# Microscopy and Microanalysis

| THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA       |                                                               |                                                                                       |
|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                             | MICROBEAM ANALYSIS SOCIE                                      | ТҮ                                                                                    |
|                                                             | MICROSCOPICAL SOCIETY OF                                      | CANADA / SOCIÉTÉ DE                                                                   |
|                                                             | MICROSCOPIE DU CANADA                                         |                                                                                       |
|                                                             | MEXICAN MICROSCOPY SOCI                                       | ΕΤΥ                                                                                   |
|                                                             |                                                               | ROSCOPY AND MICROANALYSIS                                                             |
| PUBLISHED IN AFFILIATION WITH                               | ROYAL MICROSCOPICAL SOC                                       | ΙΕΤΥ                                                                                  |
|                                                             | GERMAN SOCIETY FOR ELECT                                      | RON MICROSCOPY                                                                        |
|                                                             | BELGIAN SOCIETY FOR MICRO                                     |                                                                                       |
|                                                             | MICROSCOPY SOCIETY OF SC                                      |                                                                                       |
|                                                             | ······                                                        |                                                                                       |
| Editor in Chief<br>Editor, Electron and                     | Editor, Computers and Image<br>Analysis<br>Michael A. O'Keefe | <b>Editor, Microanalysis</b><br>Charles E. Lyman<br>Materials Science and Engineering |
| Scanning Probe<br>Microscopies                              | Lawrence Berkeley Laboratory                                  | Lehigh University                                                                     |
| Dale E. Johnson                                             | Building 72                                                   | 5 East Packer Avenue                                                                  |
| Graduate School                                             | Berkeley, California 94720                                    | Bethlehem, Pennsylvania                                                               |
| University of South Florida                                 |                                                               | 18015-3195                                                                            |
| 4202 E. Fowler Avenue, FAO 126<br>Tampa, Florida 33620-7900 |                                                               | Editor, Optical and Confocal<br>Microscopy                                            |
|                                                             |                                                               | P.C. Cheng                                                                            |
| Editor, Biological Applications                             | Editor, Materials Applications                                | Advanced Microscopy and Imaging<br>Laboratory                                         |
| A. Kent Christensen                                         | Ray W. Carpenter                                              | Department of Electrical and                                                          |
| Anatomy and Cell Biology                                    | Center for Solid State Science,                               | Computer Engineering                                                                  |
| University of Michigan Medical<br>School                    | PSB-234<br>Arizona State University                           | State University of New York at<br>Buffalo                                            |
| Ann Arbor, Michigan 48109-0616                              | Tempe, Arizona 85287-1704                                     | Buffalo, New York 14260                                                               |
| Expo Editor                                                 | News and Commentary Editor                                    | Proceedings Editor                                                                    |
| William T. Gunning                                          | Barbara Reine                                                 | G. W. Bailey                                                                          |
| Pathology Department                                        | Botany Department                                             | Baton Rouge, Louisiana                                                                |
| Medical College of Ohio                                     | University of Washington                                      |                                                                                       |
| Toledo, Ohio                                                | Seattle, Washington                                           |                                                                                       |

### **Editorial Board**

James Bentley Metals and Ceramics Division Oak Ridge National Laboratory Oak Ridge, Tennessee

Carlos Bustamente Institute of Molecular Biology University of Oregon Eugene, Oregon

Patricia G. Calarco Department of Anatomy University of California San Francisco, California

Jean-Pierre Chevalier CECM-CNRS Vitry, France

Wah Chiu Department of Biochemistry Baylor College of Medicine Houston, Texas

John Cowley Department of Physics and Astronomy Arizona State University Tempe, Arizona

Alwyn Eades Department of Materials Science and Engineering Lehigh University Bethlehem, Pennsylvania

Ray Egerton Physics Department University of Alberta Edmonton, Alberta, Canada

Mark H. Ellisman Department of Neuroscience School of Medicine University of California San Diego, California

O. Hayes Griffith Institute of Molecular Biology University of Oregon Eugene, Oregon

Linn W. Hobbs Massachusetts Institute of Technology Cambridge, Massachusetts Colin Humphreys University of Cambridge Cambridge, United Kingdom

Sumio Iijima NEC Corporation Fundamental Research Labs Tsukuba, Ibaraki, Japan

Michael Isaacson Applied and Engineering Physics Cornell University Ithaca, New York

David Joy EM Facility, Department of Zoology University of Tennessee Knoxville, Tennessee

Morris Karnovsky Department of Pathology Harvard Medical School Boston, Massachusetts

Janos Kirz SUNY Stony Brook Stony Brook, New York

Paul Lauterbur College of Medicine University of Illinois at Urbana-Champaign Urbana, Illinois

Lee Makowski Institute of Molecular Biophysics Florida State University Tallahassee, Florida

J. Richard McIntosh Department of MCD Biology University of Colorado Boulder, Colorado

Ronald A. Milligan Department of Cell Biology Scripps Research Institute La Jolla, California

F.P. Otensmeyer Ontario Cancer Institute Toronto, Canada

Giulio Pozzi Department of Physics University of Bologna Bologna, Italy Michael P. Sheetz Department of Cell Biology Duke University Medical Center Durham, North Carolina

John Silcox Applied and Engineering Physics Cornell University Ithaca, New York

Guillermo Solórzano Department of Materials Science and Metallurgy Catholic University of Rio de Janeiro Rio de Janeiro, Brazil

Andrew P. Somlyo Department of Physiology School of Medicine University of Virginia Charlottesville, Virginia

Gareth Thomas Department of Material Science and Engineering University of California Berkeley, California

James N. Turner New York State Department of Health Albany, New York

Dirk van Dyck University of Antwerp Antwerp, Belgium

Watt Webb School of Applied Physics Cornell University Ithaca, New York

David B. Wittry Department of Material Science University of Southern California Los Angeles, California

Nestor J. Zaluzec Materials Science Division Argonne National Laboratory Argonne, Illinois

### Founding Editor

Jean-Paul Revel Division of Biology California Institute of Technology Pasadena, California

### Aims and Scope

*Microscopy and Microanalysis* provides the highest quality forum for publication of truly innovative results in a wide range of fields of importance to microscopy and microanalysis. To this end, the Journal publishes original research papers in the entire range of microscopy and microanalysis, from new methods and instrumentation to their application to compositional analysis for determination of structure or chemistry at the microscopical level. Fields of interest include: microbeam analysis, scanning probe microscopies, and all forms of light microscopy. Image acquisition and improvement techniques, along with computer-assisted microscopy, are included.

Four categories of communications are published in the Journal. **Regular Articles** contain reports of new instrumentation and new theoretical methods and their applications to microstructural analysis in a broad range of fields including biological, physical, and materials science. **Communications** are short technical or scientific articles in biological, physical, or materials science. **Reviews** have a broader technical content than Regular Articles. **Letters to the Editor** may be on any topic.

### **Copyright Information**

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the Microscopy Society of America; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; and that written permission of the copyrighted sources.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulation.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made.

The publisher makes no warranty, express or implied, with respect to the material contained herein. Springer-Verlag publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer-Verlag and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer-Verlag publications does not constitute endorsement, implied or intended, of the product advertised or claims made for it by the advertiser.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Springer-Verlag New York, Inc., provided that the appropriate fee is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA (Tel: (508) 750-8400), stating the ISSN (1431-9276), the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

The Canada Institute for Scientific and Technical Information (CISTI) provides a comprehensive, world-wide document delivery service for all Springer-Verlag journals. For more information or to place an order for a copyright-cleared Springer-Verlag document, please contact Client Assistant, Document Delivery, Canada Institute for Scientific and Technical Information, Ottawa K1A 0S2, Canada (Tel: 613-993-9251; Fax: 613-952-8243; e-mail: cisti.docdel@nrc.ca).

### LINKAlert

The LINKAlert service replaces the Springer Journals Preview Service. This journal is included in the LINKAlert service. LINKAlert is a free, subscribe-to feature of Springer-Verlag's LINK. After subscribing to LINK*Alert*, you will receive, via e-mail, tables of contents of new issues of your selected journals. The e-mail contains hyperlinks to the articles' abstracts and is sent when the issue is posted to LINK.

Subscribe to LINK*Alert* at http://link.springer-ny.com/alert. Subscription Information

*Microscopy and Microanalysis* is published bimonthly in January, March, May, July, September, and November by Springer-Verlag, plus two supplements (*Expo* and *Proceedings*) to be published in May and June. Volume 4 will appear in 1998.

Society Rates: Members of the Microscopy Society of America should contact the MSA Business Office for all subscription inquiries.

Microscopy Society of America 435 North Michigan Avenue, Suite 1717 Chicago, IL 60611-4067 Toll-Free Tel: 800-538-3672 Tel: 312-644-1527 Fax: 312-644-8557 E-mail: businessoffice@msa.microscopy.com

Members of other affiliated societies should contact their respective society business offices for all subscription inquiries.

Institutional Rates: North America: US \$539.00 plus \$18.00 postage and handling. (Canadian customers please add 7% GST to subscription price, then add postage and handling. Springer-Verlag's GST registration number is 123394918.) Subscriptions are entered with prepayment only. Please mail orders and inquiries to: Springer-Verlag New York, Inc., Journal Fulfillment Services Department, P.O. Box 2485, Secaucus, NJ 07096-2485, USA. Tel: 1-800-SPRINGER, Fax: (201) 348-4505. e-mail: journals@springer-ny.com.

*Outside North America:* Subscription rate: US \$539.00 (calculated in DM at the exchange rate current at time of purchase), plus postage and handling. SAL delivery (surface airmail lifted) is mandatory for Japan, India, Australia, and New Zealand. Customers should ask for the appropriate price list. Airmail delivery to all other countries is available upon request. Subscriptions can either be placed via a bookdealer or sent directly to: Springer-Verlag GmbH & Co. KG, Postfach 31 13 40, D-10643 Berlin, Germany. Tel: (030) 827 87-0, Fax: (030) 8214091.

**Back volumes:** Contact the Microscopy Society of America, 435 North Michigan Avenue, Suite 1717, Chicago, IL 60611-4067 (Tel: 800-538-3672) for information.

**Change of address:** Allow six weeks for all changes to become effective. All communications should include both old and new addresses (with postal codes) and should be accompanied by a mailing label from a recent issue. Society members should contact their respective society business offices to inform them of address changes.

Microform editions are available from: University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106, USA.

### **Editorial Office**

Dale E. Johnson, Editor in Chief, Graduate School, University of South Florida, 4202 E. Fowler Avenue, FAO 126, Tampa, FL 33620-7900, USA, Tel: (813) 974-8118; Fax: (813) 974-5762; E-mail: dej@grad.usf.edu

### Office of Publication

Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA, Tel: (212) 460-1500; Fax: (212) 533-5977; **Production Editor:** Jacquelyn L. Goss

### **Advertising Sales & Production**

Brian Skepton, Advertising Sales Manager, Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA, Tel: (212) 460-1700; Fax: (212) 533-0108

© 1998 by Microscopy Society of America. Printed in the United States on acid-free paper. Periodicals postage is pending at New York, NY and additional mailing offices. Postmaster: Send all address changes to *Microscopy and Microanalysis*, Journal Fulfillment Services Department, P.O. Box 2485, Secaucus, NJ 07096-2485.

# PROCEEDINGS

# MICROSCOPY AND MICROANALYSIS 1998

Microscopy Society of America 56th Annual Meeting Microbeam Analysis Society 32nd Annual Meeting

ATLANTA, GEORGIA

July 12-16, 1998

*Edited by* G.W. Bailey K.B. Alexander W.G. Jerome M.G. Bond J.J. McCarthy



### MICROSCOPY SOCIETY OF AMERICA Established 1942

### **OFFICERS 1998**

### **Executive Council**

President President Elect Past President Secretary Treasurer Directors

Ralph M. Albrecht David Joy C. Barry Carter Ernest Hall Ronald M. Anderson Mary Grace Burke Stanley L. Erlandsen J. Murray Gibson JoAn S. Hudson José A. Mascorro Avril Somlyo David B. Williams

### Appointed Officers

| Archivist                                                                                                                                                                                                                      | Rachael A. Horowitz                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Awards Committee Chair                                                                                                                                                                                                         | Mary Grace Burke                                                                                                                                                                            |
| Certification Board Chair                                                                                                                                                                                                      | Karen Klomparens                                                                                                                                                                            |
| Committee on Standards Chair                                                                                                                                                                                                   | Eric B. Steel                                                                                                                                                                               |
| Education Committee Chair                                                                                                                                                                                                      | Janet Woodward                                                                                                                                                                              |
| International Committee Chair                                                                                                                                                                                                  | Robert P. Apkarian                                                                                                                                                                          |
| Journal Editor-in-Chief                                                                                                                                                                                                        | Dale E. Johnson                                                                                                                                                                             |
| Proceedings Editor                                                                                                                                                                                                             | G. William Bailey                                                                                                                                                                           |
| Bulletin Editor                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Long Range Planning Committee Chair                                                                                                                                                                                            | John Silcox                                                                                                                                                                                 |
| Membership Committee Co-Chairs                                                                                                                                                                                                 | Ralph M. Albrecht                                                                                                                                                                           |
|                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | Linda Horton                                                                                                                                                                                |
| Placement Officer                                                                                                                                                                                                              | Linda Horton                                                                                                                                                                                |
| Placement Officer<br>Program Sponsorship Committee Chair                                                                                                                                                                       | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen                                                                                                                                   |
| Placement Officer                                                                                                                                                                                                              | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen                                                                                                                                   |
| Placement Officer<br>Program Sponsorship Committee Chair                                                                                                                                                                       | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco                                                                                                            |
| Placement Officer<br>Program Sponsorship Committee Chair<br>Public Policy Committee Chair                                                                                                                                      | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco<br>Paul E. Fischione                                                                                       |
| Placement Officer<br>Program Sponsorship Committee Chair<br>Public Policy Committee Chair<br>Sustaining Members Committee Chair                                                                                                | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco<br>Paul E. Fischione<br>Beverly E. Maleeff                                                                 |
| Placement Officer<br>Program Sponsorship Committee Chair<br>Public Policy Committee Chair<br>Sustaining Members Committee Chair<br>Technologists' Forum                                                                        | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco<br>Paul E. Fischione<br>Beverly E. Maleeff<br>Nestor J. Zaluzec                                            |
| Placement Officer<br>Program Sponsorship Committee Chair<br>Public Policy Committee Chair<br>Sustaining Members Committee Chair<br>Technologists' Forum<br>Telecommunications Committee Chair                                  | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco<br>Paul E. Fischione<br>Beverly E. Maleeff<br>Nestor J. Zaluzec<br>Janet Woodward                          |
| Placement Officer<br>Program Sponsorship Committee Chair<br>Public Policy Committee Chair<br>Sustaining Members Committee Chair<br>Technologists' Forum<br>Telecommunications Committee Chair<br>1998 Local Arrangements Chair | Linda Horton<br>John H. L. Watson<br>Stanley L. Erlandsen<br>Patricia G. Calarco<br>Paul E. Fischione<br>Beverly E. Maleeff<br>Nestor J. Zaluzec<br>Janet Woodward<br>Kathleen B. Alexander |

Business Office Meeting Manager Bostrom Corporation The Rebedeau Group

### MICROBEAM ANALYSIS SOCIETY Established 1966

### OFFICERS 1998

### **Executive Council**

President

President Elect Past President Secretary Treasurer Directors Ryna B. Marinenko John J. Friel Joseph R. Michael Edgar S. Etz Harvey A. Freeman Paul Carpenter Cathy Johnson Richard W. Linton Greg Meeker Inga Holl Musselman Donald L. Parker

### Appointed Officers

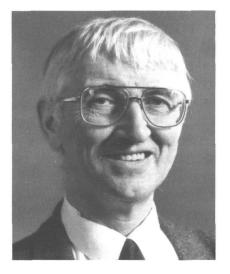
| Archivist, Finance Committee Chair  | Gordon Cleaver     |
|-------------------------------------|--------------------|
| Computer Activities Committee Chair | John F. Mansfield  |
| Corporate Liaison Committee Chair   | Thomas G. Huber    |
| Education Committee Chair           | Phillip E. Russell |
| Historian                           | Gordon Cleaver     |
| International Liaison               | David B. Williams  |
| Long Range Planning Committee Chair | John A. Small      |
| Membership Services                 | Scott Wight        |
| MicroNews Editor                    | Ryna A. Marinenko  |
| Sustaining Members Committee Chair  | Cathy Johnson      |

MAS Business Office William S. Thompson

### MSA SUSTAINING MEMBERS

4pi ANALYSIS, INC. ADVANCED MICROBEAM, INC. ADVANCED MICROSCOPY TECHNIQUES ALLIED HIGH TECH PRODUCTS AMERICAN NUCLEAR SYSTEMS, INC. AMRAY, INC. AMTEC ANATECH LTD. CARL ZEISS, INC. **CHARLES EVANS & ASSOCIATES** CLEMEX TECHNOLOGIES, INC. DEGROOT INDUSTRIES INTERNATIONAL, INC. DELAWARE DIAMOND KNIVES, INC. DENTON VACUUM, INC. DIATOME U.S. DIGITAL INSTRUMENTS, INC. E. A. FISCHIONE INSTRUMENTS, INC. EASTMAN KODAK CO. EDAX INTERNATIONAL EDGECRAFT CORP EDGE SCIENTIFIC INSTRUMENT CORP. EDWARDS HIGH VACUUM INTERNATIONAL EGOLTRONICS CORP. ELECTRON MICROSCOPY SCIENCES EMITECH U.S.A., INC. ERNEST F. FULLAM, INC. **ETP-USA/ELECTRON DETECTORS** EVEX ANALYTICAL FEI COMPANY GATAN INC. GW ELECTRONICS, INC. HARRIS DIAMOND CORP. HITACHI INSTRUMENTS, INC. IBM ANALYTICAL SERVICES JEOL-USA INC. KAISER OPTICAL SYSTEMS, INC. KEVEX LADD RESEARCH INDUSTRIES LAURIN PUBLISHING CO., INC. LEO ELECTRON MICROSCOPY INC. M. E. TAYLOR ENGINEERING, INC. MAGER SCIENTIFIC INC. MATERIALS ANALYTICAL SERVICES

MCCRONE RESEARCH INSTITUTE MEDIA CYBERNETICS MICRO STAR TECHNOLOGIES, INC. MICRON, INC. MICROSCOPE BOOK MICROSCOPY, MARKETING & EDUCATION MICROSCOPY TODAY MPK TECHNOLOGY, INC. NSA/HITACHI SCIENTIFIC INSTRUMENTS NAT'L. METAL & MATERIALS TECHNOLOGY CENTER NIKON INC. NORAN INSTRUMENTS OMEGA OPTICAL INC. **OPTRONICS ENGINEERING** OSMIC INC. **OXFORD INSTRUMENTS** PARK SCIENTIFIC INSTRUMENTS PHILIPS ELECTRON OPTICS PLENUM PUBLISHING POLAROID CORP. POLYSCIENCES, INC. PRINCETON GAMMA-TECH, INC. PRINCETON INSTRUMENTS, INC. RAITH USA, INC. RJ LEE GROUP, INC. SAMx **SCANALYTICS** SCIENTIFIC INSTRUMENTATION SERVICES, INC. SEMICAPS, INC. SOUTH BAY TECHNOLOGY, INC. SPECTRA-TECH, INC. SPI SUPPLIES **TECHNOTRADE INTERNATIONAL** TED PELLA, INC. TOPCON TECHNOLOGIES, INC. TOPOMETRIX TOUISIMIS UNIVERSAL IMAGING CORP. **VBS INDUSTRIES** VIRTUAL LABORATORIES VITAL IMAGE TECHNOLOGY **XEI SCIENTIFIC** 


viii

### MAS SUSTAINING MEMBERS

4pi ANALYSIS INC. ADVANCED MICROBEAM INC. AMRAY INC. CAMECA INSTRUMENTS INC. **CHARLES EVANS & ASSOCIATES** DENTON VACUUM INC. EDAX INTERNATIONAL ELECTRON MICROSCOPY SCIENCES/DIATOME US ETP-USA/ELECTRON DETECTORS INC. FEI COMPONENTS GROUP GATAN, INC. GELLER MICROANALYTICAL LABORATORY HESSLER TECHNICAL SERVICES **IBM ANALYTICAL SERVICES** JEOL-USA INC. **KEVEX INSTRUMENTS** LEHIGH UNIVERSITY

MATERIALS ANALYTICAL SERVICES, INC. MICRON, INC. NISSEI SANGYO AMERICA, LTD. HITACHI SCIENTIFIC INSTRUMENTS NORAN INSTRUMENTS, INC. OSMIC, INC. OXFORD INSTRUMENTS, INC. MICROANALYSIS GROUP PARK SCIENTIFIC INSTRUMENTS PHILIPS ELECTRON OPTICS PHYSICAL ELECTRONICS, INC. PRINCETON GAMMA-TECH INC. RJ LEE INSTRUMENTS, LTD. SEM/TEC LABORATORIES SPECTRA-TECH/NICOLET TOPCON TECHNOLOGIES, INC.

## 1998 AWARDS MICROSCOPY SOCIETY OF AMERICA 1998 DISTINGUISHED SCIENTIST AWARDS



### MICHAEL J. WHELAN Physical Sciences

He graduated in physics from the University of Cambridge in 1954, and started research there in the Cavendish Laboratory of the Department of Physics. Working with Dr. Peter Hirsch, he followed up a line of research which had been recently initiated by A Kelly, PB Hirsch and JW Menter to try to observe directly crystal lattice defects in thin foils of metals by transmission electron microscopy. He first investigated ion beam thinning of gold, aluminium and other metals using laboratory constructed equipment, since no commercial equipment was then available. Success was achieved in the spring of 1956, when dislocations were observed in thin foils of aluminium, and their motion captured on movie film. Later that year, in collaboration with W Bollmann of the Battelle Labs in Geneva, the movement of dislocations was observed in stainless steel, a metal of low stacking fault energy, and the splitting of the dislocations into partials with an associated stacking fault was studied. The TEM technique is now widely used for characterising defects in materials. In 1958 he received his Ph.D., and after further research in Cambridge he moved in 1966 to the Department of Metallurgy of the University of Oxford, where he held the post of Reader and later of Professor. He retired from his Professorship in 1997.

During his career he pioneered with his collaborators many techniques in the field of materials applications of electron microscopy. These include theories of image contrast, studies at elevated temperatures using a heating specimen stage, the weakbeam technique for high resolution observations of dislocations by diffraction contrast, electron energy loss spectroscopy, and in recent years the theory of reflection high energy electron diffraction with applications to molecular beam epitaxy.



AVRIL V. SOMLYO Biological Sciences

Avril V. Somlyo has contributed to the development and application of analytical X-ray microprobe microanalysis to biological specimens, as well as rapid freezing technologies, to trap physiological events in cells and tissues. This approach has led to new insights into the transport of elements across the membranes of intracellular organelles, such as mitochondria, sarcoplasmic and endoplasmic reticulum and the nucleus in situ. Dr. Somlyo and her colleagues are currently studying signal transduction pathways, which regulate smooth muscle contractility, as well as the myosin molecular motors responsible for force generation. Dr. Somlyo received her Ph.D. in 1976 from the University of Pennsylvania and is currently Professor of Pathology and Molecular Physiology and Biological Physics at the University of Virginia School of Medicine. Dr. Somlyo has received the CIBA Award for Hypertension Research, the Louis and Artur Lucian Award for Research in Circulatory Diseases, and the Presidential Science Award of the Microbeam Analysis Society.

### BURTON MEDAL



### IAN M. ANDERSON

Ian M. Anderson received a B.S. degree from Caltech and M.Eng., M.S., and Ph.D. degrees from Cornell, all in Applied Physics. He received an (E)MSA Presidential Scholarship to attend the 50th anniversary meeting in 1992 while he was finishing his dissertation at the University of Minnesota. Since 1993, he has been at Oak Ridge National Laboratory, where he is currently a research staff member in the Metals and Ceramics Division. Dr. Anderson's research is in the development of electron-optical characterization techniques and their applications for materials analysis. His research has included the areas of secondary fluorescence corrections, ALCHEMI, energy-filtered imaging, low-voltage X-microanalysis, and the development of methods for analysis of large series of spectra and images, for which he organized a symposium at Microscopy and Microanalysis '97. He has been a member of the Program Committee since 1996.

### THE MORTON D MASER MSA DISTINGUISHED SERVICE AWARD



### NESTOR J. ZALUZEC

Nestor is presently a research scientist at Argonne National Laboratory and has worked in the area of microstructural characterization using electron/optical techniques for over 20 years. He received a B.S. in Physics from the Illinois Institute of Technology and a PhD in Metallurgy from the University of Illinois Urbana/Champaign. He was a Wigner Fellow at ORNL and has received awards from International Microscopy Societies for his contributions in the field of Microscopy and Microanalysis. A member of MSA since 1979, he was awarded the Societies Burton Medal in 1982. He is a member of the Education, Standards, Program, and the Telecommunications Committees. Nestor also holds Adjunct Professorial Appointments in Physics at UIC and in Materials Science at UIUC. He has developed some of the original methodologies for quantitative elemental characterization using XEDS, EELS, and EFI in the AEM and continues to work on new technologies and instrumentation for characterization. His most recent research centers on the ANL 300 kV AAEM and TelePresence Microscopy. He can sometimes be found on the Net and has known to handle a few Email and WWW requests for the Society.



BIOLOGICAL SCIENCE H.H. MOLLENHAUER

Dr. Mollenhauer received his degrees in electrical engineering from The University of Texas in Austin. His early work in electron microscopy was at the Cell Research Institute, The University of Texas, Austin. In 1965, he moved to the Charles F. Kettering Research Laboratory in Yellow Springs, Ohio and from there to the USDA, Veterinary Toxicology Research Laboratory, College Station, Texas. He retired in early 1992. Some of his early achievements included verifying the role of Golgi apparatus in plant secretion and cell wall formation, discovery of intercisternal elements and cis to trans polarity of plant dictyosomes, isolation of Golgi apparatus from plants and animals, and the first report of a new organelle (together with William Zebrun) called dictyosome-like structure (DLS). The DLS are unique to early spermatocytes where they coexist with Golgi apparatus. He has also published numerous papers for improving fixation, embedding, and sectioning of biological material.



PHYSICAL SCIENCE C.J. ECHER

Chuck Echer started materials characterization in 1960 during his formal education at Oklahoma State University where he graduated with two Associate Degrees in 1963. His initial career started at ACF Industries, Albuquerque, NM performing thermal-mechanical processing treatments of metals along with optical metallography evaluations. He continued his experience at Battelle Memorial Institute, Columbus, OH in the mid-sixties performing optical metallography on space age materials. In 1968, he joined Lawrence Livermore National Laboratory where he started materials characterization using transmission electron microscopes. In 1984, he transferred to the E.O. Lawrence Berkeley Laboratory, National Center for Electron Microscopy. His senior position currently provides user scheduling, training and collaborative research managing the AEM and the In-Situ facilities. In his career he has contributed to the installation of four electron microscope facilities. To date, he has co-authored sixty publications, received twelve awards, and chaired or co-chaired in eleven scientific meetings.

### 1998 MSA PRESIDENTIAL SCHOLARS

A.-M. Broome University of South Carolina School of Medicine

H. Fong University of Washington

G.J. Jensen Stanford University

M.T. Johnson University of Washington

L.B. Kong UCLA School of Medicine D.M. Longo University of Virginia

D.Y. Takamoto University of California-Santa Barbara

T.S. Wakefield Auburn University

Y. Wang Michigan Technological University

X. Yan Purdue University

### 1998 MSA PROFESSIONAL TECHNICAL STAFF AWARDS

Elizabeth R. Fischer NIH–Rocky Mountain Laboratories

Rachel Horowitz University of Massachusetts Medical School

Victoria J. Madden University of North Carolina at Chapel Hill

xiv

### MSA DISTINGUISHED SCIENTIST AWARD

1975

1976

1977 1978

1979

1980

1981 1982

1983

### **Biological Sciences**

| 1975 | Keith Porter       |
|------|--------------------|
| 1976 | L.L. Marton        |
| 1977 | Robley Williams    |
| 1978 | Thomas Anderson    |
| 1979 | Daniel Pease       |
| 1980 | George Palade      |
| 1981 | Sanford Palay      |
| 1982 | Richard Eakin      |
| 1983 | Hans Ris           |
| 1984 | Cecil Hall         |
| 1985 | Gaston Dupouy      |
| 1986 | F.O. Schmitt       |
| 1987 | Marilyn Farquhar   |
| 1988 | Morris Karnovsky   |
| 1989 | Don W. Fawcett     |
| 1990 | Audrey M. Glauert  |
| 1991 | Hugh E. Huxley     |
| 1992 | Fritiof Sjöstrand  |
| 1993 | Jean-Paul Revel    |
| 1994 | Andrew Somlyo      |
| 1995 | Shinya Inoué       |
| 1996 | Myron C. Ledbetter |
| 1997 | S. J. Singer       |
|      |                    |

### MSA BURTON MEDALIST

| 1975 | James Lake               |
|------|--------------------------|
| 1976 | Michael Isaacson         |
| 1977 | Robert Sinclair          |
| 1978 | David Joy                |
| 1979 | Norton B. Gilula         |
| 1980 | John Spence              |
| 1981 | Barbara Panessa-Warren   |
| 1982 | Nestor Zaluzec           |
| 1983 | Ronald Gronsky           |
| 1984 | David B. Williams        |
| 1985 | Richard Leapman          |
| 1986 | J. Murray Gibson         |
| 1987 | Ronald Milligan          |
| 1988 | A.D. Romig, Jr.          |
| 1989 | Laurence D. Marks        |
| 1990 | W. Mason Skiff           |
| 1991 | Joseph R. Michael        |
| 1992 | Kannan Krishnan          |
| 1993 | Joseph A. N. Zasadzinski |
| 1994 | Jan M. Chabala           |
| 1995 | Joanna L. Batstone       |
| 1996 | Vinayak P. Dravid        |
| 1997 | P. M. Ajayan             |
|      |                          |

**Physical Sciences** 

Robert Heidenreich

Vladimir Zworykin

Benjamin M. Siegel

Albert Crewe

James Hillier

V.E. Cosslet

John Cowley Gareth Thomas

Otto Scherzer

- Sir Charles Oatley 1984
- Ernst Ruska 1985
- Peter Hirsch 1986 1987 Jan LePoole
- Hatsujiro Hashimoto 1988
- 1989 Elmar Zeitler
- 1990 Gertrude F. Rempfer
- Archie Howie 1991
- 1992 Oliver Wells
- 1993 Ken Smith
- Dennis McMullan 1994
- David B. Wittry 1995
- John Silcox 1996
- 1997 Peter Swann

### MSA DISTINGUISHED SERVICE AWARD

| 1992 | Ronald Anderson         |
|------|-------------------------|
|      | G.W. "Bill" Bailey      |
|      | Frances Ball            |
|      | Blair Bowers            |
|      | Deborah Clayton         |
|      | Joseph Harb             |
|      | Kenneth Lawless         |
|      | Morton Maser            |
|      | Caroline Schooley       |
|      | John H.L. Watson        |
| 1993 | E. Laurence Thurston    |
| 1994 | Richard F.E. Crang      |
| 1995 | Raymond K. Hart         |
| 1996 | José A. Mascorro        |
| 1997 | William T. Gunning, III |
|      |                         |

### MSA OUTSTANDING TECHNOLOGIST AWARD

| 1993 | Ben O. Spurlock   |
|------|-------------------|
| 1994 | Bernard J. Kestel |
| 1995 | Kai Chien         |
| 1996 | David W. Ackland  |
|      |                   |

- John P. Benedict 1997
- Stanley J. Klepeis

### MSA PAST PRESIDENTS

| 1942 | G.L. Clark <sup>1</sup>        |
|------|--------------------------------|
|      |                                |
| 1943 | R. Bowling Barnes <sup>2</sup> |
| 1944 | R. Bowling Barnes              |
| 1945 | James Hillier                  |
| 1946 | David Harker                   |
| 1947 | William G. Kinsinger           |
| 1948 | Perry C. Smith                 |
| 1949 | F.O. Schmitt                   |
| 1950 | Ralph W.G. Wyckoff             |
| 1951 | Robley C. Williams             |
| 1952 | R.D. Heidenreich               |
| 1953 | Cecil E. Hall                  |
| 1954 | Robert G. Picard               |
| 1955 | Thomas F. Anderson             |
| 1956 | William L. Grube               |
| 1957 | John H.L. Watson               |
| 1958 | Max Swerdlow                   |
| 1959 | John H. Reisner                |
| 1960 | D. Gordon Sharp                |
| 1961 | D. Maxwell Teague              |
| 1962 | Keith R. Porter                |
| 1963 | Charles Schwartz               |
| 1964 | Sidney S. Breese               |
| 1965 | Virgil G. Peck                 |
| 1966 | Walter Frajola                 |
| 1967 | Joseph J. Comer                |
| 1968 | John H. Luft                   |
| 1969 | W.C. Bigelow                   |
|      | e                              |

<sup>1</sup>Chair of committee to arrange first meeting <sup>2</sup>Temporary (pre-constitution)

| 1970 | Russell Steere         |
|------|------------------------|
| 1971 | Robert M. Fisher       |
| 1972 | Daniel C. Pease        |
| 1973 | Benjamin Siegel        |
| 1974 | Russell J. Barnett     |
| 1975 | Gareth Thomas          |
| 1976 | Etienne de Harven      |
| 1977 | T.E. Everhart          |
| 1978 | Myron Ledbetter        |
| 1979 | John Silcox            |
| 1980 | Michael Beer           |
| 1981 | John Hren              |
| 1982 | Lee Peachey            |
| 1983 | David Wittry           |
| 1984 | J. David Robertson     |
| 1985 | Dale Johnson           |
| 1986 | Robert Glaeser         |
| 1987 | Linn W. Hobbs          |
| 1988 | John-Paul Revel        |
| 1989 | Ray Carpenter          |
| 1990 | Keith R. Porter        |
| 1991 | Charles Lyman          |
| 1992 | Patricia Calarco       |
| 1993 | Michael S. Isaacson    |
| 1994 | Robert R. Cardell      |
| 1995 | Terence E. Mitchell    |
| 1996 | Margaret Ann Goldstein |
| 1997 | C. Barry Carter        |
|      |                        |

### 1998 MICROBEAM ANALYSIS SOCIETY AWARDS PRESIDENTIAL SCIENCE AWARD



### FREDERICK H. SCHAMBER

Frederick H. Schamber received his Ph.D. in physics at Iowa State University in 1970. He joined Tracor Northern in 1972 where he developed x-ray analyzer software and managed the research and development activities. He joined RJ Lee Group in 1990 and is currently Vice President of RJ Lee Instruments Limited with responsibility for product development and corporate direction. Fred's professional interests have focused on instrumentation development, with spectral analysis, computer automation, and electron optics design being particular emphases. His 1973 invention and publication of the filtered least-squares fit from reference spectra provided the emerging EDS industry with its first on-line method for reliable quantification of complex EDS spectra. He has been, and continues to be, extensively involved in the development of automated and integrated SEM/EDS instrumentation. Fred has served as a director of MAS and was the 1978 recipient of the society's Corning award for best contributed paper.



JON J. MCCARTHY

Jon is a native of Wisconsin and received a BS in physics and mathematics from the University of Wisconsin-Eau Claire. He received the Ph.D. in Physics from Iowa State University, following in the footsteps of such other famous MAS members as Bob Myklebust, Joe Doyle, and Fred Schamber! After a two year post-Doc appointment in the Center for Radiation Research at NIST (formerly NBS), Jon joined NORAN Instruments (formerly Tracor Northern) as a senior scientist where he is now Vice-President of Technology and Engineering. Jon has been a member of MAS since 1976 and has served the society in many roles. He has been a MAS tour speaker on three occasions, and was a session chair at the 92, 94 and 97 meetings. In 1997 he was the MAS program chair for the M&M meeting, and this year he is the MAS co-chair for M&M '98 while also organizing the MAS Topical Symposium celebrating Thirty Years of EDS in Microanalysis. In addition, Jon has served on the MAS council as a director (1989-91), as a corporate liaison (1992-3), and as MAS president (1995).



VINAYAK P. DRAVID

Vinayak P. Dravid received his undergraduate B.Tech degree in Metallurgical Engineering from the Indian Institute of Technology (IIT), Bombay–India in 1984, and his PhD in Materials Science & Engineering in fall of 1990 from Lehigh University. He then gathered his courage to venture into academic career the same year with the Department of Materials Science & Engineering at Northwestern University. He is now an associate professor and directs the electron probe instrumentation center (*EPIC*).

Professor Dravid's research and teaching interests revolve around nanoscale phenomena in solids-specifically interfacial phenomena in ceramics and nanostructured materials, and the prudent use of emerging as well as conventional electron microscopy techniques. He has authored over 80 refereed journal publications and holds several patents in these areas. Prof. Dravid is a recipient of various research awards including: NSF Young Investigator Award, Exxon Foundation Fellowship, IBM Faculty Development Award, the Microscopy Society of America (MSA) Burton Medal and the Robert L. Coble award from the American Ceramic Society. He has been affiliated with the MAS since his graduate days, and has served the microscopy and microanalysis community in various capacities. One of Prof. Dravid's passions (and challenges) is to increase societal awareness of science and technology, specifically that in materials science and technology. He enjoys touring and hosting local area high schools, and attempts to convey the beauty, diversity and complexity of materials via electron microscopy and microanalysis.

xviii

### 1998 MAS DISTINGUISHED SCHOLAR AWARDS

Z.W. Chen University of Southern California

K.D. Johnson Northwestern University

R.J. Kline North Carolina State University

D.B. Williams

P.M. Raj Rutgers University K. Siangchaew Stevens Institute of Technology

A.P. Smith North Carolina State University

W. Tian University of Michigan

S.H. Wood University of California–Riverside

### MAS PRESIDENTIAL AWARDS

|      | Science         |      | Service        |
|------|-----------------|------|----------------|
| 1977 | R. Castaing     | 1977 | P. Lublin      |
| 1978 | K.F.J. Heinrich | 1978 | D.R. Beaman    |
| 1979 | P. Duncumb      | 1979 | M.A. Giles     |
| 1980 | D.B. Wittry     | 1980 | A.A. Chodos    |
| 1981 | S.J. Reed       | 1981 | R. Myklebust   |
| 1982 | R. Shimizu      | 1982 | J. Doyle       |
| 1983 | J. Philibert    | 1983 | D. Newbury     |
| 1984 | L.S. Birks      | 1984 | J.I. Goldstein |
| 1985 | E. Lifshin      | 1985 | M.C. Finn      |
| 1986 | R. Myklebust    | 1986 | V. Shull       |
| 1987 | O.C. Wells      | 1987 | D.C. Joy       |
| 1988 | J.D. Brown      | 1988 | C.G. Cleaver   |
| 1989 | J. Hillier      | 1989 | W.F. Chambers  |
| 1990 | T.E. Everhart   | 1990 | C.E. Fiori     |
| 1991 | J.I. Goldstein  | 1991 | T.G. Huber     |
| 1992 | G. Lorimer      | 1992 | E. Etz         |
|      | G. Cliff        | 1993 | H.A. Freeman   |
| 1993 | D.E. Newbury    | 1994 | J.L. Worrall   |
| 1994 | D.C. Joy        | 1995 | R.W. Linton    |
| 1995 | G. Bastin       | 1996 | P.F. Hlava     |
| 1996 | A.V. Somlyo     | 1997 | J.A. Small     |
|      | A.P. Somlyo     |      |                |

### MAS K.F.J. HEINRICH AWARDS

| 1986 | P. Statham     | 1991 | A.D. Romig, Jr. |
|------|----------------|------|-----------------|
| 1987 | J.T. Armstrong | 1992 | S. Pennycook    |
| 1988 | D.B. Williams  | 1993 | P.E. Russell    |
| 1989 | R. Leapman     | 1994 | J.R. Michael    |
| 1990 | R.W. Linton    | 1995 | N. Lewis        |
|      |                | 1997 | R. Gauvin       |

xix

1997

### MAS PAST PRESIDENTS

| L.S. Birks      | 1983                                                                                                                                                                                          | R. Bolon                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K.F.J. Heinrich | 1984                                                                                                                                                                                          | D.C. Joy                                                                                                                                                                                                                                                                                                                                                                                                 |
| R.E. Ogilvie    | 1985                                                                                                                                                                                          | D.E. Newbury                                                                                                                                                                                                                                                                                                                                                                                             |
| A.A. Chodos     | 1986                                                                                                                                                                                          | C.G. Cleaver                                                                                                                                                                                                                                                                                                                                                                                             |
| K. Keil         | 1987                                                                                                                                                                                          | C. Fiori                                                                                                                                                                                                                                                                                                                                                                                                 |
| D.R. Beaman     | 1988                                                                                                                                                                                          | W.F. Chambers                                                                                                                                                                                                                                                                                                                                                                                            |
| P. Lublin       | 1989                                                                                                                                                                                          | D.B. Wittry                                                                                                                                                                                                                                                                                                                                                                                              |
| J.W. Colby      | 1990                                                                                                                                                                                          | A.D. Romig, Jr.                                                                                                                                                                                                                                                                                                                                                                                          |
| E. Lifshin      | 1991                                                                                                                                                                                          | J.T. Armstrong                                                                                                                                                                                                                                                                                                                                                                                           |
| J.I. Goldstein  | 1992                                                                                                                                                                                          | D.B. Williams                                                                                                                                                                                                                                                                                                                                                                                            |
| J.D. Brown      | 1993                                                                                                                                                                                          | T.G. Huber                                                                                                                                                                                                                                                                                                                                                                                               |
| D.F. Kyser      | 1994                                                                                                                                                                                          | J. Small                                                                                                                                                                                                                                                                                                                                                                                                 |
| O.C. Wells      | 1995                                                                                                                                                                                          | J. McCarthy                                                                                                                                                                                                                                                                                                                                                                                              |
| J.R. Coleman    | 1996                                                                                                                                                                                          | D.E. Johnson                                                                                                                                                                                                                                                                                                                                                                                             |
| R. Myklebust    | 1997                                                                                                                                                                                          | Joseph R. Michael                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | K.F.J. Heinrich<br>R.E. Ogilvie<br>A.A. Chodos<br>K. Keil<br>D.R. Beaman<br>P. Lublin<br>J.W. Colby<br>E. Lifshin<br>J.I. Goldstein<br>J.D. Brown<br>D.F. Kyser<br>O.C. Wells<br>J.R. Coleman | K.F.J. Heinrich       1984         R.E. Ogilvie       1985         A.A. Chodos       1986         K. Keil       1987         D.R. Beaman       1988         P. Lublin       1989         J.W. Colby       1990         E. Lifshin       1991         J.I. Goldstein       1992         J.D. Brown       1993         D.F. Kyser       1994         O.C. Wells       1995         J.R. Coleman       1996 |

### MICROSCOPY AND MICROANALYSIS 1998



Ralph M. Albrecht MSA President



Ryna B. Marinenko MAS President

### MICROSCOPY AND MICROANALYSIS 1998



Janet Woodward Local Arrangements Chair



Kathleen B. Alexander Program Chair



Robert L. Price Local Arrangements Treasurer



Jay Jerome Program Vice Chair



Meredith Bond Program Co Chair



Jon J. McCarthy Program Co Chair

xxii

### MICROSCOPY AND MICROANALYSIS 1998

### PROGRAM COMMITTEE

Kathleen B. Alexander, Chair Jay Jerome, Vice Chair Meredith Bond, Co Chair Jon J. McCarthy, Co Chair

Danny Akin Ralph Albrecht Ian Anderson Ron Anderson John Armstrong John Basgen Jim Bentley Mary Buckett Mary Grace Burke Peter Crozier Ken Downing Mark Ellisman) Stan Erlandson Raynald Gauvin Steve Goodman **Bill Gunning** Jim Hainfeld Eric Henderson Brian Herman Fred E. Hossler Robert Hull Charles Humphrey Peter Ingram David Joy Louis Kerr Mike Kersker Matt Libera Beverly Maleeff John Mansfield Ryna Marinenko

José Mascorro Joerg Maser Frederick R. Maxfield Stuart McKernan Doug Medlin Greg Meeker Mike Miller Sara Miller Jeremy Mitchell Terry Mitchell David Muller Dale Newbury Mike O'Keefe Jim Pawley Steve Pennycook Bob Price John A. Reffner Klaus-Ruediger Peters Phil Russell Fred Schamber Sandy Silvers Gina Sosinsky Alasdair Steven Jim Turner Edgar Voelkl Z.L. Wang Mark Willingham Janet Woodward Nestor Zaluzec Yimei Zhu

xxiii

### FOREWORD

### Ralph Albrecht & Ryna Marinenko President MSA and President MAS

Beginning with last year's volume, the proceedings of the annual meeting are being published as a supplement to our Journal, "Microscopy and Microanalysis". It should also be noted that "Microscopy and Microanalysis" is now abstracted by Current Contents in both the biological and physical science categories. The Journal is also abstracted by Biosis and by Chemical Abstracts. Hence the scientific content of Microscopy and Microanalysis can now be readily searched and is widely available. Both the meeting and the proceedings continue as a joint MSA/MAS effort under the direction of a single Program Committee, a single Local Arrangements Committee, and are published as a single Proceedings. We have also continued the Presidential Happenings "tradition" begun last year where our awards ceremonies are coupled with presentations that all meeting participants will find interesting and enjoyable.

We wish to congratulate the Program Committee chaired by Kathi Alexander and the Local Arrangements Committee chaired by Janet Woodward for their hard work and dedication in making Microscopy and Microanalysis '98 an outstanding meeting. Despite this year's earlier-than-usual meeting date and hence an earlier abstract due date, all indications are that this is one of the most successful MSA/MAS sponsored meetings both in terms of participation and attendance. Kathi and co-chairs Jay Jerome (MSA), Meredith Bond (MAS), and Jon McCarthy (MAS) have worked extremely hard during the past two years arranging sessions, speakers, pre-meeting workshops, tutorials, etc. The result is a comprehensive program of platform and poster symposia complimented by a variety of special offerings including a special pre-meeting symposium/workshop on multiphoton excitation microscopy presented by Jim Pawley, an excellent program of pre-meeting short courses organized by Brian Herman and Louis Kerr, and a special MAS symposium entitled "30 Years of Energy Dispersive Spectrometry". James Turner and John Mansfield have put together an outstanding set of tutorials, the computer workshop will be presented by Nestor Zaluzec and John Mansfield, while Sandy Silvers and Bev Maleeff from The Technologist's Forum have arranged a special discussion on image manipulation and enhancement as well as a symposium on the selection and use of instrumentation. The LAC under Janet Woodward's leadership has been equally instrumental to the success of the meeting in arranging for our world class meeting site, exciting social events, hotels, shuttles, etc. This year marks the first Microscopy and Microanalysis Meeting managed by the Rebedeau Group (headed by Mary Beth Rebedeau) which has been working closely with both the LAC and the Program Committee developing an advanced and streamlined program production process as well as coordinating on site meeting management.

Our thanks to Bill Bailey, the MSA Proceedings Editor, who, over the years, has been instrumental in producing these first class Proceedings and who sent us many friendly reminders to insure the timely submission of contributions needed for the Proceedings. We appreciate his tireless dedication. We also wish to express our appreciation to the extremely competent and professional staff at Springer Verlag for their attentive efforts in publishing our journal and, in particular, this Proceedings issue.

We also extend our hearty congratulations to the MSA and MAS award winners. Avril Somlyo and Mike Whelan have been selected as recipients for the MSA Distinguished Scientist Awards in the Biological and Physical Sciences respectively. Ian Anderson is the MSA Burton Medalist and Nestor Zaluzec is the recipient of the MSA Morton D Maser Outstanding Service Award. The MSA Outstanding Technologist Awards go to Charles Echer in the Physical Sciences category and to Hilton Mollenhauer in the Biological Sciences category. The recipient of the MAS Presidential Science Award is Fred Schamber, the MAS Presidential Service Award goes to Jon McCarthy, and the K.F.J. Heinrich Award recipient is Vinayak Dravid. Congratulations also to the 10 MSA Presidential Student Awardees, the 3 recipients of MSA Professional Technical Staff Awards, and the 8 MAS Distinguished Scholar Awardees.

xxiv

Atlanta is a hub for science, communication, and travel. It is a vibrant city with great natural beauty, many modern and historical sites of interest, outstanding restaurants and shops, and an efficient, inexpensive public transportation system. Our special thanks to the City of Atlanta for the hospitality they have extended to us. We are pleased to have been able to select The Georgia World Congress Center, an outstanding internationally recognized facility, as the venue for our scientific sessions and exhibits. We thank all the organizers and participants for making Microscopy and Microanalysis 1998 a premier event. We now look forward to Portland, Oregon, the site of Microscopy and Microanalysis '99.

### TITLES AND ORDER OF SESSIONS

### ADVANCES IN REMOTE MICROSCOPY, INSTRUMENT AUTOMATION AND DATA STORAGE

| Possibilities and examples for remote microscopy including digital image acquisition, transfer, and             |
|-----------------------------------------------------------------------------------------------------------------|
| archiving—I. Daberkow, M. Schierjott                                                                            |
| Quicktime as a storage medium for dynamic data sets in <i>in-situ</i> electromicroscopyJ. F. Mansfield          |
| The Materials Microcharacterization Collaboratory—M. C. Wright                                                  |
| A testbed for automated acquisition from a TEM-C. S. Potter, B. Carragher, H. Chu, B. J. Frey, R. Josephs,      |
| C. Lin, N. Kisseberth, K. L. Miller, K. Nahrstedt                                                               |
| A model for Internet access to remote visual scientific instruments-C L. Morgan, R. A. Hillyard, G. M. Jones,   |
| D. L. Pardoe, N. R. Smith                                                                                       |
| Telemicroscopy: Development of a Collaboratory for Microscopic Digital Anatomy-M. H. Ellisman, M. Hadida,       |
| D. Greer, M. Wong, S. Lindsey, S. Peltier, S. J. Young                                                          |
| Network control and tools for electron microscopy-J. A. Hunt, C. Meyer                                          |
| SEM stop-frame, color, 3D animation for motion pictures-D. Scharf, J. Wilbrink, J. A. Hunt                      |
| Tele-Presence Microscopy: A progress report—N. J. Zaluzec                                                       |
| A telepresence microscopy research session in the DOE2000 materials microcharacterization collaboratory         |
| —L. F. Allard, E. Voelkl, T. A. Nolan, C. K. Narula, C. Montreuil, W. C. Bigelow, J. F. Mansfield               |
| National Institute of Standards and Technology—Texas Instruments industrial collaboratory testbed—              |
| M. T. Postek, M. Bennett, N. J. Zaluzec, T. Wheatley, S. Jones                                                  |
| A generic protocol for controlling an SEM over a TCP/IP link-N. W. M. Ritchie, P. V. Woods                      |
| Tele-tutoring—from learning to earning—West Greene School District Team, RJ Lee Group Team,                     |
| L. S. Koshinski, L. T. Weinrich                                                                                 |
| TEM performance evaluations with slow-scan CCD cameras—M. Pan                                                   |
| A multi-instrument virtual collaborative environment via the World Wide Web at NIST—B. B. Thorne,               |
| E. B. Steel, A. J. Fahey                                                                                        |
| Televisualization: An aid to collaborative research in molecular structure biology-M. F. Schmid, P. Matsudaira, |
| M. T. Dougherty, M. B. Sherman, C. Henn, W. Chiu                                                                |
| Design and implementation of a laboratory-wide image management system based on Microsoft Windows               |
| NT and optical storage technology—R. McGill                                                                     |
| Centrifuge polarizing microscope—S. Inoué, R. A. Knudson, K. Suzuki, N. Okada, H. Takahashi, M. Iida,           |
| K. Yamanaka                                                                                                     |
| Virtual EDS—A cross-platform interactive multimedia tool for self-paced instruction in energy dispersive        |
| spectroscopy and microanalysis—B. J. Griffin, C. E. Nockolds                                                    |
| A model outreach program for teaching scanning electron microscopy technology: Successes and failures-          |
| N. R. Smith, R. A. Quinta                                                                                       |
| LBNL and the Materials Microcharacterization Collaboratory—M. A. O'Keefe, J. R. Taylor, D. K. Owen              |
| Real-time remote control of a scanning electron microscope across the vBNS/Internet 2-J. F. Mansfield,          |
| A. Adamson, K. Coffman                                                                                          |

xxvii

| Interactive nanovisualization for science and engineering education-Scanning probe microscope on the      |    |
|-----------------------------------------------------------------------------------------------------------|----|
| Web—B. L. Ramakrishna, A. Razdan, J. Sun, E. Ong, A. A. Garcia                                            | 46 |
| Integrated data acquisition and instrument control for local and remote operation of electron microscopes |    |
| equipped with imaging detectors and spectrometers—W. J. de Ruijter, J. K. Weiss                           | 48 |
| Towards sub-Ångstrom resolution with a 200 kV TEM by means of a Cs-corrector and a computer controlled    |    |
| alignment procedure—M. Haider, S. Uhlemann                                                                | 50 |
| Practical autotuning for transmission electron microscopes-M. Pan                                         | 52 |

### APPLIED IMAGE PROCESSING: WHAT IT CAN DO FOR DIGITAL IMAGING

| Acquisition and processing of large dynamic range digital images-J. A. Hunt                                | 54 |
|------------------------------------------------------------------------------------------------------------|----|
| Understanding digital color imaging and processing-B. D. Newell                                            | 56 |
| Image analysis—Turning images into data—J. J. Friel, E. B. Prestridge                                      | 58 |
| Spot measurement tool for diffraction pattern analysis-D. S. Bright, A. F. Myers, S. Turner, E. B. Steel   | 60 |
| Edge sharpening for unbiased edge detection in field emission scanning electron microscope (FESEM)         |    |
| Images—P. M. Raj, S. M. Dunn, W. R. Cannon                                                                 | 62 |
| Extracting objects with adaptive segmentation techniques: Going beyond intensity thresholding-P. Eggleston | 64 |
| Montages and virtual reality—A paradigm for presentation of analytical data—S. K. Kennedy, D. Barton,      |    |
| H. P. Lentz, J. Newlin, P. M. Sauter, F. C. Schwerer                                                       | 66 |
| Digital image acquisition and presentation for high resolution SEM—Y. Chen                                 | 68 |
| Digital precision imaging: Every pixel counts—KR. Peters                                                   | 70 |
| A working model of a fully digital academic high-throughput microscopy facility—M. R. Dickson              | 72 |

### IMAGING AND ANALYSIS AT THE ATOMIC LEVEL: 30 YEARS OF ATOM PROBE FIELD ION MICROSCOPY

| Anecdotes from an atom-probe original-J. A. Panitz                                                         | 74 |
|------------------------------------------------------------------------------------------------------------|----|
| The position-sensitive atom probe—A new dimension in atom probe analysis—A Cerezo, P. J. Warren,           |    |
| G. D. W. Smith                                                                                             | 76 |
| The tomographic atom probe: A new dimension in material analysis—B. Deconihout, P. Pareige, D. Blavette,   |    |
| A. Bostel, A. Menand                                                                                       | 78 |
| A transparent anode array detector for 3D atom probes—M. K. Miller                                         | 80 |
| Development of the scanning atom probe and atomic level analysis-O. Nishikawa, T. Sekine, Y. Ohtani,       |    |
| K. Maeda, Y. Numada, M. Watanabe, M. Iwatsuki, S. Aoki, J. Itoh, K. Yamanaka                               | 82 |
| Local electrode atom probes-T. F. Kelly, P. P. Camus                                                       | 84 |
| Towards 3D lattice reconstruction with the position sensitive atom probe—P. J. Warren, A. Cerezo,          |    |
| G. D. W. Smith                                                                                             | 86 |
| Digital field ion microscopy—S. J. Sijbrandij, K. F. Russell, R. C. Thomson, M. K. Miller                  | 88 |
| Atom probe field ion microscopy of high resistivity materials—S. J. Sijbrandij, D. J. Larson, M. K. Miller | 90 |
|                                                                                                            |    |

xxviii

| An APFIM and TEM study of Ni₄Mo precipitation in a commercial Ni-28% Mo-1.4% Fe-0.4% Cr wt. % alloy—                         |     |
|------------------------------------------------------------------------------------------------------------------------------|-----|
| R. C. Thomson, N. Brown, J. S. Bates, K. F. Russell, M. K. Miller                                                            | 92  |
| High resolution analysis of elemental partitioning in nickel-base superalloy welds using atom probe field ion                |     |
| microscopy—S. S. Babu, S. A. David, J. M. Vitek, M. K. Miller                                                                | 94  |
| Phase separation and precipitation in a PH 17-4 stainless steel by prolonged aging at 400°C—M. Murayama,                     |     |
| Y. Katayama, K. Hono                                                                                                         | 96  |
| Microstructural characterization of rapidly solidified ultrahigh strength aluminum alloys—D. H. Ping,                        |     |
| K. Hono, A. Inoue                                                                                                            | 98  |
| Atom probe field ion microscopy of titanium aluminides—D. J. Larson,                                                         |     |
| M. K. Miller                                                                                                                 | 100 |
| Atom probe field ion microscopy of polysynthetically twinned titanium aluminide—D. J. Larson, M. K. Miller,                  |     |
| H. Inui, M. Yamaguchi                                                                                                        | 102 |
| Atom probe studies of the nanochemistry of steels-G. D. W. Smith, A. Cerezo, T. J. Godfrey, J. Wilde,                        |     |
| F. M. Venker                                                                                                                 | 104 |
| The role of atom probe in the study of nickel base superalloys-D. Blavette                                                   | 106 |
| APFIM and HREM studies of nanocomposite soft and hard magnetic materials—K. Hono, D. H. Ping,                                |     |
| M. Ohnuma                                                                                                                    | 108 |
| The atom-probe field ion microscope: Applications in surface science—G. L. Kellogg                                           | 110 |
| Field ion microscopy of multilayer film devices-D. J. Larson, A. K. Petford-Long, A. Cerezo                                  | 112 |
| APFIM studies of interfaces: Structure and composition—H. Nordén                                                             | 114 |
| Clustering and segregation of Ag and Mg atoms in the nucleation and growth stage of $\Omega$ and T <sub>1</sub> precipitates |     |
| in Al-Cu(-Li) alloys—M. Murayama, L. Reich, K. Hono                                                                          | 116 |
| APFIM investigation of segregation in a nickel base alloy-M. Thuvander, K. Stiller                                           | 118 |

### COMPOSITIONAL MAPPING WITH HIGH SPATIAL RESOLUTION

| Compositional imaging rediscovered: What's new/what's not?—M. S. Isaacson                                                 | 120 |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Interdisciplinary development of EELS compositional mapping-R. D. Leapman                                                 | 122 |
| Direct imaging of trace elements, isotopes, and molecules using mass spectrometry-R. W. Linton                            | 124 |
| Multispectral imaging in light microscopy-K. R. Spring                                                                    | 126 |
| Quantitative energy-filtering transmission electron microscopy (EFTEM) in materials science—F. Hofer,                     |     |
| W. Grogger, P. Warbichler                                                                                                 | 128 |
| Polarization modulation differential interference contrast (Pol Mod DIC) microscopy: An improvement for                   |     |
| video microscopy-N. S. Allen, D. Moxley, D. Collings, G. Holzwarth                                                        | 130 |
| Transmission electron holography of a GaN/Al <sub>x</sub> Ga <sub>1-x</sub> N heterostructure—Y. C. Wang, C. Kisielowski, |     |
| E. C. Nelson, M. A. O'Keefe                                                                                               | 132 |
| Strategies for combining elemental distribution data derived from multiple images and samples-M. E. Cantino,              |     |
| J. G. Eichen                                                                                                              | 134 |
| Quantitative composition and thickness mapping with high spatial resolution by XEDS in a 300kV FEG-AEM-                   |     |
| M. Watanabe, D. B. Williams                                                                                               | 136 |

xxix

| Compositional imaging at the sub-2Å level using a 200 kV Schottky field emission transmission electron         |     |
|----------------------------------------------------------------------------------------------------------------|-----|
| microscope-E. M. James, N. D. Browning, A. W. Nicholls, M. Kawasaki, S. Stemmer, Y. Xin, G. Duscher            | 138 |
| Quantitative compositional mapping of phase separation in thin polymer films-D. A. Winesett, H. Ade,           |     |
| A. P. Smith, S. Qu, S. Ge, M. Rafailovich, S. Sokolov                                                          | 140 |
| Morphological and chemical characterization of a mechanically alloyed rubber toughened PMMA with x-ray         |     |
| spectromicroscopy—A. P. Smith, H. Ade, R. J. Spontak, C. C. Koch                                               | 142 |
| X-ray microscopy analysis of the morphology of poly(ethylene terephthalate)/vectra blends produced by          |     |
| mechanical alloying—A. P. Smith, C. Bai, H. Ade, R. J. Spontak, C. M. Balik, C. C. Koch, C. K. Saw             | 144 |
| Compositional characterization of an O-N-O layer in a dram using FE-TEM and EDS elemental mapping-             |     |
| M. Kawasaki, T. Oikawa, K. Ibe, K. H. Park, M. Shiojiri, M. Kersker                                            | 146 |
| Compositional characterization of an O-N-O layer in a dram using FE-TEM and energy filtered elemental          |     |
| mapping—M. Kawasaki, T. Oikawa, K. Ibe, K. H. Park, M. Shiojiri, M. Kersker                                    | 148 |
| Compositional characterization of an O-N-O layer in a dram using FE-(S)TEM and EELS—M. Kawasaki,               |     |
| T. Oikawa, K. Ibe, K. H. Park, M. Shiojiri, M. Kersker                                                         | 150 |
| EFTEM and STEM EELS spectrum imaging-J. A. Hunt, R. H. Harmon                                                  | 152 |
| History and cross-disciplinary perspective of compositional imaging and mapping with NEXAFS microscopy-        |     |
| H. Ade                                                                                                         | 154 |
| Industrial and clinical applications of infrared spectroscopic imaging using focal-plane arrays-L. H. Kidder,  |     |
| I. W. Levin, E. N. Lewis                                                                                       | 156 |
| Interfacial segregation and concentration profiles by energy-filtered transmission electron microscopy: Issues |     |
| and guidelines—J. Bentley                                                                                      | 158 |
| Compositional mapping by scanning electron microscopy with energy dispersive X-ray spectrometry:               |     |
| Recognizing facts and artifacts-D. E. Newbury, D. S. Bright                                                    | 160 |
|                                                                                                                |     |

### 30 YEARS OF ENERGY DISPERSIVE SPECTROMETRY IN MICROANALYSIS

| Going nondispersive—K. F. J. Heinrich                                                                       | 162 |
|-------------------------------------------------------------------------------------------------------------|-----|
| EDS from then till now-A chronology of innovation-J. J. Friel                                               | 164 |
| Si(Li) and HPG detectors: Recent measurements—R. A. Sareen, T. Nashashibi                                   | 166 |
| The impact of EDS in materials science microanalysis—D. B. Williams                                         | 168 |
| The impact of biological microanalysis on analytical electron microscopy—A. P. Somlyo                       | 170 |
| The next generation of EDS: Microcalorimeter EDS with 3 eV energy resolution—J. M. Martinis, K. D. Irwin,   |     |
| D. A. Wollman, G. C. Hilton, L. L. Dulcie, N. F. Bergren                                                    | 172 |
| Superconducting tunnel junction spectrometers for high resolution energy dispersive spectroscopy—           |     |
| C. A. Mears                                                                                                 | 174 |
| High resolution X-ray spectroscopy at room temperature-L. Strüder, P. Lechner, P. Leutenegger, T. Schülein  | 176 |
| Application of x-ray optics to energy dispersive spectroscopy—J. J. McCarthy, D. J. McMillan                | 178 |
| The use of energy dispersive x-ray microanalysis in the geological sciences: 30 years of heavy and creative |     |
| application-J. T. Armstrong                                                                                 | 180 |
| X-ray energy dispersive spectroscopy in the environmental scanning electron microscope—J. F. Mansfield,     |     |
| B. L. Pennington                                                                                            | 182 |
|                                                                                                             |     |

| The analysis of particles with energy dispersive x-ray spectroscopy (EDS)—J. A. Small, J. A. Armstrong,           |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| D. S. Bright, B. B. Thorne                                                                                        | 184 |
| Energy dispersive spectrometry in the AEM-J. R. Michael                                                           | 186 |
| Low beam energies for EDS chemical microanalysis in the SEM (LVEDS)-E. D. Boyes                                   | 188 |
| Low voltage x-ray microanalysis of bulk bio-organic samples—P. Echlin                                             | 190 |
| EDS of thin biological specimen in the study of time-dependent physiological processes-M. F. Wendt-Gallitelli,    |     |
| T. Voigt, M. Schultz, F. Rudolf, G. Isenberg                                                                      | 192 |
| "Standardless" quantitative analysis by electron-excited energy dispersive x-ray spectrometry: What is its proper |     |
| role?—D. E. Newbury                                                                                               | 194 |
| Microcalorimeter EDS measurements of chemical shifts in Fe compounds—D. A. Wollman, D. E. Newbury,                |     |
| G. C. Hilton, K. D. Irwin, L. L. Dulcie, N. F. Bergren, J. M. Martinis                                            | 196 |
| Unprecedented performance improvement for thermoelectrically cooled Si(Li) detector for EDS-S. Barkan,            |     |
| K. F. Ihrig, M. B. Abott                                                                                          | 198 |
| A new EDS equipment (GEM detector with SuperATW window) and a correction for Si-contamination                     |     |
| improve the quantitative electron probe microanalysis of biological cryosections—M. Schultz, F. Rudolf,           |     |
| M. F. Wendt-Gallitelli                                                                                            | 200 |
| Multivariate statistical analysis of particle x-ray spectra-I. M. Anderson, J. A. Small                           | 202 |
| Extracting chemical information from energy-dispersive x-ray spectra by multivariate statistical analysis         |     |
| (MSA)M. Saunders, E. S. K. Menon, D. J. Chisholm, A. G. Fox                                                       | 204 |
| X-ray emission from porous materials: New results—R. Gauvin                                                       | 206 |
| Statistical consideration in EDS microanalysis—E. Lifshin                                                         | 208 |
| Measuring performance of EDX systems-P. Statham                                                                   | 210 |
| Trace element quantitation in biological x-ray microanalysis—R. D. Leapman, C. R. Swyt-Thomas,                    |     |
| D. v. Agoston, N. Pivovarova, S. B. Andrews                                                                       | 212 |
| Quality assurance of energy dispersive spectrometry systems-E. B. Steel, R. B. Marinenko                          | 214 |

### PROBLEM ELEMENTS AND SPECTROMETRY PROBLEMS IN X-RAY MICROANALYSIS

Problem elements and spectrometry problems in x-ray microanalysis: The black holes of the periodic table-

| J. T. Armstrong                                                                                         | 216 |
|---------------------------------------------------------------------------------------------------------|-----|
| Extracting low energy x-ray peaks from EDS and WDS spectra-R. L. Myklebust, D. E. Newbury               | 218 |
| Analyzing the light elements in an electron probe microanalyzer-G. F. Baston, H. J. M. Heijligers       | 220 |
| Using quantitative iteration to correct for pathological spectral interferences-J. J. Donovan           | 222 |
| Analyzing Mg and Fe in olivines, pyroxenes, and garnets: Systematic discrepancies-P. Carpenter,         |     |
| J. Armstrong                                                                                            | 224 |
| Limits of analytical accuracy for two critical semiconductors systems: (Al,Ga)(As,P) and (In,Ga)(As,P)- |     |
| J. T. Armstrong                                                                                         | 226 |
| Beam induced composition modifications during electrom beam microanalysis-D. G. Howitt, D. L. Medlin    | 228 |
| k-factor standards for low-z quantification—R. Egerton, M. Malac                                        | 230 |
| The role of Monte Carlo calculations in quantitative analysis-E. Lifshin, L. A. Peluso, R. Gauvin       | 232 |
|                                                                                                         |     |

xxxi

Fluorescent spectroscopy of mineral and material samples-C. M. MacRae, I. R. Harrowfield, N. Wilson,

| M. Yoshiya, P. Fazey, S. Peacock, L. de Yong, H. Adachi              | 234 |
|----------------------------------------------------------------------|-----|
| Computer simulation applied to WD analysis—S. J. B. Reed, A. Buckley | 236 |

### QUANTITATIVE MICROANALYSIS

| Electron microprobe reference materials for geologic analysis-A need for developing strategy-E. Jarosewich     | 238 |
|----------------------------------------------------------------------------------------------------------------|-----|
| A Basalt glass standard for multiple microanalytical techniques-G. P. Meeker, J. E. Taggart, Jr., S. A. Wilson | 240 |
| Electron probe evaluation of heterogeneity in the certification of NIST standard reference materials for       |     |
| microanalysis—R. B. Marinenko, S. Leigh                                                                        | 242 |
| Characterization of archaeological ceramics using scanning electron microscopy and electron microprobe         |     |
| analysis—M. N. Spilde, N. H. Olsen, N. Creager                                                                 | 244 |
| A microprobe study to differentiate bulk chemical data by neutron activation analysis on Guatemalan pottery    |     |
| L. Ross, J. Cogswell, H. Neff                                                                                  | 246 |
| Critical role of EMPA in discovery of a new lunar mineral-M. G. Snow, D. T. Vaniman                            | 248 |

### NEW TRENDS IN SCANNING ELECTRON MICROSCOPY AND MICROANALYSIS

| The effect of mass in electron-solid interactions and the mystery of the "Heinrich kink"—J. J. Donovan,               |     |
|-----------------------------------------------------------------------------------------------------------------------|-----|
| N. E. Pingitore, Jr                                                                                                   | 250 |
| Factors affecting the performance of backscattered electron detectors at low beam accelerating voltages in            |     |
| SEM—V. N. E. Robinson                                                                                                 | 252 |
| Chemical quantitative analysis of small precipitates in the FE-SEM using the energy distribution of backscattered     |     |
| electronsR. Gauvin                                                                                                    | 254 |
| Secondary electron detectors, image quality & contrast—D. Scharf                                                      | 256 |
| Refining equipment for high resolution in-lens cryo-SEM—R. P. Apkarian, S. Lee, J. Keiper                             | 258 |
| Image formation with upper and lower secondary electron detectors in the low voltage field-emission SEM—              |     |
| J. Liu                                                                                                                | 260 |
| Quantitative elemental analysis of the components of Pb exposed cells of <i>Plectonema boryanum</i> using regular and |     |
| overplus cells: An energy dispersive x-ray spectroscopy study—J. J. Goldberg, T. E. Jensen                            | 262 |
| Wool and cashmere fiber identification study using scanning electron microscopy—J. D. Baker, H. P. Lentz,             |     |
| D. G. Kritikos, F. H. Schamber, R. J. Lee                                                                             | 264 |
| Montages link microscopic to macroscopic information in concrete analysis—A. Doerr, S. Badger, P. Brown,              |     |
| S. Sahu                                                                                                               | 266 |
| Design and construction of a quantitative uniaxial straining stage for the environmental SEM—J. F. Mansfield,         |     |
| M. D. Thouless, J. A. Stefano, J. Holbrook                                                                            | 268 |
| In situ mechanical testing of dry and hydrated cellular materials in the environmental scanning electron              |     |
| microscope (ESEM)—D. J. Stokes, A. M. Donald                                                                          | 270 |
| Multivariate statistical analysis of low-voltage EDS spectrum images—I. M. Anderson                                   | 272 |

xxxii

| Use of the disk-of-least-confusion in x-ray microanalysis-E. A. Kenik, S. X. Ren                                                | 274 |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Quantifying SEM resolution and performance-D. C. Joy, E. Völkl                                                                  | 276 |
| Microstructure and microtexture in Nb-silicide based composites-B. P. Bewlay, J. A. Sutliff                                     | 278 |
| Investigation of medium to high strain deformation micro-structures using an automated electron                                 |     |
| backscattering pattern (EBSP) system—A. Godfrey, N. C. Krieger Lasssen, D. A. Hughes, D. J. Jensen                              | 280 |
| Evaluation of boron nitride coated Nextel 312 <sup>TM</sup> Fiber/Blackglas <sup>TM</sup> composites using an environmental SEM |     |
| R. L. Schalek, J. Helmuth, L. T. Drzal                                                                                          | 282 |
| 'Cool ESEM'-Imaging ice-containing systems at freezer temperatures-A. L. Fletcher, T. H. Keller, B. L. Thiel,                   |     |
| A. E. Eddy, A. M. Donald                                                                                                        | 284 |
| ESEM study of film formation in latices polymerised in presence of starch-N. Stelmashenko, A. M. Donald                         | 286 |
| Secondary electron contrast in molecular liquids-B. L. Thiel, D. J. Stokes, A. M. Donald                                        | 288 |
| Electrons, ions and cathodoluminescence in the environmental SEM-B. J. Griffin                                                  | 290 |
| Charge contrast: Some ESEM observations of a new/old phenomenon-E. Doehne                                                       | 292 |
| Operating conditions for quantitative x-ray analysis in the environmental SEM—R. A. Carlton, C. E. Lyman,                       |     |
| J. E. Roberts                                                                                                                   | 294 |
| Optimisation of the S.E. signal to background ratio in ESEM-T. H. Keller, B. L. Thiel, A. M. Donald                             | 296 |
| Beam size in the environmental SEM: A comparison of model and experimental data—S. A. Wight                                     | 298 |
| Using secondary electron contrast for imaging water-oil emulsions in the environmental SEM (ESEM)-                              |     |
| D. J. Stokes, B. L. Thiel, A. M. Donald                                                                                         | 300 |
|                                                                                                                                 |     |

### SCANNED PROBE MICROSCOPY: MUCH MORE THAN JUST BEAUTIFUL IMAGES

| Topographic comparison of G-wire DNA imaged by hydration scanning tunneling and atomic force microscopy          |     |
|------------------------------------------------------------------------------------------------------------------|-----|
| as a function of humidityD. Janigian, E. Morales, T. Muir, B. Garcia, J. Vesenka                                 | 302 |
| Ordering of a functional molecules on a flat surface as evidenced by scanning probe microscopies: The case of    |     |
| a di-alkyl amino group—C. Gorman, I. Touzov, R. Miller                                                           | 304 |
| Langmuir-Blodgett film stability via atomic force microscopy-D. Y. Takamoto                                      | 306 |
| Atomic force microscopy studies of microstructure and properties of self assembled monolayers-J. R. Santiago,    |     |
| E. B. Troughton, R. A. Dennis, P. E. Russell                                                                     | 308 |
| Biometrology? Finding biological, pathological, diagnostic meaning from critical length-scale measurements-      |     |
| M. J. Allen, V. B. Elings                                                                                        | 310 |
| A novel preparation method for high resolution AFM introduced with 2D-streptavidin crystals grown on a           |     |
| biotin-lipid monolayer—S. Scheuring, D. J. Müller, P. Ringler, J. B. Heymann, A. Engel                           | 312 |
| Development of polarization modulation near-field scanning optical microscope and its application to mapping     |     |
| defect-induced birefringence in SrTiO3 bicrystals—J. W. P. Hsu, E. B. McDaniel, S. C. McClain                    | 314 |
| Using a moderate vacuum, hot/cryo-stage equipped AFM for <i>in-situ</i> observation of $\alpha$ -phase growth in |     |
| 60Sn40Pb hypoeutectic solder—D. N. Leonard, P. E. Russell                                                        | 316 |
| An in situ scanning tunnelling microscopy study of the adsorption of the aurocyanide ion onto highly             |     |
| orientated pyrolytic graphite—G. E. Poinen, S. M. Thurgate                                                       | 318 |
| Diamond indenter shaping using focused ion beam-J. R. Phillips, K. F. Jarausch, T. J. Stark, J. E. Houston,      |     |
| D. P. Griffis, P. E. Russell                                                                                     | 320 |

### xxxiii

| The SPM study of surface healing due to mass transport in the liquid-like layer of ice—D. M. Trickett,       |     |
|--------------------------------------------------------------------------------------------------------------|-----|
| V. F. Petrenko                                                                                               | 322 |
| Magnetically-oscillated probe AFM for imaging and stiffness measurements at the liquid-solid interface-      |     |
| S. M. Lindsay, W. Han, N. Tao                                                                                | 324 |
| TEM analysis of deformation zones in FIB-prepared samples of microploughed gold (100) and (111) surfaces—    |     |
| R. D. Day, R. M. Dickerson, C. J. Maggiore, P. M. Brooks, P. E. Russell, T. Woodward, C. B. Carter           | 326 |
| Comparative surface study of atomic images with variable temperature UHV-AFM and STM-M. Iwatsuki,            |     |
| K. Suzuki, S. Kitamura, M. Kersker                                                                           | 328 |
| Scanning Kelvin force and capacitance microscopy applications-R. J. Kline, J. F. Richards, P. E. Russell     | 330 |
| The surface morphology and characterisation of electronic properties of boron implanted microwave plasma     |     |
| CVD diamond films by atomic force and scanning tunneling microscopies—A. G. Fitzgerald, Y. Fan, P. John,     |     |
| C. E. Troupe, J. I. B. Wilson                                                                                | 332 |
| Using AFM phase lag data to identify microconstituents with varying values of elastic modulus-D. N. Leonard, |     |
| A. D. Batchelor, P. E. Russell                                                                               | 334 |
| Nanomanipulation for material properties, substrate interactions and devices-R. Superfine, M. R. Falvo,      |     |
| G. J. Clary, S. Paulson, R. M. Taylor II, V. Chi, F. P. Brooks Jr., S. Washburn                              | 336 |

### ELECTRON DIFFRACTION AND SCATTERING

| Electron scattering in diamond as a function of thickness-D. C. Bell                                     | 338 |
|----------------------------------------------------------------------------------------------------------|-----|
| Absorption potential for dynamic electron diffraction: A revisit-Z. L. Wang, C. Zhang                    | 340 |
| Analysis of selected area diffraction patterns with WinJade—S. D. Walck, P. Ruzakowski-Athey             | 342 |
| Computer analysis of electron diffraction from thin films—W. MoberlyChan, R. Kilaas, LH. Chan, T. Nolan, |     |
| P. Dorsey, W. Cao, M. Lu, M. Gopal, T. Yamashita                                                         | 344 |

### NOVEL X-RAY METHODS: FROM MICROSCOPY TO ULTIMATE DETECTABILITY

| <b>1</b> 6 |
|------------|
| 18         |
| 50         |
|            |
|            |
| 52         |
|            |
| 54         |
|            |
| 56         |
| 58         |
|            |

xxxiv

| Quantitative non-interferometric x-ray phase imaging-K. A. Nugent, D. Paganin, J. Tiller, B. Allman            | 360 |
|----------------------------------------------------------------------------------------------------------------|-----|
| A state-of-the-art x-ray microprobe and its applications at the advanced photon source-W. Yun, Z. Cai, B. Lai, |     |
| J. Maser, D. Legnini                                                                                           | 362 |
| Spatially-resolved x-ray absorption fine structure (XAFS) spectroscopy using undulator radiation focused by    |     |
| dynamically-bent elliptical mirrors—S. R. Sutton, P. E. Eng, M. L. Rivers, M. Newville                         | 364 |
| Precise x-ray microfluorescence measurements of Sr/Ca ratios in corals for paleotemperature analysis-          |     |
| N. E. Pingitore Jr., T. Pogue                                                                                  | 366 |
| Applications of laboratory-based x-ray microfluorescence analysis in archaeometry-N. E. Pingitore Jr.,         |     |
| J. D. Leach, A. Iglesias, C. G. Sampson, D. L. Carmichael, J. A. Peterson                                      | 368 |
| X-ray radiation damage of polymers in a scanning transmission x-ray microscope—T. Coffey, H. Ade,              |     |
| S. Urquhart, A. P. Smith                                                                                       | 370 |
| Characterizing inhomogeneous deformation substructure in large single crystals by microscopy and XRD-A         |     |
| synergystic analysis—P. W. Kingman                                                                             | 372 |
| X-ray microscopy developments at the ESRF-B. Kaulich, S. Oestreich, R. Barrett, J. Susini                      | 374 |
| Bragg and Fresnel diffraction imaging using highly coherent x-rays-P. Cloetens, J. Baruchel, J. P. Guigay,     |     |
| W. Ludwig, L. Mancini, P. Pernot, M. Schlenker                                                                 | 376 |
| Recent developments in monochromatic microprobe x-ray fluorescence (MMXRF)-Z. W. Chen,                         |     |
| D. B. Wittry                                                                                                   | 378 |
| Comparing elemental sensitivities obtained with an aperture and a monolithic polycapillary optic using a       |     |
| commercial micro-x-ray fluorescence (MXRF) instrument-C. G. Worley, L. P. Colletti, G. J. Havrilla             | 380 |

### ADVANCES IN INSTRUMENTATION AND PERFORMANCE

| High resolution transmission electron microscopy at zero C <sub>s</sub> —M. A. O'Keefe                     | 382 |
|------------------------------------------------------------------------------------------------------------|-----|
| First application of a spherical-aberration corrected microscope material science—B. Kabius, K. Urban,     |     |
| M. Haider, S. Uhlemann, E. Schwan, H. Rose                                                                 | 384 |
| Experimental gun brightness measurements on a 300 kV CFEG-N. J. Zaluzec, A. Nicholls                       | 386 |
| Measuring and tuning TEM energy filter performance-H. Brink, G. Kothleitner, M. K. Kundmann                | 388 |
| Modification of a conventional TEM (CTEM) for Lorentz microscopy-M. Wall, S. Bajt, C. Cerjan               | 390 |
| On the effects of spherical aberration and aperture misalignment on the formation of small electron probes |     |
| A. J. Garratt-Reed, G. Cliff, P. B. Kenway                                                                 | 392 |
| Energy filtering imaging of thick biological specimens with in-column "Omega"-filter microscopes-          |     |
| M. H. Ellisman, G. Y. Fan, T. Honda, T. Kanayama, M. Kersker                                               | 394 |
| A new 200kV energy filter field emission transmission electron microscope-T. Kaneyama, K. Tsuno,           |     |
| T. Honda, M. Kersker, K. Tsuda, M. Terauchi, M. Tanaka                                                     | 396 |
| The CM120-BioFilter: Digital imaging of frozen hydrated specimens and elemental mapping-U. Lücken,         |     |
| A. F. de Jong, M. Kundmann, D. Cherny, R. Leapman                                                          | 398 |
| Development of a Philips cryo-TEM provided with a liquid helium cooled tilt stage and a vacuum transfer    |     |
| system—R. Wagner, A. F. de Jong, A. G. Koster, R. Morrison, F. Tothill, U. Lücken                          | 400 |
| Development of a side entry high tilt cryotransfer stage for tomographic applications-B. L. Armbruster,    |     |
| R. Zolkowski, P. R. Swann                                                                                  | 402 |

| Magnetic deflecting microscopy: A novel visualizing method of magnetic stray fields for thick or non-transparent |     |
|------------------------------------------------------------------------------------------------------------------|-----|
| magnetic TEM samples—V. V. Volkov, Y. Zhu                                                                        | 404 |
| Development of high resolution FE-SEM (8"FE-SEM) for 8-inches wafer inspection-K. Ohara, C. Nielsen,             |     |
| M. Saito                                                                                                         | 406 |
| Quantitative visible-light and electron phase microscopyA. Barty, K. A. Nugent, D. Paganin, A. Roberts           | 408 |
| An infinity corrected all-reflecting microscope for infrared microspectrometry-J. A. Reffner, S. H. Vogel        | 410 |
| Isotopic measurements of inorganic material by time-of-flight SIMS—A. J. Fahey                                   | 412 |

### NEW DEVELOPMENTS IN MULTI-PHOTON EXCITATION MICROSCOPY

| 414 |
|-----|
|     |
| 416 |
| 418 |
| 420 |
|     |
| 422 |
|     |
| 424 |
|     |

### UNIQUE APPROACHES IN IMAGING, COMPUTATION AND COMMUNICATION FOR CHARACTERIZATION OF THE 3D CELL & ORGANELLES I

| Tomographic reconstruction of the hair cell ribbon synapse-D. Lenzi, J. W. Runyeon, J. Crum, M. H. Ellisman, |     |
|--------------------------------------------------------------------------------------------------------------|-----|
| W. M. Roberts                                                                                                | 426 |
| Crista junctions of mitochondria visualized by electron tomography—G. A. Perkins, J. Y. Song, L. Tarsa,      |     |
| C. McCarty, T. J. Deerinck, M. H. Ellisman, T. G. Frey                                                       | 428 |
| Electron microscopic tomography of cellular organelles: Chemical fixation vs. cryo-substitution of rat-liver |     |
| mitochondria—C. A. Mannella, K. Buttle, K. Tessitore, B. K. Rath, C. Hsieh, D. D'Arcangelis, M. Marko        | 430 |
| 3D structure of periodic cubic-phase inner membranes in mitochondria of the amoeba Chaos carolinensis-       |     |
| Y. Deng, M. Mieczkowski, M. Marko, K. Buttle, B. K. Rath, C. A. Mannella                                     | 432 |
| Electron tomographic studies of a large macromolecular assembly preserved in vitreous ice: The yeast spindle |     |
| pole body core—E. Bullitt                                                                                    | 434 |
| The centrosome: Three-dimensional structure of a cell organelle at 40A resolution obtained by electron-      |     |
| tomography—T. Ruiz, M. Radermacher, B. Rath, C. Rieder, M. Bornens                                           | 436 |
| The three dimensional organization of smooth muscle: Information from serial section reconstructions-        |     |
| R. A. Horowitz, C. M. Powers, P. Valero, R. Craig                                                            | 438 |
|                                                                                                              |     |

xxxvi

| Correlated 3D light and electron microscopy of large, complex structures: Analysis of transverse tubules in heart        |     |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| failure—M. E. Martone, A. Thor, S. J. Young, M. H. Ellisman                                                              | 440 |
| Quantitative image processing in 3D—U. Skoglund                                                                          | 442 |
| A transportable multiple oblique illumination system which retrofits to conventional optical microscopes to              |     |
| provide high-definition real time 3-dimensional imaging—G. L. Greenberg, A. Boyde                                        | 444 |
| Fluorescent indicators for calcium based on green fluorescent proteins (GFPs) and calmodulin-A. Miyawaki,                |     |
| J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, H. Fujisaki, G. Y. Fan, M. H. Ellisman,                      |     |
| R. Y. Tsien                                                                                                              | 446 |
| Confocal imaging of both mitochondrial and cytosolic free Ca <sup>2+</sup> in cardiac myocytes co-loaded with Rhod 2 and |     |
| Fluo 3: Inhibition by ruthenium red of mitochondrial but not cytosolic Ca <sup>2+</sup> transients—D. R. Trollinger,     |     |
| W. E. Cascio, J. J. Lemasters                                                                                            | 448 |
| Correlative confocal and electron microscopy of the Connexin43 gap junction protein in NRK cells: Balancing              |     |
| fixation conditions, cell permeabilization, antigen-antibody interaction and cell ultrastructureG. Sosinsky,             |     |
| M. Martone, G. Hand, L. Musil, M. Ellisman                                                                               | 450 |
| Using animation to enhance 3D visualization: A strategy for a production environment-M. T. Dougherty,                    |     |
| W. Chiu                                                                                                                  | 452 |
|                                                                                                                          |     |

### HIGH RESOLUTION PROTEIN STRUCTURES FROM ELECTRON CRYSTALLOGRAPHY

| Atomic model of tubulin by electron crystallography-E. Nogales, K. H. Downing                                 | 454                              |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|
| Structure and action of molecular tracks and motors—R. A. Milligan                                            | 456                              |
| Actin filaments decorated with cytoskeletal proteins-D. Hanein, S. Goldsmith, W. Lehman, R. Craig,            |                                  |
| I. Correia, P. Matsudaira, D. J. DeRosier, S. C. Almo                                                         | 458                              |
| Crystallographic reconstruction of the acrosomal process from Limulus polyphemus sperm-M. B. Sherman,         |                                  |
| J. Jakana, S. Sun, P. Matsudaira, W. Chiu, M. F. Schmid                                                       | 460                              |
| Structure of the calcium pump from sarcoplasmic reticulum at 8Å resolution: Architecture of the transmembrane | rchitecture of the transmembrane |
| helices and localization of the binding site for thapsigargin—P. Zhang, C. Toyoshima, K. Yonekura,            |                                  |
| G. Inesi, M. Green, D. L. Stokes                                                                              | 462                              |
| Structure of a recombinant gap junction channel at 7Å resolution—V. M. Unger, D. W. Entrikin, X. Guan,        |                                  |
| N. M. Kumar, N. B. Gilula, M. Yeager                                                                          | 464                              |
| Electron crystallography of a prokaryotic potassium channel—H. X. Sui, H. L. Li, S. Ghanshani, S. Lee,        |                                  |
| P. J. Walian, C. L. Wu, K. G. Chandy, B. K. Jap                                                               | 466                              |
|                                                                                                               |                                  |

#### SHARED RESOURCES AND USER FACILITIES: ACCESS TO INSTRUMENTATION

The UCF/Cirent materials characterization facility—L. A. Giannuzzi, J. B. Bindell468Shared research equipment at Oak Ridge National Laboratory—N. D. Evans, E. A. Kenik, M. K. Miller470User access to Lorentz microscopy at the NCEM, LBNL, Berkeley—K. Verbist, C. Nelson, K. Krishnan472

xxxvii

# MICROSCOPY AND MICROANALYSIS IN THE "REAL WORLD"

| Analytical light microscopy: Examples of practical problem-solving and efficiency in pharmaceutical quality    |
|----------------------------------------------------------------------------------------------------------------|
| control and formulation-D. A. Stoney, W. C. McCrone 4                                                          |
| Microscopical examination of indoor dusts-J. R. Millette, P. Few, T. J. Hopen 4                                |
| Microscopy in pharmaceutical development-R. A. Carlton 4                                                       |
| Analysis of in-situ converted chrysotile asbestos fibers in sprayed on fireproofing-R. L. Sabatini, T. Sugama, |
| L. Petrakis                                                                                                    |
| Production microscopy: A new paradigm-R. J. Lee 4                                                              |
| Population studies of titanium-bearing inclusions in AISI 316L using automated image analysis with scanning    |
| electron microscopy/electron dispersion spectroscopy (SEM/EDS)-S. R. Collins, M. Plishka 4                     |
| Microanalysis of thermal-sprayed titanium anodes for cathodic protection of reinforced concrete bridges-       |
| W. K. Collins, S. D. Cramer, B. S. Covino, Jr., G. R. Holcomb, S. J. Bullard, R. D. Govier, R. D. Wilson,      |
| G. E. McGill                                                                                                   |
| Cathodoluminescence microscopy of architectural paint samples-T. J. Hopen, R. S. Brown, R. K. Wheeles,         |
| W. Stocklein 4                                                                                                 |
| Applying microscopy in forensic science—H. C. Lee                                                              |
| High resolution FIB as a general materials science tool-M. W. Phaneuf, J. Li, T. Malis                         |
| Low energy x-ray transmission images by using a microfocus x-ray tube and a Be-window x-ray image intensifier  |
| (XRII)—H. Konuma, K. Kuroki, K. Kurosawa, N. Saitoh 4                                                          |
| Examination of the surface of a MALDI-FTMS probe tip using SEM and determination of detection limits for       |
| poly(ethylene glycol)—S. H. Wood, S. J. Pastor, C. L. Wilkins                                                  |
| Binding of polychlorinated biphenyls to sediment-W. F. Tivol, A. C. Casey, X. Liu, B. Bush 4                   |
| Morphological identification of indicator viruses from a ground water aquifer recharged with reclaimed         |
| wastewater—J. R. Stewart, M. D. Sobsey, T. M. Gambling, J. L. Carson                                           |
| Measurements of fine volcanic ash via stereoscopy in the scanning electron microscope-O. P. Mills,             |
| W. I. Rose, C. M. Riley                                                                                        |
| Structural changes of soot particulates as shown by HRTEM and image analysis—Á. B. Palotás, D. C. Bell,        |
| L. C. Rainey, J. B. Vander Sande                                                                               |
| Corrosion product identification by micro-Raman and Mössbauer spectroscopy-F. Adar, B. Lenain,                 |
| D. C. Cook, S. J. Oh                                                                                           |
| Raman microprobe study of the visible and near-infrared excited fluorescence spectra of glasses examined as    |
| potential Raman intensity calibration standards—E. S. Etz, S. J. Choquette, W. S. Hurst, D. H. Blackburn 5     |
| Relationship between TEM microstructures of A1 films and reflectance in color display tubes-S. J. Lee,         |
| E. S. Hwang, T. Dolukhanyan, C. M. Sung 5                                                                      |
| Solidification behavior of a 319 aluminum alloyW. T. Donlon, L. A. Godlewski, J. W. Zindel 5                   |
| Characterization of age hardening in a 319 Al alloy-R. Jahn, W. T. Donlon, J. E. Allison                       |
| Fractographic evaluation of thermally stressed single crystal sapphire-S. D. Wajer, P. H. Cohen 5              |
| Application of SEM, TEM and CBED techniques for compound identification in stress corrosion cracking           |
| failure—R. Caballero, A. Quintero                                                                              |

# xxxviii

| Scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS): The last step in the         |     |
|-----------------------------------------------------------------------------------------------------------|-----|
| microanalysis of particulate matter isolates-R. J. Maxwell, M. A. Smith, D. S. Aldrich                    | 520 |
| Industrial applications of scanning probe microscopy-S. Magonov                                           | 522 |
| New microscopy techniques for IC defect localization-E. Cole Jr.                                          | 524 |
| Relocating features across microanalytical instrumentation-W. H. Powers, Jr., F. H. Schamber              | 526 |
| "Real-world" microscopy: Understanding environment-sensitive behavior of Ni-base welds—M. G. Burke,       |     |
| R. J. Wehrer, C. M. Brown                                                                                 | 528 |
| Characterization of solid-state vortices associated with the friction-stir welding of copper to aluminum- |     |
| R. D. Flores, L. E. Murr, E. A Trillo                                                                     | 530 |
| Terra Incognita: Spectra from edges and elements not in the EELS Atlas-J. A. Fortner, E. C. Buck          | 532 |
|                                                                                                           |     |

### METALS AND ALLOYS

| Incommensurate structures in rhenium disilicide-A. Misra, F. Chu, T. E. Mitchell                        | 534 |
|---------------------------------------------------------------------------------------------------------|-----|
| Defects in Nb-Cr-Ti C15 Laves phase alloys-P. G. Kotula, C. B. Carter, K. C. Chen, D. J. Thoma, F. Chu, |     |
| T. E. Mitchell                                                                                          | 536 |
| Nucleation of the $\alpha/\gamma$ massive phase transformation in titanium-48at% aluminum—J. E. Wittig, |     |
| W. H. Hofmeister                                                                                        | 538 |
| Microstructure of the die-upset Nd (Pr)-Fe-B hard magnets studied by magnetic and high resolution       |     |
| transmission microscopy—V. V. Volkov, Y. Zhu, L. H. Lewis, D. O. Welch                                  | 540 |
| Characterization of corrosion scales on Fe-13Cr stainless steel-S. Subramanian, S. Ling, T. A.          |     |
| Ramanarayanan                                                                                           | 542 |
| The Microstructure of oxidized consolidated nanocrystalline NiAl-T. Chen, J. M. Hampikian               | 544 |
|                                                                                                         |     |

### MICROSCOPY OF CERAMICS AND MINERALS

| Microstructure and microchemistry of Y-doped α-Al <sub>2</sub> O <sub>3</sub> —M. A. Gülgün, M. L. Mulvihill, V. Putlayev,                                                                 |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| M. Rühle                                                                                                                                                                                   | 546 |
| Stress-induced phase transformations in SiC-P. Pirouz                                                                                                                                      | 548 |
| Dislocations in ceramics-C. B. Carter                                                                                                                                                      | 550 |
| Statics and dynamics of "charged" interfaces in electroceramics—X. Lin, C. Murray, V. P. Dravid                                                                                            | 552 |
| Z-contrast imaging of ordered structures in Pb(Mg <sub>1/3</sub> Nb <sub>2/3</sub> )O <sub>3</sub> and Ba(Mg <sub>1/3</sub> Nb <sub>2/3</sub> )O <sub>3</sub> —Y. Yan, Z. Xu, D. Viehland, |     |
| S. J. Pennycook                                                                                                                                                                            | 554 |
| Atomic scale structure-property relationships of defects and interfaces in ceramics-S. Stemmer, G. Duscher,                                                                                |     |
| E. M. James, M. Ceh, N. D. Browning                                                                                                                                                        | 556 |
| The complementary nature of electron microscopy and ion channeling for the assessment of radiation damage                                                                                  |     |
| evolution in ceramics—K. E. Sickafus                                                                                                                                                       | 558 |
| Interpreting uranyl mineral diffraction patterns—E. C. Buck                                                                                                                                | 560 |
| White lines in the iron L <sub>2,3</sub> electron-energy-loss spectra of pyrite and greigite-S. C. Cheng, R. T. Wilkin                                                                     | 562 |

### xxxix

| TEM analysis of diamond films formed on SiO <sub>2</sub> substrate by bias-enhanced nucleation—S. C. Cheng,                                                  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| M. D. Irwin, C. Onneby, C. G. Pantano                                                                                                                        | 564 |
| Improved adhesion of the c-BN film by the post ion implantation: TEM and FTIR—C. Sung, S. Gunasekara,                                                        |     |
| E. S. Byon, S. W. Lee, S. R. Lee                                                                                                                             | 566 |
| Microstructural characterization of carbon fiber-reinforced laminated matrix composites of silicon carbide and carbon—K. A. Appiah, Z. L. Wang, W. J. Lackey | 568 |
| Carbon-induced UV sensitivity in aluminum nitride-Y. Berta, R. A. Gerhardt                                                                                   | 570 |
| Structure characterization of colossal magnetoresistive oxides—Y. Berta, D. B. Studebaker, M. Todd,                                                          | 570 |
| T. H. Baum, Z. L. Wang                                                                                                                                       | 572 |
| Observations of superlattice reflections associated with charge ordering in Bi <sub>0.2</sub> Ca <sub>0.8</sub> MnO <sub>3</sub> with an energy-filter—      | 512 |
| Y. Murakami, D. Shindo, K. Hiraga, T. Oikawa, M. Kersker                                                                                                     | 574 |
| Microstructure of PbTiO <sub>3</sub> /SrTiO <sub>3</sub> superlattice grown by MBE—W. Tian, J. C. Jiang, X. Q. Pan, C. D. Theis,                             | 574 |
| D. G. Schlom                                                                                                                                                 | 576 |
| Domain structure of epitaxial SrRuO <sub>3</sub> thin films on (001) LaAlO <sub>3</sub> —J. C. Jiang, X. Q. Pan, Q. Gan, C. B. Eom                           | 578 |
| Microstructure and strain relaxation of epitaxial SrRuO <sub>3</sub> films—J. C. Jiang, X. Q. Pan, Q. Gan, C. B. Eom                                         | 580 |
| Determination of the site occupancy of holmium in SrTiO <sub>3</sub> by alchemi—S. C. Cheng, A. Hitomi,                                                      | 500 |
| C. A. Randall                                                                                                                                                | 582 |
| Characterization of intergranular phases in tetragonal and cubic yttria-stabilized zirconiaN. D. Evans,                                                      | 502 |
| P. H. Imamura, J. Bentley, M. L. Mecartney                                                                                                                   | 584 |
| Electron energy-loss spectroscopy (EELS) of cerium and uranium oxidation states—L. P. Keller,                                                                | 501 |
| J. P. Bradley                                                                                                                                                | 586 |
| Microstructure of Nb based Al <sub>2</sub> O <sub>3</sub> composites—C. Scheu, G. Dehm, W. D. Kaplan, D. E. Garcia, N. Claussen                              | 588 |
| On devitrification of monticellite (CaMgSiO <sub>4</sub> ) films grown on (001)-oriented single-crystal MgO.—S. V. Yanina,                                   |     |
| M. T. Johnson, Z. Mao, C. B. Carter                                                                                                                          | 590 |
| Defects in pseudo-orthorhombic anorthite on basal sapphireZ. Mao, M. T. Johnson, C. B. Carter                                                                | 592 |
| The effect of an electric field on the reaction between oxides—M. T. Johnson, C. B. Carter                                                                   | 594 |
| Image periodicities introduced by three-fold astigmatism in HRTEM images of $\alpha$ -Al <sub>2</sub> O <sub>3</sub> and related materials—                  |     |
| D. L. Medlin, J. E. Smugeresky, D. Cohen                                                                                                                     | 596 |
| Polytypic constraints for solid-state layer silicate transformation mechanisms via atomic-resolution transmission                                            |     |
| electron microscopy—J. F. Banfield, T. Kogure                                                                                                                | 598 |
| Heterogeneous oxidation and precipitation of aqueous Mn(II) at the Goethite surface: A SPM study—                                                            |     |
| J. Rakovan, M. F. Hochella, Jr.                                                                                                                              | 600 |
| Electron microscopy and microanalysis of metal phases in meteorites-D. B. Williams, J. I. Goldstein                                                          | 602 |
| Microstructures and microanalysis in ALH84001: Minerals or martians?—R. P. Harvey, J. Bradley,                                                               |     |
| H. Y. McSween, Jr.                                                                                                                                           | 604 |
|                                                                                                                                                              |     |

## MICROSCOPY OF SEMICONDUCTING AND SUPERCONDUCTING MATERIALS

| Photo-electron emission microscopy of semiconductor surfaces—R. J. Nemanich, S. L. English, J. D. Hartman, |     |
|------------------------------------------------------------------------------------------------------------|-----|
| W. Yang, H. Ade, R. F. Davis                                                                               | 606 |
| In situ electron microscopy studies of surface dynamical processes-R. M. Tromp                             | 608 |

| Near-field scanning optical microscopy studies of individual dislocations in relaxed GeSi films—J. W. P. Hsu,                          |          |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                        | 61       |
| Holography measurement of mean inner potential of germanium—J. Li, M. R. McCartney, R. E. Dunin-<br>Borkowski, D. J. Smith             | 61       |
| Local strain measurements in hexagonal systems—C. Kisielowski, O. Schmidt                                                              | 61       |
| Electron microscopy in the real semiconductor processing world—R. Anderson                                                             | 61       |
| The determination of copper composition profiles in semiconductor device aluminum interconnect                                         |          |
| electromigration test lines using electron probe microanalysis (EMPA)—J. M. Oparowski, T. S. Sriram,                                   | 61       |
| Electronic structure and conductivity mechanism in manganite thin films exhibiting colossal magnetoresistance—                         | 62       |
| Transmission electron microscopy studies of tin oxide thin films grown on the sapphire substrate—L. Fu,                                | 62       |
| HRTEM study of interface structure of heteroepitaxially grown GaSe thin films on GaAs(100)-Z. R. Dai,                                  | 62       |
| TEM observations of interfacial defects in MOCVD GaAs on single crystal Ge substrates—K. M. Jones,                                     | 62       |
|                                                                                                                                        | 62       |
| TEM investigation of Co-Si thin films on Si <sub>1.x</sub> Ge <sub>x</sub> /Si—A. F. Myers, P. T. Goeller, E. B. Steel, B. I. Boyanov, | 63       |
|                                                                                                                                        | 63       |
| Solid-phase epitaxial regrowth of GaAs by in-situ controlled intermediate phase decompositionJ. K. Farrer,                             | 63       |
|                                                                                                                                        | 63       |
|                                                                                                                                        | 63       |
|                                                                                                                                        | 64       |
|                                                                                                                                        | 64       |
|                                                                                                                                        | 64       |
|                                                                                                                                        | 64       |
| Direct transmission electron microscope observations of doping variations in InP-based semiconductor laser                             | 64       |
| Microscale elemental imaging of semiconductor materials using focused ion beam SIMS—F. A. Stevie,                                      | 01       |
|                                                                                                                                        | 65       |
|                                                                                                                                        |          |
|                                                                                                                                        | 65       |
| A new method for pin point failure analysis using FIB combined analytical TEM—T. Kamino, T. Yaguchi,                                   | <b>_</b> |
|                                                                                                                                        | 65       |
| Focused ion beam (FIB) milling damage formed during TEM sample preparation of silicon-D. W. Susnitzky,                                 |          |
|                                                                                                                                        | 65       |
| Microstructural characterization of heteroepitaxial SiGeC alloys—D. J. Smith, D. Chandrasekhar, T. Laursen,                            |          |
|                                                                                                                                        | 65       |
| Direct observation of threading dislocations in GaN by high resolution Z-contrast imaging—Y. Xin,                                      |          |
| N. D. Browning, S. J. Pennycook, P. D. Nellist, S. Sivananthan, JP. Faurie, P. Gibart                                                  | 66       |

| Ge distribution in Si <sub>80</sub> Ge <sub>20</sub> islands grown in the high mobility regime-R. D. Twesten, J. A. Floro, E. Chason                   | 662 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Atomic structure of twinned As precipitates in LT-GaAs—S. Ruvimov, Ch. Dicker, J. Washburn, Z. Liliental-                                              |     |
| Weber                                                                                                                                                  | 664 |
| Templating effects on C54-TiSi <sub>2</sub> formation in ternary reactions—A. Quintero, M. Libera, C. Cabral Jr.,                                      |     |
| C. Lavoie, J. M. Harper                                                                                                                                | 666 |
| Microstructure of Au/Ti ohmic contacts on n-GaN—RJ. Liu, L. L. Smith, M. J. Kim, R. W. Carpenter,                                                      |     |
| R. F. Davis                                                                                                                                            | 668 |
| Kinetics of the C-axis aligned YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7</sub> thick film by a BaF <sub>2</sub> process—L. Wu, Y. Zhu, V. F. Solovyov, |     |
| H. Wiesmann, M. Suenaga                                                                                                                                | 670 |
| Microstructure of YBCO/Co-PBCO/YBCO edge Josephson junctions—Y. Huang, B. H. Moeckly, K. Char,                                                         |     |
| K. L. Merkle                                                                                                                                           | 672 |
| Crystallographical analysis of intermediate phases in Bi(2223)/Ag tape—L. Wu, Y. Zhu, M. Suenaga                                                       | 674 |
| Structure of low- and high-angle grain boundaries in YBCO/MgO films—S. Oktyabrsky, R. Kalyanaraman,                                                    |     |
| K. Jagannadham, J. Narayan                                                                                                                             | 676 |
| Oxide structures: By hook or by crook—L. D. Marks, W. Sinkler, H. Zhang                                                                                | 678 |
| Study of the hole distribution in oxide superconductors using a sensitive electron diffraction technique—                                              |     |
| J. Tafto, L. Wu, Y. Zhu                                                                                                                                | 680 |
| The electronic structure and bonding of copper oxides by CBED and EELs-M. Y. Kim, J. Alvarez, J. M. Zuo,                                               |     |
| J. C. H. Spence                                                                                                                                        | 682 |
| Two-mirrors model: Some analytical solutions for generating the constrained coinsident-site-lattice and its                                            |     |
| application to Bi <sub>2</sub> Sr <sub>2</sub> Ca <sub>1</sub> Cu <sub>2</sub> O <sub>8+δ</sub> grain boundaries—V. V. Volkov, Y. Zhu                  | 684 |
| Application of field-emission TEM to investigating flux pinning mechanism in superconductors—                                                          |     |
| A. Tonomura                                                                                                                                            | 686 |
| The atomic-scale origins of grain boundary superconducting properties—S. J. Pennycook, J. Buban,                                                       |     |
| C. Prouteau, M. F. Chisholm, P. D. Nellist, N. D. Browning                                                                                             | 688 |
| Investigation of the local superconducting properties at grain boundaries in high-Tc superconductors-                                                  |     |
| C. Prouteau, G. Duscher, N. D. Browning, S. J. Pennycook, D. Verebelyi, D. K. Christen, M. F. Chisholm,                                                |     |
| D. P. Norton                                                                                                                                           | 690 |
| Anisotropy of electronic structure and transport properties of oxide superconductors-V. P. Dravid                                                      | 692 |

#### NANOPHASE AND AMORPHOUS MATERIALS

| D. R. McKenzie, D. G. McCulloch, C. M. Goringe, A. R. Merchant                                                                                                                                                                                                                                                                                                                     | Structure in amorphous network solids and its evidence in electron diffraction-L. W. Hobbs               | 694 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|
| Silicon carbide amorphization by electron irradiation—J. Bentley       698         RDF analysis of radiation-amorphized SiC using a field emission scanning electron microscope—D. C. Bell,       698         A. J. Garratt-Reed, L. W. Hobbs       700         Fluctuation microscopy: A new class of microscopy techniques for probing medium range order in amorphous       700 | Observation and theoretical prediction of structure in amorphous carbon and related materials-           |     |
| <ul> <li>RDF analysis of radiation-amorphized SiC using a field emission scanning electron microscope—D. C. Bell,</li> <li>A. J. Garratt-Reed, L. W. Hobbs</li></ul>                                                                                                                                                                                                               | D. R. McKenzie, D. G. McCulloch, C. M. Goringe, A. R. Merchant                                           | 696 |
| A. J. Garratt-Reed, L. W. Hobbs                                                                                                                                                                                                                                                                                                                                                    | Silicon carbide amorphization by electron irradiation—J. Bentley                                         | 698 |
| Fluctuation microscopy: A new class of microscopy techniques for probing medium range order in amorphous                                                                                                                                                                                                                                                                           | RDF analysis of radiation-amorphized SiC using a field emission scanning electron microscope-D. C. Bell, |     |
|                                                                                                                                                                                                                                                                                                                                                                                    | A. J. Garratt-Reed, L. W. Hobbs                                                                          | 700 |
| materials—J. M. Gibson, M. M. J. Treacy, P. M. Voyles                                                                                                                                                                                                                                                                                                                              | Fluctuation microscopy: A new class of microscopy techniques for probing medium range order in amorphous |     |
|                                                                                                                                                                                                                                                                                                                                                                                    | materials—J. M. Gibson, M. M. J. Treacy, P. M. Voyles                                                    | 702 |

| Experimental and theoretical characterisation of structure in thin disordered films-D. G. McCulloch,                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. R. McKenzie, D. J. H. Cockayne, C. M. Goringe                                                                                                        |
| Extended electron loss fine structure analysis of silicon-K edges using an imaging filter—J. A. Fortner,<br>E. C. Buck, D. M. Strachan, N. J. Hess      |
| Graphitic disks or polygons? Faceting of graphite disks—A. Krishnan, E. Dujardin, T. W. Ebbesen,<br>M. M. J. Treacy                                     |
| Microstructure in nanophase and amorphous boron-based thin films—D. L. Medlin, K. F. McCarty,<br>D. A. Buchenauer, D. Dibble, D. B. Poker               |
| An investigation into beam damage of mesoporous materials-C. F. Blanford, J. Bentley, A. Stein,                                                         |
| C. B. Carter                                                                                                                                            |
| A BCC superlattice of passivated gold nanocrystals—S. A. Harfenist, Z. L. Wang, T. G. Schaaff,<br>R. L. Whetten                                         |
| Porous spherical particles of ZnS nanocrystallites—M. Arnold, Z. L. Wang, S. M. Scholz, R. Vacassy,<br>P. Stadelmann                                    |
| Structural stability of nanocrystalline NiAl-T. Chen, J. M. Hampikian, N. N. Thadhani, Z. L. Wang                                                       |
| The experimental accuracy of lattice spacing determination on small metal particles in commercial catalysts—<br>SC. Y. Tsen, P. A. Crozier, J. Liu      |
| Transmission electron microscopy studies of Pd encapsulation by ceria-zirconia oxides—J. C. Jiang, X. Q. Pan,<br>G. W. Graham, R. W. McCabe, J. Schwank |
| Microstructural analysis of disordered and ordered mesoporous silica films—C. A. Drewien, Y. Lu,<br>C. J. Brinker, R. Ganguli, M. T. Anderson           |
| Ordered assembling of size and shape selected nanocrystals—Z. L. Wang                                                                                   |
| Self-assembled and micro-patterned mesoscopic thin films—N. Yao, M. Trau, N. Nakagawa, I. A. Aksay                                                      |
| Growth mechanism of Ag nanocrystal supercrystals—S. A. Harfenist, Z. L. Wang, I. Vezmar, M. M. Alvarez,<br>R. L. Whetten                                |
| Studies of hexagonal Pt and Au nanocluster superlattices—P. Newcomer Provencio, J. E. Martin, J. G. Odinek,<br>J. P. Wilcoxon                           |
| Self-assembled cobalt oxide nanocrystals with tetrahedral shape—J. S. Yin, Z. L. Wang                                                                   |
| Monalayer arrangement of Pt nanoparticles-T. C. Green, J. M. Petroski, Z. Wang, M. El-Sayed                                                             |
| Nano-characterization of industrial heterogeneous catalysts—J. Liu, J. R. Ebner                                                                         |
| Effects of cation promoters in selective catalyzation of N-butane-P. L. Gai, K. Kourtakis                                                               |
| Energy-filtered imaging of zirconia pillars in montmorillonite—P. A. Crozier, M. Pan, C. Bateman, J. J. Alcaraz,<br>J. S. Holmgren                      |
| Kinetically controlled growth and shape formation mechanism of platinum nanoparticles—J. M. Petroski,<br>Z. L. Wang, T. C. Green, M. A. El-Sayed        |
| In situ oxidation and reduction of small Pd particles on silica—P. A. Crozier, R. Sharma                                                                |
| Electron holography and digital imaging for analysis of nanostructured materials—L. F. Allard, E. Voelkl,                                               |
| A. K. Datye, A. H. Carim                                                                                                                                |
| Selected reflection imaging of nanostructured materials—Y. Liu, D. J. Sellmyer                                                                          |
| Cu Nanoparticle formation: Copper redistribution during NaCl solution corrosion of Al-Cu-Mg alloys-                                                     |
| R. G. Ford, R. W. Carpenter, K. Sieradzki                                                                                                               |

xliii

Z-contrast scanning transmission electron microscopy of nanometer-scale coated particulate materials-

| H. J. Gao, Y. Yan, J. Fitz-Gerald, D. Kumar, R. K. Singh, S. J. Pennycook | 756 |
|---------------------------------------------------------------------------|-----|
| Microanalysis of alloy nanoparticles—J. H. J. Scott                       | 758 |

I

### SPATIALLY-RESOLVED CHARACTERIZATION OF INTERFACES IN MATERIALS

| Complex atomic-scale structures in solids by a combination of theory and microscopy-S. T. Pantelides, S. J.          |     |
|----------------------------------------------------------------------------------------------------------------------|-----|
| Pennycook, M. F. Chisholm, A. Maiti, Y. Yan, F. Reboredo, M. Ferconi                                                 | 760 |
| Atomic structure of interfaces: Link of atomistic calculations with high resolution electron microscopy—             |     |
| V. Vitek                                                                                                             | 762 |
| Monte Carlo simulation of solute-atom segregation at grain boundaries in single-phase binary face-centered           |     |
| cubic alloys—D. N. Seidman, J. D. Rittner, D. Udler                                                                  | 764 |
| Core level shifts and grain boundary cohesion-D. A. Muller                                                           | 766 |
| Bonding and stability of metal/ceramic interfaces—U. Alber, R. Schweinfest, M. Rühle                                 | 768 |
| Interfacial solute-atom segregation: An atomic-scale phenomenon with implications for the oxidation kinetics of      |     |
| Pt-Al alloys—E. C. Dickey, K. B. Alexander, B. A. Pint                                                               | 770 |
| The measurement of light element segregation using EDS and EELS—J. T. Busby, E. A. Kenik, G. S. Was                  | 772 |
| Grain boundary dislocations and stacking defects in the 9R phase at an incoherent twin boundary in copper-           |     |
| D. L. Medlin, G. H. Campbell, C. B. Carter                                                                           | 774 |
| Investigating Ca segregated to a grain boundaries in MgO using multiple scattering analysis of electron energy       |     |
| loss spectra—J. P. Buban, J. Zaborac, H. Moltaji, G. Duscher, N. D. Browning                                         | 776 |
| Interface characterization of metallized CVD diamond-E. S. K. Menon, M. Saunders, I. Dutta                           | 778 |
| Microanalysis of CaWO4 and ErTaO4 coatings in oxide fiber reinforced alumina matrix composites—S. T. Kim,            |     |
| V. P. Dravid, S. Sambasivan, R. W. Goettler                                                                          | 780 |
| Local dielectric function of biogenic and geological polymorphs of CaCO3 via transmission EELS—K. S. Katti,          |     |
| D. Frech, M. Qian, M. Sarikaya                                                                                       | 782 |
| Quantitative HRTEM of twin boundaries in compound semiconductors and metals using non-linear least-                  |     |
| squares methodsD. Cohen, G. H. Campbell, W. E. King, C. B. Carter                                                    | 784 |
| Determination of rigid-body lattice translations across antiphase and twin boundaries in compound                    |     |
| semiconductors—D. Cohen, D. L. Medlin, C. B. Carter                                                                  | 786 |
| Atomic structures of inversion domain boundaries and dislocations in sintered AlN-Y. Yan, M. F. Chisholm,            |     |
| S. J. Pennycook                                                                                                      | 788 |
| Investigating atomic scale structure-property relationships at grain boundaries—N. D. Browning, H. O. Moltaji,       |     |
| E. M. James, S. Stemmer, J. P. Buban, J. Zaborac                                                                     | 790 |
| Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier           |     |
| layer junctions—K. L. Merkle, Y. Huang                                                                               | 792 |
| Bandstructure near misfit dislocations in Si quantum wells-P. E. Batson                                              | 794 |
| In situ electron holography of grain boundary Schottky barrier dynamics in 0.5 wt% Nb doped SrTiO <sub>3</sub> 36.8° |     |
| symmetric tilt bicrystals—K. D. Johnson, V. P. Dravid                                                                | 796 |
| HREM characterization of magnetic tunnel junctions and discontinuous multilayers-D. J. Smith, F. Ge,                 |     |
| C. L. Platt, S. Sankar, A. E. Berkowitz                                                                              | 798 |

### DEVELOPMENTS IN MEASURING POLYMER MICROSTRUCTURES

| Dose-rate dependence of radiation damage in polymers—R. F. Egerton, I. Rauf                                   | 800 |
|---------------------------------------------------------------------------------------------------------------|-----|
| Dose limited resolution—D. Van Dyck, A. J. den Dekker, J. Sijbers, E. Bettens                                 | 802 |
| Effects of fast secondary electrons on spatially-resolved low-loss EELS of polystyrene—K. Siangchaew,         |     |
| M. Libera                                                                                                     | 804 |
| Morphology study of polystyrene-polybutadiene-polycaprolactone (PS-b-PB-b-PCL), polybutadiene-                |     |
| polycaprolactone (PB-b-PCL), and polystyrene-polycaprolactone (PS-b-PCL) semicrystalline block                |     |
| copolymers—G. Kim, C. L. Jackson, F. V. Gyldenfeldt, V. Balsamo, M. Libera, R. Stadler, C. C. Han             | 806 |
| Quantitative chemical speciation of multi-phase polymers using zone plate x-ray microscopy—A. P. Hitchcock,   |     |
| S. G. Urquhart, H. Ade, E. G. Rightor, W. Lidy                                                                | 808 |
| Profiling PVP/PS homopolymer interfaces using core-loss electron energy-loss spectroscopy—K. Siangchaew,      |     |
| P. Prayoonthong, M. Libera                                                                                    | 810 |
| Quantitation of the lateral orientational order in poly(p-phenylene terephthalamide) fibers with x-ray linear |     |
| dichroism microscopy—A. P. Smith, A. Garcia, H. Ade                                                           | 812 |
| Field emission scanning electron microscopy studies of industrial polymers: A survey—E. F. Osten,             |     |
| M. S. Smith                                                                                                   | 814 |
| Analysis of the spatial variation of crosslink density in superabsorbent polymers—S. G. Urquhart, H. W. Ade,  |     |
| G. E. Mitchell, L. Wilson, E. G. Rightor, M. Dineen, A. P. Hitchcock, U. Neuhaeusler                          | 816 |
| TEM studies of single and double microdomain layers of block copolymer—N. Yao, M. Park, C. Harrison,          |     |
| D. H. Adamson, P. M. Chaikin, R. A. Register                                                                  | 818 |
| In situ TEM study of inert fillers in liquid environment-WA. Chiou, YC. Lee, A. Ishikawa, H. Konishi,         |     |
| K. Fukushima, D. F. Shriver                                                                                   | 820 |
| Atomic force microscopy and related techniques: Introduction, instrumentation and application to polymeric    |     |
| materials—I. H. Musselman                                                                                     | 822 |
| Scanned-probe microscopy of elastomer blends: Morphology and mechanical properties-M. P. Mallamaci            | 824 |
| The morphology of carboxylated composite latex and latex film—O. L. Shaffer, M. W. Sandor, M. S. El-Aasser    | 826 |
| Quantitative thickness mapping of dewetting polymer bilayers—D. A. Winesett, H. Ade, A. P. Smith,             |     |
| M. Rafailovich, S. Sokolov, D. Slep                                                                           | 828 |
| The Hayashi-Nishi method for measurement of mixing: Computer-generated morphologies and impact-               |     |
| modified polymers-M. R. Tant, D. B. Calvert, P. S. Wehner                                                     | 830 |
| Morphology of silicone/organic blends-H. Zhang, W. Chen                                                       | 832 |

#### MICROSCOPIC ANALYSIS OF NATURAL FIBERS

| Scanning electron microscopy of various natural textile fibers-G. Buschle-Diller                               | 834 |
|----------------------------------------------------------------------------------------------------------------|-----|
| Automating analysis of fibrous materials-R. R. Bresee, Z. Yan                                                  | 836 |
| Investigation of the fracture of resinated single wood fibers in an environmental scanning electron microscope |     |
| (ESEM)—A. Egan, S. Shaler                                                                                      | 838 |
| Microscopic examination of native and modified cotton fibers-W. R. Goynes                                      | 840 |

----

| Microscopical procedures for investigating natural textile fibers-E. K. Boylston                    | 842 |
|-----------------------------------------------------------------------------------------------------|-----|
| Mid-infrared, Raman and NMR imaging of flax—D. S. Himmelsbach, S. Khalili, G. R. Gamble, D. E. Akin | 844 |
| UV absorption microspectrophotometry and histochemistry of flax and kenaf-D. E. Akin                | 846 |

#### SPECIMEN PREPARATION

| A novel technique to determine platelet deposition on an experimental nylon membrane using LVSEM and                           |     |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| TEM—M. A. Murphy, J. P. DiOrio                                                                                                 | 848 |
| Uncoated LVSEM and imaging TOF-SIMS of unfixed, plunge frozen, freeze dried, fungal and plant materials—                       |     |
| E. J. Basgall, N. Winograd                                                                                                     | 850 |
| An en bloc staining protocol improves the preservation of lamellar bodies in alveolar type II epithelial cells for             |     |
| transgenic mice expressing modified pulmonary surfactant protein B—CL. Na, D. C. Beck, J. S. Breslin,                          |     |
| S. E. Wert, T. E. Weaver                                                                                                       | 852 |
| Microwave processing of cell monolayers in situ for post-embedding immunocytochemistry with retention of                       |     |
| ultrastructure and antigenicity—V. J. Madden                                                                                   | 854 |
| The effect of focused ion beam (FIB) specimen geometry on x-ray fluorescence during energy dispersive x-ray                    |     |
| spectroscopy (EDS) analysis in the transmission electron microscope (TEM)—D. M. Longo, J. M. Howe,                             |     |
| W. C. Johnson                                                                                                                  | 856 |
| Material dependence of sputtering behavior during focused ion beam milling: A correlation between Monte                        |     |
| Carlo based simulation and empirical observation—B. I. Prenitzer, L. A. Giannuzzi, S. R. Brown,                                |     |
| R. B. Irwin, T. L. Shofner, F. A. Stevie                                                                                       | 858 |
| Comparison of focused ion beam and conventional techniques on TEM specimen preparation of metal-ceramic                        |     |
| interfaces—A. Ramirez de Arellano López, WA. Chiou, K. T. Faber                                                                | 860 |
| Cross-section TEM sample preparation for copper/low-K composite stacks by ion milling—B. Foran,                                |     |
| F. Shaapur, V. Blaschke                                                                                                        | 862 |
| A new approach for cross-sectioning SEM specimens of semiconductors by broad-ion beam milling—K. Ogura,                        |     |
| R. Alani                                                                                                                       | 864 |
| The small angle cleavage technique for XTEM sample preparation—S. D. Walck, J. P. McCaffrey                                    | 866 |
| Preparation of thin sections of (Zn <sub>x</sub> Cd <sub>y</sub> )S fine particles by an ultramicrotome—S. H. Ahn, G. S. Park, |     |
| N. R. Ahn                                                                                                                      | 868 |
| TEM specimen preparation for display materials of vacuum fluorescent displays—T. Dolukhanyan, C. Sung,                         |     |
| S. Ahn, J. Lee                                                                                                                 | 870 |
| Plasma cleaning for electron microscopy—T. C. Isabell, P. E. Fischione                                                         | 872 |

### TEM SPECIMEN PREPARATION IN THE PHYSICAL SCIENCES

| The basics of microtomy for materials science microscopy-T. Malis                             | 874 |
|-----------------------------------------------------------------------------------------------|-----|
| Tutorial: TEM specimen preparation in the physical sciences-tripod polishing and ion milling- |     |
| R. Anderson                                                                                   | 876 |

xlvi

.

#### AFM AND OTHER SCANNED PROBE MICROSCOPIES

| AFM and other scanned probe microscopies tutorial-P. E. Russell, A. D. Batchelor | 78 |
|----------------------------------------------------------------------------------|----|
|----------------------------------------------------------------------------------|----|

## DECONVOLUTION OF BIOLOGICAL IMAGES FOR 3D LIGHT MICROSCOPY— CONFOCAL & WIDEFIELD

| Deconvolution in 3-D microscopy: Applications and limitations-P. J. Shaw                                       | 880 |
|----------------------------------------------------------------------------------------------------------------|-----|
| Blind deconvolution of low and high signal-to-noise 3-D images of fluorescent subcellular structures-B. Rajwa, |     |
| J. Czyz, J. Dobrucki                                                                                           | 882 |
| Wide-field deconvolution for time-lapse 3D microscopy of cell locomotion: The good, the bad and the            |     |
| artifactual—J. G. McNally                                                                                      | 884 |
| Convolution and deconvolution for 3D imaging of cell physiology-L. M. Loew, M. Sapia, J. Schaff                | 886 |

#### MINIATURIZED ARTIFICIAL MACHINES IN BIOLOGY

| Patterning of surface chemistry and topography for biological applications—H. G. Craighead, R. C. Davis, |     |
|----------------------------------------------------------------------------------------------------------|-----|
| M. Foquet, M. Isaacson, C. James, S. Turner, L. Kam, J. N. Turner, W. Shain, G. Banker                   | 888 |
| Nanobiotechnology: Biological applications of nanofabrication—J. N. Turner, W. Shain, D. H. Szarowski,   |     |
| L. Kam, H. C. Craighead, M. Isaacson, S. Turner, R. Davis, C. James, G. Banker                           | 890 |
| Optimization of microfluidics for genetic analysis—P. M. St. John, K. Connell, T. M. Woudenberg,         |     |
| M. Deshpande, J. R. Gilbert                                                                              | 892 |
|                                                                                                          |     |

#### INSTRUMENTATION: HOW TO CHOOSE IT AND USE IT

| Scanned probe microscopy (AFM, et al.): How to choose and use-P. E. Russell, A. D. Batchelor       | 894 |
|----------------------------------------------------------------------------------------------------|-----|
| Choosing a scanning electron microscope—W. A. Lamberti, P. M. Brady                                | 896 |
| Choosing a suitable ultramicrotome, associated equipment and the proper laboratory environment for |     |
| operation of the system—J. J. Bozzola                                                              | 898 |
|                                                                                                    |     |
| The confocal microscope: How to choose it and use it-J. A. Drazba                                  | 900 |

### A TECHNOLOGISTS' FORUM SPECIAL TOPIC PRESENTATION

| Fixing and embedding "difficult" biological material—H. H. Mollenhauer                                      | 904 |
|-------------------------------------------------------------------------------------------------------------|-----|
| The importance of optimizing operational procedures and calibrations in materials characterization using an |     |
| analytical electron microscope—C. J. Echer                                                                  | 906 |

xlvii

### APPLICATIONS AND METHODS OF VASCULAR CORROSION CASTING— THE 3-DIMENSIONAL MICROVASCULATURE OF TISSUES

| 908 |
|-----|
| 910 |
| 912 |
| 914 |
|     |
| 916 |
|     |
| 918 |
|     |
| 920 |
|     |

#### **BIOMATERIALS**

| Using correlative microscopy in the study of biological-biomaterial interactions-R. M. Albrecht                         | 922 |
|-------------------------------------------------------------------------------------------------------------------------|-----|
| Shear and substrate dependent changes in fibrinogen and von Willebrand factor studied by atomic force                   |     |
| microscopy—R. E. Marchant, P. S. Sit, M. Raghavachari, C. A. Siedledcki                                                 | 924 |
| AFM and fractal analysis of biomaterial microtopography-S. Jo. T. Li, K. Park                                           | 926 |
| A novel approach for characterisation of adhesive tooth-biomaterial interfaces by AFM—B. Van Meerbeek,                  |     |
| Y. Yoshida, J. Snauwaert, L. Hellemans, P. Lambrechts, G. Vanherle, K. Wakasa, D. H. Pashley                            | 928 |
| Use of polarized light microscopy to measure internal strains of collagenous tissues-I. Vesely                          | 930 |
| Morphological characterization of a sustained-release drug implant by scanning electron microscopy, polarized           |     |
| light microscopy and image analysis—J. P. Neilly, J. S. Deng, J. L. House, J. A. Fagerland                              | 932 |
| Imaging of explanted mechanical heart valves-S. L. Goodman, H. Harasaki, K. E. Wika, A. M. Brendzel                     | 934 |
| Quantification of bone formation on calcium phosphate ceramic thin film, in vitro by tetracycline labelling-            |     |
| J. E. Davies, F. Krasnoshtein, L. Hryhorenko, D. Sindrey                                                                | 936 |
| Bone formation by human oseoblasts on implant materials-G. Gronowicz, M. Ahmad                                          | 938 |
| Characterization of titanium alloy particulates to study the <i>in vitro</i> release of inflammatory mediators by human |     |
| peripheral blood monocytes-B. J. Darien, P. Sims, T. Robinson, P. Manley, R. Albrecht                                   | 940 |
| Nanoscale correlation of structure and mechanical properties of a human tooth-H. Fong, M. Sarikaya                      | 942 |
| Effect of "stress-absorbing" dentin adhesives on the interaction of composites with human dentin—an SEM                 |     |
| study—C. Francci, A. V. Ritter, J. Perdigão, B. T. Rosa                                                                 | 944 |
|                                                                                                                         |     |

### IMAGING OF MACROMOLECULAR COMPLEXES

Cryo-electron microscopy of Aura viruses-W. Zhang, N. H. Olson, B. R. McKinney, R. J. Kuhn, T. S. Baker ... 946

xlviii

| 948 |
|-----|
|     |
| 950 |
|     |
| 952 |
|     |
|     |
| 954 |
| (   |

## CHAMBERS AND CHANNELS: FUNCTIONAL CONNECTIONS IN MULTIPROTEIN COMPLEXES STUDIED BY SINGLE CHAMBERS AND CHANNELS

| Nuclear pore transport: Insight in situ—U. Aebi, D. Stoffler, B. Feja, K. Goldie                              | 956 |
|---------------------------------------------------------------------------------------------------------------|-----|
| FEISEM, form and function in the nuclear pore complex-T. D. Allen, G. R. Bennion, S. A. Rutherford,           |     |
| E. Kiseleva, M. W. Goldberg                                                                                   | 958 |
| Structural studies of translocation channels: The nuclear pore complex and the translocon—Q. Yang,            |     |
| JF. Ménétret, I. V. Akey, K. Plath, T. A. Rapoport, C. W. Akey                                                | 960 |
| The ribosome—three-dimensional structure and ligand-binding studies—J. Frank, P. Penczek, A. Malhotra,        |     |
| I. Gabashvili, R. Grassucci, A. Heagle, S. Srivastava, N. Burkhardt, R. Jünemann, K. H. Nierhaus,             |     |
| R. K. Agrawal                                                                                                 | 962 |
| Molecular architecture of ribonucleoprotein vaults-P. L. Stewart, L. H. Rome, L. B. Kong                      | 964 |
| High resolution epitope mapping of the hepatitis B virus capsid by cryo-electron microscopy-J. F. Conway,     |     |
| N. Cheng, A. Zlotnick, S. J. Stahl, P. T. Wingfield, D. M. Belnap, A. C. Steven                               | 966 |
| The ryanodine receptor/calcium release channel and its interaction partners-T. Wagenknecht, M. Samso          | 968 |
| 3D reconstruction of mannosidase II from single particle distributions: Noise reduction approaches for higher |     |
| resolution—F. P. Ottensmeyer, A. B. Fernandes, M. Timmer, J. Kroft, K. Varga, K. W. Moremen                   | 970 |
| Structure of wild type yeast RNA polymerase II and location of RPB4 and RPB7—G. J. Jensen, G. Meredith,       |     |
| D. A. Bushnell, R. D. Kornberg                                                                                | 972 |
| Cytomegalovirus capsid structure and tegument binding-A. C. Steven, W. Gibson, N. Cheng, B. L. Trus           | 974 |
| Cryo-electron microscopy and image processing methods for studying the ribonucleoprotein vault-L. B. Kong,    |     |
| L. H. Rome, P. L. Stewart                                                                                     | 976 |

### PROTEOLYSIS: A VERSATILE BIOLOGICAL CONTROL MECHANISM

| Protein unfolding and degradation by the CLP family of proteases—M. Kessel, F. Beuron, F. Booy, E. Kocsis, |     |
|------------------------------------------------------------------------------------------------------------|-----|
| M. Maurizi, A. Steven                                                                                      | 978 |
| Macromolecular assemblies designed for controlled proteolysis—J. Walz, A. J. Koster, T. Tamura,            |     |
| W. Baumeister                                                                                              | 980 |

xlix

| Formation of proteasome-PA700 complexes directly correlates with activation of peptidase activity-E. Gogol, |     |
|-------------------------------------------------------------------------------------------------------------|-----|
| G. Adams, B. Crotchett, C. Slaughter, G. DeMartino                                                          | 982 |
| Proteolytic control of bacteriophage HK97 capsid maturation.—R. L. Duda, J. F. Conway, N. Cheng,            |     |
| A. C. Steven, R. W. Hendrix                                                                                 | 984 |
| On the structure-function relationships of the unique proteinase inhibitor human $\alpha_2$ -macroglobulin  |     |
| J. K. Stoops, S. J. Kolodziej, U. Qazi, N. J. Nolasco, P. G. W. Gettins, D. K. Strickland                   | 986 |

## RECENT ADVANCES IN LABELING TECHNIQUES

| Strategies insuring the optimal use of IgG or FAB' fragments covalently bound to 1.4 nm nanogold <sup>TM</sup> in |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| immunogold labeling procedures—C. A. Ackerley, A. Tilups, L. E. Becker                                            | 988 |
| Fluoronanogold: An efficient labeling reagent for immunocytochemistry-J. M. Robinson                              | 990 |
| Dual-labeled probes for fluorescence and electron microscopy—R. D. Powell, C. M. R. Halsey, E. Gutierrez,         |     |
| J. F. Hainfeld, F. R. Furuya                                                                                      | 992 |
| Molecular cloning and expression of 6HIS—GFP reporter gene for fluorescent and electron spectroscopic             |     |
| imaging—M. Malecki, S. Sanchez, P. Skowron, G. Case                                                               | 994 |
| New advances in super-sensitive DNA-, RNA- and antigen detection: Combination of labeled tyramides with           |     |
| nanogold-silver staining (NGSS)—G. W. Hacker, C. Hauser-Kronberger, I. Zehbe, H. Su, R. Tubbs                     | 996 |
| Correlative instrumental neutron activation analysis, LM, and TEM to track in vivo distribution of colloidal      |     |
| gold spheres in BALB/c mice—J. F. Hillyer, R. M. Albrecht                                                         | 998 |
|                                                                                                                   |     |

## DETECTION AND APPLICATION OF GREEN (AND OTHER COLORED) FLUORESCENT PROTEINS

| Properties and applications of EGFP, enhanced color variants of GFP, and unstable derivatives of GFP                           |  |
|--------------------------------------------------------------------------------------------------------------------------------|--|
| P. A. Kitts, X. Li, D. W. Piston, R. Chervenak, S. R. Kain 1000                                                                |  |
| Fluorescent antenna proteins from the bioluminescent bacteria—J. Lee                                                           |  |
| Quantitative imaging of the green fluorescent proteins-D. W. Piston, G. H. Patterson, S. M. Knobel 1004                        |  |
| Green fluorescent protein as a non-invasive probe of viscosity and pH in cell cytoplasm and organelles-                        |  |
| A. S. Verkman 1006                                                                                                             |  |
| GFP fusions for fluorescence detection of Ca <sup>2+</sup> and Ca <sup>2+</sup> -calmodulin in living cells—A. Persechini 1008 |  |
| Use of green fluorescent protein (GFP)-chimeras to study cytoskeletal assembly and dynamics—                                   |  |
| G. G. Gundersen, A. Mikhailov, J. L. Martys, L. Ho, R. K. H. Liem, L. Smelinov, E. E. Marcantonio 1010                         |  |
| Efficient, retroviral-mediated expression of GFP fusion proteins as inhibitors of intracellular signal transduction            |  |
| pathways: A case study—T. J. Murphy, X. Wang 1012                                                                              |  |
| GFP-tagged protein domains as tools to study localized second messenger function in living cells—T. Meyer,                     |  |
| E. Oancea, T. Stauffer, M. N. Teruel 1014                                                                                      |  |
| Microscopic investigations of the infection process of Choristoneura fumiferana nucleopolyhedrovirus in the                    |  |
| spruce budworm—A. J. Brownwright, J. W. Barrett, T. R. Ladd, M. Primavera, S. S. Sohi, B. M. Arif,                             |  |
| A. Retnakaran, S. R. Palli 1016                                                                                                |  |
|                                                                                                                                |  |

#### DYNAMICS OF CELLULAR MEMBRANE TRAFFIC

| 1018 |
|------|
| 1020 |
| 1022 |
|      |
| 1024 |
|      |
| 1026 |
|      |
| 1028 |
|      |
| 1030 |
|      |
| 1032 |
|      |
| 1034 |
|      |

## CHEMOTHERAPEUTIC AGENTS THAT AFFECT MICROTUBULES: MECHANISMS OF RESPONSE AND CHEMOTHERAPEUTIC AGENTS AND MICROTUBULES

| Apoptosis and resistance to anti-microtubule agents-M. C. Willingham                                   | 1036 |
|--------------------------------------------------------------------------------------------------------|------|
| Neutrophil microtubules display unusual properties and are highly sensitive to taxol—J. M. Robinson,   |      |
| D. D. Vandré                                                                                           | 1038 |
| Molecular regulation of taxane-induced apoptosis-K. Bhalla                                             | 1040 |
| Taxol-induced apoptosis may occur via a signaling pathway independent of microtubule bundling and cell |      |
| cycle arrest—W. Fan, M. C. Miller III, L. Cheng, M. C. Willingham                                      | 1042 |

## APPLICATION OF CLASSICAL AND NOVEL MICROSCOPY TO TISSUE INJURY AND INFECTIOUS DISEASE PATHOGENESIS

| Applications of correlative microscopy in diagnostic and investigative pathology-D. N. Howell, S. E. Miller | 1044 |
|-------------------------------------------------------------------------------------------------------------|------|
| Molecular pathology-implications for diagnosis and pathogenesis of infectious diseases-S. R. Zaki           | 1046 |
| Immune system activation after cisplatin or "poly-plat" treatment: An in vivo study—D. J. Telgenhoff,       |      |
| S. K. Aggarwal                                                                                              | 1048 |
| Towards understanding the structural requirements for endogenous transcription in rotavirus-J. A. Lawton,   |      |
| M. K. Estes, B. V. Venkataram Prasad                                                                        | 1050 |

| Negative stain electron microscopy a valuable diagnostic method in a molecular probe diagnostic world-    |      |
|-----------------------------------------------------------------------------------------------------------|------|
| C. D. Humphrey, S. S. Monroe, R. I. Glass                                                                 | 1052 |
| Ultrastructural characterization of virus-like particles produced by a recombinant baculovirus expression |      |
| vector—A. J. Wasserman, H. Wang, G. Clark, J. R. Megill, S. K. Durham                                     | 1054 |
| The application of microscopy and other imaging techniques to the study of disease in the fetus           |      |
| W. R. Blackburn, J. Hudson, N. R. Cooley, Jr                                                              | 1056 |
| Microvascular architecture of the lingual papillae in rabbits-T. S. Masuko, B. König Jr., B. R. Schmidt   | 1058 |

### PATHOLOGY

| Ultrastructural changes in hepatocellular rough endoplasmic reticulum in rats given a pyrimidine derivative       |      |
|-------------------------------------------------------------------------------------------------------------------|------|
| B. E. Maleeff, S. J. Newsholme, T. K. Hart                                                                        | 1060 |
| Morphometry of liver lesions in an ultrastructural pathology study—A. Singh, W. P. Ireland, I. Chu                | 1062 |
| A morphometric analysis of early effects of ethanol on hepatocyte organelles from <i>Peromyscus maniculatus</i> — |      |
| J. T. Ellzey, J. P. Drake, L. Dader, P. Boentges                                                                  | 1064 |
| Centrosome proliferation in the human androgen-responsive LNCaP and the androgen-independent DU145                |      |
| prostate cancer cell lines—H. Schatten, M. Ripple, R. Balczon, M. Taylor, M. Crosser                              | 1066 |
| Sertoli cell adhesion molecules: Comparative expression of L-selectin and other CAMs in primary cells and         |      |
| immortalized Sertoli cell lines—AM. Broome, C. F. Millette                                                        | 1068 |
| Prevention of changes in endothelial cells cultured in high glucose—C. A. Taylor, Z. Imdad, J. Puchalski,         |      |
| S. Lemley-Gillespie, A. K. Mandal                                                                                 | 1070 |
| Effects of nitric oxide on monocrotaline induced right ventricular hypertrophy and lung mast cell hyperplasia in  |      |
| rats—KS. Hung, W. H. Duncan                                                                                       | 1072 |
| Nitric oxide synthase in diabetic retinopathy in the BBZ/Wor rat: An immunocytochemical study—E. A. Ellis,        |      |
| M. B. Grant, D. L. Guberski                                                                                       | 1074 |
| The effects of cigarette smoke on porcine airway epithelium—D. D. Morgan, A. G. Moss                              | 1076 |
| Molecular pathologic studies on the mechanisms of radiation-induced hematopoietic cells apoptosis and the         |      |
| recovery in mouse bone marrow—D. W. Wang, R. Y. Peng, C. Q. Xiong                                                 | 1078 |
| Pericyte ultrastructural pathology in autoimmune inflammatory myopathies—H. J. Finol, A. Márquez,                 |      |
| M. Pulido-Méndez, B. Müller, I. Montes de Oca, P. Tonino                                                          | 1080 |
| Muscle biopsy: Use of cryosections, histochemistry, and electron microscopy for diagnosis—C. L. Hastings,         |      |
| Y. M. Jones, R. E. Mrak                                                                                           | 1082 |
| Ultrastructural localization of CD34 in soft tissue tumors—J. M. Minda, T. J. Lawton, M. van de Rijn              | 1084 |
| Ultrastructural diagnosis of a pheochromocytoma at autopsy—S. Siew, B. Newton                                     | 1086 |
| Ion-channel activator-induced ultrastructural changes in the dog retina—J. R. Megill, T. M. Monticello,           |      |
| A. J. Wasserman, W. A. Kelly, S. K. Durham                                                                        | 1088 |
| Macrophage targeted photodynamic regulation of wound healingM. Coleno, V. P. Wallace, B. J. Tromberg,             |      |
| T. Hasan                                                                                                          | 1090 |
| Tissue response to bone substitute materials supporting dental implantsK. E. Krizan, D. Lew, T. Rubey,            |      |
| J. C. Keller                                                                                                      | 1092 |

## CYTOCHEMISTRY (LIGHT AND ELECTRON HISTOCHEMISTRY)

| Quantitation of peroxisome proliferation using silver enhanced immunogold labeling on glycol methacrylate        |      |
|------------------------------------------------------------------------------------------------------------------|------|
| (GMA) sections-G. D. Gagne, A. H. Illi, D. Hickman, J. A. Fagerland                                              | 1094 |
| Subcellular localization of an oncoprotein using immunofluorescence, confocal imaging and immuno electron        |      |
| microscopy-K. Murti, C. Caslini, P. H. Domer, S. J. Korsmeyer, J. Boer, G. Grosveld, A. T. Look                  | 1096 |
| Visualization of the transport pathways of high density lipoproteins across the endothelial cells in the rat     |      |
| arteries—H. H. Lin, W. T. Chao, V. C. Yang                                                                       | 1098 |
| Electron microscopic immunolocalization of basic fibroblast growth factor-like molecules in capillary            |      |
| endothelial cells—R. G. Aktas, R. J. Kayton                                                                      | 1100 |
| Ultrastructural distribution of basic fibroblast growth factor-like molecules in peripheral nerves—R. J. Kayton, |      |
| R. G. Aktas                                                                                                      | 1102 |
| Acid phosphatase activity in spiral ganglion neurons of C57BL/6 mice-G. M. Cohen                                 | 1104 |
| Age- and condition-related changes in levels of neuron specific enolase in spiral ganglion neurons of C57BL/6    |      |
| mice—G. M. Cohen                                                                                                 | 1106 |
| Demonstration of Z-RNA in the dog eye lens epithelium (germinative zone)—C. E. Gagna, J. H. Chen,                |      |
| H. R. Kuo, W. C. Lambert                                                                                         | 1108 |
| Catalase gene therapy in experimental optic neuritis: Immunocytochemistry study—X. Qi, J. Guy                    | 1110 |
| Ciliogenesis and axonemal dynein expression in human airway epithelium cultured in an air/liquid interface       |      |
| environment—J. L. Carson, W. Reed, L. Brighton, T. M. Gambling, A. M. Collier                                    | 1112 |
| Microwave-assisted immunoelectron microscopy of skin—J. P. Petrali, K. R. Mills                                  | 1114 |
| Investigation of DNA loop domains using fluorescent in situ hybridization (FISH) and epifluorescence             |      |
| microscopy—A. V. Klaus, S. McCarthy, J. McCarrey, W. S. Ward                                                     | 1116 |
| Immunocytochemical localization of myosin light chains in the abdominal superficial flexor muscles of the        |      |
| American lobster, Homarus americanus-L. D. Brown, M. E. Cantino                                                  | 1118 |
| Suppression of gastrin production after cisplatin treatment in rats—Y. Wang, S. K. Aggarwal                      | 1120 |
| Immunocytochemical analysis of murine peritoneal macrophages treated with "poly-plat", an in vitro and           |      |
| <i>in vivo</i> study—H. J. Muenchen, S. K. Aggarwal                                                              | 1122 |
| Gamma tubulin is localized to a new organelle, the multivesicular aggregate, in mammalian oocytes—               |      |
| P. G. Calarco                                                                                                    | 1124 |
| Confocal laser scanning microscopy of hamster cerebellum using FM4-64 as intracellular staining-O. Castejón,     |      |
| P. Sims                                                                                                          | 1126 |
| Investigation of DNA loop domains using fluorescent in situ hybridization (FISH) and epi-fluorescence            |      |
| microscopy—A. V. Klaus, S. McCarthy, J. McCarrey, W. S. Ward                                                     | 1128 |

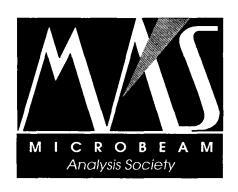
### BIOLOGICAL ULTRASTRUCTURE/MICROBIOLOGY

| Environmental scanning electron microscopy (ESEM) study of sea urchin embryos after deciliation with chloral |      |
|--------------------------------------------------------------------------------------------------------------|------|
| hydrate—H. Schatten, A. Chakrabarti                                                                          | 1130 |
| The centriole-centrosome complex is affected by microgravity during cell division and in cilia of sea urchin |      |
| embryos: Results from space flight experiments—H. Schatten, A. Chakrabarti, M. Taylor, M. Crosser,           |      |
| K. Mitchell                                                                                                  | 1132 |

liii

| Integrated microscopy of extracellular adhesives of the marine biofouling alga Achnanthes longipes                 |      |
|--------------------------------------------------------------------------------------------------------------------|------|
| (bacillariophyceae)—Y. Wang, B. A. Wustman, Y. Chen, C. Lavin, M. R. Gretz                                         | 1134 |
| High pressure freezing and freeze substitution of primitive agglutinated foraminifera—S. T. Goldstein,             |      |
| E. A. Richardson                                                                                                   | 1136 |
| EM study of isopod hemocytes-G. M. Vernon, E. J. Rappa, W. C. Murray, R. Witkus                                    | 1138 |
| Ultrastructure of haustoria of plant pathogenic fungi-C. W. Mims, E. A. Richardson                                 | 1140 |
| Ultrastructure of septa from the filamentous fungus Aspergillus nidulans-E. A. Richardson, M. Momany               | 1142 |
| Ivermectin-induced hypertrophic changes in adult canine heartworm (Dirofilaria immitis) gut epithelium—            |      |
| W. L. Steffens, J. W. McCall                                                                                       | 1144 |
| Characterization of the cell surface of Perkinsus marinus, a pathogen of the Eastern oyster, Crassostrea virginica |      |
| utilizing electron microscopy, light microscopy and epifluorescent microscopy—J. Neimark                           | 1146 |
| Taxonomic identification of Rhabdochona species found in Oncorhyncus clarki using scanning electron                |      |
| microscopy—D. Young, R. A. Heckmann, J. S. Gardner                                                                 | 1148 |
| Size and density variation in microtriches from Bothriocephalus species found in Cyprinus carpio from Lake         |      |
| Powell, Utah—I. Bingham, L. Bingham, R. A. Heckmann, J. S. Gardner                                                 | 1150 |
| Analysis of endocytosis and food plaquette formation in the ciliated protozoan Hyalophysa—S. C. Landers,           |      |
| R. A. Treadaway                                                                                                    | 1152 |
| Bioremediation: Utilization of aircraft paint waste as a nutrient source by Pseudomonas sp. VM1-                   |      |
| J. E. Thurmond, W. N. Norton, G. T. Howard                                                                         | 1154 |
| Applications of soft x-ray and other microscopy techniques to elucidate the structure of parasitic metazoa—        |      |
| W. J. Kozek, J. Brown, W. Meyer-Ilse, C. Larabell, M. Moronne                                                      | 1156 |
| Identification of papilloma-like virus particles in cell lines derived from green sea turtle (Chelonia mydas) with |      |
| fibropapilloma—Y. Lu, V. R. Nerurkar, T. M. Weatherby, R. Yanagihara                                               | 1158 |
| Fibrinogen Kurashiki (γ G268E) fibrin network structure—J. P. DiOrio, M. W. Mosesson, M. Matsuda                   | 1160 |

### DEVELOPMENTAL BIOLOGY


| High resolution immuno-electron microscopy reveals that fetal skin contains microfibrils which are              |
|-----------------------------------------------------------------------------------------------------------------|
| heteropolymers of fibrillin-1 and fibrillin-2—D. R. Keene, N. L. Charbonneau, B. J. Dzamba,                     |
| D. P. Reinhardt, C. C. Ridgway, R. N. Ono, L. Y. Sakai 1162                                                     |
| Effect of prematurity on the presence of Weibel-Palade bodies in human umbilical vein endothelial cell in situ- |
| N. Tabatabaei, K. H. Albertine, L. Wenhua, D. E. Lorant 1164                                                    |
| Temporal and spatial expression patterns of PDGF receptors in embryonic rat heart as detected through confocal  |
| scanning laser microscopy—T. Thielen, W. Carver, D. G. Simpson, T. K. Borg, L. Terracio, R. L. Price 1166       |
| 2G alters the utricular macula of chick embryos-H. Hara, C. D. Fermin 1168                                      |
| Aminoglycoside damage to young rats equilibrium-H. Hara, G. Meza, B. Bohne, J. Hara, C. D. Fermin 1170          |
| A scanning electron microscopic study of adhesive pad development in the frog Phyllomedusa trinitatis-          |
| T. A. Ba-Omar, J. R. Downie 1172                                                                                |

#### **BOTANY/PLANT PATHOLOGY**

| Effect of calcium on salt tolerance of leaf epidermal cells of Ruppia maritima at high salinity—A. D. Barnabas, |      |
|-----------------------------------------------------------------------------------------------------------------|------|
| R. Jagels, W. J. Przybylowicz, J. Mesjasz-Przybylowicz                                                          | 1174 |
| Ultrastructure and elemental distribution in foliage of manganese-treated sugar maple seedlings: Comparison     |      |
| of freeze-substitution fixatives-C. J. McQuattie, G. A. Schier, S. Burns, J. W. Heckman, Jr                     | 1176 |
| Unusual mitochondrial aggregation with virus in infected transgenic plants-L. Zhang, W. G. Langenberg           | 1178 |
| Pollination in Arabidopsis thaliana—K. Lennon, E. Lord                                                          | 1180 |
| The contribution of Symbiodinium microadriaticum to the symbiosome membrane in the anthozoan host               |      |
| Aiptasia pallida—T. S. Wakefield, S. C. Kempf, M. A. Farmer                                                     | 1182 |
| Amino acid composition and immunolabelling of a 42.5 kDa protein from phloem exudate of Luffa cylindrica        |      |
| fruits-M. C. Wang, Y. R. Chen                                                                                   | 1184 |

**On the cover:** Shaded-surface view of an Aura virus particle. This reconstruction is viewed along a two-fold axis of symmetry. Small protrusions at the outermost periphery of the glycoprotein spikes are features not previously observed in other alphaviruses. From W. Zhang, N. H. Olson, B. R. McKinney, R. J. Kuhn, T. S. Baker, Cryo-electron microscopy of Aura viruses, page 946.





https://doi.org/10.1017/S1431927600020122 Published online by Cambridge University Press