Canad. Math. Bull. 2025, pp. 1-16
http://dx.doi.org/10.4153/S0008439525000189 c
© The Author(s), 2025. Published by Cambridge University Press on behalf of

Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

On the perimeter, diameter and
circumradius of ordinary hyperbolic
reduced polygons
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Abstract. A convex body R in the hyperbolic plane is called reduced if any convex body K c R has a
smaller minimal width than R. We answer a few of Lassak’s questions about ordinary reduced polygons
regarding its perimeter, diameter, and circumradius, and we also obtain a hyperbolic extension of a
result of Fabinska.

1 Introduction

The concept of reducedness was introduced by Heil [8] in 1978 motivated by some
volume minimizing problems. A convex body (i.e., a convex compact set of non-
empty interior) K is called reduced if an arbitrary convex body strictly contained in
K has smaller minimal width than K. Pal [26] proved in 1921 that for fixed minimal
width, the regular triangle has minimal area among convex bodies in the Euclidean
plane. This result of his is also known as the isominwidth inequality. The same
problem in higher dimensions remains unsolved, as there are no reduced simplices in
R" for n > 3 (see [23, 24]), therefore there are no really good candidates for the volume
minimizing problems—so far the best one in R? is the so-called Heil body, which
has a smaller volume than any rotationally symmetric body of the same minimal
width. The problem can be naturally generalized to other spaces, a natural approach
is to study the problem in spaces of constant curvature. Bezdek and Blekherman [1]
proved that, if the minimal width is at most g, the regular triangle minimizes the
area in S%. However, for spherical bodies of larger minimal width, the minimizers
of the isominwidth problem are polars of Reuleaux triangles. Surprisingly enough,
there is no solution of the isominwidth problem in the hyperbolic space for arbitrary
dimension (see Bordczky, Freyer, Sagmeister [3]).

A reverse isominwidth problem is about finding the maximal volume if the
minimal width is fixed. Naturally, this problem does not have a maximizer in general,
but for reduced bodies we can ask for the convex body that maximizes the volume.
However, in R?, the diameter of a reduced body of a given minimal width can be
arbitrarily large, and hence the Euclidean problem is only interesting on the plane.
It is conjectured, that the unique planar reduced bodies maximizing the area and
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2 A. Sagmeister

of minimal width w > 0 in R? are the circular disk of radius % and the quarter of
the disk of radius w. A big step towards the proof of this conjecture was made by
Lassak, who proved that among reduced k-gons, regular ones maximize the area, and
as a consequence, all reduced polygons have smaller area than the circle. Following
Lassak’s footsteps, the same conclusion was derived in S? by Liu, Chan, and Su [22].
Interestingly enough, the characterization of hyperbolic reduced polygons is still
unclear, but clearly it must be different from the Euclidean and spherical ones; there
exist reduced rhombi on the hyperbolic plane, while Euclidean and spherical reduced
polygons are all odd-gons (see Lassak [12, 14]). However, the so-called ordinary
reduced polygons can be examined the same way (these are odd-gons whose vertices
have distance equal to the minimal width of the polygon from the opposite sides such
that the projection of the vertices to these sides are in the relative interior of the sides).
In fact, it was shown by the author [27] that, among ordinary reduced n-gons of a
fixed width, regular n-gons maximize the area. This answers one of Lassak’s questions
posed in [13]. One of his other questions was about the extremality of the perimeter,
which is addressed in Section 4 where we give an explicit perimeter formula. However,
the extremality of the perimeter remains open, but based on the given formula in
Theorem 4.1, we propose a conjecture that is surprising given the Euclidean and
spherical analogs. Lassak also proposed to find the infimum of the circumradii of
ordinary reduced polygons of minimal width w. In order to obtain the best bound for
the circumradius, we need the following result.

Theorem 1.1  If P c H? is an ordinary reduced polygon of minimal width w, then its

diameter is at most
coshw + \/cosh® w + 8)

4

diam (P) < 2arcosh (

with equality if and only if P is the regular triangle.
With this diameter bound, we obtain the following bound for the circumradius.

Theorem 1.2 Let P be an ordinary reduced polygon in H* of minimal width w. Then
its circumradius is at most

arsinh | —
4

2
2 coshw + \Vcosh®w + 8 —1
V3

with equality if and only if P is a regular triangle.

Finally, we also have the following result which is analogous to the results of
Fabinska [6] and Musielak [25].

Theorem 1.3  Every ordinary reduced hyperbolic polygon of minimal width w is
contained in a circular disk of radius w centered at one of its boundary points.
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Ordinary reduced hyperbolic polygons 3

The article is structured as follows. In Section 2, we describe the fundamental
concepts and notations about hyperbolic width and reducedness. In Section 3, we
introduce ordinary reduced polygons and explain some of their basic properties,
including a few of the key ideas that will be used to obtain some of the main results.
In Section 4, we give a perimeter formula for ordinary reduced n-gons. In Section 5,
we prove Theorem 1.1, while in Section 6 we prove Theorems 1.2 and 1.3.

2 Preliminaries

We use the notation H? for the hyperbolic plane, which is equipped with the geodesic
metric. The geodesic distance of two points x, y € H* will be denoted as d (x, y). In
this section, we introduce hyperbolic convexity. Many of the concepts are identical
with their Euclidean analogs, but as we will soon see, there are exceptions.

For a subset X of the hyperbolic plane H?, we say that X is convex, if for any pair of
points x and y, the unique geodesic segment [x, y] connecting x and y is a subset of
X (where [x, x] = {x}). A convex body is a convex compact set of non-empty interior.
It is clear, that similarly to Euclidean convexity, the intersection of an arbitrary family
of convex sets in the hyperbolic plane is also convex, so we define the convex hull of
a set X € H? as the intersection of all convex sets in H? containing X as a subset, and
we will use the notation conv (X) for the convex hull of X. The convex body obtained
as the convex hull of the finite set X = {x1,...,x,} is called a polygon, and we use
the notation [x;, ..., x,] for conv (X). A point x; € X is a vertex of the polygon X if
xj ¢ conv (X \ {x ]-}); a k-gon in the hyperbolic plane is a polygon of k vertices.

For convex bodies, width is an important concept. On the hyperbolic plane there
are many different notions of width (see Santalé [28], Fillmore [7], Leichtweiss
[20], Jerénimo-Castro-Jimenez-Lopez [10], G. Horvath [9], Boroczky, Csépai, and
Sagmeister [2], Lassak [15]). We will use the width function introduced by Lassak,
but we note that it is identical with the extended Leichtweiss width defined by
Boroczky, Csépai, and Sagmeister [2] on supporting lines. A hyperbolicline ¢ is called
a supporting line of the convex body K if K n ¢ # @, and K is contained in one of the
closed half-spaces bounded by ¢. The width of the convex body K with respect to the
supporting line £ is the distance of £ and ¢’, where ¢’ is a (not necessarily unique) most
distant supporting line from ¢. It is known that this width function is continuous,
and its maximal value coincides with the diameter of the convex body, which will be
denoted as diam (K). The minimal width (i.e., the minimal value of the width function
on the set of all supporting lines, also known as the thickness) of K is denoted by
w (K). This notion of minimal width is a monotonic function, that is for arbitrary
convex bodies K, L such that K ¢ L, we have w (K) < w (L). Hence, the concept of
hyperbolic reducedness makes perfect sense. A convex body K is called reduced, if for
any convex body K’ ¢ K, w (K”) < w (K). Reduced bodies are well-studied (see Heil
[8], Lassak-Martini [16-18], Lassak-Musielak [19]), as they are often extremizers of
volume minimizing problems, and bodies of constant width are also reduced.

If we consider the Poincaré disk model of the hyperbolic plane H?, hyperbolic
lines are either diameters of the unit disk, or circular arcs intersecting the unit
circle orthogonally. The boundary points of the unit disk are the ideal points of the
hyperbolic plane, and hence there is a natural bijection between hyperbolic lines
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and pairs of ideal points. Besides the identity, there are three types of orientation
preserving isometries of the hyperbolic plane depending the number of fixed points.
If there is one fixed point, the isometry is called an elliptic isometry (or rotation). We
call an isometry with exactly one fixed ideal point, it is called a parabolic isometry.
Finally, isometries with exactly two fixed ideal points are called hyperbolic isometries,
which maps the line corresponding to the two fixed ideal points to itself.

3 Ordinary reduced polygons

Lassak proved that hyperpolic convex odd-gons of thickness w are reduced if all
vertices are of distance w from the opposite sides, and the orthogonal projections of
these vertices onto the opposite sides are in the relative interior of these sides (see [13]).
Such polygons are called ordinary reduced polygons, since this property characterizes
reducedness both in R? and in S? (see Lassak [12, 14]), but not in the hyperbolic plane.
In Boroczky, Freyer, Sagmeister [3] it is shown that, for each w > 0 there are reduced
rhombi, whose diameters are unbounded. The characterization of hyperbolic reduced
polygons is therefore unclear, so we focus on ordinary reduced polygons in this article.
For the diameter of an ordinary reduced polygon of thickness w, we have the following
by Lassak [13].

Theorem 3.1 Let P c H? be an ordinary reduced polygon of thickness w and diameter

d. Then,
2
w < d < arcosh (coshw\ [1+ % sinhw).

As a consequence, for each n we can expect an n-gon of extremal area among
ordinary reduced n-gons of thickness w by Blaschke’s Selection Theorem. In the
remainder of the section, we will discuss the area of hyperbolic reduced n-gons based
on the arguments of Lassak [11] and Liu-Chang-Su [22].

From now on, P denotes an ordinary reduced n-gon in H? whose vertices are
Vi,..., vy in cyclic order with respect to the positive orientation. For each i, let t;
be the orthogonal projection of v; on the line through v; s} and v, st where the

indices are taken mod #. By definition, ¢; is in the relative interior of [v,- pts Vg ],

and hence the geodesic segments [v;, t;] and [anTn, ti+nT+1] intersect in a point p;.

Let B; be the union of the two triangles:

B; = [Vi,Pi, t”"T“] U [VHnTH,Pi, ti];

we will call B; a butterfly. We observe that these butterflies cover the polygon (see
Sagmeister [27]).

https://doi.org/10.4153/50008439525000189 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525000189

Ordinary reduced hyperbolic polygons 5

Lemma 3.2 Let P c H? be an ordinary reduced n-gon, and B; be its i'h butterfly.
Then,

n
P=|JB.
i=1

We introduce a few additional notations for some angles of the butterflies. Let
$i=< (Vi’Pi’ ti+"T“) =< (bei’VmT“)
and
;= £ (t,-,v,-+nTu,pi) .

The following lemma from Sagmeister [27] shows that the two triangles involved in
the butterfly B; are congruent.

Lemma 3.3 The two triangles I:Vi,pi,ti+nT-H:| and [anTﬂ,pi,tJ defining B; are
congruent.

Another observation from Sagmeister [27] provides an upper bound for the sum
of the vertical angles of the butterflies.
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Lemma 3.4  For an ordinary reduced n-gon P with the notations from above,

ZQDiST[.

i=1

We note that for regular n-gons we have equality in the previous lemma. Also, in
the Euclidean plane, the angle sum is always 7.

Let ; be the angle « (anTﬂ, v,-,p,-) =z (pi, Vipnsi, vi). Also, let y denote half of
the inner angle of a regular triangle of minimal width w. We have the following.

Lemma 3.5 Let P be an ordinary reduced n-gon of minimal width w. With the
notations introduced above, we have 8; < y < a; with equality if and only if P is a regular
triangle.

Proof  First, we calculate the side length a of the regular triangle in terms of w. By
the hyperbolic Pythagorean theorem, we have

1) cosh a = cosh g coshw.
The identity
cosha = 2 cosh® g -1

combined with (1) leads to a quadratic equation for cosh 4, whose positive solution is

2
a coshw+\Vcosh“w+8

osh —
2 4

Now we apply the hyperbolic law of sines for half of the regular triangle:

sinh 7 1 —coshw + \/cosh®>w + 8

sinh a - 2cosh% N 4

(2) siny =

From the hyperbolic law of cosines applied for the right triangle [v,-, tis Vipnnt ] and
also for the half of the regular triangle, we have

3) coshw = < 2y _ cos (a; + i)

siny sin f;

We know that f; < «; (this is Theorem 2 (iii) in Lassak’s paper [13]), so from (3) we
imply

cos 2a; < cos 2y < c032/3i'

sina; = siny ~ sinf;
Finally, we observe that

cos2x 1-2sin’x

sin x sin x
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2
and that the function % strictly monotonically decreases. Hence, sin f3; < siny <
sin «;, which in turn concludes the proof as all of these angles are acute. The case of
equality is clear. [ ]

Lassak also proved [13] the following.

Lemma 3.6 Let D be the diameter of an ordinary reduced n-gon in H*. Then, the
endpoints of a chord of length D are vertices of the polygon, where if v; is one of the
endpoints of the chord, the other endpoint is either v, n1 07 v; w1

4 The perimeter of ordinary reduced polygons

With the same method that was used in Sagmeister [27], we can also investigate the
extremality of the perimeter. With the notations introduced in the previous sections,
let

1+cosx — \/(l+cosx)2 — 4tanh® w cos x
2tanhw

gw(x) =

and

pu(x) - h(l—g<x>tnhW)

V1- tanh® w

Then, we have the following formula for the perimeter.

Theorem 4.1 Let P be an ordinary reduced n-gon of thickness w described as above.
Then,

perim (P) = ZZn;Pw (¢i)-

Proof By the definition of ordinary reduced polygons, ¢; is in the relative interior
of the side [V”"T_l’ v,-+nT-1], )

perim (P) = Zn:d (vi,vin) = Zn: (d (vi, ti+n74) +d (ti,vin“)) .
i=1 i=1

On the other hand, d (v,-, biypnst

2

) = d(t,-,anTﬂ) by Lemma 3.3, so
perim (P) = ZIZ:d(t,-,anzﬂ).

Ifb; =d(p;,t;)and¢c; =d (pi,anTﬂ), tanh ¢; can be expressed as

tanhw — g, (¢;)

tanhc¢; = >
anne 1- gy (¢;)tanhw
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where we refer to Sagmeister [27]. Hence,

¢; = artanh tanhw - gu (1) .
1- gy (¢;)tanhw

Using the identity
1

1-x2

cosh (artanh x) =

and the hyperbolic Pythagorean theorem, we get
cosh c¢; B (1-gw (¢i)tanhw)\/1- g2 (¢;)

hb;,
coshbi\ [1- g2 (9,))* - (tanhw - g, (9:))
_1-g, (x)tanhw

V1-tanh®>w

concluding the proof. |

coshd(t,-,anTH) =

Now we are ready to prove the following.

Theorem 4.2  The function p,, is strictly monotonically increasing and strictly convex
on the interval (0, 7).

Proof Itisconvenient to use the notationr,, (x) = \/(1 + cos x)2 — 4tanh® w cos x,

$0
(4) ry (x) = ;W31(r;))c -(1+ cosx — 2tanh’ w)
and
, —sinx
6 () = 75 (tanh =g, (1),

We deduce

, tanh w sinx (tanhw — g, (x))

Pw (x) = 2 .
tanhw - g, (x)” + tanhw - 2g, (x) rw (%)

~ /tanhw (tanhw — g,, (x)) (1+ cos x)
T (%)
cos ¥\/2tanhw (tanhw — g,, (x))
rw (%)
cos %\/Ztanh2 w+r, (x)— (1+cosx)
rw (x) .

To calculate the second derivative, we use (4) to substitute r|, (x), and we get to a
common denominator. We also write sin x = 2sin % and 2 cos? g =1+ cos x. Thus, we
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obtain

o () = sing\/Ztanhzw +ry (x) - (1+ cosx).
! r (%)

x x
(cos2 5w (x) +2cos® S cosx - 2tanh? w) .

It is not too difficult to verify that this is positive; otherwise we can reorganize
cos® £r,, (x) +2cos” £ cosx — 2 tanh® w as an inequality that is quadratic in tanh® w,
and we get that if p/ is not positive, tanh® w is either negative, or greater than 1, but
both are impossible. Hence, p,, is strictly convex. ]

The usual argument used on the Euclidean and spherical planes to find the reduced
polygon with the minimal perimeter (see Lassak [12] and Liu-Chang [21]) uses
Jensen’s inequality after deriving a similar formula for the perimeter as in Theorem 4.1.
However, if we consider the results of Lemma 3.4 and Theorem 4.2, we find that
this approach does not work on the hyperbolic plane. Considering the perimeter
of random ordinary reduced polygons given by Theorem 4.1, we have the following
conjecture.

Conjecture 4.3  Let P c H? be an ordinary reduced n-gon of minimal width w. Then,
perim (P) < perim (P)

with equality if and only if P is regular.

We note that contrary to the Euclidean and spherical planes, the perimeter of the
regular n-gons of minimal width w is not necessarily monotone in #. Depending on
w, even the regular triangle can have a larger perimeter than the circle of the same
minimal width.

In a recent work of Chen, Hou, and Jin [4], a consequence of the minimality of
the perimeter of the regular n-gon of reduced n-gons of minimal width less than
7 on the sphere is that the diameter and the circumradius of reduced spherical n-
gons is minimized by the regular ones. Their argument gives the same result on
the Euclidean plane. However, as we have seen, on the hyperbolic plane, we do not
have the same result on the perimeter of ordinary reduced polygons. We propose
the following question regarding the diameter and circumradius of ordinary reduced
n-gons.

Question. Is the diameter and the circumradius of the regular n-gon extremal
among ordinary reduced n-gons of the same minimal width on the hyperbolic plane?

5 The diameter of ordinary reduced polygons

In this section, we strengthen Lassak’s Theorem 3.1 by using Lemma 3.5 in order to
find the infimum of the circumradii of ordinary reduced polygons of a prescribed
width. We have the following result.
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Theorem 5.1  Let P be an ordinary reduced polygon in H?. Then,

coshw + \/cosh® w + 8)

diam (P) < 2arcosh ( 1

with equality if and only if P is a regular triangle.

Proof Lemma 3.6 allows us to assume that diamP =d (v,-,vi +"T_1) for some
i, and we consider the right triangle [vi,ti,vi +L+1]. Recall the notations «; =
p (ti,v,+@,t,+n+1) and B; = < ( Vipes, v,,tz), and that « (ti,mm Vi ) =ai+ i

as a consequence of Lemma 3.3. Since d (vi> ti) = w, we get

sinhw-sina;  sinhw
sin (a; + B;) ~ 2cospf;

) sinhd (£5,v,,un ) =

from the hyperbolic law of sines, and using the inequality «; > 5; (cf. Lassak [13]),
the monotonicity of the sin function on the interval (0, 7 Z) and the identity sin 2x =
2sinx cos x. From Lemma 3.5, we also have 8; < y where y denotes half the angle of
a regular triangle of minimal width w, so we obtain

sinh w

(6) sinhd(ti,viJrnTn) < 2oy’

from (5). Now we use (6) and the identity cosh? x — sinh? x = 1 to obtain

inh?
coshd( J)S 14 W
2 4cos?y
We now use the hyperbolic Pythagorean theorem with the assumption d (vl, st ) =
diam P:
sinh® w

(7) cosh diam P = cosh w cosh d (ti,va) < coshw —_—

2 4cos?y

Clearly, from the equality case of Lemma 3.5 we imply that equality holds if and only
if P is a regular triangle. On the other hand if P is a regular triangle centered at p, in

the right triangle [ p, f;, v3 ], the angles are Z, Z and y, respectively, while the length

5
of leg opposite to the 5 angle is d‘am P 50 using the well-know identity cosh b = o K

for hyperbolic right trlangles of acute angles A and B and legs a and b respectively, we
obtain

diamP 1
2 2siny’

osh
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This together with (7) gives

. 12
sinh” w

= 2 arcosh —

arcosh | coshwy |1+ .
4cos?y 2siny

Finally, (2) concludes the proof. [

From this sharp upper bound we can see that Lassak’s following conjecture is true.

Corollary 5.2 Let P be an ordinary reduced polygon in H?. Then,

diam P
w

1< <2.

Proof  The first inequality trivially holds as diam P is the maximal width of P, and
equality holds exactly for bodies of constant width, which are h-convex, so no polygon
is of constant width (see Boroczky, Csépai, and Sagmeister [2] for further details).

The second inequality is an easy consequence of Theorem 1.1 and the strict
monotonicity of cosh for w > 0.

We can also observe, that both of these constant bounds are the optimal ones: on
one hand, regular (2k + 1)-gons are ordinary reduced polygons that approximate a
disk as k — oo, while on the other hand we also have

2 arcosh ( cosh w+V/'cosh? w+8 ) arcosh ( cosh w )
. 4 . 2
lim =2- lim
w—+o00 w W—>+00 w
. arcosh () - In(5)
=2 hm _ =2 llm =2.
w—>+00 w w—+00 w
|

The circumradius of ordinary reduced polygons

Now we answer another question of Lassak proposed in [13] with the following upper
bound for the circumradius.

Theorem 6.1  Let P be an ordinary reduced polygon in H* of width w. Then,

2
coshw + V cosh? w +8) ]

4

R (P) <arsinh % (

with equality if and only if P is a regular triangle.

Proof  The hyperbolic Jung theorem (see Dekster [5]) says that

. 2 . (diam(P)
R (P) < arsinh (\/§ sinh (2)) .
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Theorem 1.1, and the identity
sinh (arcosh (x)) = Vx2 -1

concludes the proof. The case of the equality is clear form the equality case of
Theorem L.1. =

As a consequence, we have the following.

Corollary 6.2  Let P be an ordinary reduced polygon in the hyperbolic plane. Then,
1 . R(P) .

2 w

1.

Proof  The first inequality follows from the monotonicity of the minimal width:
the minimal width of the circumcircle is 2R (P), but the circumcircle is reduced, so
w < 2R (P).

The second inequality is equivalent with

2
(coshw+\/cosh2w+8) V3

—1< — sinhw.
4

After taking the square of both sides, and applying the identity sinh” x = cosh® x - 1,
the inequality we want to verify takes the form

2
coshw + Vcosh® w + 8 3 2 1
h W+Z.

< —cos
4 4

With a few simple steps, we can reorganize this inequality as
0 < 6cosh*w—7cosh®>w+1= (6cosh2w - 1) (coshzw - 1),

which clearly holds.

Let us observe that these constants provide the best possible bounds for the ratio of
the circumradius and the minimal width. The sharpness of the first inequality comes
from considering a convergent sequence Py of regular (2k + 1)-gons of minimal width
w, whose limit is a disk of width w and radius 2w. As for the second inequality, we can

see that
2
arsinh (;g\/( cosh w+\/4cosh2 w+8) _ 1) arsinh (% (%)2 B 1)
hm = hm =
w—+00 w w—>+00 w
arsinh(i) In (i)
= lim — 280 iy Y3y
w—+o00 w w—+00 w

In the Euclidean plane, Fabinska [6] proved that for an arbitrary reduced polygon
of width w there is some boundary point, such that the circular disk of radius w
centered at that boundary point covers the disk. Musielak [25] showed that the same
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holds for spherical reduced polygons. The remainder of this section is dedicated to the
proof of the same statement for ordinary reduced polygons in the hyperbolic plane.
In most of the steps we can repeat Musielak’s spherical argument, but we also apply a
few minor adjustments. First, we will need a few lemmas.

Lemma 6.3  For a compact set X € H" and a point z € conv X, we have

() B(x,r)cB(z,1)

xeX

for any positive radius .

Proof If z € X, the statement trivially holds, so we assume z € conv X \ X. If we
consider the Beltrami-Cayley-Klein model, Euclidean and hyperbolic lie segments
coincide, so it is easy to see that Minkowski’s theorem holds, that is, convX =
conv E (X)) where E (X) denotes the extreme points of conv X We also have E (X) ¢
X, so clearly it is sufficient to prove

()B(x,r) € B(z,r)

x€E
for some set E € E (X).

Considering again the linearity preserving properties of the Beltrami-Cayley-
Klein model, by Carathéodory’s theorem there are k < n + 1 points ey, . .., e, in E (X)
such that z € [ey, ..., ex]. Naturally, we can assume that 0%, B (e;,) is not empty,
otherwise the statement is trivial.

It is easy to see that for a compact set Y, the function d (y, -) restricted to Y
attains its maximum for some point e € E (Y. Therefore, if we choose some point
yeNt B(e;,r),andweset Y = {ey,..., ez}, then

d(y,z) <maxd (y,e;) <r,
so y € B(z,r), and that concludes the proof. [

For a convex body K c H" and a positive number r, let us introduce the notation
C (K, r) for the set of centers such that the closed balls of radius r centered at points
in this set contain K i.e.,

C(K,r)={xeH"KcB(x,r)}.

Musielak’s following spherical characterization [25] still holds in H". We will omit
the proof, as his argument only uses metric considerations, and hence it remains true
in H".

Lemma 6.4  For a convex body K c H" and a positive number r,

C(K,r)= () Bl(er).

e€E(K)

Similarly, the following lemma of Musielak [25] remains true in the hyperbolic
plane as well. His inductive proof can be repeated to the letter, as hyperbolic balls of
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radius r are also r-spindle convex (e.g., this is a trivial corollary of Theorem 1.2 in
Boroczky, Csépai, and Sagmeister [2]).

Lemma 6.5 If K c H" is a convex body obtained as the intersection of finitely many
circular disks of radius r, then the boundary of K is the union of finitely many shorter
circular arcs of radius r such that they all have different centers.

For a convex body K, we also introduce the notation E* (K) as
E*(K)={ecE(K):|0C(K,r)ndB(e,r)|>1},

where 0X stands for the boundary of X and |X| for its cardinality. Then, from
Lemmas 6.4 and 6.5 we can immediately derive the following.

Corollary 6.6  Let P c H? be a convex polygon. Then,
C(P,r)= () B(er).

ecE*(P)
Finally, we have all the tools to prove the following.

Theorem 6.7  Let P € H? be an ordinary reduced polygon of minimal width w. Then,
there is a boundary point z € OP, such that P c B (z,w).

Proof  Assuming that P is an n-gon, we use the same notations as in Section 3. We
consider the set C (P, w), and we aim to show that the intersection C (P, w) n oP is
not empty. We prove this by contradiction.

Corollary 6.2 and the hyperbolic Jung theorem (cf. Dekster [5]) implies that
C (P,w) intersects the interior of P. If C(P,w) also contains some point in the
exterior of P, then the proof is complete by the convexity of C (P, w) (see Lemma 6.4).
So let us assume that C (P, w) is a subset of the interior of P.

Let ey, ..., e, be the points of E* (P) in a positive orientation, where we under-
stand the indices modulo m. By the assumption that C (P, w) lies in the interior of P,
it is easy to see from the definition of ordinary reduced polygons that 3 < m < n. By
Lemma 6.5, to each vertex e; in E* (P), there is a shorter circular arc €; of B (e;, r) on
the boundary. Let g; be the intersection of €; and C;;;. Lemma 6.5 and Corollary 6.6
implies that the boundary of C (P, w) is the union of short circular arcs of radius r
connecting gq; and q;; for 1 < i < m; let us denote these arcs by g;q;+1-

Each point e; of E* (P) is a vertex v,(;) for an injective map o:{1,...,m} -
{L,...,n}. We set s; = t;(;) for i € {1,...,m}. By our assumption, s; € B (e;, r) is
not in C (P, w), and hence it is not contained in the arc q;, g;+1-

Clearly, the points ey, q» and s are not collinear, since B (e;, w) 2 P, both g, and s;
are boundary points of the circle B (e;, w), on the other hand, while s, is a boundary
point of P, q; lies in the interior. Hence, s; is either in the same open hemisphere
bound by the line through e; and g, as g3, or as g, (or equivalently as e,). By
symmetry, we can assume without loss of generality that the first case occurs.

We also consider a diametral chord [x, y] of P. We note that x = v; and y = v, Jugt
for some 1< i < n where in this case the indices are understood modulo n (cf.
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Lassak [13]). Let x” and y’ be the orthogonal projections of x and y to the opposite
sides, respectively (i.e., x' = t; and y' = ti+nTil). Let m; be the midpoint of [x, y'] and
m, be the midpoint of [x’, y]. Then, if we consider the boundary of P, one of the
triples (x,my, y") and (x’, m,, y) are on the boundary in this order with the same
orientation, we assume without loss of generality that this is the positive orientation.

We can also assume that the triple (e;,x, e;) are on the boundary of P in this
order with respect to the positive orientation, where we allow the case x = e;. This
implies that (s;,x’,s;) also have the same order in the positive orientation, as all
chords [v;, t;] half the perimeter (see Lassak [13] or Sagmeister [27]).

By our assumption that C (P, w) is in the interior of P, so x’ is not contained in
B(eg,r) for some 2 < k < m (by the assumption on the position of p; and s;, we
deduce d (e1,x") < d (x,x") = w). We can also observe that there is such e, on the
opposite half-plane of the line through e; and p, as x’. Let z be the interior point of the
segment [x', ex ] such that d (x',z) = d (x, x) = w. In particular, z € P. Considering
the two triangles [z, x', y] and [x,x’, y], they have two equal sides with different
enclosed angle. This implies

d(z,y)>d(x,y) =diamP,

which is clearly a contradiction. |
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