)) < ψE1/F (̄s) < · · · < ψE1/F (̄2),

with the same convention regarding the central entry in the list. Moreover,

wσ1(ψE1/F (jk)) = wσ(jk), 2 6 k 6 s, (9.4.1)

and similarly relative to the central jump. Let w1 = wσ(j1), so that w1 = [E1 :F ]. The functions
Ψσ(x), w−1

1 Ψσ1(ψE1/F (x)) have the same jumps in the region 0 6 x 6 cσ. The heights (9.1)
of these jumps are the same, and the functions agree on a region 0 6 x < ε. We conclude by
induction that

Ψσ(x) = w−1
1 Ψσ1(ψE1/F (x))

= p−rψL/F (x), 0 6 x 6 cσ.

This proves part (b). 2

9.5 We extend the results of 9.2 to representations of Carayol type that are totally, but not
necessarily absolutely, wild. The notational conventions of 9.1, 9.2 remain in force.

Corollary. Let σ ∈ Ŵwr
F be of Carayol type and dimension pr, r > 1. Define cσ by the equation

cσ+Ψσ(cσ) = ςσ.

(1) The representation σ |R+
F (cσ) is a direct sum of characters.

Let ξ be a character of R+
F (cσ) occurring in σ. Let WLξ be the WF -stabilizer of ξ and let σξ be

the natural representation of WLξ on the ξ-isotypic subspace of σ |R+
F (cσ).

(2) The representation σξ is irreducible and IndLξ/F σξ = σ. Moreover,

(a) dimσξ = wσ(cσ)1/2, and

(b) if dimσξ > 1, then σξ is totally wild, H-singular and of Carayol type.

(3) The field extension Lξ/F is totally ramified of degree pr/ dimσξ and

Ψσ(x) = p−rψLξ/F (x), 0 6 x 6 cσ. (9.5.1)

Proof. Let T = Tσ/F be the tame centric field of σ. Thus τ = σ |WT is absolutely wild of Carayol
type. If e = e(T |F ), then Ψσ(x) = Ψτ (ex)/e and ςτ = eςσ, so cτ = ecσ.

Consequently, R+
F (cσ) = R+

T (cτ ) and part (1) follows from part (1) of 9.2 Theorem. All
choices of ξ are WF -conjugate so let us fix one and write Lξ = L. The WT -stabilizer of ξ is
WT ∩WL = WLT . The natural representation of WLT on the ξ-isotypic subspace of τ |R+

T (cτ ) is
σξ |WLT , which is irreducible. It follows that σξ is irreducible and has properties (2)(a), (2)(b).
Moreover, RF (cσ) is contained in WL and σξ |RF (cσ) is irreducible.

The degree [L :F ] is the number of distinct characters occurring in the representation
σ |R+

F (cσ) = τ |R+
F (cσ), so [L :F ] = [LT :T ] and L/F is totally wildly ramified. Further,

IndL/F σξ |WT = IndLT/T (σξ |WLT ).

This restriction is irreducible, whence IndL/F σξ is irreducible and equivalent to σ. Finally, for
0 6 x 6 cσ,

Ψσ(x) = Ψτ (ex)/e = p−rψLT/T (ex)/e = p−rψL/F (x),

by (2.2.3), 9.2 Complement 1 and 1.1 Lemma. 2
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Complement. If σ ∈ Ŵwr
F , the assertions of 9.2 Complement 1 apply unchanged.

Proof. Take T/F , e = e(T |F ) and τ = σ |WT as in the proof of the corollary. Thus RF (x) =
RT (ex), R+

F (x) = R+
T (ex), for all x > 0. So, for x > 0, the decomposition structures of σ |RF (x)

and σ |R+
F (x) are identical to those of RT (ex) and τ |R+

T (ex). 2

Remark. Let K/F be a finite tame extension and set e = e(K|F ). We may view ξ as a character
of R+

K(ecσ) = R+
K(cσK ), where σK = σ |WK . The arguments in the proof of 9.5 Corollary show

that LσK ,ξ = KLσ,ξ, in the obvious notation.

9.6 We continue with the notation of 9.5 Corollary, and look into the structure of the inducing
representation σξ. This is in preparation for a more detailed discussion in the next section.

Definition. Let L̃σ,ξ/Lξ be the centric field of the representation σξ ∈ Ŵwr
Lξ

.

The extension L̃σ,ξ/Lξ is Galois and L̃σ,ξ/F is uniquely determined by σ, up to conjugation
in WF .

Proposition. Suppose σ is absolutely wildly ramified. The extension L̃σ,ξ/Lξ is totally ramified

and elementary abelian of degree (dimσξ)
2. If L̃σ,ξ 6= Lξ, the extension L̃σ,ξ/Lξ has a unique

ramification jump, lying at ψLξ/F (cσ). In particular, R+
F (cσ) ⊂W

L̃σ,ξ
.

Proof. All assertions are trivial if σξ is a character, so assume otherwise. By 9.2 Theorem, the

representation σξ of WLξ is absolutely wild and H-singular. Thus L̃σ,ξ/Lξ is totally ramified
and elementary abelian of degree (dimσξ)

2. By 8.1 Proposition, it is class field to the character
group D(σξ). The unique ramification jump of σξ lies at ψLξ/F (cσ) (9.2 Theorem again), so
every non-trivial element of D(σξ) has Swan exponent ψLξ/F (cσ) (8.3 Proposition). Therefore

W
L̃σ,ξ
⊃ R+

Lξ
(ψLξ/F (cσ)) = R+

F (cσ). 2

In the general case σ ∈ Ŵwr
F , the extension L̃σ,ξ/Lξ is not totally wildly ramified. We recall

the standard example.

Example. For this example, we adhere to the classical framework of the exposition in [BH06,

§ 41]. Take p = 2, and let σ ∈ ŴF be primitive of dimension 2. The representation σ is then
totally ramified and H-singular. After twisting with a character, if necessary, we may assume
that σ is of Carayol type. In terms of the preceding discussion, Ψσ has one jump and Lξ = F .
Using standard notation for permutation groups, σ̄(WF ) is either A4 (if F has a primitive cube
root of unity) or S4 (otherwise). The tame centric field Tσ/F is cyclic of degree 3 in the first
case and, in the second, Gal(Tσ/F ) ∼= S3.

9.7 As an application of the methods of this section, we return to the question posed

in 8.2 Remark. If σ ∈ Ŵwr
F , we use the notation D(σ), D+(σ), TI(σ) introduced in § 8. In

addition, T (σ) shall be the tame centric field of σ.

Application. There exist a field F , of residual characteristic 2, and a representation σ ∈ Ŵwr
F

such that TI(σ) 6= T (σ). One may take σ to be of Carayol type and dimension 4.
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Proof. Let F have residual characteristic 2. Let K/F be totally ramified of degree 4, such that
ψK/F has two jumps a < b, of which a is an odd integer. Replacing F by E and K/F by EK/E,
where E/F is finite and tamely ramified, we may assume b−a to be as large as necessary without
affecting the parity of a.

Let m be a positive integer and define c = cm by the equation 4c+ ψK/F (c) = m.

Lemma. If b−a is sufficiently large, one may choose m so that

(1) a < cm < b,

(2) m 6≡ 2a (mod 3),

(3) m ≡ a+2 (mod 4).

This is clear. Assume it has been done, and note that m is odd. We obtain

c = cm = (m−2a)/6.

The bi-Herbrand function Ψ = 2Ψ(K/F,m/4) has three jumps, namely a, c and z, satisfying

a < c < z. By 7.2 Corollary, there exists Θ ∈ EEEC(F ) such that Ψ(x) = ΨΘ(x), 0 6 x 6 m/4.

Choose σ ∈ Ŵwr
F such that [σ]+0 = LΘ. We show that σ has the desired properties.

Let φ ∈ D+(σ), φ 6= 1. The F -slope slF (φ) of φ, as in (8.3.1), can only take a value a, c, z
(cf. [BH17, 8.1 Proposition]). Suppose slF (φ) = a. The jump a has height 2, so there is only one
possibility for φ. Since a is an integer, the WF -stabilizer of φ |RF (a) is of the form WE , where
E/F is unramified. The character φ ∈ D+(σ) is completely determined by its restriction to
RF (a), so WE is the WF -stabilizer of φ. So, writing σE = σ |WE , there exists a unique character
φ̃ ∈ D(σE) such that φ̃ |PF = φ (8.2 Lemma). Thus Da(σE) has order 2.

Suppose next that slF (φ) = c = (m−2a)/6. The conditions imposed on m imply 3c ∈ 1
2ZrZ.

We conclude that there is no finite tame extension E/F for which φ extends to a character of
WE . Finally, consider the case where slF (φ) = z. By 3.5 Theorem, z = (m−a)/4 ∈ 1

2Z r Z and
the same conclusion holds. We have shown the following proposition.

Proposition. The group D+(σ) has order 2 and there is a finite unramified extension E/F
such that every character φ ∈ D+(σ) is fixed by WE . Further,

(1) D(σE) = Da(σE), where σE = σ |WE and

(2) TI(σ)/F is unramified.

We now follow the procedure of 9.5 to choose a character ξ of R+
F (c) occurring in σ |R+

F (c). We
set L = Lξ and τ = σξ. We have σ = IndL/F τ . Since sw(σ) = m and wL/F = a, we get sw(τ) =
m−2a 6≡ 0 (mod 3). The Herbrand function Ψτ has a unique jump, which lies at (m−2a)/3
(8.4 Proposition). It follows that e(TI(τ)|L) is divisible by 3. This implies that e(T (σ)|F ) is
divisible by 3, whence T (σ) 6= TI(σ). 2

Remark. The choice of p = 2 in the example is for simplicity only. There is nothing special about
the case p = 2 in this context.

10. Parameter fields

Let [a,m, 0, α] be a simple stratum in Mpr(F ), r > 1, with the usual properties: F [α]/F is totally
ramified of degree pr and m = −υF [α](α) is not divisible by p. Let

G?(α) = {σ ∈ Ŵwr
F : [σ]+0 ∈

L‖C?(a, α)‖}.
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Observe that every σ ∈ G?(α) has dimension pr.
If σ ∈ G?(α) and [σ]+0 = LΘ, we have two determinations of ΨΘ, from 7.2 Theorem 2 and

9.5 Corollary, respectively. In 9.5 and 9.6 we attached to σ a tower of fields F ⊂ Lξ ⊂ L̃σ,ξ,
given by a character ξ of R+

F (cα) occurring in σ. This configuration is determined by σ up to
WF -conjugation. We now examine how it varies when Θ ranges over ‖C?(a, α)‖.

10.1 We fix notation for the rest of the section. With [a,m, 0, α] as above, we abbreviate

ςα = m/pr, wα = wF [α]/F ,

lα = max(0,m−wα), λα = [lα/2].
(10.1.1)

By 7.2 Theorem 2, ΨΘ(x) = 2Ψ(F [α]/F,ςα)(x), for all Θ ∈ ‖C?(a, α)‖ and 0 6 x 6 ςα. We use the
notation

2Ψ(F [α]/F,ςα) = Ψα,

cα + Ψα(cα) = ςα,

Ψα(εα) = λα/p
r.

(10.1.2)

Let G?0(α) be the subset L‖C?(a, α)‖ of WF \P̂F . Every element of G?0(α) is a singleton orbit, so
we may treat such orbits as individual representations of PF . Restriction to PF gives a surjective
map G?(α) → G?0(α). Each fibre of this map is a principal homogeneous space over the group of
tamely ramified characters of WF , as in [BH14b, 1.3 Proposition].

10.2 We give a relative characterization of the elements of G?(α) in terms of the ultrametric

pairing ∆ on ŴF .

Proposition. Let σ ∈ G?(α) and τ ∈ Ŵwr
F . The following conditions are equivalent:

(1) τ ∈ G?(α);

(2) dim τ 6 pr and ∆(σ, τ) 6 εα;

(3) dim τ 6 pr and HomR+
F (εα)(σ, τ) 6= 0.

Proof. We first work on the GL side.

Lemma. Let Θ ∈ ‖C?(a, α)‖ and Φ ∈ EEE(F ). The following are equivalent:

(1) Φ ∈ ‖C?(a, α)‖;
(2) degΦ 6 pr and A(Φ,Θ) 6 λα/p

r.

Proof. Let θ ∈ C?(a, α) have endo-class Θ. If Φ ∈ ‖C?(a, α)‖, then degΦ = pr and Φ is
the endo-class of some φ ∈ C?(a, α). By definition, φ agrees with θ on H1+λα(α, a), whence
A(Φ,Θ) 6 λα/p

r. Thus (1) implies (2).
Assume (2) holds. Since A(Φ,Θ) 6 lα/2p

r < m/pr, we conclude that ςΦ = m/pr; this follows
from the definition of A. As degΦ 6 pr and p does not divide m, so degΦ = pr and Φ has a
realization φ ∈ C(a, β), for a simple stratum [a,m, 0, β] in which F [β]/F is totally ramified of
degree pr. The characters φ |H1+λα(β, a), θ |H1+λα(α, a) intertwine in GLpr(F ) by hypothesis.
Since λα < m/2, [BK93, (3.5.11) Theorem] allows us to replace φ by a conjugate to achieve
H1(β, a) = H1(α, a) and φ ∈ C(a, α). The characters φ |H1+λα(α, a), θ |H1+λα(α, a) intertwine
and so are equal [BK93, (3.3.2)]. That is, φ ∈ C?(a, α), as required. 2
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In the proposition, the equivalence of (2) and (3) is the definition of ∆. Write [σ]+0 = LΘ,
[τ ]+0 = LΦ. In particular, Θ ∈ EEEC(F ) while Φ ∈ EEE(F ) is totally wild of degree at most pr. We
have ΨΘ(∆(σ, τ)) = A(Θ,Φ). The definition (10.1.2) shows that A(Θ,Φ) 6 λα/p

r if and only if
∆(σ, τ) 6 εα. The proposition thus follows from the lemma. 2

Remark. In the lemma, the hypothesis degΦ 6 pr is essential. For, the Density Lemma of [BH17,
5.3] shows that the set of values A(Θ,Φ), Φ ∈ EEE(F ), is dense on the positive real axis. Indeed, the
same proof shows that the set of A(Θ,Φ) is dense when Φ is confined to the set of totally wild
endo-classes. In the proposition, the hypothesis dim τ 6 pr is likewise essential. Interpretation of
the general case, with dim τ unbounded, is the subject of [BH17, 6.5 Corollary].

10.3 Let j∞(α) = j∞(F [α]|F ) be the greatest jump of the function ψF [α]/F .

Definition. Say that [a,m, 0, α] (or the element α) is ?-exceptional if j∞(α) = cα, lα > 0 and
lα ≡ 0 (mod 2). Otherwise, say that α is ?-ordinary.

Both exceptional and ordinary cases arise. If α is ?-exceptional, then Ψα has an odd number
of jumps. Otherwise, both odd and even cases occur. We prove the following theorem.

Theorem.

(1) There is a character ξ of R+
F (cα) occurring in every representation σ ∈ G?(α). This condition

determines ξ uniquely, up to WF -conjugation. In particular, each σ ∈ G?(α) determines the
same conjugacy class of field extensions Lξ/F .

(2) Suppose that α is ?-ordinary but that Ψα has an odd number of jumps. There is an
irreducible representation ρξ of RF (cα) that contains ξ and occurs in every σ ∈ G?(α).
This condition determines ρξ uniquely, up to WF -conjugation.

(3) If α is ?-ordinary, then L̃σ,ξ = L̃τ,ξ, for all σ, τ ∈ G?(α).

Proof. We estimate the number cα to get a more effective bound for the distance ∆(σ1, σ2),
σi ∈ G?(α).

Lemma 1. Write j∞(α) = j∞(F [α]|F ).

(1) If j∞(α) 6 cα, then cα = (m+wα)/2pr and Ψα(cα) = lα/2p
r.

(2) If j∞(α) > cα, then cα < (m+wα)/2pr and Ψα(cα) > lα/2p
r > λα/p

r.

Proof. Suppose j∞(α) < cα. The function Ψα then has an even number of jumps, its graph
contains a non-empty open segment of the line y = x−p−rwα, and x = cα is the intersection of
this line segment with x+y = ςα (4.2 Proposition). That is, cα = (m+wα)/2pr and so Ψα(cα) =
cα−p−rwα = lα/2p

r.
Suppose next that j∞(α) = cα. Therefore Ψα(cα) = p−rψF [α]/F (cα) = cα−p−rwα. Thus

2cα−p−rwα = ςα whence cα = (m+wα)/2pr and Ψα(cα) = lα/2p
ras desired.

In (2), the line y = x−p−rwα lies strictly below the graph y = Ψα(x), (cf. 1.6 Proposition,
4.2 Proposition), giving

ςα − cα = Ψα(cα) > cα − p−rwα,

and hence the first assertion. The three lines y = lα/2p
r, y = x−p−rwα and x+y = ςα all meet

at x = (m+wα)/2pr. As (m+wα)/2pr > cα, we have Ψα(cα) > lα/2p
r. 2
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Lemma 2.

(1) If σ1, σ2 ∈ G?(α) then ∆(σ1, σ2) 6 cα.

(2) There exist σ1, σ2 ∈ G?(α) such that ∆(σ1, σ2) = cα if and only if either

(a) j∞(α) < cα and lα is even, or

(b) α is ?-exceptional.

Proof. By 10.2 Proposition,

max{∆(σ1, σ2) : σi ∈ G?(α} = εα = Ψ−1
α (λα/p

r).

By Lemma 1 above, Ψα(cα) > λα/p
r, whence cα > λα/p

r. This proves (1). If j∞(α) > cα,
Lemma 1 gives εα > cα, so ∆(σ1, σ2) < cα in this case. If j∞(α) < cα, Lemma 1 gives
cα = Ψ−1

α (lα/2p
r) > Ψ−1

α (λα/p
r), with equality if and only if lα is even. This accounts for

option (a) in case (2).
This leaves the case j∞(α) = cα. If lα 6= 0, the same argument applies and gives option (b).

It remains only to show that the conditions j∞(α) 6 cα and lα = 0 are incompatible.
Suppose these two conditions hold. We have m 6 wα while, by Lemma 1, cα = (m+wα)/2pr.

Now 1.6 Corollary implies

cα =
m+wα

2pr
6
wα
pr

6
pr−1

pr
j∞(α) < j∞(α),

contrary to the hypothesis j∞(α) 6 cα. 2

We prove the theorem. In part (1), choose σ ∈ G?(α) and apply 9.5 Corollary. In the notation
of that result, σ |R+

F (cα) is a direct sum of WF -conjugate characters ξ. If τ ∈ G?(α), Lemma 2
gives ∆(σ, τ) 6 cα whence any such ξ occurs in τ . The uniqueness property follows by symmetry.

In part (2), take ξ as in part (1) and set L = Lξ. By definition, WL is the WF -stabilizer
of ξ and we have R+

F (cα) ⊂ WL. Let σξ be the natural representation of WL on the ξ-isotypic
subspace of σ. The RF (cα)-normalizer of the character ξ is WL ∩RF (cα), by the definition of L.
So, the representation ρξ of RF (cα), induced by σξ |WL ∩ RF (cα), is irreducible. If τ ∈ G?(α),
Lemma 2 asserts that ∆(σ, τ) < cα, so ρξ also occurs in τ . The representation ρξ therefore has
the required properties.

Part (3) is trivial if Ψα has an even number of jumps, as then L̃σ,ξ = Lξ. Assume otherwise.
In the same notation as in the proof of part (2), σξ |WL ∩ RF (cα) is the natural representation
on the ξ-isotypic subspace of ρξ. Consequently, if τ ∈ G?(α), the representations σξ, τξ agree
and are irreducible on WL ∩ RF (cα). Therefore τξ ∼= χ ⊗ σξ, for a character χ of WL trivial on
R+
F (cα), and so σξ, τξ define the same projective representation of WL. Their centric fields are

therefore the same. This proves (3) and completes the proof of the theorem. 2

10.4 We fix a character ξ of R+
F (cα), occurring in some, hence any, σ ∈ G?(α). Let WL be

the WF -stabilizer of ξ. For σ ∈ G?(α), let σξ denote the natural representation of WL on the
ξ-isotypic subspace of σ.

Lemma 1. If ∆L denotes the canonical ultrametric pairing on ŴL, then

max
{

∆L(σξ, τξ) : σ, τ ∈ G?(α)
}

= λα. (10.4.1)
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Proof. By 10.2 Lemma, max{A(Θ,Φ) : Θ,Φ ∈ ‖C?(a, α)‖} = λα/p
r. So

max{∆(σ, τ) : σ, τ ∈ G?(α)} = Ψ−1
α (λα/p

r) = ϕL/F (λα),

by (9.5.1). Relation (10.4.1) now follows from 1.4 Proposition. 2

Let k > 0 be an integer and K/F a finite field extension. Let Γk(K) be the group of characters
of K×/U1+k

K , sometimes viewed as characters of WK . Let Γ0
k(K) be the group of characters of

U1
K/U

1+k
K .

Let H(L, ξ) be the set of representations σξ ∈ Ŵwr
L , for σ ∈ G?(α). The induction functor

IndL/F then gives a bijection H(L, ξ) → G?(α).

Proposition.

(1) If χ ∈ Γλα(L) and κ ∈ H(L, ξ), then χ⊗ κ ∈ H(L, ξ).

(2) If α is ?-ordinary, then the set H(L, ξ) is a principal homogeneous space over Γλα(L).

Proof. By definition, the character χ is trivial on R+
L (λα), so ∆L(κ, χ ⊗ κ) 6 λα. The

representation κF = IndL/F κ is irreducible and lies in G?(α). If ρ is an irreducible component of

IndL/F χ⊗ κ, it follows that ∆(κF , ρ) 6 φL/F (λα) = εα and dim ρ 6 pr. From 10.2 Proposition
we deduce that ρ ∈ G?(α) and dim ρ = pr. That is, IndL/F χ ⊗ κ = ρ is irreducible and lies in
G?(α). Therefore, χ⊗ κ ∈ H(L, ξ).

Let H0(L, ξ) be the set of equivalence classes of representations σξ |PL, σ ∈ G?(α). Induction,
from PL to PF , gives a bijection H0(L, ξ) → G?0(α). In the second part of the proposition, it is
enough to show that H0(L, ξ) is a principal homogeneous space over Γ0

λα
(L). The sets H0(L, ξ),

‖C?(a, α)‖ and C?(a, α) are in canonical bijection, and C?(a, α) visibly has exactly qλα elements,
where q is the cardinality of the residue field of F . This reduces us to showing that, if κ ∈H0(L, ξ)
and χ ∈ Γ0

λα
(L), χ 6= 1, then χ⊗ κ 6∼= κ.

If j∞(α) < cα, the representation κ is a character, and the result is obvious. To deal with the
other cases, we need the following general fact. Recall that j∞(L|F ) denotes the largest jump of
ψL/F .

Lemma 2. If Ψα has an odd number of jumps, that is, if j∞(α) > cα, then j∞(L|F ) < cα.

Proof. Let d− (respectively, d+) be the left (respectively, right) derivative of Ψα at cα. Let
dimσξ = ps = pr/[L :F ]. The H-singular representation σξ of WL is irreducible on RF (cα)∩WL,
but is a sum of ps copies of ξ on R+

F (cα) (which is contained in WL). Therefore d+/d− = p2s.
Symmetry (as in 3.1) implies that d+ = (d−)−1, whence d− = p−s = p−r[L :F ]. So, if δ is
small and positive, ψ′L/F (x) = [L :F ] for cα−δ < x < cα. It follows (cf. 1.6 Proposition) that

j∞(L|F ) 6 cα−δ < cα, as required. 2

Suppose that j∞(α) = cα and lα is odd, or that j∞(α) > cα. In either case, the function Ψα

has an odd number of jumps. It follows from Lemma 2 that j∞(L|F ) < cα, so RF (cα) ⊂WL by
1.9 Corollary 2. The restriction κ |RF (cα) is irreducible, since ψL/F (cα) is the only jump of κ.
If ρ is a representation of PL such that ρ |RF (cα) = κ |RF (cα), there is a unique character φ
of PL, trivial on RF (cα), such that ρ = φ ⊗ κ. By 10.3 Lemma 1, any χ ∈ Γ0

λα
(L) is trivial on

RF (cα). The representations χ⊗κ are therefore distinct, as χ ranges over (U1
L/U

1+λα
L )̂ , and the

proposition follows. 2
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Remarks.

(1) Suppose that α is ?-ordinary. The set G?(α) then inherits the structure of principal
homogeneous space over Γλα(L), via the bijection IndL/F : H(L, ξ) → G?(α).

(2) If α is ?-exceptional, there will, in many cases, exist non-trivial characters χ ∈ Γλα(L) such
that χ⊗ σξ ∼= σξ. This is incompatible with a principal homogeneous space structure.

10.5 We assume, in this subsection, that α is ?-exceptional. We fix a character ξ of R+
F (cα) as

in 10.3 Theorem and abbreviate L = Lξ, L̃σ = L̃σ,ξ. Let Tσ/L be the maximal tame sub-extension

of L̃σ/L, and define the character group D(σξ) as in 8.2.

Theorem. Suppose that α is ?-exceptional.

(1) If σ, τ ∈ G?(α), then Tσ = Tτ .

(2) The integer d= |D(σξ)| is independent of the choice of σ ∈ G?(α). It satisfies d1/2 6 dimσξ =
pr/[L :F ].

(3) There are, at most, d distinct Galois extensions of the form L̃σ/L, as σ ranges over G?(α).
If p does not divide [Tσ :L], there are exactly d such extensions.

Proof. We gather some identities. First, Ψα(x) = p−rψL/F (x), 0 6 x 6 cα, by 9.5 Corollary.
Since j∞(α) = cα, 10.3 Lemma 1 gives Ψα(cα) = lα/2p

r. Consequently,

ψL/F (cα) = lα/2. (10.5.1)

In this situation, j∞(α) = cα > j∞(L|F ) by 10.4 Lemma 2, so

RF (cα) = RL(ψL/F (cα)) = RL(lα/2) (10.5.2)

by 1.9 Corollary 2. Write eσ = e(Tσ|L), so that RL(lα/2) = RTσ(eσlα/2). The point eσlα/2 is the
unique jump of L̃σ/Tσ, so

R+
F (cα) = R+

L (lα/2) = R+

L̃σ
(eσlα/2), (10.5.3)

and
WTσ = W

L̃σ
RL(lα/2). (10.5.4)

We prove part (1) of the theorem.

Lemma 1. If σ, τ ∈ G?(α), then Tτ = Tσ.

Proof. By 8.2 Lemma and Proposition, the group WTσ is the common WL-stabilizer of the
elements of the character group D+(σξ). Dualizing (via 8.1 Proposition), the group WTσ is the
WL-centralizer of σξ (RL(ψL/F (cα)) modulo its centre (cf. 8.4 Corollary). This centre, we assert,
is independent of σ. The pairing (x, y) 7→ ξ([x, y]) defines an alternating form on the Fp-vector
space RL(lα/2)/R+

L (lα/2). Let R be the inverse image, in RL(lα/2), of the radical of this pairing.
Since WL fixes ξ, it normalizes R. The image σξ(R) is the centre of σξ(RL(lα/2)). Thus WTσ is
the WL-centralizer of the finite group RL(lα/2)/R and so is independent of σ. 2

In part (2) of the theorem, the integer dimσξ = pr/[L :F ] is certainly independent of σ ∈
G?(α). By 8.2 Lemma (1), the order of the group D(σξ) is the number of fixed points for the
natural action of WL on RL(lα/2)/R, in the notation of the proof of Lemma 1. It is therefore
independent of σ and we have proved part (2) of the theorem.

In light of part (1), we abbreviate T = Tσ.
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Lemma 2. Suppose that T = L. For τ ∈ G?(α), the following are equivalent:

(1) L̃τ = L̃σ;

(2) there is a character χ of WL, trivial on R+
L (lα/2), such that τξ ∼= χ⊗ σξ.

Proof. Surely (2) implies (1), so suppose that (1) holds. The restrictions σ′ξ = σξ |RL(lα/2),

τ ′ξ = τξ |RL(lα/2) are irreducible, and each is a multiple of ξ on R+
L (lα/2). On the group R (as in

the proof of Lemma 1), each is a multiple of a character of R extending ξ. Consequently, there is a
character φR of R, trivial on R+

L (lα/2), such that τξ |R = φR⊗σξ |R. The character φR extends to
a character φ of RL(lα/2). For any such φ, we have τ ′ξ = φ⊗σ′ξ. The projective representations σ̄ξ,
τ̄ξ defined by σξ, τξ are therefore identical on RL(lα/2). Each of these projective representations
has W

L̃σ
= W

L̃τ
in its kernel, so σ̄ξ, τ̄ξ are the same on the group WL = WT = W

L̃σ
RL(lα/2). That

is, σξ, τξ are liftings to WL of the same projective representation σ̄ξ. It follows that τξ ∼= χ⊗ σξ,
for some character χ of WL trivial on R+

L (lα/2). 2

In the case T = L, we have D(σξ) ⊂ Γlα/2(L), so Lemma 2 implies that the number of distinct

fields L̃σ/L, σ ∈ G?(α), is

|Γlα/2(L)\G?(α)| = |Γ0
lα/2

(L)\G?0(α)|.

The set G?0(α) is in bijection with ‖C?(a, α)‖, and so has qlα/2 = |Γ0
lα/2

(L)| elements, while

each element of G?0(α) is fixed under twisting by exactly d elements of Γ0
lα/2

(L). Therefore∣∣Γ0
lα/2

(L)\G?0(α)
∣∣ = d, as required for part (3) of the theorem in this case.

Return to the general case and write e = e(T |L). For σ ∈ G?(α), write σTξ = σξ |WT . Thus

σTξ has centric field L̃σ/T . For σ, τ ∈ G?(α), Lemma 2 shows that L̃σ = L̃τ if and only if there

exists χ ∈ Γelα/2(T ) such that τTξ = χ⊗σTξ . So, if there exists φ ∈ Γlα/2(L) such that τξ = φ⊗σξ,
then L̃τ = L̃σ. Counting as before, there are at most d = |D(σξ)| distinct fields L̃σ, as σ ranges
over G?0(α). We have proved the first assertion of part (3) of the theorem.

In general, the relation τTξ = χ⊗ σTξ implies χ/χγ ∈ D(σTξ ), for all γ ∈ Gal(T/L). That is, χ

defines a Gal(T/L)-fixed point in Γelα/2(T )/D(σTξ ). If p does not divide [T :L], this is equivalent

to χ ∈ Γlα/2(L)/D(σξ), since D(σξ) is the group of WL-fixed points in D(σTξ ) (8.2 Lemma). The
final assertion follows. 2

Remark. There are indeed cases of p dividing [Tσ :L] in the context of the theorem; we have
already seen this in the example of 9.6.

10.6 For this subsection only, we assume that p 6= 2. We outline a mild variant to our approach,
following Mœglin [Mœ90]. It gives a simpler expression of the results, at the cost of a loss of
generality.

Otherwise, we use the notation from the beginning of the section. Suppose that lα > 0. Define
C†(a, α) to be the set of θ ∈ C?(a, α) satisfying

θ(1+y) = µM (α(y − 1
2y

2)), y ∈ E, υE(y) > [(1+lα)/2]. (10.6.1)

This expression does indeed define a character of U
[(1+lα)/2 )]
E . Surely C†(a, α) is not empty.

It is equal to C?(a, α) when lα is odd. Let ‖C†(a, α)‖ be the set of endo-classes of characters
θ ∈ C†(a, α). In the case lα = 0, we may put C†(a, α) = C?(a, α); remember that this set has only
one element.
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Lemma 1. Let θ ∈ C(a, α). There exists β ∈ P(a, α) such that θ ∈ C†(a, β).

Proof. This follows readily from 7.1 Proposition. 2

Let G†(α) be the set of σ ∈ Ŵwr
F such that [σ]+0 ∈ L‖C†(a, α)‖. The advantage of this approach

is encapsulated in the following lemma.

Lemma 2. For σ, τ ∈ G†(α), one has ∆(σ, τ) < cα.

This follows from 10.3 Lemma 2. Imitating the discussion in 10.4 and 10.5, using the same
notation, we find the following result.

Proposition.

(1) If σ, τ ∈ G†(α), then L̃τ = L̃σ.

(2) Let λ′α = max{[(1+lα)/2]−1, 0}. The set G†(α) is a principal homogeneous space over
Γλ′α(L).

10.7 Explicit results concerning the local Langlands correspondence fall into three areas. For
essentially tame representations (which have trivial Herbrand functions), complete results are
given in [BH05a, BH05b, BH10]. A method for reducing to the totally wild case is worked out
in [BH14b]. For totally wildly ramified representations, results are confined to a small number
of old, but distinguished, papers. We briefly examine the relation between this paper and that
historical context.

Leaving aside the peripheral case of [BH14a], the significant work concerns dimension p,
in the context of proving the existence of the Langlands correspondence. The case p = 2 is
in Kutzko [Kut80, Kut84] (as recounted in [BH06]), p = 3 is Henniart [Hen84] while p > 5 is
Mœglin [Mœ90].

The keystone of Kutkzo’s work is the management of the case where, in the notation of the
rest of the section, Ψα has a single jump. He proves that this is equivalent to m 6 3wα (as we
noted in 6.2 Example). He identifies the field we called Tσ in 10.5: it is the splitting field of the
polynomial X3 − tr(α)X2 + det(α) [BH06, 45.2 Theorem]. This approach is extended to odd p
in [Mœ90, V.4 Proposition]. A similar ‘universal polynomial’ appears in [BH14a, 5.1 Theorem]
for epipelagic representations, that is, those with Swan exponent 1 in arbitrary dimension pr.
These results anticipate the more general 10.5 Theorem (1).

Kutzko’s construction of the Langlands correspondence has little to say about relating
parameter fields F [α], Lξ on the two sides. To define the correspondence, he relies on the Weil
representation. That construction has remained resistant to further elucidation.

Mœglin’s paper [Mœ90], for p > 5, goes significantly further in that respect. It builds on
Kutzko and Moy [KM85] and Kutzko [Kut79] along with Carayol [Car84]. It also relies on a
number of working hypotheses that have since been verified, notably:

(1) characterization of the Langlands correspondence via local constants of pairs (see [Hen93]);

(2) compatibility of Kazhdan’s lift [Kaz84] and the Kutzko–Moy tame lift [KM85] with Arthur–
Clozel base change [AC89] (see [HH95, BH99], respectively).

All of those cited papers assume F to be of characteristic zero. That restriction is removed
in [HL10, HL11].

A feature of [Mœ90] is the treatment of the relation between parameter fields. To rearrange
matters in accordance with the scheme here, we start with a simple stratum [a,m, 0, α] in Mp(F )
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(as throughout) such that m > wα. Write E = F [α] and let θ ∈ C†(a, α). Let χθ be a character

of E× agreeing with θ on U1
E . The representation σ(χθ) = IndE/F χθ is then irreducible, totally

wild and of Carayol type. If E/F is cyclic, then σ(χθ) is absolutely wild. In this case, Mœglin

shows that the set of representations σ(χθ), for θ ∈ C†(a, α), is what we have called G†(α). That

is, the Langlands correspondence matches parameter fields.

In general, the problem of describing parameter fields for H-singular representations seems

to be of a different order. In the case of epipelagic representations [BH14a] (where m = 1), the

field F [α] is so ill-determined as to make the question meaningless without some qualification.
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caractéristique non nulle, Mém. Soc. Math. Fr. (N.S.) 124 (2011).

JPS83 H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math.
105 (1983), 367–483.

Kaz84 D. Kazhdan, On lifting, in Lie group representations II, Lecture Notes in Mathematics, vol. 1041
(Springer, New York, 1984), 209–249.

Kut79 P. C. Kutzko, The irreducible imprimitive local Galois representations of prime dimension,
J. Algebra 57 (1979), 101–110.

Kut80 P. C. Kutzko, The Langlands conjecture for GL2 of a local field, Ann. of Math. (2) 112 (1980),
381–412.

Kut84 P. C. Kutzko, The exceptional representations of GL2, Compos. Math. 51 (1984), 3–14.

KM85 P. C. Kutzko and A. Moy, On the local Langlands conjecture in prime dimension, Ann. of Math.
(2) 121 (1985), 495–517.

LRS93 G. Laumon, M. Rapoport and U. Stuhler, D-elliptic sheaves and the Langlands correspondence,
Invent. Math. 113 (1993), 217–338.

Mœ90 C. Mœglin, Sur la correspondance de Langlands-Kazhdan, J. Math. Pures Appl. (9) 69 (1990),
175–226.

Sch13 P. Scholze, The local Langlands correspondence for GLn over p-adic fields, Invent. Math. 192
(2013), 663–715.

Ser68 J.-P. Serre, Corps locaux (Hermann, Paris, 1968).

Sha84 F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n),
Amer. J. Math. 106 (1984), 67–111.

2037

https://doi.org/10.1112/S0010437X19007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007449


Carayol representations

Zin88 E.-W. Zink, U1-Konjugationsklassen in lokalen Divisionsalgebren, Math. Nachr. 137 (1988),
283–320.

Zin92 E.-W. Zink, Irreducible polynomials over local fields and higher ramification theory in local
Langlands theory, Contemp. Math. 131 (1992 (part 2)), 529–563.

Colin J. Bushnell colin.bushnell@kcl.ac.uk

King’s College London, Department of Mathematics, Strand, London WC2R 2LS, UK

Guy Henniart Guy.Henniart@math.u-psud.fr
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