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Introducing the Philosophy of Mathematical Practice 1

Introduction
Mathematics is a fascinating yet mysterious field. Some are drawn to it because
of its rigour and because it yields absolute truths. Others are taken bymathemat-
ics’ capacity to describe our complex world in simple relations.When engaging
with mathematics, however, questions arise. One might wonder how we were
even able to develop and grasp all of the complex structures that constitute con-
temporary mathematics. A related question concerns the nature of the relations
between elementary mathematical activities such as counting and measuring
and the modern abstract theories of mathematics – if there are any such rela-
tions. Mathematics has a language of its own with technical terms, notations
that are used to write expressions in a compact and convenient form, and a
variety of visual representations such as figures and diagrams. This special lan-
guage is also part of what makes mathematics difficult to understand. In this
light, one may ask: What is the role of the notation and visual representations –
are they essential components of contemporary mathematics or merely useful
devices? Could it also be that they somehow aid our discovery of mathematical
facts? These are examples of questions that are of interest to the philosopher of
mathematical practice and some of them will be addressed in this Element.
The main purpose of this Element is to introduce the field of philosophy that

takes as its starting point the practice of mathematics. This is a difficult task –
in part since the field is still young. This means that, even though there is some
consensus as to what the philosophy of mathematical practice (abbreviated as
PMP) may designate, scholars claiming to be in the field still characterise it
in quite distinct ways. One way to describe PMP is to contrast it with main-
stream philosophy of mathematics. The following four general trends give a
rough idea. First, PMP aims to extend the topics that can be studied as part
of the philosophy of mathematics beyond the traditional questions concerning
the foundations and ontology of mathematics. Second, philosophers of practice
often take interest in more specific questions, such as ‘What is a mathematical
explanation?’, in contrast to the broader pictures that one finds in philosophy.
Third, methods drawn uponmay be different. Philosophy ofmathematical prac-
tice is historically sensitive, analyses case studies, and sometimes even refers
to scientific or empirical results whereas mainstream philosophy of mathe-
matics belongs to analytic philosophy and develops and is based on formal
tools. Finally, mathematics is often portrayed as static, a collection of eternal
truths, in mainstream philosophy. In PMP, we are (also) interested in mathe-
matics’ dynamic character, how concepts are defined, proofs are found, and
so on, stressing that mathematics is an activity done by human agents. This is
a rough sketch and does not capture the richness of the field. Philosophy of
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2 The Philosophy of Mathematics

mathematical practice, for example, also draws on analytic tools and in certain
cases seeks to formulate ‘big pictures’.
The Element comprises three sections. Each section can be read indepen-

dently, but there are examples that are referred to across the sections. The
first section introduces the ‘philosophy of mathematical practice’ from a gen-
eral point of view. The section provides an outline of some of the different
approaches to PMP mainly through an analysis of what ‘practice’ refers to.
In addition to PMP, scholars have also used ‘mathematical philosophy’ to

characterise the type of philosophy of mathematics that interacts with mathe-
matical practice proper. This termwas used by Bertrand Russell about a century
ago and refers to the general movement, scientific philosophy, whichwas active
between 1850 and 1930. There are interesting similarities (as well as differ-
ences) between this movement and the current PMP, some of which will be
pointed out.
The ensuing two sections treat in more detail two examples of work in

the philosophy of mathematical practice. The two topics are Mathemati-
cal Structuralism and Visual Thinking in Mathematics. One motivation to
adopt a structuralist position stems from developments within mathematics
itself. Structuralism therefore is an exemplary case of a philosophical position
inspired bymathematical practice. Emphasising a dynamic conception ofmath-
ematics, I focus onmethodological aspects of structuralism. This includes using
the axiomatic method as a tool to create structures and to organise mathematics
in various ways. Furthermore, I consider the role of relations in mathematics
on a ‘global’ scale which entails understanding mathematical structuralism in
a broader sense than is typical in the philosophy of mathematics.
Section 3 contains a brief historical introduction to the use of diagrams in

mathematics, starting with the observation that diagrams formed an essential
component of Greek mathematics. Euclid’s Elements was long regarded as the
paradigm for howmathematics should be studied and presented, and so geome-
try served formany centuries as a foundation formathematics. However, during
the eighteenth century, this picture gradually shifted, and at the turn of the
twentieth century one finds explicit statements that proofs should not rely on
geometric intuition nor be based on diagrams. In the latter part of the twentieth
century, philosophers contested this view, noticing the prevalence of diagrams
in mathematical practice. Consequently, scholars began investigating the role
that figures, or diagrams, play. We will consider some contributions that exam-
ine the use of diagrams in proofs, noting that each is based on a careful analysis
of exemplary cases and that diagram-based reasoning can be supported by for-
mal arguments. Finally, I will highlight some of the advantages that diagrams
offer over other types of representations.
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Introducing the Philosophy of Mathematical Practice 3

1 Different Approaches to Philosophy of Mathematics
There are different ways in which mathematics presents itself and gives rise to
philosophical reflections. One might think of mathematics (for example, at a
certain point in time) as a collection of theories that establish relations between
concepts, formulated in terms of propositions, and that we have knowledge of a
proposition in case there is a proof of it. Questions that this picture might raise
concern the nature of the involved mathematical concepts, how to account for
the apparent necessity of mathematical propositions, and which requirements
should be stated for arguments to be accepted as rigorous proofs. This is a static
conception of mathematics. In contrast, one might be interested in mathematics
as an activity wondering, for example, how concepts are developed and theories
formed. One might also enquire about various epistemic concerns such as why
mathematicians value multiple proofs of the same theorem. One might think
that this division – between a static and dynamic conception of mathematics – is
simple and that the questions they give rise to as well as the methods employed
to respond to them are disjoint. This turns out not to be true, as we shall see.
The label ‘The philosophy of mathematical practice’ (PMP) will be reserved

for topics within the philosophy of mathematics that explicitly address themes
that are tied to the practice of mathematics, interests of mathematicians (present
and past) that are related to their mathematical practice, or challenges posed by
the content of mathematics (broadly construed). ‘Practice’ may, but need not,
imply an underlying assumption that mathematics is done by human agents.
There are a number of different approaches to the philosophy of mathematics
that take an ‘agent based’ perspective, that is, perspectives based on the fact that
mathematics is done by human beings or is the outcome of human activities.
Such a point of view affects, among other things, how knowledge is charac-
terised. I return to this point in Section 1.2. Other approaches to PMP insist
that philosophical reflections are informed by mathematics itself, for example,
mathematical theories, concepts, how proofs convince, are found or presented.
Furthermore, ‘philosophy that is informed by mathematics’ could also mean
that mathematics itself provides the tools to solve philosophical problems. It
may not be entirely clear what I mean by these brief descriptions, but the cur-
rent and two consecutive sections are intended to give some concrete examples
that illustrate these points.
One could also ask how the ‘philosophy of mathematical practice’ differs

from the philosophy of mathematics. This is, indeed, a relevant, but difficult,
question. One thing that makes it complicated is the many different traditions
(both past and present) of thinking about mathematics. In light of this, ‘the phi-
losophy of mathematics’ cannot refer to a single approach. This entails that
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4 The Philosophy of Mathematics

what I will be characterising as the ‘philosophy of mathematical practice’ may
be compatible with both past and existing traditions. Aldo Antonelli (2001),
characterising what he refers to as ‘mathematical philosophy’, makes a related
point when noting that mathematical philosophy has been practised by a num-
ber of past thinkers from Plato to Hilbert. Antonelli contrasts mathematical
philosophy to contributions that are exclusively concerned with ontological
questions, ‘the epistemology of mathematical propositions, or the necessary
status of mathematical truths’ (2001, p. 1) – questions that elsewhere are
claimed to belong to mainstream philosophy of mathematics.
Early proponents of a ‘practice oriented’ approach objected to the one-sided

focus on foundational questions and the use of formal tools, namely formal
logic and set theory, when dealing with them. Some of them, referred to as
‘mavericks’, even claimed that mathematics does not need foundations; see
Mancosu (2008a) for an elaboration. Less radical philosophers have instead
urged that the range of topics and questions considered should be extended. A
further requirement is that answers to these questions should draw on relevant
mathematical theories (that go beyond arithmetic and set theory).
In this first section I introduce the philosophy of mathematical practice

(PMP) and mathematical philosophy that is related to it. ‘Mathematical philos-
ophy’ has recently been used to characterise philosophical work that employs
mathematical tools to address problems in mathematics (Weber 2013) and, as
mentioned earlier, to offer a particular perspective on the philosophy of mathe-
matics (Antonelli 2001). The label was coined by Bertrand Russell (1919) and
appears in the title of his book Introduction to Mathematical Philosophy.1 Rus-
sell’s ‘mathematical philosophy’ can be seen as part of the general movement
‘scientific philosophy’ which started in the mid nineteenth century. Through
the influence of Russell and others, it transformed into what is today known as
analytic philosophy.2 Mathematical philosophy as characterised by Antonelli
can be seen as a version of PMP. It may therefore seem odd that it can be traced
back to Russell who has been highly influential in the development of ana-
lytic philosophy and is one of the fathers of the logicist programme, one of the
foundational schools. Both the foundational schools and formal tools used in
analytic philosophy, or at least certain versions of these, have been criticised by

1 ‘Mathematical philosophy’ has a number of different interpretations. It could mean the use of
mathematical, or formal tools in philosophy (cf. Munich Center for Mathematical Philosophy),
that views on mathematics inform one’s philosophy (as in the writings of C.S. Peirce), or as a
view on the philosophy of mathematics that takes mathematical practice seriously.

2 Some of the early philosophers usually mentioned as the originators of analytic philosophy are
Moore, Russell, and Wittgenstein. Wittgenstein was in particular influenced by Russell and
Frege.
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Introducing the Philosophy of Mathematical Practice 5

the mavericks and other precursors to PMP. If one considers the original moti-
vation and general ideas of scientific or mathematical philosophy, however, it
turns out that they resonate with ideas of PMP. This need not imply that the
particular outcomes, that is, the positions of these orientations have to overlap
and that there is agreement on every point. Not everyone agrees with Russell,
for example, that mathematics is the same as formal logic (Russell 1901).
Section 1.1 briefly introduces mathematical philosophy as it was conceived

by Russell and the context of scientific philosophy. The main point is to illus-
trate that scientific philosophy and Russell’s mathematical philosophy contain
certain ideas that are shared with PMP. Another main point will be to illus-
trate that what the philosophy of mathematics is, which topics are of interest
to philosophers, and what methods are used change over time. Section 1.2
discusses general themes of the philosophy of mathematical practice.

1.1 Scientific and Mathematical Philosophy
In the introduction to a special issue of Topoi, Antonelli defines ‘mathemati-
cal philosophy’ as that area of philosophical reflection that is contiguous to,
and interactive with, mathematical practice proper (Antonelli 2001, p. 1). To
be interactive with mathematical practice entails that one draws on relevant
parts of mathematics: Paraphrasing Kant, one could say that mathematics
without philosophy is blind, and philosophy without mathematics is empty
(Antonelli 2001, p. 1).3 Antonelli further claims that philosophy that is not
informed by mathematical practice risks becoming either legislative or apolo-
getic. In contrast, mathematical philosophy ‘is respectful of, but not subsidiary
to, current mathematical practice. It engages the issues, points out conceptual
tensions, and highlights unexpected consequences. Mathematical philosophy
positions itself neither above nor below mathematics, but rather on a par with
it, taking the role of an equal interlocutor’ (Antonelli 2001, p. 1). Antonelli
attributes the term ‘mathematical philosophy’ to Russell, to whomwe now turn.
Mathematical philosophy is part of scientific philosophy that arose around

the mid nineteenth century as a reaction against the post-Kantian German
idealism of, for example, Hegel and Schelling and, in the case of Russell,
also nineteenth-century British idealism.4 The scientific philosophers wished
instead to base philosophy on the methods of science that had proven far more
successful. The former grand systems of philosophy were regarded as individ-
ualistic and subjective in contrast to the scientific methods that were taken to
be progressive, collaborative, and objective.

3 See Kant’s Critique of Pure Reason, A51/B51.
4 Further details can be found in Richardson (1997) and Preston (n.d.).
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6 The Philosophy of Mathematics

The label ‘scientific philosophy’ was used by Hermann von Helmholtz in
a famous talk celebrating Kant in 1855 in Königsberg on the occasion of the
dedication of a monument to Kant. In this talk, Helmholtz noted the enmity
and distrust between science and philosophy. He urged instead that they should
collaborate. According to Helmholtz, philosophers should turn to the theory
of knowledge and base their theories on the recent developments of relevant
fields (i.e., psychology and physiology) instead of building grand systems of
metaphysics. The list of scientific philosophers is long and among twentieth-
century philosophers we find Schlick, Carnap, and Quine (Friedman 2012),
Russell, Husserl, and the early Heidegger (Richardson 1997).
It is clear from this list that ‘scientific philosophy’ covers quite diverse

approaches to philosophy. What makes them ‘scientific’ is summed up by
Heidegger in a lecture given in 1925 (quoted from Richardson (1997), p. 441):

1. Because it is a philosophy of the sciences, that is, because it is a the-
ory of scientific knowledge, because it has as its actual object the fact of
science.

2. Because by way of this inquiry into the structure of already given sciences it
secures its own theme that it investigates in accordance with its ownmethod,
while it itself no longer lapses into the domain of reflection characteristic of
the particular sciences. It is “scientific” because it acquires its own domain
and its own method. At the same time, the method maintains its security by
its constant orientation to the factual conduct of the sciences themselves.
Speculation aimed at world views is thereby avoided.5

While the scientific philosophers shared a common enemy in the former ‘spec-
ulative world views’, there was little agreement on which part of science or
scientific method should replace them. According to Richardson, Russell has
to a large extent influenced how scientific philosophy is understood today, that
‘scientific’ means using the relevant logical tools (p. 424). He notes, how-
ever, that quite different interpretations existed. Husserl, for example, also
regarded himself as a scientific philosopher (and is later mentioned by Hei-
degger as belonging to that tradition). To Husserl, the scientific method used
in his phenomenology consisted in analysing ‘pure consciousness’. In relation
to mathematics, one might also take the point of view that ‘scientific’ refers
to mathematics itself in the sense that mathematical or meta-mathematical
tools are drawn on when solving philosophical problems. Referring to Hilbert’s

5 I omit Heidegger’s third point, which places the scientific philosophers in the tradition of
phenomenology, or the science of consciousness.
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Introducing the Philosophy of Mathematical Practice 7

contributions to meta-mathematics, Hourya Benis-Sinaceur (2018) argues that
Hilbert can be considered as a scientific philosopher in this latter sense.6

An important part of the general scientific method, and an idea that is shared
among the scientific philosophers, is that scientific questions are solved by col-
laborative efforts and that this allows researchers to split big problems into
smaller andmanageable ones (Richardson, p. 434). Here formulated byRussell:

It is chiefly owing to this fact that philosophy, unlike science, has hitherto
been unprogressive, because each original philosopher has had to begin the
work again from the beginning, without being able to accept anything defi-
nite from the work of his predecessors. A scientific philosophy such as I wish
to recommend will be piecemeal and tentative like other sciences…What is
feasible is the understanding of general forms, and the division of general
problems into a number of separate and less baffling questions. “Divide and
conquer” is the maxim of success here as elsewhere. (Russell 1914, p. 113)

In contrast to scientific investigations, however, the scientific philosopher must
not rely on empirical facts:

[a] philosophical proposition must be such as can be neither proved nor dis-
proved by empirical evidence. Too often we find in philosophical books
arguments based upon the course of history, or the convolutions of the
brain, or the eyes of shell-fish. Special and accidental facts of this kind are
irrelevant to philosophy, which must make only such assertions as would
be equally true however the actual world were constituted. (Russell 1914,
p. 111)

Philosophy should be based on general propositions (which is possible with the
help from logic) that are a priori.
An important component of Russell’s mathematical philosophy was his

use of the recently developed tools from logic, most notably by Gottlob
Frege. Frege introduced quantificational logic which, in addition to quanti-
fiers, employs the concept of a function that can be applied to one or multiple
arguments. Whereas propositions were earlier analysed in the form ‘predicate
and subject’, Frege’s logic allows one to use the components ‘A(d)’ or ‘A(x)’
where A stands for some property and ‘d’ an individual to which the property

6 Benis-Sinaceur (2018) focuses on Hilbert’s use of the Kantian notion of critique and explains
in detail how Hilbert puts his axiomatic method and proof theory under the banner of critique
(referring to, e.g., Hilbert’sGrundlagen der Geometrie 1899, and ‘Axiomatic Thought’ 1918).
Hilbert refers to the investigation of the foundation and logical structures of geometry in his
Foundations of Geometry as ‘an analysis of the intuition of space’ (p. 27). In contrast to Kant’s
view, Hilbert’s ‘intuition’ is objective (and associated with his ‘finitist attitude’): ‘intuition is
rooted in perceiving sensory signs outside of the mind’. Put briefly, Hilbert solves the problems
of mathematics by drawing on meta-mathematical tools, replacing the role of philosophy with
mathematics itself (Benis-Sinaceur 2018, p. 35).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
07

60
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009076067


8 The Philosophy of Mathematics

is ascribed. In this way, it is possible to capture the logical structure of sen-
tences of the form ‘For all x P(x)’ or ‘There exists an x such that P(x)’ for some
predicate P (and, of course, much more complicated sentences using nested
quantification and relational symbols). The new logic was introduced as part of
Frege’s logicist programme that intended to demonstrate that the theory of num-
bers could be reduced to logic. It is well-known that Frege’s original attempt
failed: Russell discovered that one of Frege’s assumptions gave rise to the para-
dox known as Russell’s paradox. The assumption allows one to consider the
extension of any conceivable concept.7 If one considers the property of ‘not
belonging to itself’, it is possible to form ‘the set of all sets not being a mem-
ber of themselves’, which gives rise to the paradox. Russell, being convinced
of the overall correctness of Frege’s programme, was not discouraged by it.
Broadening the project, Russell believed that all of pure mathematics belonged
to logic and set himself the task to demonstrate that this was the case. This was
carried out in collaboration with A. N. Whitehead and led to the monumental
work Principia Mathematica published in 1910–1913.
Coming back to the topic of mathematical philosophy, the quantificational

logic is an important tool in one of Russell’s most important contributions
to analytic philosophy, the theory of descriptions. Put briefly, the theory of
descriptions uses logical analysis of propositions to dissolve philosophical
problems. To see how it is used consider the statement ‘The present king of
France is bald’. This statement is intuitively false since there is no king of
France. On previous interpretations (the object theory of meaning), though,
one could only claim that it is false if one allows that there is a universe of
non-empirical objects that contains the king of France. On Russell’s interpre-
tation, the problem is dissolved once one finds the statement’s correct logical
form: it can be reformulated as ‘There is an x and x is king of France and x is
bald’. Since there is no individual, x, for which ‘x is king of France’ is true, the
statement as a whole is false.8

In an early paper, Russell (1901) used the label ‘mathematical philosophy’
in a broader sense, namely, that philosophy should pay attention to the results
and methods of mathematics when solving philosophical problems. Problems
may arise because of a confusing conception of a concept. The method is con-
ceptual analysis. A concept that has given rise to numerous puzzles is the
‘infinite’. Zeno’s paradox, for example, demonstrates that motion is an illu-
sion: for motion to be possible, one has to move across a distance consisting of

7 The extension of a concept, say F, is all objects, a, for which the statement ‘a is F’ is true. In
formal terms it can be interpreted as the collection {x : Fx}.

8 I refer to Russell’s Introduction to Mathematical Philosophy for further details.
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Introducing the Philosophy of Mathematical Practice 9

an infinite number of parts in a finite amount of time which seems impossible.
Russell creditsWeierstrass, Dedekind, and Cantor for having found precise def-
initions of the infinite. Using the new theories of the infinite, the infinitely small
and large and sums of infinite sequences, Russell claims, it is possible to find
solutions to the philosophical paradoxes. A mathematical solution to Zeno’s
paradox exploits the fact that infinite sums may converge. The particular sum
that is used in Zeno’s paradox is

∑∞
i=1( 12 )i, that converges to 1.

The infinitely small posed another challenge to mathematicians in the form
of infinitesimals until Cauchy introduced the now well-known notion of a limit
in the beginning of the nineteenth century. Cauchy further formulated a theory
of infinite series drawing the important distinction between a convergent and a
divergent series, formulating criteria of convergence and introducing the con-
cept of a radius of convergence. When referring to the infinitely large, Cantor’s
contributions are most often mentioned: in particular his introduction of car-
dinal and ordinal numbers. Although many problems concerning the infinite
thus found solutions at the turn of the twentieth century, mathematicians and
philosophers still discuss the nature of the infinite in a number of contexts. See
Easwaran et al. (2023) for an overview. We return to the question of how to
characterise the infinitely large at the end of this section.
Before turning to the philosophy of mathematical practice, I note some of

the ideas that philosophers of mathematical practice might share with scien-
tific philosophy. The first point concerns the relations between philosophy and
mathematics. Russell’s advice to collaborate and establish relations between
philosophers and mathematicians is still relevant today. Collaborations exist
but are rare. Philosophy of mathematical practice further agrees with the sci-
entific philosophers that philosophy should look to recent or relevant parts of
mathematics when finding solutions to philosophical problems. Solutions to
problems may draw on mathematical results or tools as in Hilbert’s version of
scientific philosophy. We find examples of this in the following sections. At
the same time, we should keep in mind that philosophy and mathematics are
two different domains with distinct subject matter and methods. Only in this
way is it possible that philosophy can play the role of an equal interlocutor and
be a useful guide for mathematics as well as the converse.
The scientific philosopher’s guiding principle of ‘divide and conquer’ fits

well with PMP that often asks more specific questions related to the prac-
tice of mathematics. One difference between Russell’s mathematical philoso-
phy and that of some contemporary philosophers of mathematics consists in
the extent of empirical claims or scientific results that can be drawn upon.
It is possible to find contemporary philosophers who note that a particu-
lar proof is claimed to be beautiful or explanatory and then set themselves
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10 The Philosophy of Mathematics

the task to formulate a philosophical account of aesthetic judgements that
explains the claim. Similarly, a philosopher may draw on cognitive science
and theories of perception when explaining how mathematical knowledge is
acquired.
Following the scientific philosophers’ advice to pay attention to the meth-

ods of mathematics, however, does not entail that we have to agree with the
particular positions formulated by the scientific or mathematical philosophers.
The challenges and concerns of contemporary mathematics are not the same
as at the end of the nineteenth century. Indeed, as mathematics develops so
do its methods and issues. Most contemporary mathematicians do not seem
very interested in the foundations of mathematics as it was conceived around
the turn of the nineteenth century. It is, of course, still possible to find mathe-
maticians that are worried about the unrestricted use of the infinite (e.g., using
various forms of the axiom of choice), and certain parts of analysis depend
on deep set theoretical results. One might also note the recent development of
proof assistants that has revived the interest in formal proofs of mathematics
(see Avigad (2021)). Besides questions on the foundations of mathematics, a
number of other topics are discussed. In light of the growing diversity of math-
ematical disciplines, one might ask what unifies mathematics. This question
was already posed during the twentieth century (Bourbaki 1950) and is still
relevant today. Another concern comes from the increased use of computers in
mathematics. Besides the use of formal proof checkers, computers have revo-
lutionised how mathematics is done, or at least provided mathematicians with
different types of, and in some sense, much stronger tools. Computers are used
to experiment (in different senses of the word), to verify (in some cases), to
write papers, and to communicate with peers (emails, talks) and to access and
store material.

1.2 Philosophy of Mathematical Practice
The label ‘philosophy of mathematical practice’ has been applied to a num-
ber of different approaches to studies of mathematics. The Association for the
Philosophy of Mathematical Practice characterises them in the following broad
sense:

Such approaches include the study of a wide variety of issues concerned
with the way mathematics is done, evaluated, and applied, and in addition, or
in connection therewith, with historical episodes or traditions, applications,
educational problems, cognitive questions, etc. We suggest using the label

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
07

60
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009076067


Introducing the Philosophy of Mathematical Practice 11

‘philosophy of mathematical practice’ as a general term for this gamut of
approaches, open to interdisciplinary work.9

Typically, though, PMP is characterised in a more restricted way and often not
opposed to, but rather as an extension of traditional, or mainstream philosophy
of mathematics.10 For extensive, but quite different accounts, I refer readers
to Mancosu (2008a), Van Bendegem (2014) and Giardino (2017). In addi-
tion to these three, I recommend the introduction of Ferreirós and Gray (2006)
which has a more historical focus. A large and diverse collection of articles
can be found in the recent Handbook of the History and Philosophy of Math-
ematical Practice. The editor, Bharath Sriraman, writes in his introduction
that ‘mathematical practice’ intentionally is left undefined so that readers may
‘conceptualize it in whatever way they choose to’ (Sriraman 2024, p. 4).
An important feature of PMP is that it suggests further questions and topics

that can be studied as part of the philosophy of mathematics. In the introduction
to the edited volume The Philosophy of Mathematical Practice, Paolo Man-
cosu comments that after Benacerraf’s (1973)11 influential paper, the primary
objective of the epistemology of mathematics has become to give an account
of how knowledge of abstract mathematical objects is possible. In contrast,
the contributors to the same volume wish to extend the topics studied under
the heading of epistemology. They propose to study visual thinking in math-
ematics, diagrammatic reasoning, understanding, mathematical explanations,
the purity of methods, and mathematical physics. In order to study these topics,
they insist that solutions to posed problems require attention to a wide range
of mathematical fields. In this sense, Mancosu writes, PMP is both less and
more ambitious than mainstream philosophy of mathematics. It is less ambi-
tious since it does not aim to provide solutions to the ‘big’ problems, such as
explaining the nature of mathematical objects, how we acquire knowledge of

9 See the webpage of the Association for the Philosophy of Mathematical Practice:
www.philmathpractice.org.

10 There are a few exceptions. Some philosophers are (still) critical towards mainstream phi-
losophy. One contemporary example is Cellucci (2022) who further claims that PMP as
formulated inMancosu (2008) and Carter (2019) is not radical enough. Onemight alsomention
Lakatos’ (1976) criticism of the foundational schools as well as Putnam’s ‘Mathematics with-
out foundations’.Mainstream philosophy ofmathematics is described as dealingwith questions
regarding the ontology of mathematics and topics that are inspired by the classical foundational
schools, that is, logicism, intuitionism, and formalism.

11 Benacerraf’s ‘Mathematical truth’ presents a dilemma for philosophical accounts of mathemat-
ics: either we cannot adopt a uniform semantics (for mathematics and our natural language) or
we must accept a characterisation of mathematical knowledge that renders it a mystery that we
have any knowledge about mathematics at all.
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12 The Philosophy of Mathematics

them, and how abstract mathematical entities can tell us anything about the real
world. Instead, the philosopher of mathematical practice is more humble and
deals with specific questions related to the epistemology of mathematics. It is
more ambitious because of the extensive engagement with mathematics that
such studies require.
Extending the range of topics that can be discussed under the banner of phi-

losophy entails, as remarked by both Giardino (2017) and Mancosu (2008a),
also an appropriate extension of the analytic philosophical toolbox so that it
can shed light on the new questions: ‘we do not dismiss the analytic tradition
in philosophy of mathematics but rather seek to extend its tools to a variety of
areas that have been, by and large, ignored’ (Mancosu 2008a, p. 18).
Panza (2024) provides some cues about possible components of the extended

analytic toolbox. An essential component consists of extracting general fea-
tures: Although PMP is based on considerations of mathematical practice, as
philosophy it aims at capturing ‘some essential general feature of this practice’
(p. 2308–2309). This aspect is what makes philosophy different from history:

A collection (or system) of case studies cannot but be what it is, namely, a
more or less ordered configuration of particular inquiries devoted to single
neighborhoods in the space of history. Philosophy is much more and much
less than this: It is an account of the space itself. While the former accounts
for some elements in a quite large set, the latter defines a structure based on
this set and studies it as such. (p. 2310)

Jean Paul Van Bendegem (2014), too, finds that the analytical tradition is
present in both PMP and in traditional foundational studies. He suggests to use
the formal tools and modelling techniques developed by the analytic tradition
to form bridges between studies of mathematical practice and ‘traditional’ phi-
losophy of mathematics. Van Bendegem points to a few examples of bridges,
one in visual thinking: Mumma (2012), discussing a formal system that cap-
tures some of the intuitive and constructive characters of Euclidean geometry,
forms a bridge between contributions that take as a starting point how diagrams
are used in mathematical practice and more formal presentations of Euclidean
geometry. (See Section 3 for further details on Euclid’s plane geometry.)12 For-
mulating such bridges, he argues, is of vital importance to the community of
philosophers of mathematical practice:

I believe the two major tasks for the future are, first, to develop a greater
coherence in the field and, two, to keep the conversation going with the
other philosophers of mathematics…These are difficult tasks, no doubt,

12 Arana (2009) is another good example of a bridge. It discusses the use of formal tools to
measure the degree of ‘purity’ of proofs. See Section 1.2.1 for further details on purity.
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Introducing the Philosophy of Mathematical Practice 13

but…one should not forget that the mainstream in the philosophy of mathe-
matical practice is not mainstream at all in the larger field of the philosophy
of mathematics where, for example, foundational studies still form a major
part. Setting up the dialogue can, quite frankly, again be a matter of survival.
(p. 222)

1.2.1 What Does ‘Practice’ Mean?

We have noted that PMP introduces new topics in the philosophy of mathemat-
ics. Another way to characterise PMP takes as a starting point different inter-
pretations of ‘practice’ and how they shape which questions are asked and what
methods are drawn upon. Carter (2019) describes three main understandings of
‘practice’ that give rise to different articulations of PMP: agent-based, histori-
cal, and epistemological PMP. It is important to note that these strands are not
mutually exclusive. Most often more than one of these perspectives are in play.
In the agent-based perspective of PMP, ‘practice’ refers ‘mainly to the fact

that mathematics is a human activity focussing on the agents, real or idealised,
doing mathematics’ (Carter 2019, p. 11). Practice thus refers to the differ-
ent activities associated with doing mathematics. Activities may consist of
applying, learning or developing mathematics (Giaquinto, 2005). Focussing
on agents’ activities might also mean considering mathematics in its cultural,
social, and educational contexts as noted by Van Bendegem (2014).
An agent-based perspective might consider general human traits or abili-

ties and how they affect our engagement with mathematics. One might note
that human beings have limited visual and cognitive capacities and so what
we are able to perceive (and know, perhaps) depends on how information
is presented to us. Such an assumption lies behind some of the studies of
the role of visual representations that are presented in Section 3. Similar
considerations are implicit in the studies of, and comparisons between, the
motivations for different notational systems that are used in, for example, logic
(see Waszek and Schlimm (2021) and Shin (2002)).
On a broader scale, scholars have objected to the traditional account of math-

ematical knowledge because it leaves out the role of human agents. Recently,
Silvia De Toffoli (2021) has proposed an epistemological framework for math-
ematics that puts human practitioners at the center of inquiry. On the received
view, De Toffoli writes, we acquire knowledge of a mathematical proposition
when we have a proof of it, where proof is conceived as a deduction from
axioms. That is, knowledge is tied to justification that is obtained via formal
proofs.13 Considered as a description of practice this is too strict. Her first point

13 In philosophy, knowledge is traditionally characterised as ‘justified, true belief’.
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14 The Philosophy of Mathematics

is that standard proofs in mathematics rarely are in the form of formal proofs.
Second, the description leaves out the human dimension, in particular the fact
that human beings are fallible. She points to numerous cases where mathemati-
cians thought they had found a proof of a theorem that turned out to contain
gaps. One example is Wiles’ first proof of Fermat’s last theorem. De Toffoli
formulates instead what she refers to as a ‘fallibilist account of mathematical
justification’. This involves the notion of a simil-proof which aspires to model
the proofs that mathematicians make, but takes into account that sometimes
when formulating arguments and believing they are proofs, they turn out not to
be. An argument is a simil-proof ‘when it is shareable, and some agents who
have judged all its parts to be correct as a result of checking accept it as a proof.
Moreover, the argument broadly satisfies the standards of acceptability of the
mathematical community to which it is addressed’ (p. 835). To be justified in
the belief of a proposition then means to be able to come up with a simil-proof
for it and be able to appropriately defend this simil-proof.
A few studies provide more detailed descriptions of the notion of a mathe-

matical practice understood as the activities of agents. One is an elaboration of
how human activities such as collecting, counting and measuring give rise to
abstract mathematical concepts and theories. Mac Lane’s Mathematics: Form
and Function (1986) presents such a picture from a mathematical point of view
whereas Ferreirós (2016) has further historical and pragmatic perspectives. A
different perspective is offered by Valeria Giardino (2023) who responds to
the question ‘What is essential to the practice that we call mathematical?’. Her
response has two components. One is that mathematics is an activity concerned
with conceptual content with an inherent inferential component. The second
component emphasises the material tools such as notations and figures used
in mathematical reasoning. Giardino combines Brandom’s inferentialism with
Hutchins’ theory of distributed cognition to formwhat she refers to as enhanced
material inferentialism.14

José Ferreirós (2024) formulates a slightly different characterisation of a
practice that emphasises the formulation of abstract mathematical theories and
use of material tools in the form of symbolic frameworks. A practice is ‘recog-
nized as mathematical due to its links with the notions of number and form (i.e.,
spatial figures), which may be explicit or implicit; generally speaking, mathe-
matics has to do with the study of patterns, numerical and geometric patterns
being prominent’ (pp. 2799–2800).

14 Panza (2024) offers a different ontological and epistemic answer to the question ‘What is essen-
tial to the intellectual activity that we call mathematics?’. Panza argues that it is essential to
explain how we can have de re epistemic access to the content of mathematics.
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Introducing the Philosophy of Mathematical Practice 15

A related question is: when is a practice, understood as a human activ-
ity, to be counted as a ‘mathematical practice’ and in which case do such
practices give rise to mathematical knowledge? Giardino and Ferreirós argue
that elementary practices based on basic perception and ‘core knowledge
systems’ that underlie our number sense do not yet constitute mathematical
knowledge proper. Ferreirós further discusses whether ethnomathematics is a
mathematical practice. According to Ferreirós’ characterisation, the activities
of ethnomathematics, for example, weaving baskets with intricate mathemati-
cal patterns, do not constitute a mathematical practice since they lack both the
symbolic framework and the theoretical dimension. Both forms of activities
belong to a different level that he refers to as proto-mathematics. It is one of
his ( see Ferreirós (2016)) points, however, that the theoretical parts of mathe-
matics depend on these lower levels, referring to ‘the interplay of practices’ or
a ‘web-of-knowledge’.
Returning to the different strands of mathematical practice, historical PMP

considers mathematics as the outcome of certain human activities and events.
More important is the underlying assumption that mathematics has changed
across time and therefore cannot be perceived as a static body of truths. From
an historical point of view, one could be interested in the various internal and
external factors that influence, and have influenced the development of mathe-
matics over time. The philosopher of mathematical practice might wish to ask
if there are any general things to say regarding its development. In the his-
torical PMP, the interconnections between history and philosophy can further
be employed for various purposes: Philosophy may offer general categories
that help uncover new insights in historical studies (Epple, 2004). Conversely,
philosophical questions may be investigated by analysing historical case
studies.
Historical perspectives may enrich a philosophical study by revealing

sources of ideas and by suggesting new categories and different interpreta-
tions. To illustrate how, we give an example concerning the phenomenon
‘reverse mathematics’. In contemporary mathematical logic ‘reverse mathe-
matics’ refers to the program of Harvey Friedman and Stephen Simpson (see,
e.g., Simpson (2009)). The point is to determine which set existence axioms are
needed to prove particular mathematical results. They have formulated a hier-
archy of logical subsystems that have been used to determine the strength of
major results from all parts of mathematics, including logic, arithmetic, anal-
ysis and algebra. The fundamental idea when determining the strength of a
proposition is that one does not only prove that the proposition follows from
a particular subsystem – one also proves that the subsystem can be derived
from the proposition (modulo the base system in which reasoning takes place).
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In this way, it is certain that the subsystem is the weakest possible system in
which the result is provable.
Taking an historical perspective reveals that the idea of asking which axioms

are needed to prove a particular proposition is not a recent invention. Vic-
tor Pambuccian (2009) traces it back to the ancient Greeks, more precisely
to Pappus of Alexandria, and refers to it as ‘reverse geometry’ (see also
Arana (2008)). It further appears in Hilbert’s Foundations of Geometry. At the
end of this work, Hilbert ties attempts at proving impossibility results to what
he refers to as the ‘purity’ of methods in demonstration and writes: ‘the preced-
ing geometrical study attempts… to explain what are the axioms, hypotheses,
or means necessary to the demonstration of a truth of elementary geometry’
(Hilbert 1950, p. 82).
Andrew Arana (2008, 2022) further argues that different concerns seem to

be at stake when mathematicians ask for which axioms are necessary to prove a
particular result. Friedman and Simpson’s reverse mathematics uses tools from
proof theory and computability theory to analyse the computational or combi-
natorial content of mathematical theorems, which Arana (2008, p. 37) refers
to as ‘strong logical purity’. In contrast, one may search for the ‘right, proper,
essential, or appropriate’ axioms (2022, p. 403). Arana ties the latter to Aristo-
tle’s concern of finding definitions that reveal the essence of a thing, which fur-
ther entails that definitions, or axioms, cannot introduce ‘foreign elements’: a
definition of a concept in number theory, for example, cannot rely on geometry.
Second, historical studies might throw light on why certain philosophical

programs such as the foundational schools were initiated. Such studies do not at
the outset belong to philosophy. But awareness of the historical circumstances
under which a program or text has been produced might affect how it is inter-
preted. Tappenden (2006) is a good example illustrating how this is the case in
some of Frege’s writings. James Tappenden claims that Frege has often been
interpreted from a narrow and distorted point of view and, if one reads him
according to his contemporary mathematical background, a different and richer
picture emerges. Tappenden considers the following passage:

Proof is now demanded of many things that formerly passed as self-evident.
Again and again the limits to the validity of a proposition have been estab-
lished for the first time. The concepts of function, of continuity, of limit,
and of infinity have been shown to stand in need of a sharper definition… In
all directions the same ideals can be seen at work – rigor of proof, precise
delimitation of extent of validity, and as a means to this, sharp definition of
concepts. [FA 1884, p. 1] (Tappenden, p. 118, my italics)

On a formalist reading, one might wish to emphasise the passages in italics and
claim that Frege’s main concerns were the validity of propositions and rigorous
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proofs. If one reads the passage bearing in mind the state of affairs in Frege’s
mathematical field, one could instead focus on the other issues mentioned: how
to define fundamental concepts and determine the domain of application of
central principles. Tappenden tells us that Frege’s field was geometry and com-
plex analysis from a Riemannian perspective. This field was in wild disarray
in the second half of the nineteenth century. There was a dispute about Weier-
strass’ computational and Riemann’s conceptual approaches (see Stein (1988)).
One disagreement concerned how to define a complex function. Riemann’s
conceptual approach defined a complex function by the today well-known
Cauchy–Riemann equations, that is, in terms of a given property. Weierstrass
believed that the proper way to treat complex functions was by their power
series or as analytic expressions and to calculate. Today we know that these
two characterisations are essentially co-extensive. But this fact was not known
before 1900. Another concern was the domain of application of various prin-
ciples. One fundamental result is Dirichlet’s principle, which establishes the
existence of certain functions under given conditions. It was used, for exam-
ple, in Riemann’s famous work on Abelian functions to establish the existence
of functions on a Riemann surface of genus g with poles at specified points.
It turned out that Dirichlet’s principle was used in cases where it did not hold.
A precise formulation and a rigorous proof were given by Hilbert in 1901. It
may be some of these concerns that Frege refers to when he writes that ‘[t]he
concepts of function, of continuity, of limit, and of infinity have been shown to
stand in need of a sharper definition’ and that ‘the same ideals can be seen at
work – rigor of proof, precise delimitation of extent of validity, and as a means
to this, sharp definition of concepts’.
The final approach, epistemological PMP, considers ‘practice’ in a more

abstract or general way, referring to mathematics itself, or the many ways that
it is presented or accessible to human beings. In this case, ‘practice’ may refer
to mathematical results or theories as presented in articles, books, at talks, and
so on, or what mathematicians themselves say or write about mathematics. The
requirement in this strand is that whatever philosophical question is asked, we
need to consider the relevant part of mathematics in order to respond to it.
As part of epistemological PMP, philosophers are examining how to capture

what mathematicians might mean when they say that a result is deep or a proof
is explanatory. A special issue has been devoted to different characterisations
of depth in mathematics (Philosophia Mathematica, Volume 23 (2), published
in 2015). One may also consider qualities from an abstract point of view and
discuss the general notion of virtues in mathematics, see Aberdein et al. (2021).
The topic of ‘mathematical explanations’ has receivedmuch attention.When

referring to ‘explanations’ in mathematics it is useful to distinguish between an
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external and an internal point of view (Mancosu 2008b). The external perspec-
tive discusses whether mathematical facts can serve as explanations in other
domains and the implications this has for the ontology of mathematics. Philoso-
phers also consider explanations that are internal to mathematics, in particular
how to characterise explanatory proofs. Two main proposals (Steiner (1978)
and Kitcher (1984)) have been critically examined.15 Steiner defends the view
that an explanatory proof makes evident how a characterising property of an
entity mentioned in the proposition leads to the conclusion.16 Kitcher charac-
terises explanations in terms of a notion of unification. Others have suggested
modifications to these views (see, for example, Lange (2018)). I refer to
Mancosu et al. (2023) for further details as well as an overview on the topic
of mathematical explanations. One might also take a broader perspective and
consider explanations in mathematics, not only in connection with proofs, but
also as related to mathematical understanding (see Carter (forthcoming)).
The last example of epistemological PMP returns to the much discussed con-

cept, the infinite. This example further illustrates that typically many different
aspects of practice such as historical case studies or results from contemporary
mathematics are involved in PMP studies. The example is based on a forth-
coming contribution by Mancosu (forthcoming). Mancosu discusses, among
other things, an interpretation of the infinitely large formulated by the medieval
scholar Robert Grosseteste (ca 1168–1253) and – using recent results from
measure theory – argues that Grosseteste’s idea can be made mathematically
rigorous. Today, the standard conception of the size, or cardinality of a set,
states that two sets have the same size if their elements can be brought in a
one-one correspondence.17 Grosseteste, an Oxford theologian, had a different
intuition. According to this conception, if two infinite collections A,B fulfil
that A ⊊ B, then the size of A is strictly less than the size of B. Mancosu refers
to some passages of Grosseteste’s work Commentary on the Physics where he
proposes certain ideas concerning measuring the number of points of finite line
segments. The basic idea is that we choose a specific line segment as our unit
and that it will contain a given number of points. (According to Grosseteste,
whereas human beings can only measure line segments relative to a unit, God
assigns an absolute infinite number to the number of points of the unit seg-
ment.) The unit line segment is used as a ‘measure’, that is, any other (finite)
line segment can be measured relative to it. The idea includes a number of

15 See, for example, Hafner and Mancosu (2005, 2008), and Tappenden (2005).
16 A characterising property of an entity is one that singles this entity out in a domain of similar

entities.
17 A different way to say that two sets M, N have the same cardinality is that there exists a one-

to-one and onto function f : M → N.
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assumptions: If two line segments have equal lengths, then they contain the
same number of points. If the length of a line segment is a rational number
times the unit line, then their numbers of points are also in the same proportion.
Grosseteste’s ideas, as Mancosu points out, were challenged by later schol-

ars. One is Fishacre (1205–1248) whose most famous challenge was a demon-
stration that there is a one-one correspondence between any two finite line
segments. Although Fishacre is mostly unknown today, the ensuing discussion
influenced other thinkers such as Oresme and Galileo (seeMancosu (forthcom-
ing) for details).
Mancosu demonstrates how tools from measure theory and the notion of

an elementary numerosity (that counts the number of points of a line seg-
ment) can be used to implement Grosseteste’s idea. Grosseteste’s conception
of the measurement of finite line segments and their corresponding num-
ber of points, assumes that there is a correlation between the measure of the
finite segments and the numerosities of points they contain. Mancosu refers to
Benci, Bottazzi, and Di Nasso (2015) who show that if L is the Lebesgue mea-
sure on R, then it is possible to construct an elementary numerosity on R that
has the desired properties: Finite line segments of equal length have exactly
the same (infinite) numerosity of points. This concludes the summary of the
relevant sections of Mancosu’s forthcoming book.
Based on the different interpretations of practice, it might appear as if

the philosophy of mathematical practice consists of a number of diverse and
incompatible approaches. Carter (2019) suggests this need not be the case and
presents a simple overall framework to capture the various approaches to PMP.
It consists of two components, mathematics and agents.18 The component
‘mathematics’ contains the part of mathematics that is considered, for exam-
ple, theories, concepts, propositions, axioms, proofs, and so on. The second
component refers to the human agents, real or idealised and their mathemat-
ical activities. The idea is that philosophical studies considers variations of
these two components as well as relations between them. The strands pre-
sented earlier emphasise different aspects of mathematical practice and so will
take different starting points: whereas the agent-based strand’s main focus
is on the human agents and how, for example, mathematical knowledge is
shaped through their ‘practices’, the starting point of the epistemological strand
is mathematics itself – sometimes leaving out considerations of agents com-
pletely. The historical strand primarily focuses on examining the interplay

18 Ferreirós (2016) presents a similar practice matrix with two components consisting of ‘frame-
work’ and ‘agents’.
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between mathematics, its concepts, theorems, theories, and so on, and the
practices (of human agents) that shape its development.

2 Structure in Mathematics
One way to conceive of the philosophy of mathematical practice is that it
focuses on mathematics as an activity and the questions that arise from this
point of view. Rather than considering mathematics as a body of truths and
discussing the nature of its objects (including how we gain access to them),
the philosophy of mathematical practice (PMP) may discuss questions related
to how concepts are shaped and theories relate to each other, which meth-
ods are used, and so on. In this sense we are interested in understanding what
mathematics is from a broader perspective than just what mathematics is about.
In the light of this, we will consider mathematical structuralism from the

point of view of how mathematics is done rather than discussing the nature of
structures. The latter approach is most often taken in mainstream philosophy
of mathematics. Indeed, philosophical structuralism has its roots in a famous
article by P. Benacerraf (1965) that discusses the nature of the natural num-
bers. Benacerraf objected to the set theoretic reductions of the natural numbers,
instead emphasising its structural features.19 The characterisation of structures
and their nature has since become an important topic in the philosophy of
mathematics.
We focus on different types of relations in mathematics – both from a local

and a global point of view – and some of the roles they play. Locally, in the
sense that mathematics studies structures, that can be characterised in terms
of relations between objects, rather than properties of, say, quantities. From a
global point of view, I emphasise the importance of formal relations between
structures but also the exploitation of relations in a much broader sense. The
content of this section is as follows. Section 2.1 presents a few preliminar-
ies and general details about mathematical structuralism. Section 2.2 sketches
the development of some central components of a structuralist view of mathe-
matics. This sketch centres around the use of the axiomatic method as a tool to
create individual structures but it can also be seen as a way to organise or ‘struc-
ture’ mathematical theories, or even mathematics as a whole. We present the
axiomatic method as formulated in David Hilbert’s writings. A similar method
can be found in the Peano school and both are supposedly inspired by Her-
mann Grassmann (Cantù 2020). The method, as we will see, is later used and
modified by Emmy Noether and Nicolas Bourbaki.

19 Structural views of mathematics can be traced back even further, see Reck and Schiemer
(2020).
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Another topic concerns the emergence and awareness of the importance of
structures in mathematics, from Hilbert’s formulation of axioms that char-
acterise relations between entities to the freestanding algebraic structures
introduced by Noether.
The last component to be mentioned is the focus on relations, not only

between objects or places in a particular structure, but on a global scale.We find
this idea in Noether’s work, for example, in her formulation of the isomorphism
theorems that establish relations between structures and certain substructures.
The idea is later further developed and formalised in category theory, for
example, by the notion of a functor.
This brief historical sketch complements the one that is given in

Shapiro and Hellman (2018) which focuses, in particular, on the emergence
of a structural view of geometry. Broader perspectives can be found in
Corry (2004), Krömer (2007), and Reck and Schiemer (2020). Corry’s Mod-
ern Algebra and the Rise of Mathematical Structures gives a detailed account
of the history of algebra from around 1850 to the rise of category theory.
Krömer’s Tool and Object is a rich introduction to the recent history of cat-
egory theory including a discussion about some of its structuralist themes.
The Pre-history of Mathematical Structuralism edited by Reck and Schiemer
contains chapters that explore structural views of both mathematicians and
philosophers from the nineteenth century until the early twentieth century,
ranging from H. Grassmann and C. S. Peirce to S. Mac Lane and W. V. O.
Quine. For a general introduction to ‘mathematical structuralism’ I refer to
Reck and Schiemer (2023).
Finally, in Section 2.3, I focus on the role of global relations in mathematics

and illustrate that relations of various kinds play a role when we determine
properties of objects in mathematics.

2.1 Structuralism in Philosophy
Structures undeniably play an essential role in modern mathematics, making
a structuralist view of mathematics well aligned with mathematical practice.
Today mathematics is comprised of a vast number of fields, each studying
its particular types of structure, for example, vector spaces in linear algebra,
topological spaces in topology, manifolds in differential geometry, and various
types of spaces such as Banach spaces in functional analysis. Furthermore, as
stressed by Mac Lane (1986) these entities are studied by forming relations to
other types of structures, for example, by associating algebraic structures such
as groups to topological spaces as is done in algebraic topology or establish-
ing programs such as the Langlands’ program that systematically exploits links
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between domains. These developments have both inspired and, in some cases,
been strengthened by the development of category theory, which, through the
notions of functors and natural transformations, formalises the use of global
relations in mathematics.20

According to mathematical structuralism, contemporary mathematics can be
characterised as the science of (abstract) structures. Alternatively, one might
say that mathematics focuses on relations rather than intrinsic properties of
objects. From this it has been inferred that mathematical objects only have
structural properties, that is, properties that follow from the relations that define
the structure in which they have a place.
A structure can be characterised in different ways. One might think of a

structure as a collection of objects on which there is defined a number of rela-
tions. Another way is to say that mathematics studies systems of objects that
are defined by a collection of axioms and that these axioms characterise rela-
tions between the objects. Theremight bemultiple systems of objects satisfying
the axioms (that is, models) but they will be considered as isomorphic (with
respect to the particular structure). The structure is then said to be defined ‘up
to isomorphism’. This feature is sometimes characterised by the slogan that
mathematics studies ‘one over many’.
A simple and often referred to example is the natural numbers. What char-

acterises the set of natural numbers from a structuralist point of view is its
structure as a progression, that is, the natural numbers consists of a certain
countable collection on which there is defined an order relation and it has an
initial object under this relation. One might also refer to the Dedekind–Peano
axioms and characterise the natural numbers as the structure that has an initial
object and a successor function (obeying certain properties). In both cases, the
particular numbers do not have any individuating properties other than those
that follow from this characterisation. The number 1, for example, is nothing
but the second place in the natural number structure, or the successor of the ini-
tial object (assuming that the initial object is zero). From another point of view,
one might want to consider the natural numbers together with the operations
of addition and multiplication and say that they form, for example, the positive
cone of the ring of integers.
Other typical examples include the algebraic structures, for example, groups

or fields. In this case the axioms of a group, say, characterise the group

20 Category theory has also been used to formulate formal foundations in mathematics. The Ele-
mentary Theory of the Category of Sets and the more recent Homotopy Type Theory are
examples of this. Category theory has also inspired a number of structuralist accounts of
mathematics. I refer readers to Landry and Marquis (2005) and Reck and Schiemer (2023).
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structure.21 From this perspective no element of a group – except the neutral
element – can be individuated. Elements only have properties that follow from
the axioms, for example, that every element has a unique inverse. Notice the
difference between the two examples: In the first example, theDedekind–Peano
axioms intend to define a particular structure, the natural numbers. We say
that the axioms are categorical (or non-algebraic). In the second case, referring
to algebraic structures, the axioms are non-categorical in the sense that many
different collections fulfil the group axioms. Examples of groups include the
integers with addition or invertible n × n matrices with complex numbers as
entries under multiplication, denoted as (GLn(C), ·). Considered as individual
collections, groupsmight have additional properties: The integers, for example,
is an abelian group whereas (GLn(C), ·) is not.

2.2 Emergence of Structures
Mathematical structuralism as a philosophical position is inspired by the gen-
eral historical development of mathematics: observing that it has changed from
studying properties of quantities and space to the structured systems – the
objects of modern mathematics. The account given here begins with Hilbert
at the turn of the twentieth century, but proto-structuralist ideas existed ear-
lier (see the introduction of Reck and Schiemer (2020)): One might mention
the growing importance of a set-theoretic perspective in mathematics. Can-
tor and Dedekind are usually mentioned as the fathers of set theory, but both
find inspiration in the work of Riemann (Ferreirós 2007). In addition, there
is the awareness of the limitations of the previous theories of logic in captur-
ing mathematical reasoning, and so a number of scholars undertook the task
of developing new versions of logic, or formal tools. Besides the well-known
Frege and Russell mentioned in Section 1, there are also Boole, De Morgan,
Schröder and Peirce. De Morgan and Peirce even formulated different versions
of a logic of relations. Finally there is the recognition that mathematics is not
anymore simply the science of numbers and geometry but instead a study of
relations.

2.2.1 Hilbert on the Axiomatic Method

Bourbaki (1950) stresses the importance of the axiomatic method as a compo-
nent of structuralism and elsewhere attributes it to David Hilbert (1862–1943).

21 A group, (G, ◦) is defined as a set, G, on which there is defined a closed operation
◦ : G×G→G that fulfils the following axioms: (i) For any a, b, c ∈G, a ◦ (b ◦ c)= (a ◦ b) ◦ c,
(ii) there exists a neutral element e ∈G such that a ◦ e= e ◦ a= a for all a ∈G, and (iii) For all
a ∈G there exists an inverse a−1 for which a ◦ a−1 = a−1 ◦ a = e.
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In the philosophy of mathematics, Hilbert is mainly known for his later work
on the foundations of mathematics, as the founder of formalism. As part of this
programme Hilbert created proof theory with the intent to give a finitist proof
of the consistency of mathematics. He was, however, concerned with the foun-
dations of mathematics throughout his career when he conceived and tackled
questions regarding foundations in different ways. Sieg (2020) explains that
Hilbert’s contributions to the foundations of mathematics can be characterised
in two main ways: The first involves a structural axiomatic approach, while
the second is based on proof theory and formal methods. In the late nineteenth
century, thinking about the foundations of arithmetic, Hilbert was influenced
by Dedekind’s logicist views. By 1904 Hilbert expressed that the consistency
of the axioms of arithmetic would be demonstrated if one could show that no
contradictions could be derived from the axioms. Sieg refers to this as a ‘quasi-
syntactic’ view, since the idea of a formal system including deduction rules had
not yet been developed. It was only after 1917 that Hilbert began to develop his
meta-mathematics. This came after studies of Whitehead and Russell’s Prin-
cipia Mathematica and a realisation that the underlying principles of reasoning
had to be spelled out in order to formulate a foundation for mathematics (using
mathematical tools as pointed out in the previous section). By principles of rea-
soning, I refer to both the basic (logical) assumptions as well as the inference
rules. In this way reasoning becomes a calculus and the rules and assumptions
can be studied by mathematical tools.
Hilbert formulated the axiomatic method during his earlier work on the foun-

dations of mathematics and as part of the structural axiomatic approach. It is
explicitly addressed in Hilbert’s ‘Axiomatic thought’ (1918) but he uses the
basic ideas much earlier in his Grundlagen der Geometrie which was first
published in 1899. In the rest of this section, I refer to the English title, Foun-
dations of Geometry (FoG). The Foundations of Geometry has its roots in the
plane geometry of Euclid’s Elements and its axiomatic presentation. Some of
the more recent developments of geometry are added and it is presented in a
form where all assumptions are spelled out. Concerning assumptions, it was
long since known that the Elements drew on certain assumptions that were not
included among the axioms. Already the first proposition of book I reads off
information from the accompanying diagram, that is, that two circles intersect
in a point (see Section 3 for further details).22 The missing assumption in this

22 The first proposition tells us how to construct an equilateral triangle on a given line segment.
Given line segment AB the construction begins by drawing two circles with radius AB. One
circle with centre in A, the other in B. Postulate 3 tells us we can do this. In the next step one
observes that the two circles intersect in a point C. But none of the definitions, postulates or
common notions grant its existence.
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Figure 1 Pasch’s axiom: Let A,B,C be three points that do not lie on a line
and let a be a line in the plane ABC which does not meet any of the points A,
B, C. If the line a passes through a point of the segment AB, it also passes

through a point of the segment AC, or through a point of
segment BC (Hilbert 1950, p. 5).

case is an axiom of contnuity. The fourth proposition states that if two trian-
gles have an angle in common and the two line segments that enclose the angles
are pairwise equal then the two other angles and remaining line segments will
also be pairwise equal. The demonstration superimposes the two triangles and
so exploits that properties are not changed when a geometric figure is placed
at a different location. Further assumptions were identified and spelled out in
the nineteenth century by Pasch (1882/1926) in his Vorlesungen uber neuere
Geometrie. The axiom that is now named after him states that if a line passes
one side in a triangle, then, if continued, it will eventually go through one of
the other two sides; see Figure 1. The non-Euclidean geometry that was formu-
lated by Gauss, Bolyai and Lobachevsky during the first half of the nineteenth
century is included in the FoG, as is the projective geometry developed by
Desargues and later Poncelet, among others.
Another major difference between Euclid’s Elements and Hilbert’s geome-

try concerns the content of the axioms. Book I of the Elements starts out by
defining all considered geometrical objects, a point, line segment, circle, and
so on, and some of their properties. The postulates (except number IV) tell us
which constructions are permissible under given configurations of points and
line segments. In this way, further points, lines and geometric figures are con-
structed as we work our way through the propositions. Each proposition starts
out with certain given geometric objects, for example, a line segment (and so
also its endpoints). By systematically using the postulates further geometric
objects appear (Panza 2012). In contrast, there are no definitions of the basic
geometric objects in Hilbert’s geometry. He does not say what a point, line or
plane is; Hilbert assumes the ‘three distinct systems of things’ exist and gives
them different labels according to the category they belong to. The purpose of
the listed axioms is then to tell us how the elements of the three systems are
related:

We think of these points, straight lines, and planes as having certain mutual
relations, which we indicate by means of such words as “are situated”,
“between”, “parallel”, “congruent”, “continuous”, etc. The complete and
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exact description of these relations follows as a consequence of the axioms
of geometry. (Hilbert 1950, p. 2, italics in original)

The axioms are presented in five different groups. The groups consist of
axioms of connection, order (defining the relation ‘between’ on points on line
segments), parallels (containing the parallel postulate), congruence, and con-
tinuity.23 The first group of axioms characterises the relations between the
system of things, that is, the points, lines and planes. The axioms tell us, for
example, that two distinct points determine a line and conversely that two lines
determine a point.24 Other groups include axioms that were drawn upon in
Euclid’s Elements but not explicitly mentioned such as the beforementioned
axiom of continuity. The axioms of congruence enable a proof of a proposition
corresponding to the beforementioned proposition I.4.
The presentation in theFoundations of Geometry has certain structural impli-

cations. The first is that we can deal only with objects to the degree that they
are ‘fixed’ by the relations defined on the system. A point, for example, has
no intrinsic properties, it can only be determined as the point of intersection
between two lines. The second is that a group of axioms together characterises
a given structure, or theory (in this case a geometry). Third, the axioms do not
come with a fixed ontology: the theory applies to any system of objects that ful-
fils the axioms. This is often illustrated by Hilbert’s famous quote: ‘one must
be able to say “tables, chairs, beer-mugs” each time in place of “points, lines,
planes” ’ which Hilbert allegedly said to Otto Blumenthal at the Berlin train
station in 1891.
Around the same time as Hilbert published the Foundations of Geometry, he

wrote the short article ‘Über den Zahlbegriff’ (1900) where he notes that the
axiomatic method is also the right method to use when one wishes to study
the logical foundation of other areas than geometry – including arithmetic.
The article presents the axioms for the real numbers in a similar way as in the
Foundations of Geometry, that is, as belonging to different groups: axioms of
connection, calculations (commutative associative and distributive laws), order
and continuity of the numbers. In brief, together they characterise the real num-
bers as a complete, ordered field that fulfils the Archimedean principle. Later
the axiomatic method is applied to all of mathematics. In ‘Axiomatic thought’,
the method and all its advantages are spelled out, mentioning numerous

23 The groups of axioms are presented in different orders in later versions of the book where
Hilbert explores the conclusions obtainable from different combinations of them.

24 The axioms are Two distinct points A and B always determine a straight line a. We write that
AB = a or BA = a and axiom two is Any two distinct points of a straight line completely
determine that line; that is, if AB = a and AC = a, where B , C, then is also BC = a.
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examples from both mathematics and physics, including set theory, thermo-
dynamics and mechanics.
The aim of formulating mathematics on an axiomatic framework is con-

nected with Hilbert’s concerns with the foundations of mathematics. In the
introduction to the FoG, certain now familiar foundational concepts are explic-
itly mentioned:

The following investigation is a new attempt to choose for geometry a simple
and complete set of independent axioms and to deduce from these the most
important geometrical theorems in such a manner as to bring out as clearly
as possible the significance of the different groups of axioms and the scope
of the conclusions to be derived from the individual axioms. (Hilbert 1950,
p. 1, italics in original)

One purpose is therefore to offer (groups of) axioms that are mutually inde-
pendent and complete. Corry (2006) points out that by ‘complete’ Hilbert at
this time intends a pragmatic notion, that is, the aim is that all known results
of geometry should be possible to prove. The intention is not that all possi-
ble ‘true’ results of geometry are provable (thus avoiding the consequence of
Gödel’s first incompleteness theorem that was published later in 1931). These
aims are also mentioned in his ‘Über den Zahlbegriff’ as well as in his later
‘Axiomatic thought’. But note also the last sentence in the quote that mentions
a different aim, that of ‘exploring the significance and consequences of the dif-
ferent groups of axioms’. This is related to the progressive part of the axiomatic
method (Hilbert 1918, paragraph 6)

[T]he progressive development of the individual field of knowledge then lies
solely in the further logical construction of the alreadymentioned framework
of concepts.

In addition to simply deriving consequences from the formulated axioms of a
theory, Hilbert emphasises the fruitfulness of the method. Several paragraphs
of ‘Axiomatic thought’ are devoted to explaining how a deepening of the foun-
dations and exploring the dependence and independence of propositions lead to
new results. Hilbert mentions examples from mathematics as well as physics.
One obvious example is the independence of the parallel postulate which led
to the construction of entirely new geometries.
Besides the fact that axioms define relations and that a group of axioms

characterises a structure, a different interpretation of ‘structure’ arises from
the axiomatic method. It concerns how one chooses to build – or structure – a
particular theory, that is, which principles are chosen as one’s axioms or first
principles. In this case, one might refer to the logical structure of a theory.
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The logical structure of a theory is mentioned in the beginning of ‘Axiomatic
thought’ using words like ‘order’ and ‘logical relations’:

When we assemble the facts of a definite, more-or-less comprehensive
field of knowledge, we soon notice that these facts are capable of being
ordered.…a concept of this framework corresponds to each individual
object of the field of knowledge, and a logical relation between concepts
corresponds to every fact within the field of knowledge. (pp. 1107–1108)

In this way mathematical theories are organised in terms of their logical struc-
ture. In Bourbaki (1950) we find a different way to organise mathematics that
we turn to later in this section.
How to structure – or present – a theory becomes relevant as a consequence

of a change in the conception of the status of axioms. One might hold that an
axiom is a ‘true’ characterisation of the mathematical subject matter or that the
purpose of axioms is to reveal the essence of the characterised concepts. After
the publication of Hilbert’s Foundations of Geometry a famous correspondence
followed between Hilbert and Frege debating the nature and role of axioms.
(Frege further criticised the lack of definitions fixing the meaning of concepts
in the FoG.) Frege defended the view that axioms are true and that it therefore
was not necessary to prove that groups of axioms are consistent. Hilbert, on the
other hand, responded – with the much discussed claim – that

if the arbitrarily given axioms do not contradict each other with all their con-
sequences, then they are true and the things defined by them exist. This
is for me the criterion of truth and existence. (Hellman & Shapiro 2018,
p. 23)

Other contemporary writers tended to agree with Hilbert’s view that axioms
should not be considered as true, but merely hypothetical, as suppositions from
which to reason. I refer to Feferman (1999), Schlimm (2013) and Cantù (2022)
for different roles of axioms inmathematics and toHellman and Shapiro (2018)
on the Hilbert–Frege correspondence.

2.2.2 Noether and Algebraic Structures

Emmy Noether introduced axioms that characterise abstract algebraic struc-
tures such as rings and ideals which become ‘freestanding’ mathematical
structures. One might claim that Hilbert’s structures also are freestanding in the
sense that they apply to any collection of objects fulfilling the relations formu-
lated by the axioms.25 But the structures mentioned are intended to characterise

25 Hilbert exploits that axioms apply to different domains when he demonstrates the relative con-
sistency and independence of the various (groups of) axioms. To show the consistency of all
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a specific field or domain, for example, geometry or the real numbers. Noether’s
algebraic structures are truly general or non-categorical. In Noether’s work we
also find the emergence of further structuralist themes that are characteristic for
contemporary mathematics. She formulates what is referred to as structure the-
orems and establishes formal relations between structures. It is also important to
notice the influenceNoether had through her students and othermathematicians
that she talked to. Her student van der Waerden mentions her as a main source
of inspiration in his influential textbookModerne Algebra. She also promoted
the use of algebraic invariants which contributed to the development of alge-
braic topology and had an impact on Mac Lane, who, together with Eilenberg,
later developed category theory (McLarty 2006).
Noether, born in 1882 in Erlangen, was the daughter of Max Noether, profes-

sor in mathematics there. Max Noether was a colleague of Paul Gordan, who
would become Noether’s doctoral advisor, and a friend of Klein and Hilbert,
both located in Göttingen. In 1915 Hilbert and Klein invited Emmy Noether
to come to Göttingen to work on invariant theory. From 1919 she started her
work on algebra which is the area most often mentioned in connection with her
contributions to a structuralist view of mathematics. She was invited to work
at Bryn Mawr College in the US in 1933 and died in Princeton in 1935.
Noether (1921, 1927) wrote two influentual papers on algebra, the first, ‘Ide-

altheorie in Ringbereichen’, the second, ‘Abstrakter Aufbau der Idealtheorie
in algebraischen Zahl- und Funktionenkörpern’. Both appeared in the Mathe-
matische Annalen. In the first of these articles Noether proves a generalised
version of the fundamental theorem of arithmetic, more precisely that an ideal
of a module (or ring) can be written uniquely as a product of prime ideals. A
major accomplishment is that she identifies precisely which assumptions are
required to prove this result. In addition to the axioms of a ring, the proof
requires the ascending chain condition which is an original contribution by
Noether. A ring fulfilling this condition is today called a Noetherian ring.
Besides ideals and rings, the algebraic structures of a field and group were

already known by the time Noether wrote her papers. What is new to her
approach is, firstly, that she considers the algebraic structures as abstract enti-
ties where, before, they were thought of as generalisations of the various
number domains. Because of this, rings or fields were implicitly assumed to
have properties that these domains shared. By considering them as abstract
entities in their own right, Noether was able to identify all assumptions needed

groups of axioms, for example, he constructs a model consisting of a domain of algebraic
numbers.
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to prove the considered results. Van der Waerden (1935) later characterised her
style saying that

Any relationships between numbers, functions and operations only become
clear, generally applicable, and fully productive after they have been iso-
lated from their particular objects and been formulated as universally valid
concepts . . . She was unable to grasp any theorem, any argument unless it
had been made abstract and thus made transparent to the eye of her mind.
(p. 101)

Algebra has its roots in computations and solving equations. Solutions to the
cubic and quartic equations were found during the sixteenth century and col-
lected in Cardano’s Ars Magna (published in 1545). These accomplishments
were followed by a desire to find similar solutions to the quintic which turned
out not to be possible. Following methods set out by Lagrange, Abel and Galois
were able to demonstrate the insolubility of polynomial equations of a degree
higher than four. Two of the fundamental concepts that came from these studies
are permutation groups and polynomials over a field. Problems in number the-
ory also led to advances in algebra. The most famous problem is Fermat’s last
theorem; another influential result was that of ‘the law of quadratic reciprocity’
formulated by Euler while working on results of Fermat. In the simplest form,
this asks which primes, p, can be written as a square modulo another prime q.
The surprising fact is that if p,q are odd primes, p , q and either p or q is
equal to 1 modulo 4, then p is a square mod q if and only if q is a square mod p.
Gauss’s work on higher reciprocity laws led him to introduce the Gaussian inte-
gers, Z[

√
−1], which are numbers of the form a + b ·

√
−1 for a and b integers.

A generalisation of such numbers includes numbers of the form a + b
√
−n, for

n square free.
While considering these different number domains it became clear that the

usual properties of the integers do not always hold. An important property,
stated in the fundamental theorem of arithmetic, is that any number can be
uniquely decomposed as a product of prime numbers. An example of a ring
where this is not true is Z[

√
−5]. In this ring it is possible to write, for example,

6 as a product of irreducible factors in two ways: 3 · 2 = (1 +
√
−5)(1 −

√
−5).

The numbers, 2, 3 and 1 ±
√
−5 can all be shown to be irreducible in Z[

√
−5].

To restore this property, Kummer, Kronecker and later Dedekind introduced
notions that grew into the concepts of an ideal and a prime ideal. Dedekind’s
definition of an ideal is essentially the one that is used today and it is Dedekind’s
work that was the starting point of Noether’s contributions to algebra.26

26 As one of the editors of Dedekind’s collected works, Noether knew his contributions well. She
famously kept saying about her own contributions that ‘Es steht alles in Dedekind’, that is,
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Noether’s Idealtheorie in Ringbereichen formulates first the conditions that
define a commutative ring and ideals in such a ring. Noether only considers
finitely generated ideals and proves that the ascending chain condition (a.c.c.)
follows.27 She also notes that if one assumes the a.c.c., then ideals of a given
ring will be finitely generated and consequently that one may assume the a.c.c.
condition instead. In other words, these two conditions are equivalent over the
axioms of a commutative ring.
Noether defines a commutative ring as a system of things fulfilling six

axioms quite similar to how it is defined today. The first axioms assert the com-
mutativity and associativity of addition and multiplication and the distributive
law. The last axiom, called the unlimited and uniqueness of subtraction, states
that for any two elements a,b in the ring, there exists a unique element x that
solves the equation a+x = b. The existence and uniqueness of a zero-object fol-
low from the last axiom. The main result, the unique decomposition of ideals,
states that any two decompositions will contain the same number of primary
ideals, in Noether’s words:

Theorem IX Given two different shortest representations of an ideal as the
least common multiple of primary ideals, the number of components will be
the same.28

The decomposition of ideals into prime ideals is an example of what is referred
to as a ‘structure theorem’, that is, a theorem that tells us how a type of structure
can be decomposed into simpler objects. The basic idea of such theorems is that
a particular object can be written (uniquely) as, for example, a product or direct
sum of certain basic building blocks (primes, prime ideals, etc.).
As mentioned, Noether carefully chooses her axioms so that they suffice

to prove the unique decomposition of ideals. The approach of searching for
just the right, or minimal, axioms required to prove a given result is seen to
a greater extent in her 1927 paper where she also explores which conclusions
are obtainable from given groups of axioms. It has been suggested that her
style and the concern of finding the ‘right’ axioms are inspired by Dedekind

that her results can be found in the writings of Dedekind. McLarty (2017) suggests we take her
statement with a grain of salt – or perhaps that it should be read as Noether bragging about her
accomplishments: She was able to see what Dedekind had missed.

27 The a.c.c. is formulated as follows. If given an ascending chain of ideals, that is, I1 ⊆ I2 ⊆
I3 . . ., there exists a maximal ideal Ik such that for all k ≥ n, In = Ik.

28 The result is shown in a number of steps. She proves first – using the a.c.c. – that any ideal
is decomposable as an intersection of a finite number of primary ideals. This theorem is a
combination of the fact that any ideal can be decomposed as the intersection of a finite number
of irreducible ideals (Th. II) and the fact that any irreducible ideal is primary. (Th VI).
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(McLarty 2017).29 In addition, her approach can be seen as an application of
Hilbert’s axiomatic method, an instance of what he refers to as ‘deepening of
foundations’.30

The final structural theme, namely, the formulation of formal relations
between structures emerges, for example, in the shape of the isomorphism the-
orems found in Noether’s 1927 paper. These theorems establish that certain
abstract relations exist between structures and certain specified subsets and
constructions on them (equivalence classes). Furthermore, these relations are
expressed without mentioning any elements of the structures or the operations
defined on them.
The theorems are formulated in the context of modules and later in the set-

ting of ideals of a ring, R. The section begins with a definition stating that
two R-modules, M and M̄, are homomorphic when there is a function from
M to M̄ that preserves the operations on elements. If the map is bijective, it
is an isomorphism in which case M and M̄ are said to be isomorphic. Noether
then introduces congruence classes and formulates the homomorphism theorem
(which is sometimes today referred to as the first isomorphism theorem). The
theorem states that if there is a homomorphism, h, between two modules,M, M̄
over the same ring andU is the subset ofM that is mapped to zero by h, namely,
the kernel of h, then the congruence classes M|U is isomorphic to M̄. Given
the homomorphism theorem, Noether demonstrates that the two isomorphism
theorems follow.
There are versions of both the homomorphism theorem and the isomorphism

theorems in Dedekind’s writings. But they are formulated in the context of
groups and as arithmetical results. More importantly, they are not presented as
being dependent on each other as in Noether’s writings and certainly not in the
general form that she gave them:

[Dedekind] stated the isomorphism theorems as a way of counting cosets of
his ‘modules’ – infinite additive subgroups of the complex numbers. Noether
stated isomorphism theorems as dealing with isomorphisms and gave a uni-
form method of proving them from homomorphism theorems for many
categories of structures – all groups, commutative groups, groups or com-
mutative groups with a given domain of operators, all rings, commutative
rings, rings with operators, and more. (McLarty 2006, p. 199)

29 Herman Weyl (1995) attributes the style of thinking to Dirichlet, referring to the Dirichlet
principle: ‘to conquer problems with a minimum of blind computation with a maximum of
insightful thoughts’ (p. 453).

30 Note further the similarities with the phenomenon ‘reverse mathematics’ as discussed in
Section 1.2.1.
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2.2.3 Bourbaki and Structures as a Tool

Various structural themes emerge in the work of Hilbert and Noether. Neither
of them, though, says that mathematics is the study of structures. This changes
in the writings of Bourbaki. Bourbaki explicitly claims that structures play a
fundamental role in mathematics. In addition to giving a bit of background
information, I shall focus on how Bourbaki characterises the axiomatic method
and his conception of the fundamental structures of mathematics – the mother
structures – and how they form the building blocks of modern mathematics.
Nicolas Bourbaki is the pseudonym of a group of mainly French mathe-

maticians. One of their main accomplishments is the book series, Éléments de
Mathématique, in English Elements of Mathematics. Another is their influence
on how modern mathematics is conceived and done:

The twentieth century has been, until recently, an era of ‘modern mathe-
matics’ in the sense quite parallel to ‘modern art’ or ‘modern architecture’
or ‘modern music’. That is to say, it turned to an analysis of abstraction, it
glorified purity and tried to simplify its results until the roots of each idea
were manifest. These trends started in the works of Hilbert in Germany,
were greatly extended in France by the secret mathematical club known as
‘Bourbaki’, and found fertile soil in Texas, in the topological school of R. L.
Moore. Eventually they conquered essentially the entire world of mathemat-
ics, even tried to breach the walls of high school in the disastrous episode of
the ‘new math’. (Mumford 1991)

The idea of the Bourbaki group was conceived in 1934 by André Weil and
Henri Cartan who at the time were teaching at the university of Strasbourg.
They were worried that French students were lagging behind after the war
and found that one way to improve the situation would be to write an updated
textbook in analysis. They presented the idea at one of their weekly Paris meet-
ings with former student colleagues from l’École Normal and so the group
was formed in 1935. Some of the first members included, besides Cartan and
Weil, Claude Chevalley, Jean Delsarte, Jean Dieudonné and Charles Ehresman.
Later other prominent mathematicians were invited to join, for example, Eilen-
berg, Grothendieck, Samuel and Serre. When formed, the group realised that
they did not just need a book on analysis and so they decided to rewrite all of
mathematics. A task that continues to this day.
The name ‘Elements’ refers to Euclid’s Elements. Bourbaki’s intention was

to adapt the axiomatic style used in Hilbert’s Foundations of Geometry and
van der Waerden’s Moderne Algebra and apply it more generally to all of
mathematics.
Cartan (1980) notes that the axiomatic style as introduced by Hilbert and

used by the German school of algebra (referring to Noether and her students)
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‘has penetrated the whole of mathematics’ (Cartan, p. 176). Today Bourbaki’s
Elements comprise multiple volumes on topics such as algebra, topology,
analysis, spectral theory and differential and analytic manifolds.
‘The architecture of mathematics’ (Bourbaki 1950) tells us how Bourbaki

understands the axiomatic method. The method involves a few steps and is
exemplified by the introduction of the structure of a group. In the first step one
realises that seemingly differently looking collections have similar properties.
Consider, for example, the collection of real numbers under addition, the col-
lection of integers modulo a prime number p, and finally the displacements in
3-dimensional space under composition. Viewed as collections on which there
is defined an operation, they are alike. In the next step, one investigates the log-
ical structure of their shared properties and asks if a number of them suffice to
derive the rest. In the given example, it is found that the axioms characterising
a group have as a consequence the remaining shared properties.
As presented here, the method resembles to some degree Hilbert’s descrip-

tion of how to deepen the foundations. But there are some noticeable differ-
ences. Bourbaki compares three different collections and abstracts from them
to form the general concept of a group. The elements of the before-considered
collections become empty positions. The only focus is on properties of the
operations defined on them. Second, although Bourbaki mentions further foun-
dational issues that are related to formal studies of mathematics, such as the
consistency of the chosen axioms, he does not seem worried about these issues
(see the introduction of Bourbaki (1960)). He does, however, share Hilbert’s
attitude regarding the fruitfulness of the axiomatic method. One advantage
mentioned is that whenever we establish that a given collection fulfils the
axioms of a group (or any of the other fundamental structures), we will know –
at no further mental cost – that it also has all the properties of a group. As such
the axiomatic method is associated with unification.31 This is not the only men-
tioned advantage. He refers to the obtained structures as ‘tools’ giving examples
of the advances made when realising that a given set or structure can be repre-
sented in a different domain. One such example is the geometric representation
of the complex numbers which they write eventually enabled Gauss, Abel,
Cauchy and Riemann to transform analysis. We return to Riemann’s visual
representation of complex functions in Section 3.
In regard to ontology, Cartan stresses that a structuralist view has the con-

sequence that one gets rid of objects – mathematics concerns properties and

31 The French title of their books, referring to ‘mathématique’ rather than ‘mathématiques’ is
deliberately chosen to emphasise the unity of mathematics obtained by taking their approach.
See Borel (1998, p. 374).
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reasoning – and so mathematics is based on hypothetical reasoning: A mathe-
matician having found a proof of a proposition will go through the proof to see
which assumptions are actually required. ‘Instead of declaring which objects
are to be investigated, one has only to list the properties of the objects to be used
in the investigation. These properties are then brought to the fore expressed by
axioms; whereupon it ceases to be important to express what the objects are.
Instead, the proof can be constructed in such a way as to hold true for every
object that satisfies the axioms’ (Cartan 1980, pp. 176–177).
A group is but one example of the algebraic structures. The algebraic struc-

tures constitute one of Bourbaki’s fundamental structures referred to as ‘mother
structures’. These are the structures from which modern mathematics is built
and constitute a sort of foundation for mathematics. Besides the algebraic struc-
tures, there are the order structures (i.e., collections on which there is defined an
order relation) and the topological structures. These structures form the basic
building blocks. In addition to these there are more specific structures and
mixed structures that, together with themother structures, constitute a hierarchy
of structures. Specific structures are obtained by adding further properties, for
example, considering abelian groups or finitely generated groups. We further
encounter mixed structures: collections that have, or can be given, multiple
structures. The set of real numbers is one example: ‘the set of real numbers
is provided with three kinds of structures: an algebraic structure, defined by
arithmetical operations (addition and multiplication); an order structure, since
inequalities are defined between real numbers; and finally a topological struc-
ture based on the notion of limit’ (Cartan 1980, p. 177). Further examples
abound and include topological groups, analytical fibre spaces andC∗-algebras.
The hierarchy of structures and the various interrelations between the dif-

ferent types of structure provide the means to organise all of mathematics.
Bourbaki uses the metaphor ‘the architecture of mathematics’ for the picture of
mathematics as founded on the mother structures. He likens mathematics with
all its interrelations to a big city

whose outlying districts and suburbs encroach incessantly, and in a some-
what chaotic manner, on the surrounding country, while the center is rebuilt
from time to time, each time in accordance with a more clearly conceived
plan and a more majestic order, tearing down the old sections with their
labyrinths of alleys, and projecting towards the periphery new avenues, more
direct, broader and more commodious. (Bourbaki 1950, p. 230)

2.2.4 Components of a Methodological Structuralism

We are now able to describe some of the components of a structuralist view
of mathematics. One component consists of various facets of the axiomatic
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method. From one perspective, the axiomatic method can be seen as a tool to
create structures. The individual axioms characterise relations between the con-
sidered entities, and together, a collection of axioms defines a structure such as
a ring or a group. From another perspective, the method can be used to organise
a theory, choosing which propositions should be taken as primitive, that is, as
the foundation for the rest. Bourbaki refers to a different metaphor, that of a
big city, for how mathematics is organised (and constantly re-organised); the
axiomatic method is used to create the fundamental mother structures which
are then combined and interrelate in multiple ways to form the complex that is
mathematics. Note therefore that, although I refer to ‘the’ axiomatic method as
used by Hilbert, Noether and Bourbaki, they do this in quite distinct ways with
different outcomes and motivations.
A related theme is the shift of focus concerning the subject matter of math-

ematics; mathematics becomes the science of structures rather than individual
objects. In some cases, it is even claimed that structuralism gets rid of objects
and that there is no need to say anything about their nature; see Cartan’s com-
ment that mathematics is only based on reasoning and hypotheses that are
formulated in the form of axioms. A structuralist view thus opens up for a
hypothetical view of mathematics. I refer to Awodey (2004), Carter (2014)
and Ferreirós (2016) for different positions that consider mathematics as
hypothetical.
A second component concerns the different uses of ‘structure’. In addition to

the basic structures such as a group, topological space, and so on, we have noted
the existence of structure theorems that say how entities of various sorts can
be decomposed into simpler ones. Structure theorems come in various forms
and constitute a useful tool in mathematics.32 That is, mathematics does not
only consider structures as ‘units’. Structuresmay themselves have ‘a structure’
(which can be understood in different ways). Moreover there are relations, or
interrelations between structures that we return to shortly.
The final component concerns the claim that the structural point of view

(via the axiomatic method) is an effective tool in mathematics. Recall Hilbert’s
claim that the axiomatic method, namely, the deepening of foundations, con-
siderations of independence, and so on, is a fruitful endeavour that has led
to many new discoveries. Bourbaki further stresses the methodological point
of view of structuralism. First is the role of unification, the identification of

32 The type of decomposition depends on the objects and operations or relations defined on them.
It consists of a product in the case of the Fundamental theorem of arithmetic, direct sums in
algebra, exact sequences in algebraic topology, etc.
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certain basic structures – the mother structures – that he uses to build mathe-
matics. The second is the use of these basic structures to economise thought.
The last subsection of this section considers in more detail the methodological
aspect of structuralism. This aspect is further combined with the observation
that mathematics rarely considers structures in isolation but exploits many
different types of interrelations between them.33

2.3 The Role of Interrelations in Mathematics
Once it has been established that mathematics studies structures, one might
ask how to characterise these structures and enquire about their nature and
foundations. Questions like these are the focus of philosophical structural-
ism. Structuralism is often characterised by stating that objects only have
so-called structural properties, that is, properties that depend on the rela-
tions that are defined on the structure in which they have a place. This
follows, for example, from ‘the view that mathematics is not concerned with
the ‘internal nature’ of its objects, but rather how they relate to each other’
(Korbmacher & Schiemer 2018, p. 295). Korbmacher and Schiemer observe,
however, that texts rarely mention how structural properties are defined. A fur-
ther point is that the properties of a structure depend on how one characterises
a structure. Recall that a structure might be characterised axiomatically, stating
that a collection of axioms characterises a given structure. In this case, prop-
erties of a given structure, a ring say, would consist of all the properties that
can be derived from the axioms. It follows that all instantiations, or models,
of a particular axiomatic description will have these properties. Another way
to characterise the properties of a structure states that they are the properties
that are shared by all systems instantiating a particular structure. Korbmacher
and Schiemer demonstrate that these two definitions may lead to classes of
properties that do not coincide.
If structuralism is supposed to capture what mathematics is about (broadly

speaking), then the two mentioned characterisations of structure are too restric-
tive. Moreover, the way that properties are determined in mathematical practice
is more varied. Properties depend to a large extent on different types of
global relations, or interrelations between the considered structures. Moreover,
mathematics formulates theorems about such interrelations. The remaining
subsections of this section illustrate these claims.

33 This point is also emphasised by Ferreirós and Reck (2020) in connection with Dedekind’s
work. They illustrate the claim by the example of Galois theory.
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2.3.1 Formal Maps, Analogies and Representations

Relations between structures come in many shapes, ranging from formally
specified maps to informal correspondences. They are exploited in various
ways to determine properties of objects or structures. A formal map, for
example, an isomorphism, between collections with different structure can be
exploited to transfer properties from one collection to the other. Less formal
correspondences may also be useful when looking for properties of a given
structure. Consider as an example a finite field, (F,+, ·). We might be interested
to know something about its subfields. To do this, we notice that the field under
multiplication (with the zero-object removed) has the structure of a group. We
therefore consider the subset F \ {0} of the field as a group under multiplica-
tion. Considered as a group, we may use Lagrange’s theorem to tell us about
its possible subgroups. (Lagrange’s theorem states that the order of subgroups
divides the order of the group). Equipped with the knowledge about possible
subgroups, noting that they become possible subfields of F if one adds the zero-
object, in combination with the fact that the order of finite fields are powers of
primes, one may be able to say something about the subfields of F.
Another type of informal relation is analogy. Analogy is often mentioned as

an important part of the mathematician’s toolbox – in contemporary mathemat-
ics as well as historically:

the most prolific and creative mathematicians like Archimedes, Johannes
Kepler, John Wallis, Leibniz, Isaac Newton, Leonard Euler, Pierre Simon
Laplace have underlined the eminent role of analogy in the discovery of
new mathematical truths. This applies to mathematical concepts, meth-
ods, problems, proofs, rules, structures, symbolisms, theorems and theories.
(Knobloch 2000, p. 296)

To this list one could add John von Neumann, who allegedly claimed that he
considered his bicommutant theorem for von Neumann algebras as an analogue
to the Galois correspondence, and Michael Atiyah stressing its importance in
relation to the unification of mathematics (Atiyah 1978). More recent is Barry
Mazur (2021) who writes that an analogy ‘connects two disparate concepts by
some similarity in their structure’ (p. 12). Mazur considers as an example knots
in 3-manifolds as analogous to primes of number fields which makes it possible
to unify topological structures with arithmetic structures.34 While highly use-
ful, it is difficult to give a precise definition of an analogy. Characterisations
range from stating that an analogy consists merely of ‘perceived similarities’
between domains to the actual identification of some ‘shared structure’.

34 Mazur further discusses the role of interconnections referred to as links, ties and bridges in
contemporary mathematics.
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The last interrelation to be considered here is representation. A representa-
tion is a sign that stands for some (mathematical) entity to somebody (who is
the interpretant).35 I consider cases where we represent a particular situation,
sometimes referred to as the target, such as an expression, concept, relations
between concepts, and so on. A representation, then, is often composed of other,
more basic signs such as notational elements. When forming a representation,
a specific correspondence, or rule, between the representation and the target is
established. The correspondence is not always stated explicitly, but is exploited
in practice. A simple example is when we consider the graph of a real function,
y = f (x), given by some expression. In this case, the convention is that corre-
sponding values, x and f (x), of the function are represented by the point (x, f (x)).
As an example of a fruitful representation, we consider C ∗-algebras that can

be represented by directed graphs. C ∗-algebras generated by directed graphs
are referred to as graph-algebras. A C ∗-algebra can be characterised as a set
(a vector space over the complex numbers) that has three types of structures
(cf. Bourbaki’s mixed structures). Each structure is given by a different type of
operation: it has an algebraic structure obtained by the operations of addition
andmultiplication as well as multiplication by complex scalars. There is a norm
defined on its elements which can be used to define a topology, and, finally,
there is an involution operation, referred to as the ∗-operation. A C ∗-algebra
therefore has both an algebraic and a topological structure. The final opera-
tion, the *-operation, provides a link between the algebraic and topological
structure.36

An important research question concerns the classification of C ∗-algebras,
that is, determining up to isomorphism which algebras are possible to define. A
tool to achieve this isK-theory. The idea is that twoC ∗-algebras are isomorphic
if their corresponding K-groups, K0 and K1, are pairwise isomorphic.37 It turns
out that it is generally quite complicated to calculate K-groups even for simple
C ∗-algebras. It has recently been discovered that a large class of C ∗-algebras
can be generated from directed graphs. One advantage of having this alternative
form of representation is that it gives a much easier calculation of theK-groups.
A directed graph is formally defined as a four-tuple: D = {V,E, r, s}, where V
consists of a collection of vertices vi and E consists of edges ei that each has a
source and a range among the vertices. r, s : E → V are the range and source

35 The definition is inspired by C. S. Peirce and adapted to a mathematical context. See also
Section 3.3.3

36 See the lecture notes by Ian Putnam (p. 8), www.math.uvic.ca/faculty/putnam/ln/C*-
algebras.pdf.

37 This is not true in general, but K-theory is nevertheless considered as an important tool in the
field.
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v1 v2 v3 v4
e2 e3 e4

e1 e5

Figure 2 A visual representation of a directed graph
with four vertices and five edges.

Figure 3 A directed graph generates a C ∗-algebra and gives rise to a linear
map from which the two K-groups can be calculated.

maps that inform about the range and source of all the edges. Figure 2 shows
an example of a directed graph.
A particular graph can be read according to a specified rule to define genera-

tors and relations between them which together generate a specific C ∗-algebra.
Read in a different way, one obtains a linear map from which it is possible to
calculate the two K-groups, K1 and K0 (as the kernel and co-kernel of the linear
map, respectively). See Raeburn and Szymanski (2004) and Carter (2018) for
details. Figure 3 illustrates the connections.
One point in this example is that mathematics frequently represents problems

in other domains where they become easier (or even possible) to solve. Another
point concerns the fact that for such representations to be useful, one needs
first to establish formal relations between the domains. In the case considered,
there are theorems that establish the connections, for example, a theorem that
mentions the correspondences shown in Figure 3 – roughly:

If D is a directed graph subject to some conditions and ∆D a particular map,
then the co-kernel of ∆D is isomorphic to K0 of the graph algebra generated
fromD and the kernel of∆D is isomorphic to K1 of the graph algebra generated
from D. (Raeburn and Szymanski 2004, theorem 3.2)

Mathematics is also about these connections – not only the individual structures
such as a C ∗-algebra. Furthermore, we determine properties of C ∗-algebras by
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exploiting this connection (and others like it). I illustrate these claims in more
detail with a simpler example on the complex numbers.

2.3.2 Representations of Complex Numbers

Besides serving as an illustration of the usefulness of represention in math-
ematics and how this depends on established correspondences, the complex
numbers have given rise to a much discussed problem. The challenge is that a
certain structuralist position, the so-called non-eliminative structuralism, seems
to entail that we are not able to distinguish between the two complex numbers
i and −i (Keränen 2001). Non-eliminative structuralism holds that structures
are in the ontology (they cannot be ‘eliminated’) and mathematical objects
are considered as places in structures. Furthermore, places have only struc-
tural properties. The problem of indiscernibles occurs when one asks about the
identity conditions of places. Considering the complex numbers as an alge-
braic field, Keränen argues that there is no relation that makes it possible to
distinguish between i and −i. An obvious candidate is an automorphism, but
conjugation (which is an automorphism onC) takes i to−i and vice versa. There
is a mathematical solution to this problem. McLarty (2020) notes that our abil-
ity to distinguish between the two complex numbers depends on whether we
consider the complex numbers as an algebraic structure or as part of complex
analysis. In the context of algebra, complex conjugation is an automorphism,
whereas in complex analysis, it is not.
There are a number of ways to introduce the complex numbers. A text-

book in complex analysis defines them as ordered pairs of real numbers,
C = {(x,y)|x,y ∈ R}, equipped with addition and multiplication:

(x,y) + (a,b) = (x + a,y + b), (x,y) · (a,b) = (xa − yb,xb + ya)

(C,+, ·) so defined can be shown to be a field. i is defined as the element (0,1).
(It follows that −i is the number −(0,1) = (0,−1)).
After introducing different representations of the numbers the authors com-

ment:

We now have five different ways of thinking about a complex number: the
formal definition, in rectangular form, in polar form, and geometrically,
using Cartesian coordinates or polar coordinates. Each of these five ways
is useful in different situations, and translating between them is an essential
ingredient in complex analysis. (Beck et al. 2002–18, p. 9 my emphasis)

It is possible to perform basic calculations such as addition and multiplication
on numbers from the given definition. But when it comes to other types of
calculations, some of the other ways of treating the complex numbers are more
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Figure 4 The complex number z = 1− i represented in a Cartesian coordinate
system that also shows the polar coordinates (r, θ).

convenient. Let us consider an example. Suppose we wish to calculate the 6th
power of the number z = 1 − i (now presented in the rectangular form). In
order to do this we represent the number in polar form. We first consider the
corresponding coordinates (1,−1) in a Cartesian coordinate system and notice
that the point can also be characterised by the length, r, of the line segment
between the point and the origin (referred to as the modulus) and the angle,
θ, that this line makes with the positive x-axis (the argument). That is, it can
be determined by the polar coordinates (r, θ); see Figure 4. The corresponding
polar form of representation is z = r(cos θ + i · sin θ) = r · eθ ·i.
The first task is to determine the values of r and θ, that is, establish a

correspondence between the two forms of representation. Noticing that we
have a right angled triangle, we can use a trigonometric relation, for exam-
ple, tan(θ) = y/x, and Pythagoras’ theorem to determine the two numbers. We
write z in the polar form as z =

√
2(cos(−π/4) + i · sin(−π/4)) =

√
2 · e−(π/4)·i.

Before we can perform the calculation, we need to establish what the oper-
ations defined on the Cartesian coordinates correspond to in the new form
of representation. Using a variety of trigonometric identities, it is possible to
show that multiplication of two numbers given in polar coordinates, (r1, θ1) and
(r2, θ2), is given by (r1 · r2, θ1 + θ2). That is, the modulus of the product is the
product of the moduli of the multiplied terms and the argument is found by
adding the given arguments. Using this fact, it is easy to calculate the result:

z6 = (
√
2 · e−(π/4)·i)6 = (

√
2)6 · e6·(−(π/4)·i) = 8 · e−(3π/2)·i

The geometric representation of the complex numbers is not only a useful tool
when performing simple calculations on them. The geometric representation of
complex numbers turned out to be extremely fruitful in the hands of Riemann as
previously mentioned. Riemann (1851) represented complex functions visually
and was thereby able to formulate their characterising property in geometric
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terms, see Section 3.3.2. Riemann further considered the multivalued Abelian
functions and found a way to represent them by Riemann surfaces. This exam-
ple illustrates well that a representation in a different context sometimes paves
the way to a whole new field, a field that does not seem imaginable from the
original form of presentation. In the next section, we consider this example
as well as other examples of fruitful representations and discuss some of their
properties.

3 Visual Thinking in Mathematics
Throughout history, visual representations, or diagrams, have played a sig-
nificant role in mathematics. This is particularly true of the mathematics of
the ancient Greeks as documented by Netz (1999). Around the turn of the
twentieth century, however, one finds statements by mathematicians, such as
Pasch and Hilbert, and philosophers saying that diagrams should be excluded
in mathematical proofs. Pasch puts it in the following way:

For the appeal to a figure is, in general, not at all necessary. It does facilitate
essentially the grasp of the relations stated in the theorem and the construc-
tions applied in the proof. Moreover, it is a fruitful tool to discover such
relationships and constructions. However, if one is not afraid of the sacri-
fice of time and effort involved, then one can omit the figure in the proof
of any theorem; indeed, the theorem is only truly demonstrated if the proof
is completely independent of the figure. (Pasch 1882/1926, 43) (Quote and
translation from Mancosu 2005, p. 14)

Russell (1901) agrees, writing that ‘in the best books there are no figures at
all’ (Russell 1901, p. 99). We noted in the first section that Russell sought
to provide mathematics with a logical foundation. He explains that when
inferences are based on figures, we may be misled. Only when figures are
omitted and reasoning is put in a strict symbolic form is it possible to detect
which assumptions are required. This view of diagrams appears to have been
adopted by mathematicians in general sometime after 1900: The number of
diagrams in published articles drops visibly in the period between 1910 and
1950 (Johansen & Pallivicini 2022).38 Today diagrams abound inmathematical
practice; they are drawn and referred to in informal discussions among math-
ematicians, in colloquia, and found in textbooks as well as in articles. Natural
questions, then, arise regarding the roles these diagrams play and whether they
can have an essential role in proofs.

38 Johansen and Pallavicini blame the ‘formalist view’ of mathematics for the reduced number of
diagrams in the journals. There could be other reasons as well; for example, a change of topics
that are studied in the considered period.
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We consider two aspects of these questions. One is the use of diagrams in
mathematical proofs, from their use in Euclid’s Elements to more recent math-
ematics and logic. This is the topic of the first two subsections. The second
concerns the heuristic role of visual representations in mathematics, in partic-
ular how they lead to new discoveries. For this purpose, Section 3.3 examines
the practice of constructing, manipulating and observing visual representa-
tions. In general, the section illustrates how some questions or problems can
be approached by an examination and detailed analysis of exemplary case
studies. I refer to Giaquinto (2007 and 2020) on the epistemic use of visual
representations in mathematical practice more generally. In Visual Thinking in
Mathematics (2007),MarcusGiaquinto extensively discusses how visual repre-
sentations contribute to mathematical knowledge, exploring their roles in both
proofs and discoveries.
Before looking into the role of diagrams in contemporary mathematical

practice, I provide a brief historical account of their use, starting with their
significance in Greek mathematics, and mention some of the events that led to
their rejection during the latter part of the nineteenth century.

3.1 Diagrams in Euclid’s Elements

It is well known that diagrams formed an essential component of propositions
as well as demonstrations in Greek mathematics. Reviel Netz (1999) analyses
their role revealing a mutual dependence between text and diagrams. From this,
he infers that diagrams serve as metonyms for their propositions. The interde-
pendence between diagram and text is supported by a number of observations.
In some cases the diagram has to be consulted to locate a particular point, since
it is not fully specified in the accompanying text (Netz refers to these points as
‘completely unspecified’). Suppose, for example, that I tell you that AB is the
radius of a circle and that the line segment BC is twice the length of AB. In this
case, the point C is completely unspecified. (A and B are underspecified since
we are not able to tell which point is the centre and which lies on the circum-
ference of the circle – but we do know something about their location.) Netz
has found that about 19 per cent of points in the Elements book XIII are com-
pletely unspecified (section 2.1, p. 23). An important role of the accompanying
diagram, then, is to fix the reference of such points. Moreover, information
that is used in demonstrations, is read off from diagrams. Conversely, the text
tells you how to read the diagram. Another observation is based on an anal-
ysis of the ancient Greeks’ use of the word ‘diagram’ that seems to refer to
the proposition itself and not the accompanying figure. Finally, Netz notes
that each proposition has a unique diagram so that the diagram individuates its
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proposition: You see the diagram and you can tell at an instant which proposi-
tion is at stake.
Whereas Netz informs us about the role of diagrams in Greek mathematics

in general, Ken Manders (2008a,b) focuses on the validity of the diagram-
based tradition in Euclidean plane geometry. He comments on the paradoxical
circumstance that the plane geometry of Euclid’s Elements has served as an
inspiration for many mathematicians and even formed the foundation for math-
ematics for over two thousand years after it was written, while contemporary
scholars seem to reject its methods:

It was a stable and fruitful tool of investigation across diverse cultural con-
texts for over two thousand years. During that time, it generally struck
thoughtful and knowledgeable people as the most rigorous of human ways
of knowing, even in the face of centuries of internal criticism in antiquity.
(Manders 2008b, p. 80)

The classic paper ‘The Euclidean Diagram’ (Manders 2008b, written in 1995)
rationally reconstructs the underlying practice of the ancient Greeks explaining
its epistemic success. I shall give an outline of some of the components of this
practice.
The first component concerns the inferences of the Elements. An inference

in Euclidean plane geometry takes as input either a piece of information taken
from the text or an attribute read off from the accompanying diagram, or both.
The conclusion is either a new piece of textual information or a new diagram
element. Figure 5 illustrates the general structure of an inference. To see how it
is usedwe consider proposition I.1which tells us how to construct an equilateral
triangle on a given finite straight line. The given straight line is AB. In the
construction part of the demonstration one is asked to draw a circle with centre
A and radius AB. That is, based on textual input ‘AB is a line segment’ and
postulate 3, granting the construction of the circle, the output of the inference
consists of a new diagram element, a circle. A second circle is drawn with
B as centre and AB as radius. It is noticed that they intersect in a point, C.
By drawing lines between A and C, and then between B and C, one obtains a
triangle; see Figure 6. In the remaining part of the demonstration, it is proved
that the constructed triangle is equilateral, that is, the sides are equal. A step in
this proof is to notice that AB and AC are both radii of the same circle and are

Figure 5 An illustration of inferences of the Elements as shown in
Manders (2008a, p. 69)
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A B

C

Figure 6 The diagram of Euclid I.1: To construct an equilateral triangle on a
given line segment.

therefore equal. That is, this argument takes as input an attribute observed in the
diagram and textual information, that radii of a circle are equal (definition 15),
to conclude that the two line segments are equal.
Since an inference may depend on attributes from the accompanying dia-

gram, it is relevant to consider which type of information is read off. For this
purpose, Manders has introduced the notions of co-exact and exact attributes.
A co-exact attribute is a property that is not changed by continuous variations
of the diagram (Manders 2008b, p. 92). Examples of co-exact attributes are the
crossing of the circles in proposition I.1, that a region or line segment is con-
tained in another, and so on. An exact attribute is, for example, that two line
segments or angles are equal. Manders has analysed all cases where informa-
tion is read off from a diagram in Euclid’s plane geometry. It turns out that
they are all instances of co-exact properties. In addition, a number of formal
systems that model Euclid’s geometry have been formulated with the intent to
show that it is valid. Jeremy Avigad and John Mumma (2009) present one such
formal system that is based on Manders’ reconstruction.
A consequence of the observation that information is sometimes read off

from diagrams is that a particular diagram must make a clear case for the
attributes it is supposed to display. Manders places such considerations under
the heading of ‘diagram discipline’. To be able to reliably read off information
from a particular diagram requires that it must have a suitable size (not too
small or too big) and that it is kept sufficiently simple. The latter is accom-
plished by, for example, splitting propositions into many parts: It takes 47
propositions to reach to the main theorem of book I, Pythagoras’ theorem.
In addition, what the diagram displays seems to be carefully chosen (see also
Catton and Montelle (2012)). On the other hand, the reasoning practice also
places demands on the agents, trusting that they read off diagram attributes
uniformly. This is made possible by keeping the number of responses small;
only around 30 types of responses are required. Agents are supposed to be
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able to recognise the various (simple) geometrical figures such as triangles,
the crossing of lines, and containment relations.39

The final component considers the agents that constitute the practice and
their roles in forming an epistemically valid practice. In addition to the role of
agents making a case that a given proposition holds is the role of the opponent.
This is referred to as ‘probing’ and can take two different forms. One type of
criticism consists of an objection that a proposed diagram does not make a clear
enough case for the co-exact attributes that agents are supposed to read off. That
is, the opponent criticises the diagram’s appearance. Objections of this sort may
also prevent the fallacious diagram that leads to the conclusion that all triangles
are isosceles. The second type of probing questions the generality of the drawn
diagram and might result in case branching.
Both the structure and the geometric content of the Elements have inspired

mathematicians long after it was written. The structure, that is, building math-
ematics on definitions and axioms has served as an ideal for how to present
theoretical sciences. Furthermore, geometry has for long served as a founda-
tion in many areas of mathematics. This is in particular the case in the early
history of analysis, studying the properties of curves.40 When determining the
tangent (or sub-tangent) to a curve, properties of similar triangles are quite use-
ful. Take Pierre de Fermat as an example. He considers (in 1638) the curve CA,
see Figure 7, and a tangent placed at point A. The sub-tangent of the curve at
point A corresponds to the line segment BD along (what we would refer to as)
the x-axis. In order to determine this line segment, Fermat considers another
point, E (which is located on the tangent, not the curve). We then see that two
similar triangles appear, that is, triangle DFE and DBA. Fermat exploits the
fact that the sides of these triangles have similar proportions and utilises the
expression of the curve in question to determine the given line segment.41

A few years later Isaac Newton used the same geometric relation (referring
to a figure that is similar to the one shown in Figure 7) to determine the value

39 The latter is seen in, for example, proposition II.11 where a particular rectangle is observed to
be part of two different rectangles.

40 Geometry also played an important part in the early history of algebra, namely in equation
solving. The Arabic mathematicians from around 800 (e.g., Al Khwarizmi) formulated algo-
rithms to solve quadratic equations, but based their demonstrations on geometry. Much later, in
Cardano’s Ars Magna published in 1545, there are still geometric traces. The solution of cubic
equations is given in terms of a line segment, and cubic identities are obtained by considering
partitions of a cube.

41 Fermat also uses geometric arguments and the results of geometric series to calculate quadra-
tures; he was even able to formulate a version of partial integration using intricate geometric
arguments. The results are written around 1659 in a treatise on methods of quadrature.
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Figure 7 Fermat determines the sub-tangent of a curve in 1638.

of the sub-tangent as T = Ûx
Ûy · y. Newton’s framework is, of course, fundamen-

tally different, as by then he had developed his version of the differential and
integral calculus with new terminology and theoretical background. Therefore,
Newton’s sub-tangent is obtained by an application of one of his fundamental
propositions of calculus that tells us how to calculate the relation between the
two fluxions, Ûx and Ûy, given a relation between the fluents.
After Newton’s and Leibniz’s inventions of calculus in the second part of the

17th century, figures gradually disappear from calculus texts. Leonard Euler’s
book on differential calculus (published in 1755) contains no figures. Euler
explicitly comments on this fact in the preface: ‘everything is kept within the
bounds of pure analysis, so that in the explanation of the rules of this calculus
there is no need for any geometric figures’ (Euler 1755/2000, p. xii). Euler
introduces the concept of a function, defined as an analytic expression, and
further develops his differential calculus based on the methods and notation
introduced by Leibniz. Thereby calculus can be considered as rules on how to
operate on analytic expressions rather than working with geometric properties
of curves. More surprisingly, perhaps, is that Cauchy’s textbooks for teaching
analysis at the École Polytechnique42 in the early nineteenth century do not
contain a single figure either.
During the nineteenth century one finds explicit statements that geomet-

ric intuition cannot be relied on in analysis and multiple examples are given
showing why this is the case. An often mentioned example is the possibility
of formulating the expression of a continuous function that is nowhere dif-
ferentiable (proved by Weierstrass in 1861). This example, as well as Peano’s

42 They are Cours d’Analyse (1821) and Resumé des leçons données a l’École Polytechnique sur
le calcul infinitesimal (1823).
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space-filling curve were later mentioned by Hans Hahn (1933/1980) as reasons
why geometric intuition cannot be relied on in the article ‘The crisis of intu-
ition’. There is a similar development in geometry as is evident from the quotes
of Pasch and Hilbert. But the reasons why figures disappear from mathematics
texts in general after the eighteenth century have not, to my knowledge, been
completely explained.

3.2 Diagrams in Contemporary Mathematics and Logic
During the 1990s – the same time as Manders was defending diagram-based
reasoning in the Elements – philosophers and mathematicians were making a
case that it is possible to formulate rigorous proofs based on diagrams, point-
ing to the fact that contemporary mathematicians sometimes seem to rely on
figures or diagrams. The logicians Barwise and Etchemendy (1996) have con-
structed what is referred to as heterogenous logical systems and thereby argue
that proofs can contain diagrammatic elements. To illustrate this point we show
later an example of a formal diagram system – the alpha part of Peirce’s Exis-
tential Graphs – as described in (Shin 2002). Besides demonstrating that it is
possible to formulate sound diagrammatic systems of logic, the aim is to convey
some of the other interesting properties that such systems might have.
Vaughan Jones (1998) is among the mathematicians who object to the view

that proofs can only be acceptable in case they are presented in a formal, sym-
bolic language. Criticising more broadly the view that a formal proof is all there
is to truth in mathematics, he writes:

Proofs are indispensable, but I would say they are necessary but not suffi-
cient for mathematical truth, at least truth as perceived by the individual.
(Jones 1998, p. 208)

Jones provides a number of examples in support of this view, including a result
from knot theory, Alexander’s closed braid theorem. He offers a picture proof
of this theorem, a proof that is based on manipulations on knot diagrams, com-
menting that it would be hopeless to review in case it was presented as a formal
proof.
More recently Silvia De Toffoli and Valeria Giardino (2014) have made a

case that diagrams play an epistemic role in contemporary low-dimensional
topology. They claim that mathematicians conceive of diagrams as ‘dynamic
inferential tools that are modified and produced for epistemic purposes’
(p. 830). Their examples range from considering different presentations of
knots to a picture proof in a topology textbook that two presentations of the
Poincaré homology sphere are equivalent. The proof presented in the textbook
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Knots and links43 simply consists of a series of figures and specified rules
indicate how to mentally manipulate them.
Besides discussing whether reasoning based on diagrams is rigorous, one

may consider the advantages that diagrammatic systems have over symbolic
systems. We illustrate some of these advantages by C. S. Peirce’s graphic
logic, his Existential Graphs (EGs), as reconstructed in Shin (2002). Peirce
constructed three different versions of EGs, the alpha, beta and gamma sys-
tems corresponding to propositional, first-order and modal logic respectively.
Sun-Joo Shin insists that Peirce’s EGs should be assessed on their own terms,
that is, one should consider the features made possible because of their iconic
nature. ‘Iconic’ refers to Peirce’s semiotics. An icon is a sign that represents
because of some shared likeness with the object it stands for (see Section 3.3.3
for further details). She also notes that the alpha and beta versions of the EGs
correspond, respectively, to propositional and first-order classical logic, which
entails that they are both sound and complete.
We consider two properties of the EGs. One is the iconic reading of the

graphs. Another advantage is that they can be systematically read in different
ways, providing easy access to logical equivalent expressions. We illustrate
these claims in the case of the alpha part of the EGs. The basic building blocks
of this system are statement variables (or just the statements themselves) and
two logical operations corresponding to conjunction and negation. There is no
visible sign corresponding to ‘and’: the rule is that whenever two propositions
are written on what Peirce refers to as the sheet of assertion, one intends their
conjunction. That is, if I see a tree with white flowers and that the sky is blue,
I can write this on the sheet of assertion:

The sky is blue The tree has white flowers

Shin argues that Peirce’s decision not to have a physical sign that denotes ‘and’
turns it into an iconic representation of the conjunction of two facts. To see
why, note that what I have written corresponds exactly to what I observe. I
see that the sky is blue, I see the tree – but there is nothing in what I see that
corresponds to the ‘and’ or the ‘∧’ that we use in the linear form of propositional
logic.44

43 See p. 325 of Rolfsen, D. [1976]. Knots and links. Publish or Perish, Inc., Berkeley.
44 Peirce explains this choice in a paper ‘On existential graphs, Euler’s diagrams, and logical alge-

bra’ from ca. 1903, see (CP 4.418–4.507). CP 4.418 refers to Peirce’s Collected Papers (Peirce
1965–67) book 4 and paragraph 418. He writes the following about conjunction: ‘A diagram
ought to be as iconic as possible; that is, it should represent relations by visible relations anal-
ogous to them.…Each proposition is true independently of the other, and either may therefore
be expressed on the sheet of assertion. If both are written on different parts of the sheet of
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If we write B for the statement ‘the sky is blue’ andW for ‘the tree has white
flowers’, the conjunctive proposition can be written as

W
B

Note that the location of these statements on the sheet does not affect the logical
status of the proposition. The preceding graph can thus be read both as ‘B and
W’ and ‘W and B’.
A negation in this system is referred to as a ‘cut’ and is marked by a closed

curve enclosing the negated proposition as shown in Figure 8. The interpreta-
tion of this graph is ‘it is not the case that W’ or ‘the tree does not have white
flowers’. Note again that an iconic interpretation of the sign, the cut, is pos-
sible. This time metaphorically, taking the name of the rule into account, and
understanding negation as ‘cutting out’ a particular statement that is not true.
(Imagine that you are writing statements on a piece of paper and discover that
one is not true. You draw a closed line around it to indicate that it should be
ripped out.)
A number of different graphs are shown in Figure 9. According to Peirce’s

intended reading, the ‘endoporeutic’ reading, they correspond to the following
propositions.

(i) P and Q
(ii) not P
(iii) not (P and not Q)
(iv) not (not P and not Q)

Shin explains how it is possible to introduce different reading strategies on
these graphs. One is to read graph (iii) in Figure 9 as P → Q.45 (Exploiting

W

Figure 8 An existential graph representing ‘not W’.

assertion, the independent presence on the sheet of the two expressions is analogous to the
independent truth of the two propositions that they would, when written separately assert’ (CP
4.433).

45 Peirce explains the iconicity of this reading in the previously mentioned paper ‘On existential
graphs, Euler’s diagrams, and logical algebra’ (see the previous footnote). He first notices that
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Figure 9 Examples of existential graphs.

P Q R

Figure 10 An existential graph with multiple readings. Reading the graph as
having the form of a disjunct, one may obtain P ∨ (Q ∧ ¬R). Read using

implication from the right we see, for example, (Q → R) → P.

that this is equivalent to ¬(P ∧ ¬Q.) Another reading strategy reads graph (iv)
as P ∨ Q.
Consider next the graph in Figure 10. Using the given reading strategies,

the graph can be read in a number of ways. Using cut and ‘and’, reading from
the outside and in (i.e., Peirce’s original reading method) the graph is read as
¬(¬P∧¬(Q∧¬R)). If we instead notice that it has the ‘form’ of the operation
‘or’, wemay read it asP∨(Q∧¬R). On a third reading, we observe that the outer
cut encloses two cuts of different orders and read it using implication from the
left: ¬P → (Q ∧ ¬R), or implication from the right to obtain ¬(Q ∧ ¬R) →
P. Since all of these are read from the same graph, they are all equivalent.
These advantages suggest that diagrams can be fruitful tools in mathematics.
This is indeed the case. The next section explores further this aspect of visual
representations.

3.3 Diagrams as Effective Representations
In addition to the iconic features of diagrams and the epistemic advantages
obtained by controlled multiple readings, visual representations also give rise
to new concepts, relations and proofs (see, for example, Carter (2010)) or even

implication is analogous to the geometrical relation of inclusion (CP 4.435). He therefore finds
that it is reasonable ‘that one of the two compartments should be placed within the other’ and
concludes that it must be the consequent that is placed in the inner compartment (introducing
the scroll).
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fields as in the case of Riemann’s contributions (see also Starikova (2010)). In
the following we address the question of whether it is possible to explain how
visual representations lead to new insights in mathematics. Section 3.3.2 anal-
yses how the notion of a ‘free ride’ Shimojima (2001) applies to mathematics.
Roughly, a free ride is a consequential piece of information that can be read
off from a diagram, but has not deliberately been added when constructing it.
Finally, in Section 3.3.3 we consider visual representations as an instance of
iconic representations that can be manipulated, or experimented on.

3.3.1 What Is a Diagram?

When discussing the role of diagrams it is often useful to contrast them with
other types of representation such as sentential representations. Similarly, when
investigating the properties of fruitful representations it may beneficial to deter-
mine whether they rely on characterising properties specific to diagrams or
if they hold more generally. It is therefore appropriate to state what a ‘dia-
gram’ is. When referring to visual representations, it is common to distinguish
between external and internal representations. Internal representations refer to
mental images produced by our visual imagery whereas external representa-
tions are signs that are written or constructed on some physical media such as
a piece of paper or a blackboard. In the following we consider only external
representations.
Many different types of representations are used in mathematics; among

visual representations there are diagrams, figures, graphs, tables and illustra-
tions. See, for example, Bertin (2011) for a distinction between some of these.
Another category consists of sentential representations, where it may be rel-
evant to distinguish between natural language and mathematical expressions
(that are formed usingmathematical notation). It may not even be clear to which
category mathematical expressions belong.
There are further cases where a characterisation of ‘diagram’ is useful. We

mentioned the question whether proofs can be based on diagrams. Responses to
this question depend on what type of information can reliably be read off from
diagrams and diagram discipline (Manders 2008b) or whether diagrams can be
considered to be a type of formal system (Shin 2002). One might also argue
that diagrams (or a subclass of them) constitute a notation (Goodman 1976,
pp. 170–171) and that they therefore can be parts of proofs. I refer to the
forthcoming Element by Dirk Schlimm for a philosophy of notations.
In the philosophy of mathematics only a few contributions explicitly say

what diagrams are, but in information and visualisation theory there are a num-
ber of proposals on how to characterise diagrams in contrast to other types of
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· · ·

E

· ·

· ·

F

Figure 11 Two directed graphs, E and F.

representations such as natural languages.46 Keith Stenning (2000) and Atsushi
Shimojima (2001) discuss a number of proposed distinctions between diagrams
and sentential representations in the context of information theory. Their aims,
however, differ. Whereas Stenning seeks to understand how diagrams com-
municate, Shimojima notices that graphic representations hold the capacity
to offer ‘free rides’ and wishes to explain this feature. Some of their dis-
tinctions make sense also in the context of mathematics. An often mentioned
difference between diagrams and sentential representations is the apparent
two-dimensionality of diagrams in contrast to the linearity of sentential rep-
resentations. Several counter examples have been offered, however, arguing
that this distinction is neither sufficient nor necessary. One is the use of two-
dimensional notations, for example exponentials, in mathematics. Another type
of counter-example consists of linear representations that intuitively seem to
be diagrams such as the linear graph, E, shown in Figure 11. Whereas this dis-
tinction concerns the appearance of the representations, it is also possible to
make a distinction based on how they are interpreted, that is, their semantics.
Stenning (2000) notes that sentential representations are read and interpreted
in a fixed direction, often from left to right, reading one character at a time, as
when reading this text. In contrast, diagrams need not be interpreted in a fixed
direction. Because of this, it is possible to read a particular diagram in multi-
ple ways (as we noticed about Peirce’s existential graphs and graph-algebras in
Section 2.3.1). It is therefore of vital importance to supply rules that say how a
particular diagram should be read.
Another distinction that sometimes applies considers whether letters, points

and other basic components act as types or as tokens. In sentential represen-
tations, letters typically are taken as types. The ‘t’ in ‘typically’ and in ‘type’
both refer to the same letter, the type ‘t’, regardless of its location on this page.

46 A recent discussion of how to characterise ‘diagram’ in a mathematical context is
De Toffoli (2022). De Toffoli’s main focus is to analyse the role of notations in mathematics
and the possibility of considering mathematical diagrams as part of a notation.
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In diagrams, it is often the case that the reference of a character or sign is
determined by its location, that is, the same letter, say, placed at two different
locations means that they refer to two different objects. Consider the graphs in
Figure 11. They are composed of points and arrows placed at different loca-
tions. It is implicitly understood that the different points (and arrows) do not
refer to the same, but to different vertices (or edges). The type of reference in
this case is denoted token-reference whereas the first is type-reference.
A final distinction concerns how reasoning is displayed or the representa-

tion is formed. When making calculations in sentential representations one
usually rewrites the transformed expression below or next to the previous one
when making changes. This is referred to as discursive reasoning. When oper-
ating on diagrams, it is possible to add information successively to the same
representation, as we shall see, forming agglomerative representations.
I offer the following characterisation of diagrams that I find useful when

discussing the heuristic role of diagrams, in particular the question why they
sometimes contribute new insights (see also Carter (2021, 2018)). It is not
intended as a sharp distinction between different types of representations which
I doubt is possible. First, I consider and distinguish between three different
levels: the visual appearance of the representation, its semantics and, finally,
how it is used. When considering the appearance of a representation, I note
that mathematical representations are typically composed of certain basic ele-
ments according to syntactic rules. The basic constituents of diagrams consist
of geometric elements such as points, line segments and curves and other
types of notational elements such as letters (standing for mathematical objects).
The syntactic rules of diagrams further allow production of two-dimensional
objects. The syntactic rules of directed graphs, for example, make it possi-
ble to form two-dimensional displays as shown by the graph, F, in Figure 11.
Similarly, some of the basic constituents of the Elements are line segments
that can be composed into complex two-dimensional figures. The exponential
expression referred to earlier may be considered as a notational unit. The syn-
tax, however, makes it possible to compose exponentials into two-dimensional
displays. The reason that they are not diagrams, I propose, is because of
their semantics. Sentential representations come with a fixed reading direc-
tion (which is the case for exponentials; we must not confuse 23 with 32)
whereas diagrams typically may be read in multiple directions according to
specified rules. Finally, the uses of a particular representation may draw on the
beforementioned distinctions between type and token reference and agglom-
erative versus discursive reasoning, where token reference and agglomerative
reasoning are effective ways of using diagrammatic representations.
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3.3.2 Free Rides in Mathematics

Suppose you are given the following information about three sets, A,B and C,
that A and B are disjoint and that C is a subset of B. Formally, A ∩ B = ∅ and
C ⊆ B. The phenomenon of a free ride can be illustrated by representing these
two facts by so-called Euler diagrams. Euler diagrams are constructed by using
the convention that a set is represented by a closed curve in the plane such as
a circle, and that elements of the set are contained inside the closed domain. It
follows that a circle that is fully contained in another represents set inclusion
and that two non-intersecting circles represent disjoint sets. According to this
convention the given information leads to the configuration shown in Figure 12.
Observing the diagram, one notices that the two circles marked C and A do

not overlap. This translates into the set theoretic claim that A ∩ C = ∅. Since
this is a piece of information that was not put into the representation when we
constructed it, it is consequential information that comes for free, that is, what
Shimojima calls a free ride. Notice also that Proposition I.1 in the Elements
contains a free ride: The consequential piece of information that is possible to
read off is the point of intersection between the two drawn circles.
The property that we read off from the Euler diagram follows from topologi-

cal properties of the plane. The diagram consists of two non-intersecting circles,
marked A and B and another circle that is fully contained in circle B. It is then
impossible for circle C to have any points in common with circle A. That is, the
free ride depends on geometric or topological properties of the representation
itself. Shimojima denotes geometric, topological (and physical) properties of a
representation as nomic constraints of the representation and argues that they
govern free rides. It is not important for our concerns exactly what this involves;
I refer to (Shimojima 2001) for details. We focus instead on free rides as they
occur in mathematical practice and extend the notion accordingly.
My recent article ‘ “Free rides” in mathematics’ (Carter 2021) analyses a

number of occurrences of mathematical free rides. Some of the examples
resemble the ones considered earlier: free rides depend on geometric and
topological properties of the representations. But this is not always the case.
Free rides, defined as ‘consequential pieces of information that can be read

C

A B

Figure 12 A diagrammatic representation of A ∩ B = ∅ and C ⊆ B.
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off from a diagram,’ occurring in mathematics are more varied. In some cases
they depend on the fact that diagrams allow multiple readings and theoretical
results that connect these readings. This is the case in the example of graph-
algebras that we presented in Section 2.3.1. A graph-algebra is a certain type of
C ∗-algebra that can be represented by directed graphs. An advantage is that the
directed graphs can be read in two distinct ways. One reading of these graphs
gives generators and relations that define a C ∗-algebra, referred to as a graph-
algebra. When read in a different way, one obtains a linear map from which it
is easy to calculate the two K-groups of the C ∗-algebra. Formal results estab-
lish the connection between the linear map and the corresponding C ∗-algebra
(Raeburn & Szymanski 2004).
In other cases the essential feature is a combination of the possibility to form

two-dimensional displays with what was referred to as agglomerative reason-
ing. One of the considered examples is a commutative diagram from category
theory that is read as a map in order to see that different expressions are identi-
cal. That the consideredmorphisms are successively added to the same diagram
is as essential to the use of it as is its two-dimensionality. We illustrate these
features by looking at Riemann’s geometric representation of the property that
characterises a complex function. We return to this example in the next section.
Further details can be found in Carter (2021, pp. 10484–10486).
Riemann (1851) defines a function of a complex variable, z = x + i · y,

stating that f(z) = u + i · v is a complex function if the differential quotient
df
dz is independent of dz. (Today we would say that a function so defined is
differentiable at z.) He further comments that this idea is easier to grasp when
using one’s ‘spatial intuition’ and so represents values of the variable and the
function in different planes as illustrated in Figure 13. Using this geometric
representation, he was able to express geometrically the condition of being a
complex function. The condition entails that the two angles v and w will be
identical and that the two triangles shown are similar. That is, the free ride that
is obtained in this case is the similarity of the triangles. Note that we do not
observe this fact. It is calculated based on visual information that it is possible
to represent the difference between points (e.g., dz = z−z1) in polar coordinates.
(See Section 2.3.3 on different forms of presentations of complex numbers.)
Inserting differences expressed in polar coordinates in the expression df

dz =
df
dz′ ,

it is possible to derive the result.
Returning to the preceding points, note that it is crucial that the objects

considered are added to the same diagram, for example, that the three con-
sidered complex numbers, z, z1, z2 are represented in the same complex plane
forming a triangle. That is, we construct an agglomerative representation.
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z

z1

z2

v

f(z)
f(z1)

f(z2)

w

f

Figure 13 A geometric representation of the condition to be a complex
function.

In addition, the representation formed clearly depends on the possibility to form
two-dimensional displays.
To sum up, we have observed that mathematical free rides depend on a vari-

ety of characterising properties of diagrams. One is the possibility of forming
two-dimensional displays, that is, a consequence of the appearance and syntax
of diagrams. Second, I noted themultiple readability of diagramswhich is made
possible because diagrams need not comewith a fixed semantics. Thirdly, is the
possibility to form agglomerative representations that was mentioned among
the uses of a diagram. The last mentioned feature, that of token versus type
reference, is mixed in the considered cases. The z shown in Figure 13 refers as
a type so as to tell us that f (z) is the value of this particular z whereas the line
segments should be taken as tokens.

3.3.3 Observing and Manipulating Iconic Representations

Free rides are obtained by representing certain information and observing the
result. This can be considered as a special case of the more general case of
constructing and manipulating (or experimenting on) iconic representations. In
order to explain what this means, we present a few details about iconic rep-
resentations as they are used in mathematics. Recall that a representation is a
sign that stands for some entity, or object, to somebody, the ‘interpretant’. That
is, a representation is a triad. When referring to iconic representations, we are
considering the relation between the sign and the object it stands for, that is, in
which capacity the sign accomplishes standing for the object(s) it represents.
According to Peirce, there are three main possibilities, referred to as icons,
indices and symbols. Icons represent because they share some kind of likeness
with what they represent. A drawn rectangle could be an iconic representation
of the shape of my floor. Indices represent because they are either physically
connected with what they represent, as in smoke indicating fire, or because
of a ‘purposeful connection’. The latter occurs when we name, for example, a
particular set ‘A’ allowing us to refer to and reason about this set. Symbols are
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signs that represent their objects by conventions. Words are symbols as are the
signs like ‘·’ and ‘=’ that we use in mathematics.
The characterisation of iconic signs, that they represent by likeness, has been

criticised, most notably by Goodman (1976). Goodman argues, among other
points, that since a similarity relation is an equivalence relation while repre-
sentation is not, signs cannot represent because of likeness.47 This objection
does not take into account that an icon is also a sign. The latter presupposes
an intention: someone is taking the sign as representing an object with a spe-
cific purpose. This entails that a sign (no matter what type) is neither reflexive,
symmetric, nor transitive.48 I refer to Stjernfelt (2007, Section 3) for a detailed
discussion.
The icons used in mathematics rarely resemble as images; they typically

express characterising properties of objects or relations between them and
according to some convention (as noted in the case of Euler diagrams repre-
senting relations between sets). But they are still icons in the sense that they
convey ideas of what they represent. In fact, this is an important characteristic
of an icon:

For a great distinguishing property of an icon is that by the direct observation
of it other truths concerning its object can be discovered than those which
suffice to determine its construction. (CP 2.279)49

Note also that iconic representations need not take the form of diagrams (as they
are usually conceived) – algebraic, or formal, expressions act equally well as
icons. To see how, we consider the following simple example about numbers.
A characterising property of an odd number is that it always has remainder
one when dividing it by two. This fact can be represented iconically by the
expression 2k+1, for k ∈ Z. Writing odd numbers in this way makes it possible
for us to discover further of their properties. I might be interested in knowing
something about the square of an odd number. Representing an odd number as
shown, squaring it and manipulating the signs according to stipulated rules, I
obtain the following:

(2k + 1)2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1. (1)

47 Goodman’s’ objection includes the observation that representations are not reflexive; they do
not represent themselves. Furthermore, any two objects may be like each other in some way –
but clearly this does not entail that they are representations of each other.

48 The drawn rectangle, considered as a representation of my floor, could be used to design a
pattern for a tiling. It is less likely that I would use the floor as a representation of a rectangle
(although I could imagine situations where it could make sense).

49 The reference is to the Collected Papers of Charles Sanders Peirce (Peirce 1965–67), book 2,
paragraph 279.
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Observing the last expression, I notice that it also has the form of an odd
number. Thus, representing a mathematical situation (such as an object or rela-
tions between objects) iconically and manipulating, or experimenting with, the
signs may lead to a new insight. Sometimes when representing certain facts, a
conclusion may even be read off immediately as in the case of free rides.
Peirce emphasises this feature of iconic representations. In ‘On the algebra

of logic. A contribution to the philosophy of notation’ (published in 1885) he
describes how observing signs leads to new discoveries in mathematics:50

The truth, however, appears to be that all deductive reasoning, even simple
syllogism, involves an element of observation; namely, deduction consists
in constructing an icon or diagram the relations of whose parts shall present
a complete analogy with those of the parts of the object of reasoning, of
experimenting upon this image in the imagination, and of observing the result
so as to discover unnoticed and hidden relations among the parts.…As for
algebra, the very idea of the art is that it presents formulae which can be
manipulated, and that by observing the effects of such manipulation we find
properties not to be otherwise discerned. (CP 3.363)

We end this section by two examples that illustrate different ways that icons
lead to new insight. The first considers a case of representing a situation in a
richer context where new properties become visible. In this case it is possible
to re-interpret these properties in the represented configuration (what I have
referred to as the target). In the second case that is not possible, that is, the rep-
resentation gives rise to new concepts and properties that do not correspond to
anything in the represented situation and give rise to completely new domains
or theories. Recall that when constructing representations, a correspondence
is set up saying which objects, properties, relations, and so on, of the target
situation correspond to which (visual) features of the representation.
The first example shows how representing natural numbers in a richer con-

text allows us to determine, or discover if you prefer, Pythagorean triples. In
this case, we represent numbers geometrically by points as seen in Figure 14.
The convention is that each point represents a unit. The representation further
exploits the two-dimensionality of the plane to arrange points in the shape of
geometric figures. The intention is first to display a square corresponding to
the number c2; see Figure 14. Considering the geometric representation on the
right then reveals that it is possible to cut up the larger square into a square

50 Peirce refers to the notion of ‘diagrammatic reasoning’ which is his way of characterising the
necessary reasoning that is characteristic for mathematics. ‘Diagram’ is here used in a special
technical sense and does not refer to what we would normally take a diagram to be. A Peircean
diagram is an iconic representation that displays logical relations. See Stjernfelt (2007) and
Carter (2020) for further elaborations.
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Figure 14 A geometric representation of Pythagoras’ theorem.

and a gnomon, corresponding to the stippled lines. We therefore see that the
square c2 can be written as the sum of a square that contains (c − 1)2 points
and the number 2(c − 1) + 1. The last number need not be a square – but we
immediately notice that it is an odd number. If we then search for numbers c
so that 2(c − 1) + 1 is a square (using the fact that odd squares are squares of
odd numbers), we have a systematic way to obtain some of the Pythagorean
triples.51 Other Pythagorean triples can be determined by experimenting with
the geometric representation, finding different ways to cut up the square.
The final example returns to Riemann’s representation of the complex num-

bers in a plane. We noticed that triangles appear, see Figure 13, and remarked
that it is possible to derive that the defining property of a complex function
implies that the two triangles that appear are similar. In this case, however,
there is no immediate interpretation of this property in the target situation. That
is, there is nothing in the analytic context of considering complex functions that
corresponds to triangles or other two-dimensional geometric figures. As noted
in Section 1.2.1 and the end of Section 2, Riemann exploited the geometric
intuition even further and introduced Riemann surfaces as a way to handle
multi-valued complex functions. By doing this, he was able to ask questions
that turned out to be very fruitful, for example, how many functions are pos-
sible to define on such surfaces depending on their geometric properties – a
question that would make no sense in the context of the analytic treatment of
complex numbers.

Conclusion
The ‘philosophy of mathematical practice’ currently encompasses a range of
approaches. This Element characterises PMP as a subset of philosophy that

51 To see how it goes I give the following example. We choose the first odd number, 3, and
consider its square, 9. Putting 9 equal to the expression of the gnomon, that is 9 = 2(c− 1)+ 1
we find that c − 1 = 4 and c = 5 which give us the triple (3, 4, 5). The clever reader might be
able to work out the formula for these triples:

(
m, m2−1

2 , m2+1
2

)
, for odd m.
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takes mathematical practice seriously. ‘Mathematical practice’ can be inter-
preted in different ways. One perspective may focus on mathematics itself,
either by addressing questions that are based on internal or external math-
ematical concerns or by integrating mathematical results or methods when
dealing with philosophical inquires. Throughout this Element, I have provided
numerous illustrations. For instance, in Section 1, I mentioned the challenge
of conceptualising the ‘infinite’ and how to philosophically articulate certain
epistemic virtues such as explanatory proofs. Section 2 addressed various com-
ponents of a structuralist view of mathematics whereas Section 3 examined
properties of effective representations. All of these are internal mathematical
considerations. I have only briefly mentioned external questions or concerns,
such as whether mathematics explains external facts and whether activities like
counting may lead to mathematical theories (both in Section 1). This does not
mean that external issues are less important. The extent to which mathematics
permeates modern society makes such considerations highly relevant. Exam-
ples include: the fact that knowledge of mathematics acts as a gatekeeper to
society, gender issues, and the role of mathematics (or, more broadly, science)
in policymaking.
Moreover, I have made a distinction between a static and a dynamic concep-

tion of mathematics. The latter is prevalent when emphasising practice in PMP.
In this case, the focus is primarily on the activities of human agents and how
they affect our knowledge of mathematics and how agents’ cognitive abilities
influence what we are able to perceive in visual representations. However, PMP
may consider mathematics from both a dynamic and a static perspective. This
is observed in Section 2 where we noted that ‘structure’ can be considered both
as a verb and as a noun. As a verb, we may consider different ways to struc-
ture a theory or as a tool to unify, organise or discover new mathematics (using
the axiomatic method). As a noun, it may refer to the fundamental structures
that constitute modern mathematics. In the latter case, I further emphasised that
mathematics is also about relations between these structures. Section 3 consid-
ered a number of dynamic concerns, including the role of visual representations
as tools in proofs in contemporary mathematics and how they sometimes lead
to new results. However, to account for the validity of the plane geometry of
the ancient Greeks, it is useful to examine the theory and associated practice
from a static point of view.
Some methodological aspects were addressed in Section 1. I noted that PMP

also employs analytic tools, but that this toolbox needs to be extended in order
to take into account, for example, how to handle case studies. An important
part of the philosopher of practice’s toolbox or skill set includes being able to
select the relevant parts of mathematics to study, to analyse them and to extract
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the appropriate general features. In general, I have underscored the value of
adopting an historically informed approach.
The field faces some challenges: In addition to formulating a general

description and methodology, as highlighted by Van Bendegem (2014), it is
important to maintain relations with the mainstream philosophers of mathe-
matics. Another challenge that PMP should be well-equipped to meet is the
task of rendering the philosophy of mathematics interesting and relevant to
mathematicians.
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