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Abstract

In this paper, we study the pricing of vulnerable Asian options with liquidity risk. We employ general Lévy
processes to capture the changes in the liquidity discount factors and the information processes of all assets. In the
proposed pricing model, we obtain the closed-form pricing formula of vulnerable Asian options using the Fourier
transform methods. Finally, the derived pricing formula is used to illustrate the effects of asymmetric jump risk,
and the effects are relatively stable on (vulnerable) Asian options with different moneynesses.

1. Introduction

In this paper, we study the pricing problems of vulnerable Asian options with liquidity risk. In the option
pricing literature, liquidity risk has been considered using different approaches. For example, Liu and
Yong [27] study European contingent claims by assuming that the stock price is directly affected by the
trading of option traders. Cruz and Sev¢ovié [10] investigate the price of European options by taking
into account of feedback effects of a large trader on the underlying asset. Another strand of the literature
is based on theory of conic finance (see, e.g., [28,29]). Leippold and Schirer [21] develop a stochastic
liquidity model to generate term and skew structures of bid-ask spreads. There are also some other
studies on options with liquidity risk, where the price of the illiquid stock is determined by equaling the
demand and the supply of the stock, originating from Brunetti and Caldarera [4]. Li et al. [22] work in
the model of Brunetti and Caldarera [4] and study the pricing problems of Asian options. Li et al. [23]
extend the framework in Brunetti and Caldarera [4] by adding jumps in the information process and
investigate the price of discrete barrier options. Wang [40] investigates European options with default
risk in a model with both liquidity risk and jump risk. Different from these studies, we work in a more
general pricing model including Brunetti and Caldarera [4], Li ef al. [23] and Wang [40] as special
cases, and focus on the pricing of Asian options with default risk.

Actually, Asian options with default risk have also been studied in the literature.' Tsao and Liu [36]
derive the approximation formula for the arithmetic Asian options with default risk in the Black—Scholes
model. Jeon et al. [16] employ the pricing formula of vulnerable European options with time-dependent
coeflicients to derive a closed-form formula of vulnerable geometric Asian options. Wang [38] obtains
an explicit pricing formula of Asian options with default risk under a stochastic volatility model and
illustrates the effects of systematic risk on Asian option prices. Wang [39] employs GARCH models to
describe the dynamics of the underlying assets and obtains the closed form of the prices of vulnerable
Asian options, where the reduced-form model is employed to capture default risk. All these studies are

1European options with default risk are investigated in Klein and Inglis [18,19], Liao and Huang [26], Liang and Ren [24], Yang e al. [43], Niu
and Wang [32], Wang et al. [41], Yang et al. [44] and Liang and Wang [25].
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based on the assumption that the underlying asset is completely liquid. The aim of the current paper
is to relax this assumption and we work under the assumption that the underlying asset is an illiquid
stock. In this sense, this paper contributes to the literature on Asian options with default risk and to the
literature on default-free Asian options as well.?

In this paper, we study the pricing of vulnerable Asian options with liquidity risk, by relaxing the
assumptions in the literature on vulnerable Asian options that the underlying stock is perfectly liquid.
We follow Li er al. [22] and Wang [40], and determine the price of the illiquid stock by the market
clearing condition. We use structural approaches to describe default risk and model the dynamics of
option issuer’s assets similarly. In addition, Lévy processes are used to capture jump changes in the
liquidity discount factors and the information processes of all assets. In this pricing model, we study the
pricing problems of Asian options with default risk, which are more complex than European options
with default risk considered in Wang [40]. Because of the generality of Lévy processes, we use the
Fourier transform methods to get closed forms of option prices. Moreover, we mainly focus on the
impact of asymmetric jump risk on option prices. For example, when negative news comes, the decline
of underlying stock prices is greater than the rise when positive news comes. Many studies provide
evidence for the presence of asymmetric jump risk (see, e.g., Carr et al. [8], Cont and Tankov [9] and
Frame and Ramezani [13]). For instance, Frame and Ramezani [13] calibrate the asymmetric affine
jump-diffusion models using the time series data of market index and individual stocks. They find that
the arrival frequency and jump amplitude of positive news are not equal to those of negative news. In
order to characterize this asymmetric jump risk, in the numerical section, we use CGMY processes to
show the difference of the asymmetry on option prices by changing different parameter values.

Comparing with the existing literature, this paper has several instructive characteristics. As mentioned
above, the pricing model in this paper is constructed using similar methods as in Brunetti and Caldarera
[4], Li et al. [23] and Wang [40], and includes them as special cases. Second, we take into account of
default risk, while Brunetti and Caldarera [4] and Li et al. [23] work in a default-free model. Third, the
pricing model in this paper uses more general Lévy processes, while Wang [40] employs compound
Poisson processes to describe jumps. Fourth, we derive the pricing formula using Fourier transform
methods, which are different from Wang [40]. Because compound Poisson processes are used in Wang
[40], the pricing formula can be derived conditional on the exact numbers of Poisson jumps. However,
this method is not applicable in general Lévy processes. Moreover, in this paper, we mainly focus on
asymmetric jump risk, and the closed-form pricing formula is still available. Note that Wang [40] also
illustrates asymmetric jumps on vulnerable European options using numerical methods (see footnote 3
therein), since the explicit pricing formula is not available there. Fifth, we consider vulnerable Asian
options, while Wang [40] investigates vulnerable European options, and Li et al. [22] work in a default-
free model. Lastly, the proposed pricing model can be extended to price vulnerable power exchange
options (see, e.g., [33,42]).

The structure of this paper is as follows. In Section 2, we describe the model and get the closed-form
pricing formula of vulnerable Asian options. In Section 3, we carry out numerical analysis. Section 4
concludes the paper. The detailed proof is given in the Appendix.

2. Vulnerable Asian options with liquidity risk

In this section, we consider vulnerable Asian options with liquidity risk. We first describe the pricing
model, where both the underlying asset and option issuer’s assets are exposed to liquidity risk and
correlated in a general sense. More specifically, a common Lévy process is adopted to drive the
information processes of all assets and the liquidity discount factors. In this proposed framework, we
obtain the closed form of vulnerable Asian options with liquidity risk using Fourier transform methods.

2A partial list of the studies on default-free Asian options includes Fusai and Meucci [15], Cai and Kou [5], Cai et al. [6], Fusai and Kyriakou
[14] and Song et al. [34].
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2.1. The model

Let P be a real-world probability measure. We consider an illiquid stock and use S(z) to express its
price at time ¢. Briefly speaking, market clearing gives the illiquid stock price, which means that the
demand for the stock and the supply are equal. Following Brunetti and Caldarera [4], Li ez al. [23] and
Wang [40], we work with a fixed supply (S), and assume that the demand for the illiquid stock has the
following specific form,

—_— 2.1
Li(1)S(1)

where g1 (+) is a smooth and strictly increasing function, and , is a constant. In addition, I, (¢) represents
the information process and L;(¢) denotes the liquidity discount factor. Furthermore, the information
process I (t) is driven by the following process,

P
Dy(S(), 11 (1), L1 (1)) = gl( L) )

Ii(t) = [, (0) exp{(u1 — 307 — ki)t + oy By (1) + 61X (1) + Y1 ()},

where y; and o are constants, and By (¢) is a standard Brownian motion. The last two terms, X () and
Y1 (1), are two independent pure jump Lévy processes, which describe the common and idiosyncratic
jumps, respectively. Note that the above form of 1 (¢) contains the ones in Brunetti and Caldarera [4],
Li et al. [23] and Wang [40] as special cases. We suppose the liquidity discount factor L;(z) has the
following specific form,

L(t) = L,(0)exp {—,81 (‘/Ota(s) ds+/0ta(s) dW (s) +9X(t))} ,

where a(s) is a deterministic function of time, 8 and 6 are nonnegative constants, and W(z) is a standard
Brownian motion, independent of B;(z). It should also be noted that the above liquidity discount factor
includes those in Brunetti and Caldarera [4], Li et al. [23] and Wang [40].

Based on the assumptions on the supply and the demand, the market clearing condition is as follows:

D (S(2), I (1), Ly (1)) = S,

which in turn implies that,

(L (1)/1,(0)™
Li(t)/Li(0)

Lastly, by substituting /;(¢) and L;(t), we can get the following form:

S(t) =8(0)

S(t) = S(0) exp {191(111 - %Ulz — k)t + 010 B (1) + ($161 + £16) X (1) + Y1 (1)

+B4 (/0 a(s) ds+‘/0 a(s) dW(s))}. 2.2)

It is clear that the stock price is driven by the common jumps, idiosyncratic jumps and liquidity risk as
well.

Now, we turn to default risk. Here, we follow Klein [17] and Wang [37], and adopt structural
approaches. Let V() be the value of option issuer’s assets and we assume that it has a similar form to
the stock, that is,

V(t) =V(0)exp {ﬁz(,uz - %0'22 — ko)t + 0h02Bo (1) + (9202 + $26) X (1) + 9,Y5(1)

+B, ('/0 a(s)ds +‘/0 a(s) dW(s))} , 2.3)
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where B,(t) is a standard Brownian motion independent of W () and Y»(¢) is a pure jump Lévy process,
independent of X (¢) and Y; (¢). Recall that By (¢) is a standard Brownian motion, driving the information
process of the illiquid stock. Similarly, B, () drives the information process of option issuer’s assets.
To work in a more general pricing model, here we assume that B (¢) and B;(¢) are correlated and have
a correlation coefficient p. Moreover, both the stock and option issuer’s assets are affected by liquidity
risk and common jumps.

In the pricing model described above, we will value vulnerable Asian options with liquidity risk
in the coming subsection. As mentioned before, different from Wang [40], we will derive the pricing
formula using Fourier transform methods, since the method in Wang [40] is not applicable in general
Lévy processes. Moreover, in this paper, we mainly focus on asymmetric jump risk. In order to capture
asymmetric jump risk, in the numerical section, we will employ CGMY processes, albeit the pricing
formula is available in general Lévy processes. CGMY processes are proposed by Carr et al. [8] to
capture jump changes of assets, including both finite or infinite activities and finite or infinite variation.
There are four parameters C, G, M and Y, which characterize different properties of the process. We
refer interested readers to Carr et al. [8] for more details. In this paper, because we are mainly interested
in asymmetric jump risk, we pay more attention to the parameters G and M, which characterize the
exponential decay rate on the left and right of the Lévy density. Specially, when G = M, the density
function is symmetric. In addition, the CGMY process has been used commonly in the option pricing
literature (see, e.g., Madan and Yor [30], Ballotta and Kyriakou [2], Figueroa-Lépez er al. [12] and
references therein) and its characteristic function is given as follows:

dcomy (u,t;C, G, M,Y) = exp{tCT(=Y)[(M —iu)¥ = M" + (G +iu)’ - G"]}, 2.4)

where C >0, G >0, M >0,Y <2,and I'(+) is the gamma function.

2.2. The pricing formula

In this subsection, we use Fourier transform methods to derive the pricing formula of vulnerable Asian
options with liquidity risk. Let G(T') denote discrete geometric average price of the illiquid stock S(z),
and it has the following form:

n 1/n
G(T) = Hsm—)l , @.5)
j=1

with 0 < t; < --- < t, =T and t; = jT/n. The payoff of Asian options with fixed strike prices is
therefore given by,

max{G(T) — K, 0},

where K is the fixed strike price. When n = 1, the above payoff equals the standard European call
options. Recall that we use structural approaches to capture default risk. Assuming that the value of
option issuer’s debt is D and the recovery rate is @, we then have the payoff of Asian options with default
risk as follows:

aV(T)

max{G(T) - K, 0} (I(V(T) > D)+ —=1(V(T) < D)) .

According to the risk-neutral pricing theory, we have the following price of Asian options with default

risk,

aV(T)
D

Co=e¢"TEC [max{G(T) - K,0} (I(V(T) > D)+ 1(V(T) < D))] , (2.6)
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where Q is a risk-neutral probability measure. Based on the above price of vulnerable Asian options,
we can obtain the difference between vanilla Asian options and vulnerable Asian options, that is,

aV(T)

e TEC |max{G(T) - K,0}(1 — T)1(V(T) <D)|.

This difference is the credit value adjustment (CVA) of Asian options (see, e.g., [1]) and is an adjustment
to the risk-free value in order to include default risk. In addition, investment banks have built trading
desks and complex models around managing CVA (see, e.g., [3]).

In order to obtain the closed form of C listed above, we need to work under a risk-neutral probability
measure, which could be found based on the Esscher transform (see, e.g., [11]). Here, we give the
dynamics of the illiquid stock and the issuer’s assets under Q directly,

S(r) = S(0) exp {rt+1910'11§1(t) - %ﬁfo-lzt+,6’1 /Ota(s) dw(s) - %gf/ota(s)z ds

+(19151+ﬁ19))?(l)+191)71(f)—721t}, 2.7
and
5 Lo s ! = 1, [ 2
V(t) =V(0)exp{rt +1horBy(t) — zﬁza'zt + 3> a(s)dW(s) — Eﬁz a(s)-ds
0 0
+ (19252 +ﬁ29)X(l) + 192?2([) — ]Ezt} S (28)
where r is risk-free interest rate, k; = In(EC[e("O*HOXM+INI(D]) and k, =

In(EQ[¢(?20245:0)X(N+3:Y2(1 ]y We can easily verify that the discounted prices of two assets are
martingales under Q.

In what follows, we use Fourier transform methods to derive the pricing formula. To this end, we
rewrite Cy in (2.6) as follows,

Co = Ci(k, h) + Cy(k, h),
where

Ci(k,h) =T EC [max{G(T) - K,0}(1(V(T) > D))]

= 7T B2 [max{e" ™ — ek, 0}(1(e" ™) > "))],

V) v < D))]

Cz(k, 71) = €_rT EQ T

max{G(T) - K, 0} (

— e—rT EQ

H(T) _
ae
max{e’ ) - ¢¥, 0} ( z 17D < e_h))] ,

where Y(T) = InG(T), H(T) =InV(T),k =InK,h=InD and h = —In D.
Additionally, we can obtain the respective Fourier transforms of Cy (k, &) and C;(k, fz) shown below,

+00 +00
F[Cil(u,v) = / / ek (K, h) 2T dkdh, (2.9)

+00 +00 - 5
F[C](u,v) = / / e@*Cy (k, h) 2™ WkvR) R dp, (2.10)
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where o and p; are positive constants. It should be noted that ¢; and g, are the damping factors, which
are introduced in order to ensure the existence of the integrals (see, e.g., [7]).

Substituting the concrete forms of C;(k,h) and C,(k, ) into the above expression, we get the
following results:

e—rT

(2miu + 01) 2miu+ 01 + 1) (2niv + 07)
e—rT

‘C}T[Cl] (M, V) — EQ [6(27ri1,4+gl+1)Y(T) e(27riv+,gz)H(T)]

- 2miu + oy + 1, 2miv +
(27riu+,91)(27riu+gl+1)(2m-v+gz)5( wiu + 01 + 1, 27iv + 07),

aeT . .
FIC , — Or,Qriu+o+1)Y(T) ,—(2niv)H(T)
[Ca] ) (2niu + 01) 2niu + 01 + 1) 2aiv + 1) le ¢ |

a e—rT

- (27iu + 01) 2niu + 01 + 1) 2xiv + 1)

C2riu+ o1 + 1, -2miv).

The detailed calculations are shown in the Appendix and (-, ) is given in Proposition 2.1. Finally,
Ci(k, h) and C,(k, h) are expressed by the inverse Fourier transforms,

+00 +oo
Ci(k, h) = e~ @k-eh / / F[C1)(u,v) e 2@k qudy,

+00 +00 N
Cy(k, h) = ek / / F[Co](u, v) e 2 wkvh) qyy gy

Therefore, we obtain the pricing formula of vulnerable Asian options with liquidity risk, that is,
Co = Cy(k,h) + C5(k, h). Note that we have obtained the pricing formula expressed by the inverse
Fourier transforms. In Section 3, we will set the lower and upper limits for the infinite integrals to
—10,000 and 10,000 in order to obtain the prices of (vulnerable) Asian options. Additionally, we use
the functions ‘quad(-)’ and ‘dblquad(-)’ in Matlab to evaluate Asian options and vulnerable Asian
options, respectively.

We end this subsection by giving the explicit expression of (-, -) defined below,

Z(p,q) =E2 [ePY(T)+qH(T)]’

where p and ¢ are complex numbers, Y(7) = InG(T) and H(T) = InV(T). From the dynamics of the
illiquid stock and the issuer’s assets under Q, one gets that

Y(T) = In(G(T)) 2.11)
1 D in(s(e))
n

1 ¢ 1 , 1 t By
= Z [ln(S(O)) +(r - 519120'12 - ki)t - Eﬁ%/ a(s)*ds + o By (1))
J=1 0

+B1 /0 ’a(s) dW (s) + (9161 + B16) X (1)) + T (t;)

n

1o, - \n+l :3% b 2 9101\ 5
= In(S(0) + |r — 58707 ~ ki T—%Z i a(s)*ds + ZBI(IJ-)
J=1 j=1

2n n
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. % $ /Oﬂ- a(s) dw(s) + M DI+ % RAD} (2.12)
=1 Jj=1 j=1

and

H(T) = In(V(T))

T T
=In(V(0)) + (r - %19%0'22 - 152) T - %ﬁ%/ a(s)*ds + o By (T) +,82/ a(s)dW(s)
0 0
+ (19252 +ﬂ29)X(T) + ﬁz?z(T), (213)

where 0 < t; < -+ <t, =T and t; = jT/n. In order to give the explicit expression of {(-,-), we
introduce the following notations,

AXJ' = X(lj) - X([J‘_l),
E[e™™] = yux (w),
EC [eiwAYl] = WAY’I (w),
EC[e™™] = yy, (w).
Proposition 2.1. In the proposed pricing model, we have the closed form of { (-, -) as follows:

{(p.q) = A1(p.q) - Ax(p,q) - A3(p,q) - As(p. q) - As(p.q) - As(p.q),

where

A(pq) = ep(ln(S(O))+(r—%19]20']2—121)%7‘—%': S 7 als)>ds)+q(n(V (0)+(r—L 9302~k T 182 [1 a(s)zds)’

2

I v Yo .
AZ(PJI) :exp{_z [p ] ](l’l+ 1 —J)+q1920'2p

2 n
2 tj
/ a(s)*ds}t,
ti—1

T 1op 2
a7t (1-pT

1
As(p,q) = exp {5 > [p%(fﬁ 1=j)+ap>

J=1
j=1 -

n 1_ .
As(p.q) = ]_[wa (—l'P(ﬂ151 +ﬂ19)n+T] —iq (920, +,329)) ,

j=1

n 19‘
As(p.q) = nlﬁAY (—1'1771(” +1 —j)),
=l
As(p, q) = Yy, (=igd).

Proof. See the Appendix. m

By far, we have obtained the closed-form pricing formula of vulnerable Asian options in the proposed
pricing model. In the coming section, we will illustrate vulnerable Asian option prices and focus on the
difference of the asymmetric jump risk.

3. Numerical results

In this section, we use the derived pricing formula to focus on the effects of asymmetric jump risk
on the prices of (vulnerable) Asian options. In Subsection 3.1, we report Asian option values in the
proposed pricing model, and the corresponding pricing formula can be obtained by discarding default
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Table 1. Asian option prices in three models. Model 1 is the one proposed in this paper, which reduces
to Model 2 by discarding default risk and further to Model 3 by assuming liquidity risk away.

Parameters Model 1 Model 2 Model 3
Base case 2.1494 2.3315 1.4998
T 1 1.6574 1.7538 1.0777

1.5 1.9392 2.0808 1.3098
K 8 2.7797 3.1133 2.5398
12 1.6584 1.7587 0.8467
S(0) 8 1.2437 1.3130 0.5844
12 3.1969 3.5587 2.8030
n 1 3.5926 3.7691 2.2722
5 1.9134 2.0968 1.3609
Y 0.3757 1.9046 2.0965 1.3280
0.7757 2.5040 2.6792 1.7749
G 9.3750 2.5406 2.7171 1.8192
37.5000 1.9304 2.1203 1.3415
M 16.4750 2.3849 2.5602 1.6714
65.9000 2.0471 2.2332 1.4286

risk. In Subsection 3.2, the prices of vulnerable Asian options are illustrated. As mentioned before,
here we choose a particular Lévy process, that is, the CGMY process, to describe common jumps
X (1) and investigate the impact of asymmetric jumps on option prices. In order to directly observe this
impact, here we assume away idiosyncratic jumps of both assets. In this way, the asymmetric effects
are only caused by common jumps, rather than the combination of common and idiosyncratic jumps.
Additionally, the effects of idiosyncratic jumps are quite intuitive (see, e.g., [40]).

In order to obtain option prices, we need to set the parameter values. As we know, there are four
parameters in the CGMY process (see Subsection 2.1 for a brief introduction or refer to Carr et al. 8] for
more details). We set four parameters to be Cp = 6.51, Gy = 18.75, My =32.95and Yy = 0.5757 as a
base case. These parameter values are from Carr et al. [8]. The other parameter values are borrowed from
Wang [40] and take the following values: » = 0.02, ¢, = 1.0, o7 = 0.25, 81 =0.75, 6; = 0.80, 8 = 0.80
and a(t) = 0.50. In addition, we assume that the option is at the money (S(0) = K = 10) and has a
maturity of 2.0 years, and three observations are made during the whole period, which means that n = 3.
Finally, we set the damping factors | = 0> = 1.10. We also calculate option prices with other values
and the results are the same.

Before illustrating the effects of asymmetric jump risk on the prices of (vulnerable) Asian options,
here we compare option prices in the proposed framework with those derived in pricing models without
default risk or liquidity risk. The results are shown in Table 1, and option prices are close to those in
previous literature (see, e.g., [22]). It should be remarked that option prices in our models are higher
than those in Li et al. [22], because there are jumps in our models. The effects of the parameters G and
M can also be observed from Table 1. It can be seen that option prices decrease when the value of the
parameter G or M increases, which is consistent with Merton [31], Kou and Wang [20] and Tian et al.
[35]. Furthermore, these effects are the focus of this paper and will be investigated in great detail in the
following subsections.

Recall that the parameters G and M characterize the exponential decay rate on the left and right
of the Lévy density. To illustrate the effects of asymmetric jump risk, in what follows, we will show
(vulnerable) Asian option prices in the following cases: fixed M, G = 0.5Gy; fixed M, G = 2Gy; fixed
G, M = 0.5My; fixed G, M = 2M,. In this way, we can observe the difference in (vulnerable) Asian
option prices caused by asymmetric jump risk.
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Figure 1. Prices of Asian call options against time to maturities. The solid, dashed, dot-solid, dotted
and dot-dashed lines correspond to prices of Asian options with (G = Gy, M = M), prices of Asian
options with (G = 0.5Gy, M = M,), prices of Asian options with (G = 2Gy, M = M,), prices of Asian
options with (G = Go, M = 0.5My) and prices of Asian options with (G = Gy, M = 2My), respectively.

3.1. Asian options

In this subsection, the prices of Asian options in the proposed pricing model are illustrated, and the
results are shown in Figures 1-5. Figure 1 shows the prices of Asian options with different maturities.
First, in all cases, Asian option prices rise with an increase of time to maturity. Next, we focus on
the effects of the parameter M. Note that the parameter M characterizes the exponential decay rate on
the right of the Lévy density. The solid line corresponds to the base case, that is, G = Gy, M = M.
The dotted line and the dot-dashed line illustrate Asian option prices with (G = Gy, M = 0.5M,)
and (G = Gy, M = 2M,), respectively. Intuitively, a lower value of the parameter M corresponds to a
slower rate of exponential decay on the right of the Lévy density, and hence a higher Asian option price.
Moreover, the differences between the base case and the case with (G = Gy, M = 0.5M,) are larger
than those between the base case and the case with (G = G, M = 2M,).

In what follows, we focus on the effect of the parameter G. Once again, note that the parameter G
characterizes the exponential decay rate on the left of the Lévy density. When the value of the parameter
G decreases, the Lévy density on the left decays more slowly, meaning that negative jumps occur more
likely. Option prices should fall when the value of the parameter G drops. However, an interesting
finding in Figure 1 is that option prices increase when the value of the parameter G decreases. These
results are a little counterintuitive. The reason is that the parameter G also affects the risk compensation
term k; under the risk neutral probability measure. It can be seen clearly from Figure 2 that when the
parameter G decreases, k; decreases rapidly, resulting in the rise of underlying asset prices and option
prices as well. The similar conclusions can be found in Merton [31], Kou and Wang [20] and Tian et
al. [35]. In Figure 1, it can also be seen that option prices increase more when we reduce the value of
the parameter G by half than when we reduce the value of the parameter M by half. Similarly, when we
double the values of G and M, negative jumps have a more pronounced effect.

Figure 3 depicts option prices with alternative strike prices. Intuitively, option prices drop with an
increase of strike prices, and the prices of Asian options with (G = 0.5Go, M = M) are largest. By
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Figure 2. Risk compensation k| against the parameter G in the CGMY process with C = C,
M=M,, Y=Y,

comparing the solid line and the dotted line (the dashed line), we see that the distance between the two
lines almost keeps unchanged when strike price changes. This result tells us that the effects of these two
parameters are relatively stable for alternative moneynesses.

Figure 4 shows the influence of the change of 6 in the liquidity discount factor on option prices. Note
that 6 captures the impact of jumps in the liquidity discount factor. With a larger value of 6, we have
a lower level of the liquidity discount factor and hence a higher underlying asset price, resulting in a
higher option price. This is consistent with the intuition. In addition, with an increase of 8, the gaps
between the five lines are growing, indicating that the impact of asymmetric jump risk becomes greater.

Figure 5 illustrates the effect of the parameter Y in the CGMY process on Asian option prices. The
parameter Y controls the fine structure of the stochastic process (see, e.g., [8]). From Figure 5, we can
observe that option prices rise with an increase of Y, but the difference between the five situations does
not change significantly.

3.2. Vulnerable Asian options

In this subsection, we report the values of vulnerable Asian options in the proposed pricing model.
To obtain the prices of the options with default risk, we need the parameter values in the dynamics of
option issuer’s assets. For simplicity, here we set them the same as those in the dynamics of the illiquid
stock and the correlation coefficient is assumed to be p = —0.50. Moreover, the initial value of issuer’s
assets is V(0) = 100, the value of the debt is D = 80 and the recovery rate is @ = 0.40. The results are
shown in Figures 6—13.

Figures 6 and 7 illustrate the values of vulnerable Asian options with alternative maturities and
different strike prices, respectively. These patterns are similar to the ones we observed in the last
subsection and could be understood in a similar way. In addition, the price difference between Figure 1
(Figure 3) and Figure 6 (Figure 7) shows the effects of default risk. Due to the existence of default risk,
vulnerable Asian option prices are lower. For example, in the base case, the prices of Asian options and
vulnerable Asian options are 2.3315 and 2.1494, respectively.

Figures 8 and 9 show vulnerable Asian option prices against different values of 6 and the parameter
Y in the CGMY process, respectively. Once again, these patterns are similar to the ones we observed
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Figure 3. Prices of Asian call options against strike prices. The solid, dashed, dot-solid, dotted and
dot-dashed lines correspond to prices of Asian options with (G = Gy, M = M), prices of Asian options
with (G = 0.5Gy, M = M,), prices of Asian options with (G = 2Gy, M = My), prices of Asian options

with (G = Gy, M = 0.5M,) and prices of Asian options with (G = Gy, M = 2M), respectively.
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Figure 4. Prices of Asian call options against the values of 6. The solid, dashed, dot-solid, dotted and
dot-dashed lines correspond to prices of Asian options with (G = Gy, M = M), prices of Asian options
with (G = 0.5Gy, M = M,), prices of Asian options with (G = 2Gy, M = M), prices of Asian options

with (G = Gy, M = 0.5M,) and prices of Asian options with (G = Gy, M = 2M), respectively.
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Figure 5. Prices of Asian call options against the values of the parameter Y in the CGMY process.
The solid, dashed, dot-solid, dotted and dot-dashed lines correspond to prices of Asian options with
(G = Gy, M = M,), prices of Asian options with (G = 0.5Gy, M = M,), prices of Asian options with
(G =2Go, M = M), prices of Asian options with (G = Gy, M = 0.5My) and prices of Asian options
with (G = Gy, M = 2M,), respectively.
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Figure 6. Prices of vulnerable Asian call options ag