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This work investigates the spatio-temporal evolution of coherent structures in the wake
of a generic high-speed train, based on a three-dimensional database from large eddy
simulation. Spectral proper orthogonal decomposition (SPOD) is used to extract energy
spectra and energy ranked empirical modes for both symmetric and antisymmetric
components of the fluctuating flow field. The spectrum of the symmetric component
shows overall higher energy and more pronounced low-rank behaviour compared with
the antisymmetric one. The most dominant symmetric mode features periodic vortex
shedding in the near wake, and wave-like structures with constant streamwise wavenumber
in the far wake. The mode bispectrum further reveals the dominant role of self-interaction
of the symmetric component, leading to first harmonic and subharmonic triads of the
fundamental frequency, with remarkable deformation of the mean field. Then, the stability
of the three-dimensional wake flow is analysed based on two-dimensional local linear
stability analysis combined with a non-parallelism approximation approach. Temporal
stability analysis is first performed for both the near-wake and the far-wake regions,
showing a more unstable condition in the near-wake region. The absolute frequency of
the near-wake eigenmode is determined based on spatio-temporal analysis, then tracked
along the streamwise direction to find out the global mode growth rate and frequency,
which indicate a marginally stable global mode oscillating at a frequency very close
to the most dominant SPOD mode. The global mode wavemaker is then located, and
the structural sensitivity is calculated based on the direct and adjoint modes derived
from a local spatial analysis, with the maximum value localized within the recirculation
region close to the train tail. Finally, the global mode shape is computed by tracking the
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most spatially unstable eigenmode in the far wake, and the alignment with the SPOD
mode is computed as a function of streamwise location. By combining data-driven and
theoretical approaches, the mechanisms of coherent structures in complex wake flows are
well identified and isolated.

Key words: absolute/convection instability, wakes, vortex dynamics

1. Introduction

In the face of climate change, high-speed rail has gradually developed to become the key
to decarbonizing transportation. As a bluff body operating at high Reynolds number (Re),
the flow around a high-speed train exhibits complex characteristics of a fully developed
three-dimensional turbulent flow (Schetz 2001). The unsteady aerodynamics of high-speed
trains is then directly characterized by the fluctuating aerodynamic forces and induced
slipstreams. Therefore, understanding the dominant dynamics in the complex turbulent
flow around the train is crucial to improving and optimizing aerodynamic performance. For
this purpose, the search for and identification of physically significant coherent structures,
or modes, is a suitable method (Taira et al. 2017). In fact, extracting and understanding the
physical mechanisms of instability in complex three-dimensional turbulent flow has been
attracting research interest for several decades but remains challenging. In particular, the
complexity of the base flow, as well as the high demand for computational resources,
causes huge difficulties in solving this problem (Theofilis 2011). However, due to the
increasing demand for transportation efficiency, passenger comfort and operational safety,
extracting and understanding the mechanisms of instability in the flow around the train is
still of great research interest and significant engineering importance.

Despite its aerodynamic design, the high-speed train exhibits bluff-body flow
characteristics reminiscent of those of the well-studied Ahmed body (Ahmed, Ramm
& Faltin 1984; Lienhart, Stoots & Becker 2002). Three important structures can be
identified in the wake of the body: a recirculation bubble over the slanted surface, a pair
of longitudinal C-pillar vortices generated from the two side edges of the slanted surface
and a recirculation zone behind the rear vertical base. Several studies have focused on
the interaction and control strategies of these structures. In Zhang, Zhou & To (2015)
and Liu et al. (2021), the unsteady characteristics of Ahmed bodies in the high- and
low-drag regimes were investigated using multiple experimental techniques. On the basis
of these findings, several steady blow drag reduction strategies have been successfully
developed (Zhang et al. 2018; Li et al. 2022). Meanwhile, random switching between two
reflectional-symmetry breaking states of the wake has been investigated in Grandemange,
Gohlke & Cadot (2013) and He et al. (2021a), with appropriate strategies altering the
natural bi-stability of the wake proposed in Grandemange, Gohlke & Cadot (2014),
Evstafyeva, Morgans & Dalla Longa (2017) and Haffner et al. (2020).

However, the full picture of the three-dimensional coherent structures in the wake,
as well as the associated instability information, remains limited. Therefore, further
interpretation and understanding of the physical mechanisms that generate disturbances
in the flow are limited. In particular, for more aerodynamically shaped high-speed trains,
the identification of the flow structures mentioned above is less obvious. To extend
our understanding and control of wake dynamics in a more complex situation, modal
decomposition (Taira et al. 2017) of the three-dimensional flow must be taken into
consideration, which is the objective of this work.
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Linear stability and SPOD of train wake flow

Data-driven analysis has proven to be an effective method to extract coherent structures
from flow snapshots as empirical modes. The most classic and widely used data-driven
approach, proper orthogonal decomposition (POD), was first introduced to the field of
fluid dynamics by Lumley (1967, 1970). In this approach, the flow is represented as a
mean and a superposition of space–time-dependent modes. These resulting modes can
then be used for a variety of purposes, from classification to reduced-order modelling to
control (Rowley & Dawson 2017; Taira et al. 2017). Meanwhile, many other empirical
approaches have been proposed. For example, balanced POD (Rowley 2005) which serves
as an expansion for linear input–output relationships, and dynamic mode decomposition
(DMD) (Schmid 2010) which approximates the dynamics of a higher-order system through
a combination of linearly growing or decaying modes.

In this paper, we focus on the application of the spectral form of POD, which is
called spectral proper orthogonal decomposition (SPOD). This method is derived from
the space–time formulation of POD for statistically stationary flow. The resulting modes,
which oscillate at a single frequency, are orthogonal under a space–time inner product. In
general, SPOD combines the advantages of the classical POD and DMD for statistically
stationary flows, meanwhile, it provides an improved robustness over these two methods
(Towne, Schmidt & Colonius 2018). Furthermore, this method has been further extended
to achieve more features, such as frequency–time (Nekkanti & Schmidt 2021) and
triadic interaction (Schmidt 2020) analyses, or better convergence (Blanco et al. 2022;
Schmidt 2022) and lower computational cost (Schmidt & Towne 2019), and therefore has
received increasing interest in identifying coherent turbulent structures that are physically
meaningful in various flow problems. These applications include jet (Schmidt et al. 2018),
pipe flow (Abreu et al. 2020), flow around airfoils (Abreu et al. 2021), disk wake (Nidhan,
Schmidt & Sarkar 2022) and various industrial flows (Haffner et al. 2020; He et al. 2021b;
Li et al. 2021a; Wang, He & Yan 2022b).

Considering vehicle wake flow, coherent structures represented by empirical modes
are within the research scope of several studies listed above (Grandemange et al. 2013;
Haffner et al. 2020; He et al. 2021a; Li et al. 2021a). However, these applications are
limited to two-dimensional planes in the wake, which do not fully capture the complex
three-dimensional space–time coherent structures in the flow. Therefore, this study further
extends the previous results shown in Li et al. (2021a), where a parameter study using a
two-dimensional database from train wake flow is performed, to find coherent structures
from a global perspective. However, although SPOD extracts modes related to the
dominant fluctuation of the flow, this method is purely data driven and model free. As such,
it does not reveal the mechanisms driving the coherent structures. However, it includes all
nonlinear dynamics and may reveal interactions between the structures in a quantitative
manner. To further search for the instability mechanisms, one may use either stochastic
low-order dynamic models (Rigas et al. 2015; Sieber, Paschereit & Oberleithner 2021) or
a mean field stability analysis.

Mean field linear stability analysis is considered to provide further insight into the
mechanisms driving the flow dynamics. It is known that a self-excited oscillation can
be described by an unstable global mode (Chomaz 2005) derived from a global stability
analysis. Recently, improved feasibility of large-scale linear algebra computations enabled
tri-global stability analysis of flows with three inhomogeneous directions (Theofilis
2011). Some applications include boundary layer flows with isolated roughness elements
(Loiseau et al. 2014; Kurz & Kloker 2016; Ma & Mahesh 2022), lid-driven cavity flows
(Gómez, Gómez & Theofilis 2014; Paredes 2014), jets in cross-flow (Regan & Mahesh
2017) and wakes of rectangular prisms (Zampogna & Boujo 2023). When mean flows
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display homogeneity in the direction normal to convective motion, the bi-global stability
approach can be utilized. This approach considers two-dimensional modes with a spatial
wavenumber in the third dimension, and has been applied to a broad range of canonical
flow (Theofilis 2003, 2011), as well as complex technical flows including swirling flows
(Kaiser, Poinsot & Oberleithner 2018; Müller et al. 2020), reacting flows (Casel et al.
2022; Wang, Lesshafft & Oberleithner 2022a), turbo-machinery flows (Müller et al.
2022) and two-phase flows (Schmidt & Oberleithner 2023). For flows that are weakly
non-parallel, evolving slowly in the streamwise direction, the bi- and tri-global stability
can be approximated from a local stability analysis (LSA), i.e. local one-dimensional
analysis in the lines normal to the streamwise direction to construct bi-global instability.
As reviewed by Huerre & Monkewitz (1990), the method is based on a spatio-temporal
analysis of the local velocity profile invoking the Wentzel-Kramers-Brillouin-Jeffreys
(WKBJ) approximation. The relationship between local absolute instability and global
modes can be found in Monkewitz, Huerre & Chomaz (1993) and Chomaz (2005),
who concluded that a region of local absolute instability is a necessary condition for
the existence of global instability. Comparisons between results of local and global
stability analyses can be found in Giannetti & Luchini (2007), Juniper, Tammisola
& Lundell (2011), Juniper & Pier (2015), Kaiser et al. (2018) and Demange et al.
(2022). In general, local stability analyses require less computational memory than global
stability analyses, since they convert a large matrix eigenvalue problem into several small
independent matrix eigenvalue problems (Juniper & Pier 2015). Meanwhile, as the local
linearized Navier–Stokes (LNS) equation is solved at each discrete streamwise position,
the eigenvalues can be continuously tracked to provide an accurate spatial description of
the mode. Therefore, local stability analysis is still widely used for flows beyond the range
of global analysis (Pier 2008; Oberleithner et al. 2011; Rukes et al. 2016).

To the best of the authors’ knowledge, there are limited studies regarding the
linear instability mechanisms of fully developed turbulent wake flows behind vehicles.
Zampogna & Boujo (2023) investigated the global stability of rectangular prisms with
rounded front edges, which approximate the geometry of the Ahmed body. However,
this study considered a laminar flow without a ground effect, such that the problem
could be treated with two symmetries. From a more practical perspective, flows behind
high-speed trains may consist of a series of vortex structures that are subject only to a
spanwise symmetry condition. In addition, the spatial and temporal evolution of these
vortex structures differs greatly from free-evolving structures due to the presence of the
ground (Schetz 2001). Up to now, the instability mechanisms in typical vehicle wakes
of high industrial relevance remain an unanswered question. Is there a linear global mode
that drives the instability in the turbulent wake? How does the linear global mode compare
with the leading SPOD mode? Which part of the wake serves as the origin of the global
instability and is most sensitive to external forcing? These questions need to be answered
to serve as a basis for further optimizations, while extending the applications of these two
approaches to more complex flow problems and higher Re.

Since the flow problem considered is only subject to spanwise symmetry, tri-global
stability with three inhomogeneous directions should be considered. The WKBJ
approximation then converts the three-dimensional linearized problem into several
two-dimensional local problems to account for global instability. This is generally a more
complex situation than the research shown in Juniper & Pier (2015), Rukes et al. (2016)
and Kaiser et al. (2018), where local one-dimensional analyses are used to construct the
bi-global mode. Meanwhile, the parallelism or weak non-parallelism in a local analysis
could be a strong assumption (Chomaz 2005; Pier 2008; Rukes et al. 2016; Puckert & Rist
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Linear stability and SPOD of train wake flow

2018) in the flow problem considered. How the non-parallelism would affect the results of
global instability and how to deal with the non-parallelism in the complex base flow are
also important issues to be solved.

The outline of the paper is as follows. The large eddy simulation (LES) set-up used
to obtain the three-dimensional flow field around the train is shown in § 2, along with
the description of the time-averaged wake-flow structures. In § 3, we use SPOD to
extract the dominant empirical modes and provide a first insight into the spatio-temporal
characteristic of the coherent structures. Meanwhile, bispectral mode decomposition is
considered to compute triadic interactions, which explains the features in the SPOD
spectrum. The tri-global stability mode obtained from two-dimensional local stability
analysis is presented in § 4. In § 5, we compare the SPOD mode with the linear global
mode at each streamwise location, and the mechanism of the fundamental instability
is interpreted based on the comparison results. The main findings and conclusions are
summarized in § 6.

2. Flow problem description

2.1. Large eddy simulation
The database for both the data-driven and the theoretical mode calculations is obtained
from a large eddy simulation performed with the commercial code STAR-CCM+ 14.02. A
complete description of the numerical set-up can be found in Li et al. (2021b), here, only
the essential information is presented.

A simplified version of the Intercity-Express 2, also known as the aerodynamic train
model, is considered. The simulation is carried out on the scale of 1 : 10, resulting in a
height of the model of H = 0.36 m, width of the model of W = 0.30 m and length of the
model of L = 2.5 m, as shown in figure 1(a). To simulate the relative motion between
the train and the surrounding environment, the upstream boundary, located 10H from
the train head, is assigned the inflow velocity U∞ = 4 m s−1. Meanwhile, the ground
boundary, with a distance to the train bottom surface of 0.15H, is defined with the
same moving velocity. The resulting Re based on the height of the train and U∞ is
9.5 × 104. The downstream boundary is located 30H from the train tail, with a zero static
pressure outlet condition. On the side and roof of the computational domain, the symmetry
plane boundary condition is assigned, with a distance of 10H from the train model. The
coordinate system is shown in figure 1(a), with the origin located at the ground height of
the train tail nose tip. The computational domain is then discretized using unstructured
hexahedral volume meshes, with the wall-normal and wall-parallel distances expressed in
viscous units, respectively, �y+ = 0.16 and �x+ = �z+ = 28 for cells attached to the
train surface, as shown in figure 1(b). The total number of volume meshes used in the
study is 46.8 million.

In the current research, the large eddy simulation based on the wall-adapting local-eddy
viscosity (WALE) subgrid-scale model is chosen. The use of a novel form of the
velocity gradient tensor in the WALE subgrid-scale model allows for much more
universal model coefficients compared with other widely used subgrid-scale models.
Meanwhile, the WALE subgrid-scale model does not require any form of near-wall
damping but automatically provides accurate scaling at the walls. More details about
the WALE subgrid-scale model can be found in Nicoud & Ducros (1999). An implicit
unsteady segregated incompressible finite-volume solver is used, with the convective
terms discretized based on a bounded central-differencing scheme, and the diffusion and
turbulence terms discretized with the second-order upstream scheme. The time marching
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Figure 1. Large eddy simulation set-up. Reproduced from Li et al. (2021b). (a) Geometric model.
(b) Distribution of computational grid. (c) Instantaneous snapshot of vortex structures; the arrow shows the
flow direction.

procedure is performed using the implicit second-order accurate three-time level scheme,
with the discretized convective time step set to 0.0067t∗ (t∗ = W/U∞), which leads to
a Courant–Friedrichs–Lewy number below unity in most of the computational grids.
An instantaneous scene of the flow structures around the generic high-speed train, which
briefly illustrates the formation of the turbulent wake, is shown in figure 1(c). Note
that the LES results have been validated in Li et al. (2021b), where the simulated
pressure coefficients are compared with experimental results. Here, to further enhance
the confidence of the results presented in the paper, the LES data are further validated by
a wind tunnel experiment, in terms of both the time-averaged flow velocity and turbulent
statistics. The detailed comparisons are shown in Appendix A.

We started to collect the field data after the simulation had been run for 50t∗. It
can be seen from the time-history curves of global quantities shown in figure 2 that
the flow has already reached the statistically stationary state at this moment. Then,
the three-dimensional snapshot database was continuously collected from a square box
extending from x/W = −1.33 upstream of the tail nose tip to x/W = 6.67 downstream of
the tail nose tip, y/W = 1.33 from the centre plane of the train in both spanwise directions,
and z/W = 1.33 from the ground in the vertical direction, for the duration of 800t∗.
The time step between two consecutive snapshots is 0.1t∗, resulting in a total of 8000
snapshots collected during the simulation. These values have been shown to be sufficient
to produce well-converged SPOD results according to the parametric study shown in
Li et al. (2021a).

2.2. Mean flow properties
We consider the time-averaged field as the base state for the linear stability analysis
and introduce it in this section. Furthermore, prior knowledge of the mean field will
facilitate understanding of the physics associated with the extracted coherent structures.
In figure 3(a), the time-averaged sectional streamlines in the wake are shown at
several representative locations. Meanwhile, vortex regions in the wake are identified
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Figure 2. Time histories of the aerodynamic force coefficients. (a) Drag force. (b) Lift force.

by the isosurface of Ω (Liu et al. 2016), coloured by the magnitude of the vorticity.
The Ω-method works as a vortex identification criterion similar to the Q-criterion (Chong,
Perry & Cantwell 1990) and λ2-criterion (Jeong & Hussain 1995), however, it is less
sensitive to threshold value to capture both strong and weak vortices in different cases.
Note that the wake flow is symmetric about the central plane after long-term time
averaging, so only the y > 0 half is shown here for better visualization. In figure 3(b),
to provide with more quantitative information, the time-averaged pressure coefficient
and streamwise skin-friction coefficient along the central line of the train (also shown
in this figure) are plotted. The x-axis is denoted by the distance from the starting
point along the tail central line in the clockwise direction. The regions with negative
streamwise skin-friction coefficients indicative of flow recirculation are highlighted with
green patches.

The distribution of the time-averaged flow along the symmetry plane is illustrated first.
It can be observed that, as the flow approaches the slanted surface of the tail, the adverse
pressure gradient imposed by local flow acceleration forces the attached flow to separate
from the surface at point a (see figure 3b). However, the flow separated from point a is
highly deformed and fails to form a strong vortex region, since in figure 3(a), no obvious
structure is identified at this location by the isosurface of Ω . Then, in figure 3(b), the
re-attachment can be identified at point b, downstream of which the attached flow on the
slanted surfaces gradually approaches the rear end. Further downstream, the strong adverse
pressure near the tail nose point forces the attached flow on the slanted and bottom surfaces
to respectively separate at point c and point d, forming the spanwise vortex pair located
just behind the tail nose point, as identified in figure 3(a).

In addition to the flow structures related to the separation across the symmetry plane,
we can also observe in figure 3(a) that a pair of longitudinal vortices is located above
the side edges of the tail, which is similar in nature to the C-pillar vortex in the Ahmed
body wake flow (Zhang et al. 2015; He et al. 2021a; Liu et al. 2021; Li et al. 2022). This
pair of longitudinal vortices is formed by flow separation from the side surface, which
exerts a strong pressure-suction effect in this area and continuously rolls up flow from the
slanted surface. As the longitudinal vortex propagates downstream, it gradually increases
in diameter and lifts away from the tail surface toward the ground. Due to the strong
downwash from the slanted surface, the trailing vortex is pushed away from the central
symmetry plane as it travels downstream. From x/W ≈ 1.5 onward, the longitudinal vortex
structure attaches to the ground and then propagates nearly parallel to the ground in the
downstream wake.

In general, the mean field is fully three-dimensional in the near-wake region, and its
complexity gradually decreases downstream of the solid body, developing to be nearly

1000 A64-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.950


X.-B. Li and others

0 2.5 5.0 7.5 10.0

Vorticity

1

0

–1

0

0.2

0

–0.2

–0.4

Cp

1
Flow direction

2

3

4 –0.6

0

0.6

x/W
y/W

z/W

0 1

a

a

b

b

c

c

d
d

2 3
–0.003

0

0.003

0.006

L/W

τ

(b)

(a)

Figure 3. Time-averaged mean flow distributions. (a) Flow structures around the train tail visualized by
isosurface of vortex identification criterion Ω = 0.6 and streamlines; the arrow shows the flow direction.
(b) Distributions of pressure coefficient and streamwise skin-friction coefficient along the central line of
the train tail in the clockwise direction; the greed patches highlight the regions with negative skin-friction
coefficients.

parallel downstream of x/W ≈ 2.0. The two main features, the spanwise recirculation
bubble and the streamwise vortex pair, are likely to be related to the mean field instability
due to the strong velocity gradient and will therefore be discussed further in the following
content.

3. Data-driven coherent structure identification

3.1. Spectral proper orthogonal decomposition
The SPOD approach is the frequency-domain counterpart of the standard POD
approach. It seeks modes that optimally represent space–time flow statistics (Schmidt
et al. 2018; Towne et al. 2018). A brief overview of this method is provided in
this part.
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We denote the mean subtracted snapshots as

q′
i = q′(ti) =

⎡
⎢⎣

u′(x, y, z, ti)
v′(x, y, z, ti)
w′(x, y, z, ti)
p′(x, y, z, ti)

⎤
⎥⎦ , (3.1)

where i represents the number of snapshots, u, v, w and p are the normalized velocity
components and pressure. To estimate the spectral contents using discrete Fourier
transform (DFT), the snapshot database is first segmented into nblk overlapping blocks,
with nDFT snapshots in each individual block. Here, nDFT = 256, along with an overlap
of 50 %, is used in our study, and the resulting angular frequency resolution is �ω =
0.245 (ω is the angular frequency normalized by the factor of U∞/W). With the
above parameters, nblk can be determined with the value of 61, which is sufficient for
well-converged SPOD energy spectra and modes (Schmidt & Colonius 2020). The blocks
are then Fourier transformed, and all Fourier realizations at the kth frequency are collected
into a new data matrix

Q̂k =
[
q̂(1)

k q̂(2)
k · · · q̂(nblk)

k

]
. (3.2)

At this point, the orthogonal basis can be obtained by solving the eigenvalue problem
defined by (

Q̂
H
k W Q̂k

)
/nblk = UkΛkUH

k , (3.3)

where Λk and Uk are respectively the eigenvalue and eigenvector of this problem, and
W is the diagonal matrix containing weight information of each flow quantity at each
sampling node. Therefore, the weight matrix W defines the energy norm used in SPOD,
thus determining the physical process to be highlighted (Colonius et al. 2002). Here, the
weight matrix is given as

W =
∫

Ω

⎡
⎢⎣

1
1

1
0

⎤
⎥⎦ dV (3.4)

so that the turbulent kinetic energy (TKE) norm can be defined. The matrices Λk =
diag(λk1, λk2, . . . , λknblk

, ) contain the SPOD energies which are therefore based only on
the TKE. Then both the velocity modes, as well as the associated pressure modes, can be
recovered by

Φk = 1√
nblk

Q̂kUkΛ
−1/2
k . (3.5)

In addition, since the described flow problem is subjected to the spanwise symmetry,
fluctuations of the sampled flow field can be divided into symmetric and antisymmetric
contributions (Hack & Schmidt 2021). To properly isolate coherent structures defined
by the two different types of fluctuations, an additive decomposition was applied to the
collected snapshot data before extracting empirical modes. The symmetric contribution of
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Figure 4. Symmetric and antisymmetric decomposition of a single snapshot. (a) Original field.
(b) Symmetric component. (c) Antisymmetric component.

the ith snapshot is defined as

q′
S(ti) = 1

2

⎡
⎢⎣

u′(x, y, z, ti) + u′(x, −y, z, ti)
v′(x, y, z, ti) − v′(x, −y, z, ti)
w′(x, y, z, ti) + w′(x, −y, z, ti)
p′(x, y, z, ti) + p′(x, −y, z, ti)

⎤
⎥⎦ (3.6)

and the antisymmetric contributions is defined as

q′
A(ti) = 1

2

⎡
⎢⎣

u′(x, y, z, ti) − u′(x, −y, z, ti)
v′(x, y, z, ti) + v′(x, −y, z, ti)
w′(x, y, z, ti) − w′(x, −y, z, ti)
p′(x, y, z, ti) − p′(x, −y, z, ti)

⎤
⎥⎦ (3.7)

A visualization of one snapshot of the fluctuating streamwise velocity field, together with
the contributions from the symmetric and antisymmetric components, is shown in figure 4.
The spanwise symmetrical and anti-symmetrical contributions of all collected samples are
arranged into two separate data matrices. They are then independently solved following
the procedures described above, to extract and analyse, respectively, the symmetric and
antisymmetric empirical modes. Note that, due to the zero-integral property of an even
and an odd function in the sampling domain, the symmetric and antisymmetric modes
yield mutual orthogonality (Hack & Schmidt 2021).
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Figure 5. Spectral proper orthogonal decomposition mode energy spectrum. Panels (a,c) show the spectral
curves with the shading of the line colour representing the increase in the mode number. Panels (b,d) show
the percentage of energy that each mode accounts for as a function of frequency, with solid lines indicating
that the cumulative energy represents 50 % and 90 % of the total energy at each frequency. (a,b) Symmetric
component. (c,d) Antisymmetric component.

3.2. Spectral proper orthogonal decomposition energy spectra and modes
Spectral proper orthogonal decomposition solves the eigenvalue problems at each discrete
frequency independently, and produces energy-ranked eigenvalues. Therefore, the energy
distributions of different modes at each frequency can be best visualized in the form of a
spectrum (Schmidt et al. 2018). Figure 5(a,c) shows SPOD spectra for both symmetric and
antisymmetric components. Meanwhile, the cumulative energy content and the percentage
of energy accounted for by each mode as a function of frequency are shown in the
right column. The symmetric component displays a higher overall energy level compared
with the antisymmetric component, indicating its dominant role in the dynamics of the
turbulent wake. The low-rank behaviour, characterized by a large separation between
the first and second modes, also appears to be more pronounced in the symmetric
component. In particular, in the angular frequency range of 2 < ω < 4 of the symmetric
component, the first modes contribute more than 50 % of the fluctuating energy according
to figure 5(b). The angular frequency of the dominant symmetric coherent structure is
ω = 3.437, as shown in figure 5(a). The corresponding Strouhal number is St = 0.547,
based on the free-stream velocity U∞ and the train width W. Additionally, the spectral
energy concentration at ω ≈ 6.9, and a less pronounced peak around ω ≈ 1.7, can be
identified respectively. These two angular frequencies could be associated with the first
harmonic and subharmonic of the fundamental mode. This will be further investigated by
checking the mode bi-spectrum in § 3.3.

In figure 6, the spatial distributions of the leading symmetric SPOD modes at ω =
3.437, ω = 1.718 and ω = 6.874 are visualized based on the isosurfaces of the streamwise
velocity components. A common feature of these modes is that they all behave very
differently between the near- and far-wake regions, due to the complexity of the mean
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Figure 6. Spatial distributions of the leading symmetric SPOD modes visualized based on isosurface of the
streamwise velocity components; (a) ω = 3.437, (b) ω = 1.718, (c) ω = 6.874.

flow. For the leading SPOD mode at ω = 3.437, coherent vortex shedding is observed
from the recirculation region just behind the train tail. The generated coherent structures
move downstream and gradually approach the bottom boundary due to effect of the
moving ground (Wang et al. 2023). Once fully attached, they vanish and separate at
the symmetry plane to evolve into far-wake coherent structures with nearly constant
streamwise wavelength. For the leading mode at ω = 1.718, both alternate shedding of
the spanwise vortex and co-shedding from the side surfaces are observed in the near wake.
Similar to the most dominant SPOD mode, these structures slowly evolve into streamwise
wavepackets when propagating to the far wake. Then, for the leading mode at ω = 6.874,
no obvious structures can be identified in the near wake, and the far wake is mainly
dominated by tilted wavepackets.

Another important observation is that, with the increase of the frequency from ω =
1.718 to ω = 6.874, the spatial scales of the coherent structures gradually decrease. This
phenomenon is more pronounced in the far wake, where the mean flow is nearly parallel
and the coherent structures at different frequencies are all characterized by nearly constant
streamwise wavenumbers. In particular, the streamwise wavelengths of the far-wake
coherent structures at ω = 1.718 and ω = 6.874 can be observed to be approximately twice
and half that of the most dominant SPOD mode, respectively. This phenomenon indicates
a linear dispersion relation of the wake flow, which will be further discussed and confirmed
in the following content.

To better quantify the frequency–wavenumber characteristics, a streamwise Fourier
transform is applied to the streamwise velocity component of the SPOD modes, to convert
the signal into the domain of streamwise wavenumber α (normalized by a factor of 1/W).
Due to the dominant role of the symmetric perturbation in the wake, only symmetric
modes are considered. First, the power spectral density (PSD) of the streamwise velocity
component of the leading mode is averaged along the z-axis following the expression

P̄1(α, ω, y) =
∫ zmax

zmin

∣∣∣Φ̂u(α, ω, y, z)
∣∣∣ dz

zmax − zmin
, (3.8)
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Figure 7. Streamwise wavenumbers of the SPOD modes: (a) 0 < x/W < 1 at ω = 3.437;
(b) 1 < x/W < 6.67 at ω = 3.437; (c) Angular frequency–streamwise wavenumber diagram.

where Φ̂u denotes the streamwise Fourier transform of the streamwise velocity mode, and
0 ≤ z/W ≤ 1.3. Meanwhile, we isolate the mechanism in near-wake and far-wake regions
by using two different spatial window functions (Schmidt et al. 2018) that constrain the
signal to 0 < x/W < 1 and 1 < x/W < 6.67 when the Fourier transform is performed.
The results of P̄1 at ω = 3.437 using the two different window functions are then shown
in figures 7(a) and 7(b), respectively. In the near-wake region, the maximum PSD is located
in the symmetric plane, with α ≈ 8. We can also observe that the high PSD value occurs
over a wide range of α, which can be attributed to the growth of the wavelength of the
spanwise vortex shedding mode. Note that the non-zero values along α = 0 in figure 7(a)
are due to spectral leakage in the discrete Fourier transform. In the far-wake region, the
coherent structure has a nearly constant streamwise wavenumber, with the maximum PSD
located away from the symmetry plane. This is consistent with what is shown in figure 6.

Then for the first SPOD modes at all discrete frequency points, a window function
including both near wake and far wake is used to compute P̄1, followed by averaging
along the y-axis, which can be expressed as

P̄2(α, ω) =
∫ ymax

ymin
P̄1(α, ω, y) dy

ymax − ymin
, (3.9)

with 0 ≤ y/W ≤ 1.2, to construct the frequency–wavenumber diagram shown in
figure 7(c). In general, a constant phase velocity of 0.83 can be observed for perturbation
waves of all discrete frequencies considered in the research, which confirms the linear
dispersion relation of the wake. This value lies between the convective velocity of
the streamwise vortex and the outer free stream. Such a phase velocity is typical of
the Kelvin–Helmholtz convective instability found in free-shear flow (Schmidt et al.
2018). Since the frequency–wavenumber diagram includes both near-wake and far-wake
instability waves, the phase velocity tends to decrease at frequencies with a pronounced
low rank due to the near-wake mode.

3.3. Triadic interactions
The dynamic behaviour of a nonlinear flow system is significantly influenced by resonance
phenomena driven by different mechanisms (Tang et al. 2017). Triadic resonance, resulting
from the quadratic nonlinearity of the Navier–Stokes equations, can play an important role
in the energy transfer process in turbulent wake flows. Through this mechanism, coherent
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Figure 8. Mode bispectra of triadic interactions in both the sum and difference regions. (a) Self-interaction
of the symmetric component. (b) Self-interaction of the antisymmetric component.

structures associated with the tonal components of vortex shedding can triadically interact
with themselves as well as the background turbulence. As a consequence, the energy
of the limit-cycle oscillation saturated from a fixed point supercritical bifurcation (Sipp
& Lebedev 2007) is redistributed over different scales. Therefore, turbulent wake flows
often exhibit a mixed tonal–broadband dynamics, comprising an underlying broadband
spectrum and tonal components associated with vortex shedding. The broadband coherent
dynamics with several identifiable peaks in the SPOD power spectrum shown in figure 5
indicates such behaviour, and is therefore further discussed in this section.

Bispectral mode decomposition (BMD) (Schmidt 2020) detects triadic interactions by
their characteristic phase coupling between two spectral components at frequencies ω1
and ω2, and a third frequency at ω3, obeying the resonance condition ω1 ± ω2 ± ω3 = 0.
Bispectral mode decomposition extends classical bispectral analysis to multidimensional
data, thereby simultaneously facilitating the detection of nonlinear triadic interactions
from the complex mode bispectrum λ1(ω1, ω2), as well as the identification of the
associated coherent flow structures as bispectral modes. For details on the derivation and
implementation, the reader is referred to Schmidt (2020).

The mode bispectrum is then computed using the same spectral estimation parameters
as in the SPOD of § 3.1. Since the flow is subject to the spanwise symmetry,
triadic interactions can be further categorized into three different types: self-interaction
of the symmetric component, self-interaction of the antisymmetric component and
interaction between the symmetric and the antisymmetric components. Note that the
third frequency component resulting from the self-interactions of both the symmetric
and the antisymmetric components is symmetric, while the third frequency component
resulting from the mutual interaction of symmetric and antisymmetric components is
antisymmetric. Here, we confirm that the mode bispectra of the triadic interaction between
the symmetric and antisymmetric components are overall lower in intensity and cannot be
identified with distinguishable peaks, therefore will not be further discussed.

Hence, in figure 8, only the mode bispectra of the symmetric and antisymmetric
self-interactions are presented. Consistent with the SPOD spectra, the mode bispectra also
appear to be broadband. Here, the self-interaction of the symmetric component shown in
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figure 8(a) is identified with several distinct peaks. We refer to ωf as the fundamental
frequency detected in SPOD. Conceptually, the triplet (ωf , 0, ωf ) on the mode bispectrum
can be regarded as the coherent perturbation driven by the mean flow. However, due to
the finite sampling frequency, the zero-frequency bin contains unresolved low-frequency
components. In this case, the mode bispectrum on the ω1-axis should not be interpreted
(Nekkanti et al. 2022). A local maximum of the distribution can be found that corresponds
to the sum interaction of the fundamental mode with itself, generating the first harmonic at
twice the fundamental frequency via the triad (ωf , ωf , ω2f ). At the same time, the doublets
(ω2f , −ωf ) and (ω(1/2)f , ω(1/2)f ), which include the first harmonic and subharmonic,
respectively, interact with ωf . The triad (ωf , −ω(1/2)f , ω(1/2)f ), analogously, indicates
an interaction with the subharmonic frequency. The mean field distortion, indicated by
the peak values along line ω1 = −ω2, can be identified over a wide frequency range.
Meanwhile, in figure 8(b), a weak triad at (ω(1/2)f , ω(1/2)f ) can be identified, representing
the sum self-interaction of the antisymmetric subharmonic contributing to the fundamental
frequency in the symmetric component.

Selected dynamically relevant bispectral modes are shown in figure 9. Rows in this
figure represent the constant third frequencies of ω3 = ω(1/2)f , ω3 = ωf and ω3 = ω2f .
An important observation is that the modes along the diagonals are similar in shape,
and resemble the SPOD modes at corresponding frequencies, as shown in figure 6.
This confirms that the spatial structures involved in or generated by nonlinear triadic
interactions with strong phase correlations are also the most energetic coherent structures
(Nekkanti et al. 2023). The analysis confirms the expected nonlinear dynamics that is
characterized by a fundamental vortex shedding frequency and different interactions of
the fundamental mode at (ωf , 0, ωf ) and its sub- and super-harmonics, including the
mean flow distortion. Also apparent and consistent with the SPOD analysis, the train
wake behaves stochastically, with the uncertainty of the fundamental frequency ωf leading
to broad spectral and bispectral peaks. Nonetheless, the continuous evolution and phase
coupling of these structures results in the low-rank behaviour observed over a wide range
of frequencies, as shown in figure 5. In addition to shedding light on the different nonlinear
interactions that cumulatively lead to peaks in the SPOD energy spectra, the BMD analysis
also reveals the self-interaction of the antisymmetric component at the subharmonic
frequency in the mode bispectrum in figure 8(b) that couples the antisymmetric to the
symmetric component.

4. Physics-based coherent structure modelling

Linear global stability analysis is conducted to identify the mechanisms that drive the
dominant coherent structure identified in the SPOD. In this work, instead of directly
solving the three-dimensional stability equation, we conduct a two-dimensional local
analysis to obtain more local information meanwhile reducing computational resource.
In this manner, the flow is assumed to be weakly non-parallel in the streamwise direction.
Then the full three-dimensional matrix eigenvalue problem is replaced by several local
independent matrix problems, each based on the two-dimensional cross-flow planes
at different streamwise locations. To determine the global mode, the concept of local
convective/absolute instability is applied within the WKBJ approximation (Huerre &
Monkewitz 1990). To be clear, the approach used in the research does not conceptually
correspond to the bi-global analysis (Theofilis 2011), but is similar to the approach used in
Huerre & Monkewitz (1990), Monkewitz et al. (1993) and Juniper, Hanifi & Theofilis
(2014), in which the bi-global stability is approximated using one-dimensional local
analysis.
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Figure 9. Spatial distribution of the bispectral modes resulting from significant triads, visualized based
on isosurface of the streamwise velocity component. (a) Self-interaction of the symmetric component. (b)
Self-interaction of the antisymmetric component.

4.1. Linearized operator and treatment of the non-parallel flow
Coherent structures can be described by the triple decomposition (Reynolds & Hussain
1972), which leads to a further decomposition of the fluctuating component into coherent
and stochastic parts as

q′(x, t) = q̃(x, t) + q′′(x, t), (4.1)

where q̃(x, t) is the coherent fluctuation part and q′′(x, t) is the stochastic fluctuation part.
This decomposition is substituted into both the momentum and continuity equations, and
both are time averaged and phase averaged. Then, by subtracting the time-averaged set of
equations from the phase-averaged set of equations, the equations governing the evolution
of coherent structures can be written (Reynolds & Hussain 1972)

∂ũ
∂t

+ (ũ · ∇)ū + (ū · ∇)ũ = −∇p̃ + ∇ ·
(

1
Re

(∇ + ∇T)ũ
)

− ∇ · (τR + τN) (4.2)

∇ · ũ = 0. (4.3)

Here, τN describes the quadratic interactions of the coherent perturbation. Considering
that the energy contribution from this process is higher order, this term is neglected in
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the following. The term τR is the fluctuation of the stochastic Reynolds stresses related
to the stochastic–coherent interaction, which contributes at leading order, according to
the energy considerations of Reynolds & Hussain (1972), and is therefore retained in the
equation. However, this term is not known a priori and needs to be properly modelled to
close the governing equation. In this paper, we use Boussinesq’s eddy viscosity model as
the closure. The Reynolds stresses are then expressed as

τR = −νt
(∇ + ∇T)

ũ. (4.4)

Here, νt is the normalized eddy viscosity, which can be calculated using quantities of
the LES mean flow. Since this approach yields an eddy viscosity for each independent
Reynolds Stress component, a reasonable compromise is to take a value of νt that
minimizes the mean squared error from the six constitutive relations using

νt =

〈
−u′u′ + 2/3kI, S̄

〉
F

2
〈
S̄, S̄

〉
F

, (4.5)

with 〈·, ·〉F denoting the Frobenius inner product, k the kinetic energy, I the identity matrix
and S̄ the mean shear strain rate tensor. This approach has been widely used in the linear
stability analysis of turbulent flows, as presented in Tammisola & Juniper (2016), Rukes
et al. (2016), Kaiser et al. (2018), Müller et al. (2020) and Kuhn, Soria & Oberleithner
(2021).

The linearized momentum and continuity equations for the coherent perturbation can be
obtained as

∂ũ
∂t

+ (ũ · ∇)ū + (ū · ∇)ũ = −∇p̃ + ∇ ·
((

1
Re

+ νt

)
(∇ + ∇T)ũ

)
, (4.6)

∇ · ũ = 0. (4.7)

These equations can be then rewritten as

Lq̃ = 0, (4.8)

where L is the operator of the linearized equations superimposing the spatial discretization
and base state (Paredes et al. 2013).

By assuming that the mean field has much smaller derivatives in the streamwise
direction than in the transverse and vertical directions, the system can be Fourier
transformed in the streamwise direction, following the streamwise weakly non-parallel
flow assumption. The coherent perturbation can be then written as

q̃(x, y, z, t) = q̂( y, z) exp [i (αx − ωt)] + c.c., (4.9)

where q̂ is the complex eigenfunction, α = αr + iαi is the complex streamwise
wavenumber, ω = ωr + iωi is the complex angular frequency and c.c. is the complex
conjugate. Substituting (4.9) into (4.8) enables stability analysis of the mean field in the
cross-flow plane at different streamwise locations. The global stability characteristics can
then be recovered based on the concept of absolute/convective instability and the global
mode wavemaker (Huerre & Monkewitz 1990).

However, using the local approach to predict the global mode has been reported to be
less accurate than the direct global approach when the base flow is strongly non-parallel
(Juniper et al. 2011; Juniper & Pier 2015). In the current case, where a fully developed
three-dimensional base flow is considered, the parallel flow assumption is likely to
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Figure 10. Two-dimensional slice of the streamwise component of three-dimensional SPOD mode showing
the oblique downstream travelling wavepackets. The streamlines are drawn based on the vector field
(cos θ, sin θ ) at each computational node.

introduce uncertainty into the results. Therefore, in this work, we also make further
treatment to approximate the non-parallelism of the three-dimensional base flow.

The parallel flow assumption is checked by visualizing the streamwise component of
the leading SPOD mode on a horizontal plane, as shown in figure 10. Here, the coherent
perturbations can be observed with clear wavepacket structures; however, they do not
travel strictly in the streamwise direction but follow oblique paths in both the near and far
wake. This is caused by the downwash flow from the slanted tail surface which gradually
separates the wake structures as it propagates downstream, as can be seen in the mean flow
structures shown in figure 3.

We intend to account for the obliqueness of the coherent structure in the linear
modelling. To do this, the x-dependence of the eigenfunction q̂ has to be re-considered.
Then, for a given location (x0, y0, z0), and a streamwise distance �x small enough, there
exists a set of (�y, �z) so that the eigenfunction fulfils

q̂(x0, y0, z0) = q̂(x0 + �x, y0 + �y, z0 + �z). (4.10)

This set of (�y, �z) is related to the obliqueness of the travelling coherent structure, and
(4.10) can be replaced by

q̂(x0, y0, z0) = q̂(x0 + �x, y0 + tan θ�x, z0 + tan γ�x), (4.11)

where tan θ and tan γ respectively represent the convection direction relative to the
symmetric plane and the horizontal plane. By applying a first-order Taylor expansion to
the right-hand side of (4.11), the left-hand side can be cancelled and the expression can be
arranged into

∂ q̂
∂x

+ tan θ
∂ q̂
∂y

+ tan γ
∂ q̂
∂z

= 0. (4.12)

Therefore, an x-derivative applied to the state vector q̂ is used to account for the oblique
travelling direction.

To determine tan θ and tan γ , we replace q̂ with mean field quantities q̄ in (4.12), by
assuming that the perturbation waves follow the mean flow convection. Note that, for each
node in the computational domain, the four flow variables are used to construct the linear
equation system for tan θ and tan γ and the final results are obtained using the least-squares
solution of the overdetermined linear equation system.
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Linear stability and SPOD of train wake flow

Finally, the convection direction calculated from the mean field is validated by
comparison with the oblique path of the SPOD mode. In figure 10, streamlines based on the
calculated local angle θ are visualized, by decomposing tan θ at each computational node
into streamwise (cos θ ) and transverse (sin θ ) components using trigonometric functions.
It can be observed that the vector field agrees well with the travelling direction of the SPOD
wavepackets. Therefore, this x-derivative is assumed to be reasonable to account for the
obliqueness of the coherent structure in the linear modelling. Note that the results of the
stability analysis without the non-parallelism modelling are also computed and presented
in Appendix B for comparison.

4.2. Spatio-temporal stability approach
For the linear stability analysis, the linear operator L is rearranged to construct the
generalized eigenvalue problem. In this work, both the temporal and spatial stability
formulation is needed. Therefore, either the temporal stability form

A(x, α)q̂ = ωB(x)q̂, (4.13)

or the spatial stability form
A(x, ω)q̂ = αB(x)q̂, (4.14)

is constructed.
In the temporal stability form (4.13), the streamwise wavenumber α is fixed to a real

value, and the eigenvalue problem is solved for a complex ω, the real part of which is
the angular frequency and the imaginary part is the temporal growth/decay rate. On the
contrary, in the spatial stability form (4.14), a real angular frequency ω is imposed to
search for the complex α, where the real part corresponds to the streamwise wavenumber,
while the imaginary part is the spatial amplification/damping rate. Note that, in the spatial
stability equation, quadratic terms appear with respect to α. This problem is solved using
the companion matrix method (Bridges & Morris 1984), which increases the size of the
eigenvalue problem compared with the temporal analysis. The complete expression of the
operators A and B for both temporal and spatial analysis can be found in Appendix C.

To determine the global stability of the mean flow from a local analysis, a so-called
spatio-temporal analysis using (4.13) must be performed to distinguish between convective
and absolute instability (Huerre & Monkewitz 1990). In this case, both α and ω are
complex valued. Conceptually, the flow is said to be stable if all perturbations decay in time
throughout the entire domain after a localized impulse. Convectively unstable flow gives
rise to perturbations that grow in time but convect away from the impulse location, so that
the perturbations eventually decay to zero at each spatial location in the long-time limit.
For an absolutely unstable flow, the perturbations grow both upstream and downstream of
the impulse location, contaminating the whole spatial domain in the long-time limit.

Based on the previous definitions, the convective/absolute nature of a local velocity
profile can be determined from the time-asymptotic behaviour of the perturbations that
remain at the impulse location, that is, for perturbations with zero group velocity:
∂ω/∂α = 0, which is the definition of a saddle point in the complex α−plane. Therefore,
valid saddle points on the complex α-plane that satisfy the Briggs–Bers pinch-point
criterion (Briggs 1964) must be identified. Therefore, the flow is locally absolutely
unstable if the absolute growth rate, given by the imaginary part of ω at the most
unstable valid saddle point, is positive. If the absolute growth rate is negative, the flow is
convectively unstable or stable (Huerre & Monkewitz 1990; Rees & Juniper 2010; Juniper
et al. 2014; Rukes et al. 2016; Kaiser et al. 2018; Demange, Chazot & Pinna 2020).
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In a spatially developing flow, a region of absolute instability is a necessary (but not
sufficient) condition for global instability (Monkewitz et al. 1993; Chomaz 2005). To
further link the local absolute instability to global instability, the absolute growth rate
needs to be tracked along the streamwise direction to determine the wavemaker, the
location where the global mode is selected. This method has been extensively used for
one-dimensional local stability analysis in comparison with bi-global stability analysis
(Giannetti & Luchini 2007; Juniper et al. 2011; Juniper & Pier 2015; Kaiser et al. 2018).

4.3. Solving the eigenvalue problem
To solve the eigenvalue problem numerically, cross-flow planes with the dimensions of
0 ≤ y/H ≤ 1.3 and 0 ≤ z/H ≤ 1.3 are discretized using Chebyshev spectral collocation
methods. This approach has been successively applied to linear stability analysis by
Khorrami (1991), Parras & Fernandez-Feria (2007), Oberleithner et al. (2011) and
Demange et al. (2020). Detailed descriptions or practical guides to spectral collocation
methods can be found in Khorrami, Malik & Ash (1989) and Trefethen (2000).

To reduce the numerical cost, we further exploit the symmetry of the mean field with
respect to the vertical x–z plane. This allows us to use only half of the wake plane instead of
the full plane, to compute only transversely symmetric or antisymmetric eigenmodes when
appropriate boundary conditions are applied (Zampogna & Boujo 2023). As shown in § 3,
the symmetric perturbations are dominant and potentially related to a global instability, so
only symmetric eigenmodes are considered. The corresponding boundary conditions are
given as

∂û
∂y

= ∂ŵ
∂y

= ∂ p̂
∂y

= 0, v̂ = 0, on y/W = 0, (4.15a)

∂û
∂y

= ∂ v̂

∂y
= ∂ŵ

∂y
= ∂ p̂

∂y
= 0, on y/W = 1.3, (4.15b)

û = v̂ = ŵ = 0,
∂ p̂
∂z

= 0, on z/W = 0, (4.15c)

û = v̂ = ŵ = p̂ = 0, on z/W = 1.3. (4.15d)

Here, (4.15a) determines eigenmodes to be transversely symmetric. At the wall,
homogeneous Dirichlet boundary conditions are imposed for the velocity components.
For pressure, by substituting the homogeneous Dirichlet conditions for velocity into (4.6),
a compatibility condition can be obtained (Theofilis, Duck & Owen 2004). Here, assuming
∂2ŵ/∂z2 = 0 gives a homogeneous Neumann condition for the pressure. For far-field
boundaries, the upper boundary is set to a homogeneous Dirichlet condition, while the
side boundary is set to a homogeneous Neumann condition which is necessary to predict
far-wake eigenmodes.

The Krylov–Schur algorithm (Stewart 2002), which serves as an improvement on
traditional Krylov subspace methods such as the Arnoldi and Lanczos algorithms, is used
to obtain a subset of solutions to the eigenvalue problem. This requires an initial guess of
the physical eigenvalue, which can be derived from the dispersion relation shown in § 3.2.
To discard spurious eigenmodes caused by the discretization, two criteria are applied: first,
all eigenmodes that do not diminish when approaching the upper boundary are discarded.
Second, since spurious eigenvalues are very sensitive to discretization, a convergence
study of eigenvalues computed using different grid resolutions is used as a criterion for
filtering spurious eigenvalues.
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Figure 11. The spectrum of eigenvalues obtained with discretization points of 8100 (�) and 10 000 (◦, blue),
the physical eigenvalues are marked with ∗, red. (a) Results based on cross-flow plane at X/W = 0.1 and
imposing α = 10. (b) Results based on cross-flow plane at X/W = 3.5 and imposing α = 5.

The results of the convergence study based on temporal stability analysis are shown in
figure 11. Two representative cross-flow planes, located in the near wake and far wake,
respectively, are considered. Real streamwise wavenumbers of 10 and 5 are, respectively,
imposed in the two eigenvalue problems, which are then discretized using two different
grid resolutions and solved for the subset of the eigenvalue spectrum. Note that the
real streamwise wavenumbers are chosen according to the wavelength distribution of the
dominant SPOD mode shown in figure 7, so that the SPOD peak frequency can be set
as the initial value of the Krylov–Schur iteration procedure. As shown in figure 11, both
spectra feature continuous branches and a set of discrete modes. In general, continuous
branches are made up of spurious eigenmodes caused by discretization and physical
eigenmodes that are highly stable.

It can be observed that the locations of these eigenmodes in continuous branches vary
significantly when the resolution of the grid is changed. On the contrary, the locations of
the discrete modes remain almost stationary with different discretization settings; hence,
the discrete modes are considered as physical eigenmodes that can potentially contribute to
global instability. In particular, the near-wake cross-flow plane features one unstable mode
and two stable modes, while the far-wake plane features two stable modes. Note that these
physical eigenvalues do not necessarily correspond between the near-wake and far-wake
cross-flow planes. When tracking along the streamwise direction, the physical eigenvalues
may become highly stable and fall into the spurious region, and new physical eigenvalues
may emerge due to the complexity of the base flow.

4.4. Absolute/convective stability analysis

4.4.1. Streamwise evolution of temporal growth rate
Before considering the absolute/convective nature of the instability, it is necessary to know
which part of the flow is temporally unstable. To this end, the complex frequencies of
the previously identified physical modes at x/H = 0.1 and x/H = 3.5 are tracked when
varying the real streamwise wavenumber. The exact maximum temporal growth rate of
each mode is then determined based on a Newton–Raphson iterative method (Ypma 1995).
Figure 12 shows the branches of the most unstable modes at the two streamwise locations,
with the associated maxima marked by asterisks. These maxima are then tracked along
the streamwise direction, with a spacing of �x/W = 0.002, by repeating the iteration
procedure. As mentioned above, due to the complexity of the base flow, one physical
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Figure 12. Frequency (a) and temporal growth rate (b) of the of the temporally most unstable modes at x/H =
0.1 (dashed line) and x/H = 3.5 (solid line) as a function of real wavenumber. The maximum temporal growth
rates of the two eigenmodes are marked by asterisks.
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Figure 13. Maximum temporal growth rate as functions of streamwise location. (a) Mean flow distribution in
the central plane; (b) maximum temporal growth rate of near-wake (——, red), middle-wake (——, green) and
far-wake (——, blue) eigenmodes with real α imposed.

eigenmode may occur only in a certain range of streamwise location. Therefore, several
more cross-flow planes are used to compute the physical eigenvalues, and then the tracking
process is repeated to account for the maximum temporal growth rates of all physical
eigenmodes in the entire wake.

In figure 13, the maximum temporal growth rates of these physical eigenmodes are
displayed as a function of streamwise location. Only the unstable regime (ωi > 0) is shown
here. Three different unstable eigenvalue branches are identified in the entire wake, each
dominating in different streamwise regions. Accordingly, the flow becomes temporally
unstable very close to the tail of the train and remains unstable in the wake. Based on
the spatial locations where these branches become unstable, we conceptually divide the
wake into the near-, middle- and far-wake regimes and name these branches accordingly.
It can be found in figure 13(b) that the near-wake eigenmode is temporally more unstable
than all the downstream eigenmodes. According to the mean flow distribution shown
in figure 13(a), this eigenmode branch is attributed to the transverse recirculation zone
located right behind the tail of the train. The far-wake eigenmode can be observed
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Figure 14. Contour of the complex angular frequency in the complex α-plane at x/W = 0.08. Saddle points
on the complex α-plane are marked by a red circle. (a) The real component; (b) the imaginary component; the
ωi = 0 isocontour is highlighted in red.

across a wide streamwise distance and is located close to the extension of the streamwise
vortex pair. This branch has the largest temporal growth rate at x/W ∼ 0.4, and gradually
stabilizes as it extends into the far wake; however, it remains still unstable. The
middle-wake mode becomes unstable at 0.5 < x/W < 1.4. At this location, with respect
to the mean field, the flow from the slanted tail surface can be observed attached to the
ground according to figure 13(a).

4.4.2. Spatio-temporal stability analysis in the near wake
Spatio-temporal analysis is performed to compute the contour of ω in the complex α-plane,
so as to find valid saddle points following the Briggs–Bers criterion. Since the branch in
the near-wake region is temporally more unstable than the other branches (figure 13), we
start with the near-wake branch.

Figure 14 shows the contour of the complex frequency in the complex α-plane, at the
streamwise location of x/W = 0.08. At this location, the near-wake eigenmode reaches
its maximum temporal growth rate. In this figure two saddle points are found, S0 and S1.
However, valid saddles must be pinched between an α+ and an α− branch (Huerre &
Monkewitz 1990). A simple rule based on the Briggs–Bers pinch-point criterion (Briggs
1964) can be applied by checking the isocontours of the spatio-temporal growth rate
(figure 14b): starting from the saddle point, the contours of the growing ωi must reach,
respectively, the αi > 0 and αi < 0 half-planes. Here, the validity of both S0 and S1 can
be confirmed, with S0 representing the shorter travelling wave at higher frequency, while
S1 represents the longer travelling wave at lower frequency. In the long-time limit, the
nature of the instability is determined by S0, which has a significantly higher absolute
growth rate than S1. Then the absolute frequency at this location can be determined as
ω0 = 3.2904 + 0.0685i, which shows that the flow is absolutely unstable at this position.

Furthermore, to ensure that all regions with absolute instability have been taken into
account, the absolute growth rate has been determined for all unstable branches at several
streamwise locations. The near-wake branch was the only one to reveal absolute instability.

4.5. Determining the global mode wavemaker in the near wake
To determine the global mode, the saddle points are tracked in the streamwise direction
to find the global wavemaker. This is done in the local analysis framework based on
the frequency selection criterion. Several criteria have been evaluated in Pier (2002),
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showing that the criterion for a linear global mode introduced by Chomaz, Huerre &
Redekopp (1991) agrees best with nonlinear direct numerical simulations. This criterion is
obtained from an analytical continuation of the absolute frequency curve into the complex
x-plane. The wavemaker region is then represented by the saddle point on the complex
x-plane (Huerre & Monkewitz 1990) defined as

∂ω0

∂x
(xs) = 0. (4.16)

The global complex angular frequency is then given by the value of the absolute frequency
at this saddle point

ωg = ω0(xs). (4.17)

For this purpose, the saddle point S0 found in figure 13 is tracked along the streamwise
direction. The three-point Taylor series expansion algorithm (Rees 2010) is used to
approach ∂ω/∂α = 0 during the tracking process. Then the absolute frequency as a
function of streamwise location is analytically continued in the complex x-plane using the
Padé polynomial, which has been shown to be well behaved in the complex plane (Cooper
& Crighton 2000). The Padé polynomial takes the form of

f (x) = P(x)
Q(x)

= a0 + a1x + · · · + anxn

1 + b1x + · · · + bmxm . (4.18)

To determine the order of the polynomials used in the current work, the procedure
described in Juniper et al. (2011) is followed. Polynomials of order 10 have been proven to
be sufficient to give a converged approximation of the saddle point.

Figure 15 shows the main results of the spatio-temporal stability analysis. For reference,
the mean field in the central plane is shown in figure 15(a). The following rows include
the results of the procedures described above to determine the global instability using
local analysis. In figure 15(b,c), the imaginary and real parts of the absolute complex
angular frequency are shown as a function of streamwise location, respectively. A small
region of absolute instability is detected, which is located in the recirculation region. The
tenth-order Padé polynomials show acceptable agreement with the absolute frequency
curve of the linear stability analysis. The extrapolated complex x-plane is then visualized
in figure 15(d). The saddle point appears to be very close to the real axis, with xs =
0.0733 + 0.0010i, indicating a wavemaker located within the region of absolute instability.
The complex global angular frequency associated with this saddle point is ωg = 3.2702 +
0.0797i.

The theoretically predicted global mode frequency can be compared with the
frequency of the most energetic SPOD mode, as presented in table 1. Meanwhile, the
global frequency and wavemaker location predicted by the stability analysis without
the non-parallelism approximation (see Appendix B) are also shown for comparison.
In general, the global frequency predicted by the stability analysis without the
non-parallelism approximation shows a larger deviation from the SPOD result, compared
with that with the non-parallelism approximation. By including the spatial variation of
the mean field into the stability analysis, the prediction on the global stability has been
significantly improved. With the empirical value of ωSPOD = 3.437, we find that the
theoretical prediction deviates by an error of less than 5 %. This is in very good agreement,
given the uncertainties introduced by the non-parallelism and eddy viscosity modelling.
Moreover, we expect the global mode to be marginally unstable, representing a limit-cycle
oscillation when stability analysis is performed on a temporally averaged mean flow
(Noack et al. 2003; Barkley 2006; Oberleithner et al. 2011; Rukes et al. 2016; Tammisola
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Figure 15. (a) Streamlines and through-plane vorticity of the mean field in the near-wake region.
(b) Streamwise evolution of the absolute growth rate. (c) Streamwise evolution of the absolute angular
frequency. (d) Contours of ω0,i extruded in the complex x-plane, formed by the fitted Padé polynomial. The
saddle point on the complex x-plane is marked by a red circle. (e) The imaginary component of local complex
streamwise wavenumber of α+ and α− branches calculated at the global frequency ωg. ( f ) The same as (e)
with the real component shown. The switching locations between α+ and α− branches are marked by a red
vertical line in each panel.
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ωg,r ωg,i xs

LSA with non-parallelism approximation 3.2702 0.0797 0.0733 + 0.0010i
LSA without non-parallelism approximation 2.3721 0.6082 0.0342 − 0.0046i
SPOD 3.437 0 —

Table 1. Global frequency and wavemaker location predicted by different approaches.

& Juniper 2016; Kaiser et al. 2018). However, as reported in Giannetti & Luchini (2007),
Juniper et al. (2011) and Juniper & Pier (2015), it is a common feature of local analysis to
overpredict the growth rate of the linear global mode. In our case, with a growth rate value
of 0.0797, the relative error with respect to the real frequency (3.2702) is less than 3 %,
therefore, it is reasonable to say that the mode is marginally unstable. Overall, considering
the fact that the flow is not truly parallel and the intrinsic assumption of linearized mean
field analysis, it can be concluded that the theoretical mode identifies the dominant SPOD
mode as a global mode at limit cycle with remarkable accuracy.

The global mode is formed by the switching between the α+ and α− branches at the
global frequency. Therefore, to further truly localize the global mode wavemaker, a spatial
stability analysis (4.14) imposing ω = ωg is conducted to compute the α+ and α− branches
(Juniper & Pier 2015). Since the saddle point xs on the complex x-plane is very close to
the real axis, the location of maximum structural sensitivity should also be close to xs,r.
Therefore, in practice, it can be quite straightforward to find the branch pairs by computing
the eigenvalue problem at x/W = xs,r, and following α+

i − α−
i ≈ 0 in the streamwise

direction.
In figure 15(e, f ), the imaginary and real components of the α+ and α− branches are

presented, respectively. The switch between the two branches can be identified to take
place at x/W = 0.0731. The location of the global mode wavemaker is marked by a red
vertical line in all panels of figure 15. This location is also within the recirculation region
and is nearly identical to the location of the saddle point xs. The direct global mode then
follows the α− branch upstream of the wavemaker, and the α+ branch downstream. On the
contrary, the adjoint global mode follows the α+ branch upstream of the wavemaker, and
α− branch downstream (Juniper & Pier 2015). This result also indicates a spatially growing
global mode within the recirculation region, with the growth rate gradually decaying to
zero as it approaches the downstream boundary of this region.

In summary, we identify a global mode with a frequency very close to the dominant
SPOD mode and a growth rate close to zero. This suggests that the dominant SPOD
mode is a manifestation of a global mode at the limit cycle. The wavemaker of this
mode is located in the recirculation zone very close to the tail tip. It acts as the origin
for the entire coherent wavepacket that propagates far downstream, in a region where the
flow is convectively unstable. The spatial shape and mechanisms of the global mode and
comparison with the SPOD modes will be shown and discussed in § 5.

4.6. Structural sensitivity based on the adjoint method
To further analyse where and how intrinsic feedback causes global instability (Chomaz
2005; Giannetti & Luchini 2007), we calculate the structural sensitivity using adjoint linear
stability analysis. The structural sensitivity describes the sensitivity of the direct global
mode to changes in the linearized Navier–Stokes operator, e.g. base flow modification
(Marquet et al. 2009). Therefore, this concept is critical for the development of efficient
flow control strategies (Giannetti & Luchini 2007; Müller et al. 2020).
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In the global framework, structural sensitivity is proportional to the overlap between the
direct and adjoint global modes (Chomaz 2005). Following Giannetti & Luchini (2007),
the L2 norm of the sensitivity tensor is equivalent to the expression

λ(x) = ‖m̂(x)‖‖m̂†(x)‖, (4.19)

where m̂(x) and m̂†(x) represent the direct and adjoint momentum vectors, respectively.
In the previous section, the location of the wavemaker was identified by computing the
intersection between the α+ and α− branches (at x/W = 0.0731). However, the exact
location of the maximum structural sensitivity at this cross-flow plane is still unknown.
This requires computation of the adjoint mode at this streamwise location. Therefore, the
adjoint linear stability analysis is further pursued in this section.

Due to the inhomogeneous directions and hence differential dependencies in the
linearized operator matrix, taking the Hermitian transpose of the direct operator as the
adjoint operator, as has been done in Oberleithner, Rukes & Soria (2014); Müller et al.
(2020), does not necessarily apply here. To find the adjoint of the system, the continuous
approach is used. First, we define the inner product as〈

q̂1, q̂2
〉 ≡

∫
S

q̂H
1 q̂2 dS ≡ q̂H

1 W q̂2. (4.20)

The adjoint modes depend on this choice of norm, but when recombined with the direct
modes to give the sensitivity measurement of the eigenvalue to changes in L, the effect of
the norm cancels out (Chandler et al. 2012).

By definition, the adjoint operator L† should fulfil〈
q̂†,Lq̂

〉
≡

〈
L†q̂†, q̂

〉
. (4.21)

This definition is valid for any pair of vectors, but for convenience, they are expressed in
terms of the direct state vector q̂ and the adjoint state vector q̂†, as done in Marquet et al.
(2009); Qadri, Mistry & Juniper (2013). More specifically, we consider the spatial stability
form, then the generalized eigenvalue problem is pre-multiplied by the adjoint eigenvector〈

q̂†,Aq̂
〉
−

〈
q̂†, αBq̂

〉
= 0. (4.22)

By successively integrating the equation by parts using Green’s theorem, (4.22) is
rearranged to 〈

A†q̂†, q̂
〉
−

〈
α†B†q̂†, q̂

〉
= 0. (4.23)

Note that the integration-by-parts process would leave boundary terms in the expression.
Therefore, appropriate adjoint boundary conditions are applied to cancel out all boundary
terms. Then the adjoint of the direct eigenvalue problem is obtained from (4.23) as

A†q̂† = α†B†q̂†. (4.24)

The detailed derivations as well as the validation of the adjoint operators and boundary
conditions used in the current study are presented in Appendix D.

It can be shown that, for well-converged adjoint solutions, the adjoint eigenvalues,
ordered by the same rule as the direct ones, are the complex conjugates of the direct ones
(Schmid & Henningson 2000), and the bi-orthogonality condition writes((

α†
m

)∗ −αn

) [(
q̂†

m

)H
WBq̂n

]
= 0. (4.25)

The bi-orthogonality enables the characterization of the receptivity of the open-loop
forcing, and the sensitivity to modification of the mean flow (Marquet et al. 2009).
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–1.2 –0.6 0 0.6 1.2

y/W

z/W

Figure 16. Structural sensitivity indicating sensitivity to mean flow modifications; the values are normalized
by the maximum value. Streamlines are drawn based on mean flow; the blue line indicates the normalized
structural sensitivity = 0.90 isocontour.

In figure 16, the distribution of the structural sensitivity at the streamwise location
where α+ and α− branches intersect (x/W = 0.0731) is shown. This field is obtained
by first computing the adjoint mode on the considered cross-flow plane based on the
methodology presented above and then calculating the L2 norm of the sensitivity tensor
following (4.19). In addition, mean flow streamlines are also included so that the structural
sensitivity can be related to specific flow structures. Based on the results, both the upper
and lower recirculation zones are highlighted. In particular, it can be observed that the
position of the highest structural sensitivity, enclosed by the blue solid line in figure 16,
is located slightly below the stagnation point of the recirculation region. The streamwise
vortex pair generated from both sides of the train, on the other hand, seems to have no
relevance to the sensitivity of the linear global mode. The highest structural sensitivity at
this location, shown in figure 16, suggests that the interaction between the lower and upper
shear layers, which drives the self-excitation of the instability, is the most sensitive to a
steady external forcing and is therefore of significant importance in terms of controlling
of the global mode. Note that, in this part, a deeper interpretation of different components
of the structural sensitivity tensor, as has been done in Qadri et al. (2013), is beyond the
scope of this work.

5. Comparison between empirical and theoretical modes

In this section, the near-wake eigenmode which serves as the origin of the global mode, is
tracked further downstream into the far wake to obtain the full picture of the linear global
mode. The linear global mode is then compared with the leading SPOD mode to show the
connections between them and to reveal additional physical driving mechanisms.

To reconstruct the shape of the global mode, the α+ branch at ωg must be tracked
in the downstream direction reaching into the far wake. However, as illustrated in § 4.3,
the complexity of the base flow gives rise to the problem that the physical eigenvalue
may become highly stable at one location and fall into a spurious region, and then be
untraceable at another location. Therefore, we not only focus on the α+ branch, but also
include spatial branches that arise and become unstable during the tracking process.

The results of the branch tracking process are shown in figure 17. Accordingly, the
near-wake branch becomes spatially stable when approaching x/W = 0.3, and cannot be
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Figure 17. Spatial amplification rates of the most unstable near-wake (——, red), middle-wake (——, green) and
far-wake (——, blue) branches as functions of streamwise location, computed at the global complex frequency
ωg.

tracked further downstream of x/W = 0.5. However, at x/W = 0.4, a new eigenmode,
which corresponds to the middle-wake branch, becomes the most spatially unstable.
The middle-wake branch develops to be slightly spatially unstable only within 0.75 <

x/W < 1.05, and remains spatially stable for most of the streamwise range of its
occurrence. However, it is still the most unstable within the streamwise region 0.4 <

x/W < 1.6. Downstream of x/W = 1.6, the far-wake branch becomes dominant. The
spatial amplification rate of the far-wake eigenmode is observed to grow slightly upstream
of x/W = 2.0, which is attributed to the growing spatial sizes of the streamwise vortex pair
and thereafter the far-wake coherent structures. Then, the far-wake eigenmode remains at a
nearly constant spatial amplification rate with a marginally stable state after this location,
and extends into the farthest streamwise location considered in this study.

To analyse whether these branches actually represent the empirical mode observed in
the SPOD, we compute the alignment between the leading SPOD mode and the linear
global mode based on the L2 inner product. Since the wake flow is highly non-parallel,
with several different spatial branches contributing to the linear global mode, we do not
reconstruct the full three-dimensional global mode prior to the alignment measurement.
Instead, the alignment between the leading SPOD mode and the three eigenmode branches
are computed at all streamwise locations.

In figure 18(a), the alignment between the leading SPOD mode and the three eigenmode
branches are plotted as a function of x/W. It can be observed that the alignment curves
generally follow similar trends to the spatial growth rates of the three branches shown
in figure 17, with the alignment value always being the highest for the most unstable
eigenmode branch. In particular, the alignment is, in general, quite high, with a value above
0.7, except for locations where the spatial branches switch. Therefore, the three eigenmode
branches can be regarded as manifestations of the SPOD mode at different regions of the
wake. This result further supports the modelling approach in this research for tracking the
linear global mode in a highly complex three-dimensional base flow.

For better visualization, in figure 18(b,d, f ), the three-dimensional SPOD mode is
displayed based on the isosurface of the streamwise component, coloured by the alignment
of the three eigenmode branches. In addition, figure 18(c,e,g) shows a direct comparisons
between the cross-flow shapes of the SPOD mode and the linear global mode at different
streamwise locations. In general, similar structures can be identified throughout the entire
wake region. In the near-wake region, the vortex shedding related to the transverse
recirculation zone is dominant in both the SPOD and the linear global mode, with slightly
different ranges between the two modes. Further downstream in the middle-wake and
far-wake regions, the coherent structures related to the streamwise vortex pair become
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SPOD LSA
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Figure 18. Comparison between the leading SPOD mode and the global linear stability mode from local
analysis. (a) Alignment between the SPOD mode and the eigenmodes of the three branches (colours of
lines correspond to figure 17) as functions of streamwise location. (b,d, f ) The isosurface of the streamwise
component of SPOD mode coloured respectively by the alignment with the near-wake, middle-wake and
far-wake branches. (c,e,g) The streamwise component of the near-wake, middle-wake and far-wake SPOD
modes and eigenmodes. Streamlines are drawn based on mean flow.

dominant. The SPOD mode generally predicts a higher fluctuation amplitude near the
ground and the central line compared with the linear global mode.

In conclusion, the fundamental mechanism of instability in the considered flow problem
can be interpreted as follows: within the recirculation zone, the flow has a small region of
absolute instability, which contributes to the global wavemaker located inside. The global
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frequency is well matched to the SPOD peak frequency and the linear global mode
in this region has very high alignment with the SPOD mode. Further downstream, the
flow becomes convectively unstable, amplifying the perturbations received by the global
wavemaker, with the oscillation frequency synchronized to the global frequency. In this
situation, the most spatially unstable branch becomes dominant and aligns the best with
the SPOD mode.

6. Summary and conclusions

Understanding the important dynamics in complex technical flow is crucial in engineering
practice. In this paper, three-dimensional coherent structures in the turbulent wake flow
behind a generic high-speed train are investigated. A large eddy simulation has been
performed to simulate and collect a database of the flow problem considered. For the
purpose of this research, both the empirical identification approach based on SPOD and
the theoretical approach using linear stability analysis are used.

The turbulent wake is found to be dominated by spanwise symmetric coherent
structures, based on the comparison between the SPOD energy spectrum of symmetric
and antisymmetric fluctuations. The most dominant SPOD mode is found to oscillate at
the angular frequency of ω = 3.437. This dominant mode has an increasing wavelength
in the near wake and a nearly constant wavelength in the far wake. The quadratic
nonlinear interaction of the velocity perturbation is further checked by computing the
mode bispectrum to explain the broadband coherent dynamics. The fundamental mode is
identified with strong self-interaction, which generates the first harmonic and subharmonic
triads, meanwhile leading to significant deformation of the mean field. With the continuous
evolution of this process, the flow finally appears to be low rank in a wide frequency range.

The global instability is analysed by employing a two-dimensional local spatio-temporal
stability approach following the WKBJ approximation and combined with a
non-parallelism treatment. Three spatial branches with positive temporal growth rate are
found, with the near-wake branch being the most unstable. The absolute frequency of
the near-wake branch is then found on the basis of a valid saddle point on the complex
α+-plane and tracked along the streamwise direction. A confined region of absolute
instability is identified in the near-wake region. The global frequency is then determined
to be ωg = 3.2702 + 0.0797i based on the frequency selection criterion, indicating a
marginally stable global mode. This result is in excellent agreement with the empirical
prediction in terms of angular frequency, and the theoretical expectation in terms of
growth rate. The near-wake recirculation zone is found to be related to the global mode
wavemaker, which drives the self-excitation of the instability. The adjoint method is further
used to compute the structural sensitivity at the location where the α+ and α− branches
intersect. In the corresponding cross-flow plane, the highest sensitivity is found near the
upper and lower shear layers of the recirculation bubble, near the tip of the train nose.
Accordingly, the global mode is expected to be most sensitive to mean flow changes in this
region.

The linear global mode shape is further computed at each streamwise location
by imposing the global frequency. Three spatial branches are found to be dominant
respectively in the near-, middle- and far-wake regions. The alignment between the linear
global and leading SPOD modes is then performed to provide a quantitative comparison
between mode shapes. Within the recirculation zone where the global wavemaker is
located, the linear global mode has very high alignment with the SPOD mode. Further
downstream, the flow becomes convectively unstable and the oscillations within these
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regions are synchronized with the global frequency by excitation from the wavemaker.
Spatial branches with the highest spatial amplification rates become dominant and show
highest alignment with the SPOD mode.

This work has two main conclusions, one methodological and one physical.
Methodologically, a framework to track linear global mode in highly complex
three-dimensional base flows is introduced, and this method is justified a posteriori by
the very good agreement with the empirical modes. To the authors’ knowledge, this is
the first research dealing with the linear global stability in such a complex flow problem.
Physically, the dominant SPOD mode is identified as being caused by a linear global
mode in the wake of the train. This mode exhibits transverse symmetry and may cause
significant fluctuations on the train surface, which can cause operational safety problems.
The sensitivity analysis further shows that this mode could be quite effectively suppressed
by small changes of the base flow near the tail of the train, which is of significant
importance in terms of developing efficient flow control strategies.

In this work, we have considered a simplified train model as the research object. For a
more realistic train model with complex under-body structures and operating at higher
Reynolds number, the formation of the spanwise vortex pair is significantly hindered.
The global mode driven by the spanwise vortex pair is likely to be suppressed, and the
entire wake flow will be convectively unstable. Thereafter, the symmetric global oscillation
observed in our current research will develop into asymmetric perturbations with longer
wavelength attributed to the Crow instability (Crow 1970) of the streamwise vortex pair,
as have been observed in Bell et al. (2016). The physical mechanisms of this dominant
perturbation in the wake of a realistic train, as well as their influential factors, are expected
to be further addressed in future works.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.950.

Funding. This work is supported by the National Science Foundation of China (grant no. 52202429), the
Project of Scientific and Technological Research and Development of China Railway (P2021J037), the Hunan
Provincial Natural Science Foundation (grant no. 2023JJ40747) and the China Scholarship Council (grant no.
202006370204). The authors acknowledge the computational resources provided by the High Performance
Computing Centre of Central South University, China.

Declaration of interests. The authors report no conflict of interest.

Data availability. The data and code that support the findings of this study are available from the authors
upon reasonable request.

Author ORCIDs.
Xiao-Bai Li https://orcid.org/0000-0002-7840-5185;
Simon Demange https://orcid.org/0000-0002-3638-4988;
Guang Chen https://orcid.org/0000-0003-0652-553X;
Jia-Bin Wang https://orcid.org/0000-0002-4493-0408;
Oliver T. Schmidt https://orcid.org/0000-0002-7097-0235;
Kilian Oberleithner https://orcid.org/0000-0003-0964-872X.

Appendix A. Validation of the LES

In order to validate the LES results, a wind tunnel experiment is carried out in the
high-speed test section of the closed-loop wind tunnel in the Key Laboratory of Traffic
Safety on Track, Central South University. The experimental configuration is shown in
figure 19. The dimensions of the test section are 3400 mm × 1000 mm × 800 mm. To
eliminate the effect of the wind tunnel boundary layer, the train model is installed on
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Train model
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Figure 19. Wind tunnel experiment set-up. (a) Windward view. (b) Leeward view.
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Figure 20. Comparisons between the time-averaged flow quantities from LES modelling (——, black) and
wind tunnel measurement (∗, red). (a) Streamwise velocity ū. (b) Streamwise Reynolds stress u′u′. For details
see text.

the static wind tunnel floor that is mounted on the bottom surface of the test section. The
experimental Reynolds number is Re = 9.5 × 104, consistent with the LES.

The flow velocity on the vertical symmetry plane y = 0 is measured using a 4-hole
TFI cobra probe installed on a traverse system. The probe is able to measure flow fields
within a range of ±45◦, and can resolve fluctuations up to 2000 Hz. At each measurement
point, data are continuously collected for a duration of 20 s, capable of converging the
time-averaged velocity and Reynolds stress distributions.

Since the ground condition differs between the wind tunnel experiment and the LES,
the validation is carried out based on the comparison of flow fields on the upper side of
the train tail. In figure 20, the profiles of the time-averaged streamwise velocity ū and
streamwise Reynolds stress u′u′ are shown. The vertical dashed lines mark the x location
of the measured profiles and correspond to ū = 0 and u′u′ = 0 in figures 20(a) and 20(b),
respectively. For the time-averaged streamwise velocity profiles ū, the distance between
two adjacent vertical lines corresponds to the range from 0 to U∞. For the streamwise
Reynolds stress component u′u′, the distance corresponds to a range from 0 to the global
maxima among all considered data points, which occurs at x/H = −0.4.

It can be seen from figure 20 that the time-averaged streamwise velocity and Reynolds
stress profiles predicted by the large eddy simulation are generally in good agreement with
the experimental results. Several discrepancies can be found at x/H = −0.2, where the
streamwise velocity and Reynolds stresses are overestimated by the LES. Considering the
uncertainties introduced by the wind tunnel boundaries, the ground conditions and testing
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Figure 21. Contour of the complex angular frequency in the complex α-plane at x/W = 0.08. Saddle points
on the complex α-plane are marked by a red circle. (a) The real component. (b) The imaginary component; the
ωi = 0 isocontour is highlighted in red.

facilities, the discrepancies can be regarded as within reasonable range. In conclusion, the
large eddy simulation in this paper predicts the important features and dynamics of the
flow at acceptable accuracy.

Appendix B. Stability analysis without the non-parallelism approximation

To justify the non-parallelism approximation method proposed in this paper, we conduct
a spatio-temporal analysis using the standard two-dimensional linearized Navier–Stokes
equation for comparison.

In figure 21, similar to figure 14, the contour of the complex angular frequency in
the complex α-plane, at the streamwise location of x/W = 0.08 is presented. When the
non-parallelism approximation is discarded, the location of the saddle point S0 on the
complex α-plane moves closer to both the real and imaginary axes, denoting the longer
travelling wave with lower spatial amplification rate compared with the one in figure 14.
Meanwhile, the second saddle S1 in figure 14 is shifted outside the considered range of
the complex α-plane when the non-parallelism approximation approach is not applied.
The absolute frequency at this location can be then determined as ω0 = 2.7114 + 0.3180i,
which again indicates the absolutely unstable condition. Compared with the absolute
frequency calculated in § 4.4.2, this value represents the perturbation oscillating with
significantly longer time period and higher temporal growth rate.

Then, the procedures described in § 4.5 are followed to account for the global instability,
with the main results presented in figure 22. In figure 22(a,b), the imaginary and real
parts of the absolute complex angular frequency are respectively shown as functions of the
streamwise location. Different from the results shown in figure 15, the flow is predicted to
be absolutely unstable within in a much larger streamwise range upstream of x/W = 0.1. In
figure 22(c), the extrapolated complex x-plane based on the tenth-order Padé polynomials
is visualized. The saddle point can be then located at xs = 0.0342 − 0.0046i, with the
associated global frequency ωg = 2.3721 + 0.6082i. Compared with the global frequency
calculated in § 4.5, the current value shows larger deviations from both the empirical
prediction in terms of angular frequency, and the theoretical expectation in terms of growth
rate. This again suggests that, for a flow which is strongly non-parallel, utilizing a local
approach is likely to give a poor prediction of the global instability. By including the
approximation approach proposed in this paper, the accuracy of the prediction is much
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Figure 22. (a) Streamwise evolution of the absolute growth rate. (b) Streamwise evolution of the absolute
angular frequency. (c) Contours of ω0,i extruded in the complex x-plane, formed by the fitted Padé polynomial.
The saddle point on the complex x-plane is marked by a red circle.

improved, which justifies the ability of the approach to model the non-parallelism of the
flow.

Appendix C. Direct LSA operator

The operator matrices A and B used in the temporal stability analysis are shown as
follows:

A =

⎡
⎢⎣

C + ūx − νtx(Dx + iα) ūy − νty(Dx + iα) ūz − νtz(Dx + iα) Dx + iα
v̄x − νtxDy C + v̄y − νtyDy v̄z − νtzDy Dy
w̄x − νtxDz w̄y − νtyDz C + w̄z − νtzDz Dz
Dx + iα Dy Dz 0

⎤
⎥⎦ ,

(C1)

B =

⎡
⎢⎣

i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

⎤
⎥⎦ , (C2)

where subscripts (.)x, (.)y and (.)z are related to flow quantities denoting their first
derivatives with respect to the three directions, Dx, Dy and Dz are the first derivative
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matrices with respect to the three directions. Operator C can be written as

C = ū(Dx + iα) + v̄Dy + w̄Dz −
(

1
Re

+ νt

)
(Dyy + Dzz + Dxx + 2iαDx − α2)

− νtx(Dx + iα) − νtyDy − νtzDz, (C3)

with Dxx, Dyy and Dzz being the second derivative matrices with respect to the three
directions.

In spatial stability analysis, operator matrices A and B take the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C + ūx − νtxDx ūy − νtyDx ūz − νtzDx Dx 0 0 0
v̄x − νtxDy C + v̄y − νtyDy v̄z − νtzDy Dy 0 0 0
w̄x − νtxDz w̄y − νtyDz C + w̄z − νtzDz Dz 0 0 0

Dx Dy Dz 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (C4)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E + iνtx iνty iνtz −i −1/Re − νt 0 0
0 E 0 0 0 −1/Re − νt 0
0 0 E 0 0 0 −1/Re − νt
−i 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (C5)

with C and E being

C = −iω + ūDx + v̄Dy + w̄Dz −
(

1
Re

+ νt

)
(Dyy + Dzz + Dxx)

−νtxDx − νtyDy − νtzDz (C6)

E = −iū + 2i
(

1
Re

+ νt

)
Dx + iνtx. (C7)

Appendix D. Adjoint LSA operator
The x−momentum equation is shown as an example of the derivation procedure. By
premultiplying the equation by the adjoint eigenvector (4.22), the left-hand side can be
written as∫∫ (

û†
)H

[−iω + ū(Dx + iα) + v̄Dy + w̄Dz − (1/Re + νt)(Dyy + Dzz + Dxx + 2iαDx − α2)

− νtx(Dx + iα) − νtyDy − νtzDz + ūx − νtxDx − iανtx]
(
û
)

dy dz

+
∫∫ (

û†
)H (

ūy − νtyDx − iανty
) (

v̂
)

dy dz +
∫∫ (

û†
)H

(ūz − νtzDx − iανtz)
(
ŵ
)

dy dz

+
∫∫ (

û†
)H

(Dx + iα)
(
p̂
)

dy dz. (D1)

We then present the integration-by-parts procedures for different types of terms in the
equation for simplification. From a mathematical point of view, we can categorize terms
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in the equation based on whether they have a derivative matrix acting on the state vector.
For terms that do not have a derivative matrix acting on the state vector, we have∫∫ (

û†
)H [

iαū
] (

û
)

dy dz =
∫∫ (

−iα∗ūû†
)H (

û
)

dy dz. (D2)

If the first derivative matrix Dy acts on the state vector∫∫ (
û†

)H [
v̄Dy

] (
û
)

dy dz = −
∫∫ (

Dyv̄û†
)H (

û
)

dy dz +
∮ (

v̄û†
)H (

û
)

dz. (D3)

This procedure will leave a boundary term which will have to be cancelled. Also, for Dz,∫∫ (
û†

)H [
w̄Dz

] (
û
)

dy dz = −
∫∫ (

Dzw̄û†
)H (

û
)

dy dz −
∮ (

w̄û†
)H (

û
)

dy. (D4)

For Dx, the form Dx = − tan θDy − tan γDz has to be taken back for the
integration-by-parts procedure. Here, for simplification, we refer to a = − tan θ and b =
− tan γ . Then we have∫∫ (

û†)H [
ūDx

] (
û
)

dy dz =
∫∫ (

û†)H [
ūaDy + ūbDz

] (
û
)

dy dz

= −
∫∫ [(Dyaū + Dzbū

)
û†]H (

û
)

dy dz +
∮ (

aūû†)H (
û
)

dz −
∮ (

būû†)H (
û
)

dy.

(D5)

Similarly, for all second derivative matrices∫∫ (
û†

)H [
νtDyy

] (
û
)

dy dz =
∫∫ (

Dyyνtû†
)H (

û
)

dy dz

+
∮ [(

νtû†
)H (Dyû

) −
(
Dyνtû†

)H (
û
)]

dz, (D6)

∫∫ (
û†

)H [
νtDzz

] (
û
)

dy dz =
∫∫ (

Dzzνtû†
)H (

û
)

dy dz

−
∮ [(

νtû†
)H (Dzû

) −
(
Dzνtû†

)H (
û
)]

dy, (D7)

∫∫ (
û†)H

[ν tDxx]
(
û
)

dy dz =
∫∫ (

û†)H [
ν ta2Dyy + 2ν tabDyDz + ν tb2Dzz

] (
û
)

dy dz

=
∫∫ [(Dyya2ν t + 2DyDzabν t + Dzzb2ν t

)
û†]H (

û
)

dy dz

+
∮ [(

a2ν tû†)H (Dyû
) − (Dya2ν tû†)H (

û
) + 2

(
abν tû†)H (Dzû

)]
dz

−
∮ [(

b2ν tû†)H (Dzû
) − (Dzb2ν tû†)H (

û
) − 2

(Dyabν tû†)H (
û
)]

dy. (D8)
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By applying these procedures to all terms in (D1) and rearranging, the adjoint operators
A† and B† can be written as

A† =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C† + ūx + (Dya + Dzb)νtx v̄x + Dyνtx w̄x + Dzνtx −Dya − Dzb 0 0 0
ūy + (Dya + Dzb)νty C† + v̄y + Dyνty w̄y + Dzνty −Dy 0 0 0
ūz + (Dya + Dzb)νtz v̄z + Dyνtz C† + w̄z + Dzνtz −Dz 0 0 0

−Dya − Dzb −Dy −Dz 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(D9)

B† =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E† − iνtx 0 0 i −1/Re − νt 0 0
−iνty E† 0 0 0 −1/Re − νt 0
−iνtz 0 E† 0 0 0 −1/Re − νt

i 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (D10)

with C† and E† given the form

C† = iω∗−Dyaū − Dzbū − Dyv̄ − Dzw̄ − Dyy

(
1

Re
+ νt

)
− Dzz

(
1

Re
+ νt

)

−
(
Dyya2 + 2DyDzab + Dzzb2

) (
1

Re
+ νt

)
+ Dyaνtx + Dzbνtx

+ Dyνty + Dzνtz (D11)

E† = iū + 2i(Dya + Dzb)

(
1

Re
+ νt

)
− iνtx. (D12)

The boundary terms should then be cancelled by applying appropriate adjoint boundary
conditions. The expression for the boundary terms on side boundaries is

∮ (
aūû†

)H
û dz +

∮ (
v̄û†

)H
û dz −

∮ [((
1

Re
+ νt

)
û†

)H

Dyû −
(

Dy

(
1

Re
+ νt

)
û†

)H

û

]
dz

−
∮ [(

a2
(

1
Re

+ νt

)
û†

)H

Dyû −
(

Dya2
(

1
Re

+ νt

)
û†

)H

û + 2
(

ab
(

1
Re

+ νt

)
û†

)H

Dzû

]
dz

− 2iα∗
∮ (

aû†
)H

û dz −
∮ (

aνtxû†
)H

û dz −
∮ (

νtyû†
)H

û dz −
∮ (

aνtxû†
)H

û dz

−
∮ (

aνtyû†
)H

v̂ dz −
∮ (

aνtzû†
)H

ŵ dz +
∮ (

aû†
)H

p̂ dz, (D13)
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and on vertical boundaries is

−
∮ (

būû†
)H

û dy −
∮ (

w̄û†
)H

û dy +
∮ [((

1
Re

+ νt

)
û†

)H

Dzû −
(

Dz

(
1

Re
+ νt

)
û†

)H

û

]
dy

+
∮ [(

b2
(

1
Re

+ νt

)
û†

)H

Dzû −
(

Dzb2
(

1
Re

+ νt

)
û†

)H

û − 2
(

Dyab
(

1
Re

+ νt

)
û†

)H

û

]
dy

+ 2iα∗
∮ (

bû†
)H

û dy +
∮ (

bνtxû†
)H

û dy +
∮ (

νtzû†
)H

û dy +
∮ (

bνtxû†
)H

û dy

+
∮ (

bνtyû†
)H

v̂ dy +
∮ (

bνtzû†
)H

ŵ dy −
∮ (

bû†
)H

p̂ dy. (D14)

Although these expressions are given in huge forms, they can be much simplified since
the adjoint mode only needs to be computed in the near-wake region. Therefore, we can
consider all direct and adjoint perturbations on the far-field boundaries to be zero, then,
only the boundary terms on y/W = 0 and z/W = 0 should be further considered. On
y/W = 0 we have the following conditions and (D13) can be simplified into:

a = v̄ = νty = ûy = 0, on y/W = 0 (D15a)∮ [(
1

Re
+ νt

)
Dyû†

]H

û dz, (D15b)

and on z/W = 0 these conditions can be applied with (D14) can be simplified into

b = w̄ = û = 0, on z/W = 0, (D16a)∮ [(
1

Re
+ νt

)
û†

]H

Dzû dz. (D16b)

Therefore, all adjoint boundary conditions appropriate to cancel the boundary terms are
summarized as follows:

∂û†

∂y
= ∂ŵ†

∂y
= ∂ p̂†

∂y
= 0, v̂† = 0, on y/W = 0, (D17a)

û† = v̂† = ŵ† = p̂† = 0, on y/W = 1.3, (D17b)

û† = v̂† = ŵ† = 0,
∂ p̂†

∂z
= 0, on z/W = 0, (D17c)

û† = v̂† = ŵ† = p̂† = 0, on z/W = 1.3. (D17d)

To validate the adjoint operators and boundary conditions, we take the conjugation
of the complex streamwise wavenumber of the adjoint mode computed based on the
adjoint method and compare it with the results from the direct approach, as shown in
figure 15(e, f ). The comparisons are shown in figure 23. Good agreement can be observed
between the two approaches, with discrepancies being observed only downstream of
x/W = 0.135. This is due to the fact that, downstream of this streamwise location, the
adjoint eigenvalue is quite far from the real axis, which would lead to a convergence
issue of the eigenvalue problem. At locations around the wavemaker regions, the two
lines are almost identical, which confirms that the adjoint operators and boundary
conditions presented in this paper can provide accurate prediction of the adjoint mode
and, subsequently, the structural sensitivity.
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Figure 23. Local complex streamwise wavenumber of the adjoint mode based on direct LNS equation (black
solid line), and its complex conjugation based on adjoint LNS equation (red dashed line). (a) The real
component. (b) The imaginary component.
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