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Abstract. To study the dynamics of relativistic flows in astrophysical objects such as radio jets,
we have developed a new special relativistic hydrodynamic (RHD) code based on the weighted
essentially non-oscillatory (WENO) scheme, a high-order finite difference scheme. The code
includes different WENO versions, and high-order time integration methods such as the 4th-
order accurate Runge-Kutta (RK4) and strong stability preserving RK (SSPRK), as well as the
equations of state (EOSs) that closely approximate the EOS of the single-component perfect gas
in relativistic regime. Additionally, it is optimized for the reproduction of complex structures in
multi-dimensional flows, and implements a modification of eigenvalues for the acoustic modes to
effectively control carbuncle instability. As the first application of the code, we have simulated
ultra-relativistic jets of FR II radio galaxies, and studied the nonlinear flow structures, such as
shocks, velocity shear, and turbulence, through large-scale.
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1. Introduction

Relativistic jets are widely involved in high-energy astrophysical phenomena, such
as, pulsar wind nebulae (PWNs), gamma-ray bursts (GRBs), and radio-loud active
galactic nuclei (AGNs) (see Hardcastle & Croston 2020, for reviews). Many studies of
relativistic jets have been done through relativistic hydrodynamics (RHD) simulations
(English et al. 2016; Li et al. 2018; Matthews et al. 2019). Those studies adopted various
codes that were developed from non-relativistic Newtonian hydrodynamics codes (see
Mart́ı & Müller 2003, 2015, for reviews). A popular numerical scheme for these codes is
the weighted essentially non-oscillatory (WENO) scheme based on the upwind method,
which is designed to achieve a high-order accuracy in smooth flows and avoid spurious
oscillations near discontinuities, e.g., shocks and contact discontinuities. The first WENO
scheme was introduced by Liu et al. (1994), which is a finite volume (FV) scheme. Later, a
5th-order accurate, finite difference (FD) WENO scheme was introduced by Jiang & Shu
(1996), where the fluxes at the cell interfaces are reconstructed using the point values of
the physical fluxes with weight functions. After that, different FD WENO versions have
been proposed, achieving higher accuracies for smooth flows and/or smaller dissipation
near discontinuities. We have developed a new code based on the WENO scheme, includ-
ing three versions of WENO, WENO-JS (Jiang & Shu 1996), WENO-Z (Borges et al.
2008), and WENO-ZA (Liu et al. 2018).

The WENO scheme has been combined with high-order time integration methods, such
as the classical Runge-Kutta (RK) method (e.g., Shu & Osher 1988, 1989; Jiang & Shu
1996). To enhance the nonlinear stability and reduce spurious oscillations near dis-
continuous structures, Spiteri & Ruuth (2002) introduced an improved RK, called
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the strong-stability-preserving Runge-Kutta (SSPRK) method. Our code includes the
4th-order accurate RK and SSPRK time integration methods.

In terms of thermodynamics, fluids that have thermal speeds approaching the speed
of light manifest relativistic effects. In our code, we consider the equation of state (EOS)
for “single-component” fluids. The EOS of the single-component, perfect gas, called RP
(relativistic perfect) here, contains modified Bessel functions, which are difficult to be
efficiently implemented in numerical codes (e.g., Synge et al. 1957). Hence, RHD simula-
tions have been performed typically with simplified EOSs. The most popular EOS is the
ID (ideal) EOS, which assumes a constant adiabatic index γ. However, the ID EOS can-
not reproduce the transition from subrelativistic temperature of Θ ≡ p/ρc2 < 1 to fully
relativistic temperature of Θ> 1. Here, Θ, p, and ρ are a temperature-like variable, the
isotropic gas pressure, and the rest mass density, respectively. On the other hand, EOSs
that closely approximate RP have been introduced, including TM (after Taub-Mathews,
see Taub 1948; Mathews 1971; Mignone et al. 2006) and RC (after Ryu-Chattopadhyay,
see Ryu et al. 2006). Our code contains these EOSs, as well as the ID EOS.

For multi-dimensional problems, the high-order accuracy in FD schemes can be pre-
served with the dimension-by-dimension method. Recently, Buchmüller & Helzel (2014)
and Buchmüller et al. (2016) proposed a modified dimension-by-dimension method that
implements the averaging of the state and flux vectors along the transverse direction,
and demonstrated higher accurate reproduction of complex, nonlinear multi-dimensional
structures. We adopt this method in our code.

It is know that the Carbuncle instability, which deforms grid-aligned, slow-moving
shocks, is easily generated in high-accuracy, shock-capturing, upwind codes (e.g.,
Peery et al. 2018; Dumbser et al. 2008). This instability appears due to the insufficient
numerical dissipation at such shocks. Fleischmann et al. (2020) introduced a method
which efficiently mitigates the carbuncle instability by modifying eigenvalues for the
acoustic modes. Our code includes this fix, as well.

Using our RHD code, we have simulated ultra-relativistic jets injected into the intr-
acluster medium, with the parameters relevant to FR-II radio galaxies. In this paper,
we briefly describe the code and also the flow structures in a FR II jet, such as, shocks,
shear, and turbulence. The complete description of the code and jet simulations can be
found in Seo et al. (2021a) and Seo et al. (2021b).

2. Description of the Code

2.1. RHD Equations

The code solves the conservation equations of special relativistic hydrodynamics, which
are expressed in the laboratory frame as,

∂D

∂t
+ �∇ · (D�v) = 0, (2.1)

∂ �M

∂t
+ �∇ · ( �M�v+ p) = 0, (2.2)

∂E

∂t
+ �∇ · [(E + p)�v] = 0. (2.3)

Here, the conserved quantities, the mass, momentum, and total energy densities, are
given as D= Γρ, �M = Γ2ρ(h/c2)�v, and E = Γ2ρh− p, respectively (e.g Landau & Lifshitz
1959), where c, ρ, �v, p, Γ, and h are the speed of light, the rest mass density, the fluid
three-velocity, the isotropic gas pressure, the Lorentz factor, and the specific enthalpy.
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2.2. Equation of State

The EOS of the single-component, perfect gas, RP, is given as

h(p, ρ) =
K3(1/Θ)

K2(1/Θ)
, (2.4)

where Kα is the modified Bessel function of the second kind of order α (e.g., Synge et al.
1957). As h contains Bessel functions, the inversion of the conserved quantities to get
the primitive variables, ρ, �v, and p, is computationally expensive. Here, we list three
approximate EOSs, ID, TM, and RC, implemented in the code, respectively:

h= 1 +
γΘ

γ − 1
, h=

5

2
Θ +

3

2

√
Θ2 +

4

9
, h= 2

6Θ2 + 4Θ + 1

3Θ + 2
, (2.5)

where γ is the adiabatic index. As mentioned in the introduction, ID cannot treat the
transition from subrelativistic to fully relativistic. According to Ryu et al. (2006), RC
reproduces RP slightly better than TM, so we have adopted RC in our jet simulations.

2.3. Spatial Integration

By using the dimension-by-dimension method in Cartesian geometry, Equations (2.1)
- (2.3) are solved numerically, as follows,

q′
i,j,k = qi,j,k −

Δt

Δx

(
F i+ 1

2 ,j,k
−F i− 1

2 ,j,k

)
− Δt

Δy

(
Gi,j+ 1

2 ,k
−Gi,j− 1

2 ,k

)
− Δt

Δz

(
Hi,j,k+ 1

2
−Hi,j,k− 1

2

)
,

(2.6)

where q, F, G, and H are the state vector and the flux vectors along the x, y, and z-
directions. Here, i, j, and k are the grid indices along the x, y, and z-directions, and
the unprimed and primed quantities are defined at t and t+ Δt, respectively. The
5th-order accurate FD WENO scheme is used to estimate the cell interface fluxes,
F i± 1

2 ,j,k
, Gi,j± 1

2 ,k
, and Hi,j,k± 1

2
, (see Jiang & Wu 1999, for detail). The code includes

three versions of WENO, the original WENO-JS of Jiang & Shu (1996), and WENO-Z
(Borges et al. 2008) and WENO-ZA (Liu et al. 2018), both of which are designed to
improve the performance over the original WENO-JS. We have tested the three variants
with various RHD test problems. While WENO-JS is the most stable in various con-
ditions, it gives the most diffusive solutions. On the other hand, WENO-ZA gives less
diffusive solutions, but they often break down when there are steep gradients. We have
found that WENO-Z is best fitted because of its balance between stability and accuracy,
and hence we employed it for our jet simulations.

2.4. Time Integration

The 4th-order RK method has been commonly used with the 5th-order WENO scheme
(e.g., Shu & Osher 1988, 1989; Jiang & Shu 1996). Its time-stepping from qn to qn+1 is
given as

q(0) = qn, q(1) = q(0) +
Δt

2
L(0), q(2) = q(0) +

Δt

2
L(1),

q(3) = q(0) + ΔtL(2), qn+1 =
1

3

(
−q(0) + q(1) + 2q(2) + q(3)

)
+

Δt

6
L(3).

(2.7)

https://doi.org/10.1017/S1743921322001314 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921322001314


90 J. Seo, H. Kang & D. Ryu

Here, n is the timestep. In the 4th-order accurate, 5-stage SSPRK method (e.g.,
Spiteri & Ruuth 2002, 2003; Gottlieb 2005), the time-stepping is given as

q(0) = qn, q(l) =

l−1∑
m=0

(χlmq(m) + ΔtβlmL(m)), l= 1, 2, · · · , 5, qn+1 = q(5), (2.8)

where L(l)
i,j,k is

L(l)
i,j,k = −

F
(l)

i+ 1
2 ,j,k

−F
(l)

i− 1
2 ,j,k

Δx
−

G
(l)

i,j+ 1
2 ,k

−G
(l)

i,j− 1
2 ,k

Δy
−

H
(l)

i,j,k+ 1
2

−H
(l)

i,j,k− 1
2

Δz
, (2.9)

χlm and βlm are the coefficients (Spiteri & Ruuth 2002).
For the stability in time integration, the time step, Δt, is restricted by the so-called

Courant-Friedrichs-Levy (CFL) condition,

Δt= CFL/

[
λmax
x

Δx
+
λmax
y

Δy
+
λmax
z

Δz

]
, (2.10)

where λmax’s are the maxima of the cell-centered eigenvalues. We use CFL=0.8 in our
code, which seems to be a good compromise for stability and speed. RK4 and SSPRK
give similar results in tests of moderate RHD problems, but in the shock tests where
the initial velocity perpendicular to the shock normal, v⊥, is close to c, SSPRK gives
more stable solutions than RK4. In relativistic jets, strong shears appear across the jet
and backflows, and shocks with large v⊥ could form, so we use SSPRK for the time
integration.

2.5. Averaging of Fluxes along Transverse Directions

Our code includes transverse-flux averaging in the stage of the calculation of WENO
fluxes, which improves the performance of multi-dimensional problems. The 4th-order
accurate averaging scheme, given as (Buchmüller & Helzel 2014; Buchmüller et al. 2016),

q̄i,j,k = qi,j,k −
1

24

(
qi,j−1,k − 2qi,j,k + qi,j+1,k

)
− 1

24

(
qi,j,k−1 − 2qi,j,k + qi,j,k+1

)
,

(2.11)
and

F̄ i± 1
2 ,j,k

= F i± 1
2 ,j,k

+
1

24

(
F i± 1

2 ,j−1,k − 2F i± 1
2 ,j,k

+ F i± 1
2 ,j+1,k

)
+

1

24

(
F i± 1

2 ,j,k−1 − 2F i± 1
2 ,j,k

+ F i± 1
2 ,j,k+1

)
,

(2.12)

is used. We have adopted this scheme that has the same order of accuracy as the time
integration. We found that with this averaging, complex structures like vortices in the
relativistic Kelvin-Helmholtz test are better reproduced (see Seo et al. 2021a).

2.6. Suppression of Carbuncle Instability

Low Mach number shocks that are aligned with the computational grid and move
slowly are susceptible to carbuncle instability, owing to the lack of sufficient dissipation.
Fleischmann et al. (2020) suggested that a modification of eigenvalues for two acoustic
modes,

c′s = min(φ|vx|, cs), λ1,5 = vx ± c′s, (2.13)

could suppress this instability in Newtonian hydrodynamic codes. Here, φ is a positive
number of order O(1). This method alleviates the instability problem by increasing the
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Figure 1. 2D relativistic shock tube test. The results of a simulation using 400 × 800 grid zones
are shown t= 0.45 ×√

5. Left panels: The flow quantities along y= 2x (red dots) are compared to
those from 1D high-resolution results with 20,000 grid zones for a converged benchmark (black
solid lines). Here, v‖ and v⊥ are the velocity parallel and perpendicular to the normal of the
shock and contact discontinuity, respectively. Right panels: The corresponding 2D images are
shown.

acoustic Mach number to M ≥ 1/φ. We adopt this idea to our RHD code, modifying the
eigenvalues of two acoustic modes as,

c′s = min(φ|vx|, cs), λ1,5 =
(1 − c′2s)vx ± c′s/Γ

√
Q

1 − c′2sv2
, (2.14)

where Q = 1 − v2x − c′2s(v
2
y + v2z). In simulations of RHD jets, As shown in the Figure 9

of Seo et al. (2021a), a part of the bowshock may be subject to carbuncle instability. We
have found that this modification efficiently suppresses the instability.

2.7. Code test : 2D Relativistic Shock Tube

As the verification of the code, we present the results of a two-dimensional (2D) shock
tube test. The initial condition is given as uL = (10, 0, 0, 13.3) for y < 2(1 − x) and uR =
(1, 0, 0, 10−6) for y > 2(1 − x), where u = (ρ, vx, vy, p). As shown in Figure 1, the shock
and contact discontinuity are resolved with 2 − 3 cells, and the rarefaction wave are well
reproduced. We also see that the velocity perpendicular to the normal of the shock and
contact discontinuity, v⊥, which is an indication of numerical error in this test, is small
with |v⊥/v‖| ≈ 1 − 2%.

The full description of the code along with a number of tests is given in Seo et al.
(2021a).

3. Application to FR II Jets

As the first application of our RHD code, we have simulated three-dimensional (3D)
FR II jets, which have well collimated structures and bright heads. In Figure 2, we present
the 2D slice distributions of the density and vertical velocity in one of the simulated jets.
The length scale of the shown jet is about 60kpc with the jet radius of rj = 1kpc. The
jet power, the energy injection rate through the jet radius, is matched to the value of
typical FR II jets, Q≈ 3.34 × 1046erg/s. We have found that our code well reproduces
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Figure 2. left panels: Density (left) and velocity(right) slice distributions at t= 1.5Myr in a FR
II jet simulation with (600)2 × 1200 grid zones. Right panels: The PDF of the Mach number of
the shocks generated in the jet-induced flow (top), the PDF of shear, Ωshear = ∂vz/∂r, where r
is the radial distance from the jet spine (middle), and the velocity power spectrum of turbulence
in the jet-induced flow (bottom).

the details of nonlinear structures, such as, shocks, shear, and turbulence, and hence we
have been able to analyze the characteristics of flow structures. For instance, the Mach
numbers of shocks have a power-law distribution except the bowshock (see the right-top
panel of Figure 2), indicating that most of them are originated from turbulence. Strong
shear is generated in the jet and backflow boundary (see the right-middle panel). And
the turbulence in the jet-induced flows seems to follow the Kolmogorov spectrum (see
the right-bottom panel).

The full description of the jet flow structures is given in Seo et al. (2021b).
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