Data-Centric Engineering (2022), 3: €26 CAMBRIDGE

doi:10.1017/dce.2022.26
UNIVERSITY PRESS

RESEARCH ARTICLE

Trajectory design via unsupervised probabilistic learning on
optimal manifolds

Cosmin Safta'* @, Roger G. Ghanem” ©, Michael J. Grant’, Michael Sparapany”’ and Habib N. Najm'

!Sandia National Laboratories, Livermore, California 94551, USA
2Unive:rsity of Southern California, Los Angeles, California 90089, USA
3Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
*Corresponding author. E-mail: csafta@sandia.gov

Received: 05 January 2022; Revised: 12 July 2022; Accepted: 14 July 2022

Keywords: Diffusion map; planetary reentry trajectory; probabilistic learning on manifolds; trajectory optimization; unsupervised
learning

Abstract

This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry
trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the
training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find
that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that
describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic
framework subsequently augments the original data with samples that are statistically consistent with the original
set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path
planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to
changing mission objectives in real-time.

Impact Statement

This article demonstrates the use of unsupervised learning techniques to extract low-dimensional manifolds
given limited data in high-dimensional configurations. This information is used to estimate conditional statistics
that are subsequently employed in designing trajectories under uncertainty without the need for additional model
evaluations or data collection campaigns.

1. Introduction

Real-time trajectory optimization for hypersonic vehicles is a difficult task that requires simultaneous
accounting for constraints related to flight dynamics, vehicle limitations during flight, variable initial and
terminal conditions, and a high-dimensional parameter set for the models employed for these systems.
Existing approaches to planetary reentry trajectory optimization problems can be generalized into two
categories: indirect methods and direct methods (Betts, 1998). Indirect methods are based on Pontryagin’s
minimum principle, and optimal control is determined by minimizing a Hamiltonian system with respect
to the control variables. These methods can result in high-fidelity solutions through adaptive refinement
techniques. Nevertheless, because of high-dimensionality and sensitivity to the initial guess, the resulting
boundary-value problems are quite challenging to solve (La Mantia and Casalino, 2006). Direct methods

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

JER\

@ CrossMark
https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://orcid.org/0000-0001-7219-7736
https://orcid.org/0000-0002-1890-920X
mailto:csafta@sandia.gov
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2022.26
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dce.2022.26&domain=pdf
https://doi.org/10.1017/dce.2022.26

€26-2 Cosmin Safta et al.

discretize trajectories into multiple segments characterized by state and control variables. The optimal
control problem (OCP) is converted into a parameter optimization problem (Fahroo and Ross, 2002),
which is typically solved via nonlinear programming (Betts, 2010) or convex optimization methods
(Wang and Grant, 2017, 2018). However, the computational expense for direct methods cannot be
estimated a priori, and solution convergence cannot always be guaranteed for hypersonic problems.
Despite recent improvements in the efficiency of both direct and indirect methods, their computational
expense is high, and convergence challenges limit their adoption for onboard trajectory generation.

Given numerical challenges and computational cost, recent advances in flight dynamics planning
algorithms have largely focused on the identification of single trajectory solutions. Nevertheless, during
the design process, the envelope of solutions corresponding to a wide range of trajectory constraints is
often required. While the computational cost can be afforded during off-line design and planning
activities, this approach becomes infeasible when data needs to be processed in real-time, often with
limited access to large computing capabilities.

Deep learning techniques have been recently successful in a wide variety of control problems across
several research areas including aerospace, in particular for path planning of unmanned aerial systems
(Choi and Ahn, 2020; Yan et al., 2020) and agile flight guidance (Loquercio et al., 2020). Deep learning
has also found applications in space mission planning. Deep neural networks (DNNs) are trained on
optimal state and control vectors that come from the numerical solution of an equivalent OCP. The DNN
learns a map from the state vector (e.g., position and velocity) to the corresponding optimal control (e.g.,
the angle of attack and bank angle), by leveraging the training data provided by the OCP solver. This
approach reduces the problem to a supervised learning task provided that a sufficiently large data set of
optimal trajectories is available for the problem at hand. Typical applications include the approximation of
optimal state-feedback control laws for interplanetary transfers (Izzo et al., 2019) and planetary soft-
landing maneuvers (Sanchez-Sanchez and 1zzo, 2018), as well as the real-time onboard generation of a
high number of optimal trajectories for either asteroid landing (Cheng et al., 2020) or atmospheric reentry
of hypersonic vehicles (Shi and Wang, 2020, 2021).

Federici et al. (2021) explored behavioral cloning and reinforcement learning algorithms for real-time
optimal spacecraft guidance in presence of both operational constraints and stochastic effects, such as an
inaccurate knowledge of the initial spacecraft state and the presence of random in-flight disturbances. The
performance of these models is assessed on a linear multiimpulsive rendezvous mission. Zheng and
Tsiotras (2021) employed DNNSs to learn the optimal feedback control law for online control prediction
and generating near-optimal trajectories. Based on the observation that the optimal feedback control law
for the finite-time control problem is nonstationary and also may be discontinuous, this work uses the time
label as an additional state of the dataset and introduces a clustering approach to sort the training data.
Clustering divides the offline trajectories into groups, and a separate DNN model is trained for each group.
This approach generates near-optimal trajectories that steer a system from any initial state inside a specific
group based on the DNN consistent with the corresponding training data. The training data generation and
DNN training are done offline, thus the online computation is minimized. The algorithm has been tested
on several systems including a vehicle entry model. In all studies referenced above, the DNN typically
requires 0(104 -10°) or more samples to train.

Deep learning frameworks typically require a large number of training samples. This can become a
burden depending on the computational complexity of the trajectory model. Instead we will focus on
unsupervised learning that aim to assimilate information from a limited number of samples. These class of
methods is particularly efficient in high-dimensional settings when the target data describes physical
systems that encode correlations and dependencies between the system components. Specifically, we
propose to use an unsupervised probabilistic learning framework based on diffusion map (Coifman and
Lafon, 2006; Soize and Ghanem, 2020) to assimilate the solution space of flight dynamics model inputs
and outputs to (a) identify underlying low-dimensional manifolds, and (b) provide a stochastic differential
equation model that can efficiently generate many sample trajectories on these manifolds that are
probabilistically consistent with the training data. The diffusion map (DMAP) algorithm assimilates
computed samples adaptively until the basis sets describing the low-dimensional manifolds converge fora

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering €26-3

given set of trajectory constraints, thus utilizing available computational resources judiciously. Then, in
this joint and low-dimensional space, the algorithm generates solution paths with limited computational
requirements. We introduce a sequential path planning algorithm that relies on conditional statistics
computed on the manifold to generate trajectories that adapt to changing conditions without the need for
additional expensive flight dynamics simulations. These trajectories are equipped with uncertainty ranges
that are consistent with the amount of data.

This article is organized as follows. Section 2 presents the modeling framework for this work, including a
three-degree-of-freedom (3DOF) trajectory model and the optimal control algorithm. Section 3 presents the
unsupervised probabilistic learning approach, followed by the results in Section 4. We end with conclusions
in Section 5 and an appendix presenting the continuation schedule for the OCP.

2. Modeling Framework
2.1. Trajectory model

We consider a 3DOF model (Busemann et al., 1976) to describe the reentry trajectory of a hypersonic
vehicle assumed as a point of mass inside a planetary atmosphere. Further, we assume a spherical planet
model with the distance from the planet center to the vehicle location given by r = r, + h, where r, is the
planet radius and /4 the altitude from the planet surface to the vehicle position. The three kinematic
equations for the vehicle altitude 4, longitude 6, and latitude ¢ are given by

dh df cos(y)cos(y) dé _ cos(y)sin(t//)'

a0 T s d T ®

dt

In the results presented in this article, we will use the longitude/latitude coordinates interchangeably

with downrange/crossrange coordinates by conversion from angles to spatial coordinates projected onto

the planet surface. The vehicle velocity vector V relative to the planet is expressed in terms of its

magnitude v and two angles: the flight path angle y between the velocity vector and the local horizontal

plane and heading angle y between the projection of V on the horizontal plane and the local latitude
parallel. The force equations for these components are given by
dv 1 P psin(y) dy Fycos(o) u

v
dt m ' 2 dt m v —mcos(y)—t—;cos(y)

d in (o

2

Here m is the mass of the vehicle, # = 3.986 x 10'* m3/s? is the gravitational parameter, and (Fr, Fy) are
the components of the aerodynamic and propulsive forces along and perpendicular to the velocity vector.
This work pertains to nonthrusting flights resulting in Fr =—D and Fy =L, where D and L are the
aerodynamic drag and lift forces, respectively. The bank angle ¢ in equation (2) accounts for the angle

between the direction of the lift force L and the (7, \7) plane formed by the vector from the center of the

planet to the vehicle location and the velocity vector.

For the remainder of this article, the location and velocity components are grouped into a state vector
denoted by x = {h, 0, ¢, v, 7, w}. The angle of attack and the bank angle are grouped into the control vector
denoted by u = {a, o}, and the 3DOF model can be written as x = f'(x, u) where f is defined by the set of
right-hand sides of equations (1) and (2).

2.2. Vehicle model

For this study the vehicle model is a blunt cone with mass m = 350 kg, reference area A.f = 7 X 0.305% m?,
and nose radius r, = 0.0254 m (Sparapany and Grant, 2020). The lift and drag coefficients are given by

Ci(a) =coa Cd(a):claercz

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

e26-4 Cosmin Safta et al.

respectively, where a is the angle of attack (in radians). For the lift coefficient, the slope is set to
co = 1.5658. For the drag coefficient, the model parameters are given by ¢; = 1.6537 and ¢, =0.0612.

The lift and drag forces are functions of the angle of attack, altitude, and velocity magnitude, and are
computed as

L=0.5p(h)V*Ci(@)Aret, D =0.5p(h)v*Cy(0)Ares

where A, defined above, is assumed independent of the angle of attack. The atmospheric density is
approximated with an exponential dependence on altitude as

p(h) = poexp (~h/H)

where p, = 1.231 kg/m? is the atmospheric density at /=0 and H is a scale constant. For this study we
have generated data using a range of values H € [7000, 8000]m to simulate the uncertainty in the
atmospheric density.

2.3. Optimal control problem

We construct a variational problem to generate trajectories based on the models presented in Sections 2.1
and 2.2. For the dependent state vector x, the variational problem seeks a time-dependent angle-of-attack a
and bank angle o that maximize the magnitude of the terminal velocity vy at the desired endpoint given by
G(x(tr).17) : RO x R R?

h(t) = hy
Glx(r),1) = | 6() 0y |, 3)
(1) — by
while satisfying the 3DOF model x=f'(x, u,t). Here, (hf, 0y, ¢f) are the desired terminal values the

altitude, longitude, and latitude, respectively.

The initial location of the vehicle is fixed with the initial constraint function F:R® x R*—>R®. F is
similarly defined for the initial values of the state vector components xg = x(o) = (ho, 6o, o, V0 Yo» ¥o)
such that F(x(t),) —xo = 0. Finally, U : R%—R’ represents [state path-constraints. The free final-time
variational problem is posed as

Iy
minJ:/ Ldt—v]%
u(t) to
Subject to: x =f(x, u, t)
F(x(19),10)=0

G (x(r).1) =0

Umn<Ui(x) SUimax. i=1, ..., 1

“

In the objective function above, we included an integrand term, £, that is identically O to be consistent with
the Lagrange multiplier integral described below. We employ the beluga framework (Sparapany and
Grant, 2020) to solve the variational problem posed in equation (4) using indirect methods (Longuski
et al., 2014). This process is succinctly described here for completeness and in more detail in Sparapany
(2020). First, the state path-constraints, U, are treated using trigonometrization (Mall et al., 2020). This
involves adjoining each path-constraint to the path-cost function with small error parameters o,

L= £+Z(5 (sec <’;2U() UTAXfUi’MIN) —1),)

Uimax — UimiN

where £ was chosen to be £L=0 from equation (4). Next, the initial, terminal, and dynamic path
constraints are adjoined to the cost functional with Lagrange multipliers &, ¢, and 4,

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering e26-5

i,
Iil(itglJ*:/f (£+2T(f—5c))dt+§gFo+§fTGf—v}, (6)
0
where F := F(x(lo), t()) and GfﬁZG(x<l‘f), l‘f) .
Next, we introduce the Hamiltonian, H = £ +A’f, and define the Euler—Lagrange operator & as
0 d o

=, 7
ay dtady ™

where y = (x,u,4). Application of the Euler-Lagrange operator and integrating by parts solves the
original variational problem. The result is an analytical formulation in the form of a two-point Hamil-
tonian boundary value problem (HBVP),

(O o oH
I R Ou
oF 0G 8
)N(IO) 2—4"5&,)»(tf) Zé‘fE—va ()

H(y)=0, Fy=0, G;=0

The first three terms in equation (8) define the equations-of-motion in a Hamiltonian dynamical system
while the latter five terms define values at the boundaries. From this, approximate solutions to equation (4)
may be found indirectly by numerically solving equation (8). In beluga the right-hand sides in equation (8)
are constructed using symbolic manipulation with SymPy (Meurer et al., 2017). For more details regarding
the numerical solution of this system see (Kierzenka and Shampine, 2001; Sparapany, 2020).

3. Probilistic Learning on Manifold

Probabilistic learning on manifolds (PLoM) is a recently developed unsupervised learning technique for
augmenting small datasets in a principled manner (Soize and Ghanem, 2016, 2020). The method views a
training set as a graph with vertices in feature space, and generates replicas of this graph that are consistent,
both structurally and statistically with the training graph. An intrinsic structure is first extracted from the
training dataset and is subsequently used to constrain statistical sample generation. This intrinsic structure
takes the form of a subspace spanned by the so-called diffusion coordinates associated with the
eigenvectors of the graph Laplacian of the training dataset. The sample generation is in the form of a
projected Itd equation constrained to the span of these diffusion coordinates. Each additional generated
sample is a statistical replica of the training data, restricted to the same dominant diffusion coordinates. In
this section, we summarize this construction with the requisite technical details for a self-contained
assessment of the article. A more complete presentation can be found elsewhere (Soize and Ghanem,
2016).

We construe the initial, training, dataset x¢, with N samples and » features, as a realization of a n x N
matrix-valued random variable X with n rows and N columns. Here, we update our notation for x,
extending its meaning from denoting one state along the trajectory to denoting the collection of states that
numerically define the entire trajectory. Our objective is to generate a new dataset x“, the augmented
dataset, as realizations of X. This new dataset is probabilistically consistent with the original data, it can be
used to augment it for subsequent statistical tasks, including the estimation of marginal and conditional
density functions (Ghanem and Soize, 2018) and for nonparametric regression. The first step is to
decorrelate the features of X, through a linear transformation ® = x~'/2®” (X —X) where x is a diagonal
matrix with the dominant v eigenvalues of the n X n covariance matrix of X and @ is a n X v matrix of the
associated eigenvectors. Also, X denotes the n x N matrix with duplicate columns that are each equal to the
average of the features over the N samples. This initial decorrelation step is a straightforward application
of the standard PCA procedure to the dataset x“.

We will denote samples of X by x and samples of ® by #. The sample of ® associated with x4 will be
denoted by 5. Next we extract and describe an intrinsic structure from #?. The first step is to select a

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-6 Cosmin Safta et al.

diffusion kernel (k, (17, 7';¢) : R" x R"—R) that will be used to define proximity on the graph in R" with N
vertices. Here, ¢ is a parameter of the kernel, typically characterizing its bandwidth. We next construct an
N x N diffusion matrix K, from the training dataset, such that K;; = k (#¢, 1]2) ,and we normalize K so that
the sum over each of its rows is equal to 1. The resulting stochastic matrix, P, can thus serve as a transition
matrix for a Markov chain on the graph. Its eigenvectors are denoted by w*, a=1,---, N. Given its
construction, the largest eigenvalue of P is equal to 1 and the associated eigenvector is a constant. The
N x m matrix consisting of the m eigenvectors associated with the next largest m eigenvalues (excluding
the largest unit eigenvalue) is denoted by g. It should be noted that while matrix P is nonsymmetric, its
eigenvalues and eigenvectors can be shown to be real, and can be evaluated from an associated symmetric
matrix (Soize and Ghanem, 2016). The eigenspectrum of P typically exhibits a sharp, almost discon-
tinuous, decrease after the first few eigenvalues. We assign the index of the eigenvalue corresponding to
this drop to the numerical value of m.

With the above procedure, we have now constructed a basis set, g, called the diffusion coordinates, that
localizes “ to an m-dimensional subset in RY. We emphasize that this localization is not in R”, which is
what the PCA usually accomplishes.

The next step in our procedure is to describe an initial representation of the joint probability distribution
of the random matrix H. This is accomplished in two steps. First, the N samples of the n features are used
to estimate the joint PDF of these features using an n-dimensional Gaussian mixture model, and kernel
density estimation (KDE). Then the joint density of the whole graph is constructed with the assumption of
independence among its N vertices. The joint PDF model, in RV*Y, for the whole graph is therefore the
product of N joint pdfs, each defined in R” and represented as a KDE centered at one of the N vertices.
This final representation is in the following form of the product of sums of Gaussian kernels,

18 N1 o
qH('I)ZNHZZk(n"”,n’;E), ©)

i=1 j=1

where k(1, ;&) is a Gaussian kernel on R” with bandwidth &, #% is the value of #¢ at the jth vertex, and 6
is the value of # at the ith vertex. Criteria have been developed (Soize and Ghanem, 2016) for selecting the
bandwidth £ so as to propagate the normalization and orthogonality conditions inherited from the PCA
step described previously.

The third and final step in the PLoM procedure is to construct a generator of samples that are
constrained by the diffusion coordinates while being informed by the KDE, both of which are synthesized
directly from the data. To that end, we start with a Hamiltonian form of the It6 equation whose invariant
measure is defined by the above KDE with respect to the Lebesgue measure. The Hamiltonian form of this
equation allows to develop an efficient symplectic integration scheme (Soize and Ghanem, 2016). A
reduced-order It6 stochastic differential equation (ISDE) corresponding to a change of variables involving
the diffusion map eigenvectors g is derived. The ISDE for €R™ is written as

az(&) =)
4¥(0) =L(Z())dC ~ 3o ¥ O+ TadW (), (10)
Z(0)=04a Y(0)=Na a=g(g'g) .

where L(Z) = Vlogq(ZgT)a is the projected potential, N is a v X N matrix whose N columns are
independent copies of a standard Gaussian vector in R”, and f, is a damping parameter. Further, the
columns of W are N independent copies of a normalized Wiener process projected on the matrix a.

Similar to (Soize and Ghanem, 2016), here we employ a Stormer—Verlet scheme to integrate equation
(10). After a brief nonstationary period in the It6 dynamics, samples of @ are reconstructed from samples
of Z as

' =2z'g" £=1,-, nuc. (11)

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering e26-7

Realizations of the original random variable X are then obtained by reversing the application of the
PCA on #°. These realizations will augment the original set of samples of X and will be used for the
purpose of computing statistics (means, quantiles, and PDFs) conditioned on select observations at
intermediate stages along specific trajectories.

4. Results

In this section, we will characterize the set of trajectories discussed in Section 4.1 using the algorithms
presented in the previous section. We will first inspect the topology of these manifolds via their
corresponding basis vectors in Section 4.2. We will then verify in Section 4.3 that the augmented set
of trajectories generated via manifold sampling are consistent with the 3DOF model, and then introduce in
Section 4.4 a workflow for sequential path planning using the augmented dataset to generate conditional
statistics for the state and control vectors.

4.1. Training data

For this study, we consider planetary reentry trajectories generated using the model presented in
Section 2.1 given a number of parameters treated as random variables. Specifically, the initial height,
hy, velocity magnitude v, longitude 6y, latitude ¢, were sampled from uniform distributions, with ranges
presented in Table 1. The constant H present in the atmospheric density model was also treated as a
uniform random variable. The initial flight path and heading angles were fixed to 0, y, =y, =0, that is,
the trajectory start in a horizontal plane, along the local latitude parallel. The terminal location, iy =0,
O =3°, ¢, =27, was also fixed in this study.

In addition to the parameters shown in Table 1, the computational model also includes a set of path
constraints, resulting in trajectories that avoid circular regions centered around the two circles shown in
the left frame of Figure 1. The intensity of these constraints is controlled by an additional parameter, o.
When setting 6 = 0, the path constraints are not activated, resulting in a set of trajectories depicted in gray
in Figure 1. The optimization framework uses a numerical continuation algorithm to increase the strength
of path constraint expressions, resulting in the trajectory samples shown in blue and red, respectively.
These samples correspond to the same value, 6 = 400, and are colored according their topology: the blue
samples correspond to paths that go in between the two regions while the red samples avoid these regions
and stay on the left side. The appendix provides additional details related to the set of continuation stages
employed to generate the trajectory dataset for this study.

For this study, we employed 1, 100 samples drawn independently from the uniform distributions
presented in Table 1. For each sample, we generated 41 trajectories corresponding to equally spaced o-
values, from 6 =0 to 6 = 400.

For each parameter sample, the time-dependent values for the dependent variables (location and
velocity components) and the control variables (angle of attack and bank angles) are interpolated on a
uniform time grid, and the corresponding solution vectors are concatenated together with the time grid.
The parameter values that control the simulation, that is, the ones corresponding to Table 1 are also
appended to the solution vector, in addition to the value of path constraint parameter 6. Each sample vector

Table 1. Parameter ranges for the uniform random variables that control the trajectory dataset.

Parameter
ho [m] 0o [deg] Po [deg] vo [m/s] H [m]
Min 38 x 10° —-0.3 —-0.3 2000 7000
Max 45%x 103 0.3 0.3 2200 8000

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-8 Cosmin Safta et al.

40

w
S

Height [km]

50

Crossrange [km]

10

50 0 50 100 150 200 250 300 350
Downrange [km]

500 750 1000 1250 1500 1750 2000 2250
Velocity Magnitude [m/s]

Figure 1. Sample trajectory data. The left frame shows the downrange/crossrange solution components
and the right frame shows velocity/height components. The samples shown in gray represent the
unconstrained components while the red/blue samples correspond to the maximum path constraint
condition, 0 = 400.

becomes a column in the matrix of samples that will be processed via the algorithms presented in the
previous section. Since all trajectories have the same initial conditions for the flight path and heading
angles and the same terminal location, the matrix is rank defficient if these values are included in the
solution vector. Instead we choose a time grid that starts at 1% and ends at 99% of the total duration of
each trajectory. In order to preserve the information about the total duration, the total time for each
trajectory is also appended to each sample vector.

4.2. Manifold construction

In this section, we illustrate the performance of the DMAP component of PLoM while assimilating the
high-dimensional space that describes the 3DOF trajectories. This approach reveals a relatively small set
of eigenvectors, typically 45 — 52, that are sufficient to describe the corresponding low-dimensional
manifold. We also highlight the utility of this algorithm to both detect outliers that are not otherwise
evident in the physical space. Upon the removal of these outliers, one can “zoom-in” and inspect
relationships between samples, including proximity between samples along the diffusion manifold
geodesics.

First, we inspect the impact of kernel bandwidth on the intrinsic dimensionality of the diffusion
manifold and the topology of the basis vectors. For this task we select a random subset of trajectories from
the dataset. This random subset includes trajectories corresponding to random choices for the initial
altitude, longitude, latitude, and velocity, as well as random choices for the path constraint parameter J.
Figure 2 displays the eigenvalue spectra for several values of the kernel bandwidth . The results in the left
frame of this figure indicate a manifold dimension m = 52, for a graph Laplacian using a kernel bandwidth
of ¢=1,000. For smaller bandwidth values, for example, for ¢ =200, the eigenvalue decay is mild
indicating a less-defined structure in the high-dimensional space of trajectories. The topology of the first
two basis vectors is presented in Figure 3. The first row in this figure is constructed with the same dataset
as for the results presented in the left frame of Figure 2. These plots show that most of the components for
the first two basis vectors are concentrated on much smaller values compared to a few select trajectory
samples; one of these samples is highlighted in red in these figures as it stands out even for a relatively
large bandwidth, & = 1, 000. It appears these samples are significantly different compared to the rest of the
training set based on the magnitude of their entries in the diffusion map vectors. These are much larger in
magnitude compared to the entries corresponding to rest of the samples resulting in these sample standing
out while the rest of the sample cluster together.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering €26-9

10—2 4 \

— =100 — ¢ =500

1

==
—

-4] -4 |
1073 —— £=200 —— £=1000 10
— ¢ = 300
1075 T T T r T 1075 T T T T T T -
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

i i

Figure 2. Eigenvalue spectra for several values of the kernel bandwidth e: (left frame) results
corresponding to the entire training set; (right frame) results obtained after several
edge samples were removed from training.

le—6
0.04
°) 104
4<
0.031
~ o o ~ 0.5
H# # #
n 0.02 %) K
@ @ 04 ° @ 0.0
Qo Qo Qo
0.014
,ZA _05<
00019 . . — . . . ° . : . =
-0.20 -0.15 —0.10 -0.05 0.00 —0.0003 —0.0002 —0.0001 0.0000 -1.0 -0.5 0.0 0.5
basis #1 basis #1 basis #1 le-6
le—6
[J 2
0.0006 ' 1
o o~ o~
EN L4 EN ° #
«» 0.0004 4 w 01 @ w
@ @ @
© © ©
Q Qa -14 Qo
0.0002
-2
0.0000 1@ [L
-0.003 -0.002 -0.001 0 -2 -1 0 1
basis #1 basis #1 1le-6
le-6 le-6
2<
5.01
~ 2.5 ~ 19 ~
#
v 0.01 %] %)
2 2 o 2
a —-2.51 Qo o
-1+ o
_504
L]
-7.54 -2, . . -
-5.0 -25 00 25 5.0 -2 -1 0 1
basis #1 le-6 basis #1 1le-6 basis #1 le-7

Figure 3. Scatter plots showing the entries in the two most dominant eigenvectors for all samples in blue,
with superimposed red circles for edge cases. Left to right columns correspond to diffusion map
results based on & = {200, 500, 1000}, respectively. Rows show results after edge cases are
sequentially removed from the datasets (top to bottom).

We proceed to examine the impact of removing these edge (outlier) cases on the diffusion manifold
basis vectors. The remaining rows in Figure 3 display a sequence of results obtained after edge cases are
gradually removed from the training dataset. The results on the second row correspond to a training
dataset for which the sample shown in red in the first row was removed, while the results on the third row
correspond to a dataset with three additional samples, highlighted in red on the second row, removed from

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-10 Cosmin Safta et al.

= original — FOW2
rowl — row3

10! 10t

] T\

0 250 500 750 1000 0 50 100 150 200 250
& &

Figure 4. Manifold dimension m dependence on . Results labeled “row 1" through “row 3” correspond
to the same sequence of datasets underlying the results shown in Figure 2, while results labeled
“original” are based on the original dataset before outlier removal.

training. As more edge samples are removed from the training dataset, we are able to “zoom-in” on the
manifold structure that contains the bulk of the samples. The results on the bottom row are obtained after
several sets of samples are removed from the training dataset. These results correspond to the same
analysis displayed in the right frame of Figure 2. The eigenvalue decay presented in this figure indicates
now that a diffusion manifold can be defined by a smaller number of basis vectors, approximately 45, and
the sharp transition can be obtained with a smaller bandwidth, that is, the training dataset is more compact
after removing edge cases identified through a sequence of diffusion manifold basis vectors. This exercise
also suggest that the bulk of the manifold structure can be represented with a relatively reduced set of basis
vectors, while edge/outliers cases add to the manifold dimensionality, as additional information is needed
to replicate low probability regimes.

Figure 4 shows the dependence of the manifold dimension m on the kernel bandwidth ¢. For all datasets
the manifold dimension exhibit a minimum value at intermediate values for &. The magnitudes of these
minima correspond approximately with the number of outliers observed in the corresponding dataset. For
results corresponding to the original dataset, there is one training sample that is sufficiently different from
the remaining data. This sample dominates the manifold structure up to ¢ =% 900. Beyond this value, the
kernels become sufficiently diffuse to diminish the impact of this sample, and the manifold dimension
stabilizes around m ~ 50. Once this sample is removed from the dataset, the next layer of edge cases
become dominant (see results corresponding to row 2). Since these samples are now less removed from
the bulk of the samples, one can “zoom-in” on the manifold structure at smaller bandwidth values, for
example, €~ 250, compared to the previous, much larger bandwidth values. The trend continues as
subsequent edge cases are removed.

Figures 5 and 6 show the trajectories present in the training sets with gray lines and several sets of edge
samples with thick colored lines. These trajectory samples, illustrated in physical coordinates, do not
immediately stand out compared to the bulk of samples, shown in gray. It can be argued that samples
displayed in magenta and cyan correspond to trajectories that take the longest to reach the terminal
location. Nevertheless, these are the last sets of outliers identified in the sequence presented above. Earlier
outlier sets, that are further removed in manifold coordinates, for example, the samples shown in red and
blue are not clearly distinct from the bulk. This observation highlights the utility of examining the data ina
diffusion map context, thus revealing high-dimensional samples that are structurally different compared
to the bulk.

4.3. Augmented dataset consistency with the 3DOF model

The PLoM framework provides, once the diffusion manifolds coordinates are available, a generator of
samples that are constrained on the low-dimensional manifold and are probabilistically consistent with the

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering e26-11

0.035
40000 0.030
0.025
30000 _ _ 0020
—_ kel h=]
E © 8 0.015
< 20000 o =
@ ® 010
10000 0.005
0.000
0 -0.005
2250
2000
1750
— 1500 —
L4 o
E 1250 £
> -
1000
750
500
250 1, ! ! ‘ ! ! -1.04 ‘ ! ! ‘ ! ; } I ‘ |)
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t[s] t[s] t[s]

Figure 5. Trajectory data defining the samples used for learning the diffusion map representation: gray
lines show a random subset of 100 samples, red/blue/green/magenta/cyan show samples removed from
the learning set (in this order).

0.034

0.02

¢ [rad]

0.01+

0.001

0.00 0.01 0.02 0.03 0.04 0.05
6 [rad]

Figure 6. Same dataset and color scheme as in Figure 5, shown in longitude/latitude coordinates.

original data. In this section, we will determine whether or not the samples generated via the stochastic
differential system in equation (10), are consistent with the 3DOF model used to generate optimal
trajectories via the OCP, that is, the synthetic samples represent realistic planetary reentry trajectories.

We first determine the requisite size for the synthetic dataset. We find that between 10° and 2 x 10°
replicas are necessary to construct converged marginal probability density estimates for intermediate and
terminal state vectors (results not shown). All synthetic samples generated via equation (10) employed a
step size Ar =0.1 and a damping parameter f, = 1, according to Soize and Ghanem (2016).

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-12 Cosmin Safta et al.

For each synthetic trajectory in the augmented set, we numerically evaluate the time derivatives in the
left-hand side of equations (1) and (2) via finite differences, then compute the discrepancy with the right-
hand side

Xii—xi 1
rig=———L——(f,(xic1 ui1) (%0). (12)
ti—1ti—1 2
Here, subscript i represents the time index and subscript j represents the component of the state vector x.
Additionally, for the residuals corresponding to the altitude / and velocity v we scale the residual by the
average magnitude over each time interval

2

_ 13
Xi-14 +Xij ()

Vij —Fij X
Finally, for each synthetic trajectory we evaluate the L,-norm of the residual over all time steps and state
vector components. These results are collected for all trajectory samples in the augmented dataset
constructed via equation (10).

Figure 7 shows histograms for several sets of trajectories conditioned on select terminal velocity values
vy and path constraint parameter J values. The samples used to construct the results in the left frame are
conditioned on vy =650 [m/s] and 6 =100, p(-|v, =650, = 100). The results in the middle and right
frames correspond to trajectories conditioned on the same terminal velocity but increasingly path
constrained, with 0 =200 and 300, respectively. We selected several ¢ values to assess the impact the
manifold-construction KDE bandwidth ultimately has on manifold-sampled trajectories. For all cases,
the residual L, norms are 0(10_3) and of the same order of magnitude as the numerical residuals for the
training dataset, shown with black histograms in this figure.

We conclude that the samples in the augmented dataset are consistent with the underlying 3DOF model
and thus follow the same system dynamics as the original dataset generated via the OCP solution. This

14000 1 [e=2x10? 14000 [e=2x10?
[e=5x10? [e=5x102
120001] e=10° 120001 3 e=10°
10000 4 [training data 10000 [training data
& 8000 O 8000
o
6000 6000
4000 4000
2000 2000
0+ . - . . 0
0.0011 0.0012 0.0013 0.0014 0.0015 0.0011 0.0012 0.0013 0.0014 0.0015
3DOF Residual Norms 3DOF Residual Norms
14000 4 1 e=2x102
12000 1 [e=5x10?
1 e=103
10000 1 '~ training data
w8000
a
o
6000 1
4000 A
2000 A
0 T v
0.0011 0.0012 0.0013 0.0014 0.0015

3DOF Residual Norms

Figure 7. Distribution of 3DOF residual norms for synthetic trajectories conditioned on the terminal velocity
of 650 m/s and several values for 6: 100 (top left frame), 200 (top right frame), and 300 (bottom frame).

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering €26-13

allows us to employ these synthetically generated trajectories for path-planning exercises without the
need for additional, computationally expensive, OCP simulations. We will illustrate such a path-planning
algorithm in the next section.

4.4. Path planning via PLoM

We now introduce a workflow that adjusts the vehicle trajectory sequentially using the observed state
vector at intermediate locations, including the option to change flight path objectives mid-flight.

We start the workflow, presented below in Algorithm 1, by defining an objective for the vehicle
trajectory, obj,. This objective consists of an ensemble of constraints, either deterministic or probabil-
istic. In this section, we will display several examples, using either the same set of constraints throughout
the flight or a set of constraints that adjusts during the flight. It should be noted that these objectives
should not be confused with the cost function defined in Section 2.3. Rather, we would like to select from
the manifold of optimal solutions, constructed as described in Section 2.3, the set of samples that satisfy
additional constraints without having to recompute the OCP. These constraints restrict the range of
admissible solutions to a subset on the manifold previously computed. For the examples presented
below, obj, corresponds to reduced ranges for the path constraint parameter ¢ and limits on the terminal
velocity vy. Once the initial objective obj,_, is defined, we estimate the trajectory that satisfies this
objective as a conditional expectation solution constrained on the manifold of optimal trajectories. This
yields the set of state vectors x(¢) and controls u(®) required to realize this trajectory. We then enter a
control loop corresponding to rows 3—8, during which the control u is adjusted over a series of stages to
correct for errors in the vehicle path, as well as to adjust the controls in case the set of constraints imposed
on the workflow changes during the flight. In the workflow below, the time step Az is represented as a
fraction of the trajectory duration. Inside the control loop, we first proceed with estimating the trajectory
over a specific stage [, t + At] (row 4). It is possible that, due to model errors or incomplete knowledge of
the environmental condltlons the expected state vector at 1+ Af, xi +> a,» Will not match the actual
(measured) solution, xﬁ A~ If this discrepancy is larger than a lower bound threshold ga,, or if the overall
objective has to be adjusted, that is, obj,, », 7 obj,, we proceed to update the set of controls for the next
flight segment on line 7.

Algorithm 1: Sequential path-planning algorithm using conditional sampling on manifolds.

-

select initial objective, e.g. obj,_g;
2 Compute expected trajectory E[x, ulobj,_o] — (x(¢),u(®));
3 while r < t,.,,4 do
4

advance from ¢ to t + A, using the expected control u(f)r A
5 retrieve position at 1 + A;: ,(TA) >
6 | if|xio) —xm H > €a, V (0bj;,a, # 0Dj;) then
7 ‘ re-compute controlE[ulobj,ya, X t(m), - ulgi)Al,l(»nd’
8 end
9 t—= 1+ A

10 end

Figure 8 displays the conditional marginal PDFs for the vehicle location, p ((9 B)iinr |x,m)) (left
frame), p ((h, 0)iar \xﬁm)> (middle frame), and p ((h, b)), At|)c§m)) (right frame). The sequence of stages in

this figure are constructed using Algorithm 1. These results are based on the same initial condition for the
vehicle height, velocity (2, 000 m/s), and longitude, and density model constant. The initial latitude values
for these simulations were set as indicated in the figure.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-14 Cosmin Safta et al.

N
3
®

Height [km]
Height [km]

Crossrange [km]

100 150 200
Downrange [km] Downrange [km] Crossrange [km]

50 100 150 200 250 300 0 50 100 150 200 250 300 0 50

Figure 8. 2D PDFss for vehicle location at intermediate locations for trajectories that originate at hy = 40
km, 6y =0 rad, and ¢, = {0(black), 0.001(red), 0.002(green), 0.003(blue) } rad. The initial latitude

values correspond to {0, 6,12, 18} [km] in the crossrange coordinates. The “x” symbols mark the start
and end points and the large circles mark the location of the exclusion regions.

At each intermediate stage 7, we compute the statistics for the set of trajectories at ¢+ Ar by

conditioning on the current state vector xﬁ’”) at time ¢. For this example we adopt, and condition on, a

time varying model for the density model constant H = H(¢) to demonstrate our approach for cases where
the atmospheric conditions change during the flight. For the results displayed in this figure, we assume
that H(z) = (7,700 — 300¢) m, where time 7 was normalized by the trajectory duration, thatis, ¢ € [0, 1].
The range of uncertainties that arise from one stage to the next are due to the range of training data used for
this demonstration. Here, we consider results corresponding to obj, = {50 < 6 <400}. The range of path
constraint values results in the statistics shown in the figure below.

These results illustrate conditional statistics constrained on a manifold corresponding to a multimodal
behavior. The multimodality here is induced by set of trajectories that avoid the two regions shown by
circles in Figure 8. These exclusion regions partition the training data into two subsets, with one set of
trajectories passing in between the two regions and the other avoiding the two regions on the left.
Depending on the start of each trajectory assembled via Algorithm 1, the conditional densities for the
vehicle location evolve on either of these paths. For the run shown in black, the sequence of intermediate
locations point to an ensemble of paths going in between the two circles. For the simulation shown in red,
the location at the 10% mark (the first set of contours near the start points, details also shown in the inset
frames) displays a bimodal behavior. At this time stamp the trajectory finds itself in the mode that is near
the set of results for the simulations shown in blue and green. These sets of results evolve together and as
trajectories funnel toward the terminal location. The second inset in all frames focuses on the marginal
densities at the 90% mark.

We will further illustrate this workflow with several numerical examples that employ the manifold
statistics constructed with trajectory datasets presented in previous sections. Table 2 lists choices for several
algorithm knobs chosen for these runs. All runs employ conditioning with vz > vz min =650 m/s. Runs
1 and 2 employ the same objective throughout the entire trajectory, with 6 > 50. For Runs 3 and 4, the flight

Table 2. Numerical settings for the set of runs chosen to illustrate the workflow in Algorithm 1.

Run ID Omin,0-30 Omin,30—60 O min,60—100 Altitude bias
1 50 50 50 +
2 50 50 50 -
3 50 200 300 +
4 50 200 300 —

Note. For all runs vz, i, =650 m/s.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering e26-15

path constraint ¢ is adjusted after 30 and 60% of the entire trajectory duration, respectively. All runs share
the same initial condition as the simulation shown in black in Figure 8. For each set of runs, we introduce
random noise into the height measured at the end of each stage ¢ + Af to simulate the effect of noise in the
atmospheric density model. We explore the impact of positive bias, in Runs 1 and 3—shown in red in
figures below, and negative biases, in Runs 2 and 4—shown in blue. We also explored unbiased noise
(results not shown) and observed trends that are in-between the positive and negative biased noise results.
For all runs, the noise level is about 10% for the entire span of the trajectory. Finally, we compared two sets
of runs, given two choices for the time step Az, 5 and 10% respectively. These tests (results not shown)
revealed a negligible impact for the stage duration on the trajectories generated via Algorithm 1. All results
below correspond to At = 10%.

Figure 9 displays results for Runs 1 and 3 in a manner similar to Figure 8. Results remain similar at the
end of the first two stages, t = 10 and 20% (near the lower end of the vertical axis in the left frame and near
the top in the other two frames). The increase in the lower bound for ¢ for Run 3 results in a shift of 2D
marginal densities further away from the region depicted by the lower left circle in the left frame. These
results are highlighted in the figure by the insets shown in the lower left corner of each frame,
corresponding to ¢ =30%. The upper insets mark the 60% time stamp with corresponds to the second
increase of 0, for Run 3.

Further, Figures 10—12 compare conditional statistics results for the terminal velocity, flight path, and
heading angles with corresponding results computed directly from beluga simulations. The range of
uncertainties in these figures are the result of the range of options for the path constraint parameter o. The
resulting ensemble of trajectories and the associated low-dimensional manifold lead to a range of choices
for possible paths also illustrated by the joint densities on the intermediate locations in Figure 9. This in
turn results in a range of terminal conditions, shown in Figures 10—12. The filled symbols represent
conditional expectations E[-|x,_a,]. The conditional PDFs are available through PLoM, however, we
choose to show error bars only since the PDFs are nearly normal. The beluga-generated terminal
conditions, shown with open symbols, are based on trajectories that start from the same intermediate
locations and employ the same set of constraints as the conditional statistics using PLoM. The beluga
results are based on the lower bound of J.,;, given a specific objective and thus do not exhibit any
uncertainty. In these figures, and for the remainder of this section, red corresponds to Runs 1 and 3, while
blue corresponds to Runs 2 and 4.

Figure 10 shows result terminal velocity at intermediate stages along the trajectory planned via PLoM.
As the vehicle approaches the target, the uncertainty for v shrinks as all trajectories funnel toward one
point according to the training data. For Runs 3 and 4, shown in the right frame, the range of path
constraint values shrinks from [50 —400] to [200 —400] as the vehicle approaches the first exclusion
region, and further reduces to [300 — 400] for ¢ > 60%. This adjustment changes the expected terminal

Crossrange [km]
Height [km]
Height [km]

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200
Downrange [km] Downrange [km] Crossrange [km]

Figure 9. Marginal PDFs for vehicle location at intermediate locations for Runs 1 (red) and 3 (blue)
conditional on the location at previous stages. The “x” symbols mark the start and end points and the
large circles mark the location of the exclusion regions.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-16 Cosmin Safta et al.

850 850
— 800 — 800
£ £
E 750 E 750
8 0 E 0
g T 0
.g 700 .g 700
£ £ g
(V] (V]
[=
650 650

600 600
0 20 40 60 80 100 0 20 40 60 80 100

Trajectory Fraction [%] Trajectory Fraction [%]

Figure 10. Means (with filled symbols) and error bars (£2 standard deviations) for the terminal velocity
vr conditioned on intermediate conditions along the trajectory: Runs I and 2 (left frame) and Runs 3 and
4 (right frame). Beluga results are shown with open symbols.

-0.8 -0.8

ﬂggﬂﬂﬂﬂﬂﬂﬂﬂ w 1

Terminal Fligh Path Angle y [rad]
Terminal Fligh Path Angle y [rad]

-1.0 -1.0
0 20 40 60 80 100 0 20 40 60 80 100
Trajectory Fraction [%] Trajectory Fraction [%]

Figure 11. Mean and standard deviations for the terminal flight path angle y; conditioned on inter-
mediate conditions along the trajectory. The frames setup is the same as for Figure 10.

-

HA
=
-

-
=}
= |

o
©
o =
© o

e
~
o
g9

Terminal Heading Angle y [rad]
o o
o o
==
Terminal Heading Angle y [rad]
S
==

o
o

R

20 40 60 80 100 0 20 60 80 100
Trajectory Fraction [%] Trajectory Fraction [%]

=}
w

[S)
o
n

Figure 12. Mean and standard deviations for the terminal heading angle v conditioned on intermediate
conditions along the trajectory. The frames setup is the same as for Figure 10.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering e26-17

velocity for Runs 3 and 4 compared to Runs 1 and 2 and reduces the uncertainty in these estimates. Each
run was conducted three times with a different random number generator (RNG) seed. Both the RNG seed
and the choice of bias, positive versus negative, have a limited impact on the results. Most of the
variability here is due to the choice of §. We also compared results using At = 5% and 10%, respectively.
Similar to the previous observation, the stage length does not have a sizeable impact on the terminal
conditions (results not shown).

Figures 11 and 12 show results for the terminal flight path angle y, and terminal heading angle v,
using the same settings as the results shown in Figure 10. These results indicate that the biggest driver
for the range of terminal values predicted at various stages remains the range of paths taken to avoid
the two exclusion regions. Similarly to the previous observations, the bias added to altitude
measurements, as well as the time step size, have only a limited impact on the results. While the
beluga results for y, generally fall inside the manifold-based statistics, some discrepancy is observed
for y,, in Figure 11. We attribute this discrepancy to the rapid change in the flight path angle as the
vehicle approaches the terminal location, as seen Figure 5. Since these results represent conditional
statistics constructed based on globally optimal data, we suspect these discrepancies are generated by
the difference between a dataset of globally optimal trajectories and subsequent solutions that are
optimal starting at intermediate points along the flight path. The magnitude of y changes from a range
ofabout —0.2...0.2 radians during the bulk of the flight to around —0.9 over the last 5% fraction of the
trajectory duration. In contrast, the variation velocity and terminal heading angle changes over the
last fraction of the trajectory are less nonlinear. We leave the exploration of this observation for
subsequent work.

We conclude this section with a discussion on the impact of intermediate flight path and heading angles
on the conditional statistics for the terminal conditions. The results presented in Figure 13 are computed as
follows. In the left frame the terminal velocity statistics are conditioned on the intermediate vehicle
position and velocity magnitude, p(vT|h:‘, 6,9, vt) , while the middle frame statistics correspond to
p(vrlh}.6:, ¢, vi.7:,v,), and the right frame to p(vr|h?, 6, 4,,vi, 7}, w;). The “*” superscript indicates
that the corresponding variable was perturbed at time ¢ to mimic either sensor inaccuracies or the impact of
unaccounted external factors that lead to discrepancies between the predicted and realized vehicle
trajectory over the stage [t — At, t]. These results indicate that constraining on all state vector components
narrows the range on uncertainties at an early stage during the flight, 7 = 10 and 20%. Terminal velocities
predicted at later stages are similar across the cases presented, signaling that uncertainties are now driven
largely by the choice of path constraint parameter 6.

850 850 850
— 800 [— 800 800
Q2 2 Q2
E E £
> > >
£750 £750 £750
o o o
GJ (J (J
> > >
T 700 © 700 T 700
£ £ £
Q ())
~ [=

650 650 650

600 600 600

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Trajectory Fraction [%] Trajectory Fraction [%] Trajectory Fraction [%]

Figure 13. Mean and standard deviations for the terminal velocity vy corresponding to Runs I and
2 conditioned on intermediate vehicle locations: first column—marginal over the intermediate flight
path and heading angles; second column—conditioned over intermediate flight path and
heading angles, and third column—conditioned over perturbed intermediate flight path and heading
angles.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

€26-18 Cosmin Safta et al.

The path-planning workflow presented in this section employs conditional sampling on low-dimen-
sional manifolds to generate controls that adapt sequentially to current measured state vector values along
the trajectory. The PLoM framework generates solutions that probabilistically consistent with the training
data for the velocity and heading angles, which the results for the flight path angles are off by 10-20%.

The computational cost of the overall approach can be split into two stages, the offline stage and the
online stage. In the offline stage, trajectories are generated with beluga to assemble a training dataset. This
is then processed using the PLoM framework described in Section 3. The resulting augmented set of
trajectories and the associated diffusion vectors serve as inputs to the online path-planning algorithm
presented in this section. In the online stage, this algorithm is approximately two fo three orders of
magnitude less expensive compared to the computational cost of beluga simulations employed to adjust
the trajectory parameters. We expect the computational cost differential to become wider with increased
trajectory model complexity.

5. Conclusion

We have introduced an unsupervised probabilistic learning technique for the analysis of planetary reentry
trajectories. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach.
Using the diffusion coordinates on the graph of training samples, the probabilistic framework then
augments the original data with samples that are statistically consistent with the original set. The
augmented samples are used to construct conditional statistics that are ultimately assembled in a path-
planning algorithm. The algorithm is designed to adjust the controls mid-flight to adapt the trajectory to
changing mission objectives in real-time.

We employ a 3DOF model to generate optimal trajectories that satisfy path-constraints and maximize
impact velocities. The diffusion map workflow reveals the presence of low-dimensional structures in the
high-dimensional datasets. Typical manifold dimensions vary between 40 and 50 depending on the
formulation employed for the control parameters.

The diffusion map algorithm revealed the presence of outliers (or edge cases). The outlier samples
display diffusion coordinates that place these samples outside the “cloud” where the bulk of the samples
reside. Based on this observation, we sequentially label and, if desired, remove outliers from the set of
trajectories used for training.

We proposed a novel path-planning workflow that splits the planetary reentry trajectories into a set of
stages. The probabilistic learning framework then utilizes conditional statistics to generate a set of
controls for a specific flight stage conditioned on the information available at the beginning of each
stage. The algorithm adjusts the controls during subsequent stages to account for errors due to external
factors and/or due to evolving mission objectives. The bulk of the computational cost for the probabilistic
control estimates corresponds to offline computations, that is, the generation of the augmented dataset
based on the original training data. The online computational costs are about two to three orders of
magnitude less than the cost of the OCP.

Acknowledgments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525. This article describes objective technical
results and analysis. Any subjective views or opinions that might be expressed in the article do not necessarily represent the views of
the U.S. Department of Energy or the United States Government.

Competing Interests. The authors declare no competing interests exist.
Data Availability Statement. Code available upon request.
Author Contributions. All authors contributed equally to this manuscript and have approved the final submitted draft.

Funding Statement. This work was funded by the Laboratory Directed Research & Development (LDRD) program at Sandia
National Laboratories.

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26

Data-Centric Engineering €26-19

References

Betts JT (1998) Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 21(2),
193-207.

Betts JT (2010) Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd Edn. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

Busemann A, Vinh NX and Culp RD (1976) Hypersonic Flight Mechanics. Technical Report NASA-CR-149170, NASA.

Cheng L, Wang Z, Jiang F and Li J (2020) Fast generation of optimal asteroid landing trajectories using deep neural networks.
IEEE Transactions on Aerospace and Electronic Systems 56(4), 2642-2655.

Choi U and Ahn J (2020) Imitation learning-based unmanned aerial vehicle planning for multitarget reconnaissance under
uncertainty. Journal of Aerospace Information Systems 17(1), 36-50.

Coifman RR and Lafon S (2006) Diffusion maps. Applied and Computational Harmonic Analysis 21(1), 5-30.

Fahroo F and Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance,
Control, and Dynamics 25(1), 160-166.

Federici L, Benedikter B and Zavoli A (2021) Deep learning techniques for autonomous spacecraft guidance during proximity
operations. Journal of Spacecraft and Rockets 58(6), 1-12.

Ghanem R and Soize C (2018) Probabilistic nonconvex constrained optimization with fixed number of function evaluations.
International Journal for Numerical Methods in Engineering 113, 719-741.

Izzo D, Oztiirk E and Mirtens M (2019) Interplanetary transfers via deep representations of the optimal policy and/or of the value
function. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York: Association for
Computing Machinery, pp. 1971-1979.

Kierzenka J and Shampine LF (2001) A BVP solver based on residual control and the Matlab PSE. ACM Transactions on
Mathematical Software (TOMS) 27(3), 299-316.

La Mantia M and Casalino L (2006) Indirect optimization of low-thrust capture trajectories. Journal of Guidance, Control, and
Dynamics 29(4), 1011-1014.

Longuski JM, Guzman JJ and Prussing JE (2014) Optimal Control with Aerospace Applications. New York: Springer.

Loquercio A, Kaufmann E, Ranftl R, Dosovitskiy A, Koltun V and Scaramuzza D (2020) Deep drone racing: From simulation
to reality with domain randomization. /EEE Transactions on Robotics 36(1), 1-14.

Mall K, Grant MJ and Taheri E (2020) Uniform trigonometrization method for optimal control problems with control and state
constraints. Journal of Spacecraft and Rockets 57(5), 995-1007.

Meurer A, Smith CP, Paprocki M, Certik O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake
T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roucka S,
Saboo A, Fernando I, Kulal S, Cimrman R and Scopatz A (2017) Sympy: Symbolic computing in python. PeerJ Computer
Science 3, ¢103.

Sanchez-Sanchez C and Izzo D (2018) Real-time optimal control via deep neural networks: Study on landing problems. Journal of
Guidance, Control, and Dynamics 41(5), 1122-1135.

Shi Y and Wang Z (2020) A deep learning-based approach to real-time trajectory optimization for hypersonic vehicles. In 4744
Scitech 2020 Forum. Orlando, FL: AIAA.

Shi Y and Wang Z (2021) Onboard generation of optimal trajectories for hypersonic vehicles using deep learning. Journal of
Spacecraft and Rockets 58(2), 400—414.

Soize C and Ghanem R (2016) Data-driven probability concentration and sampling on manifold. Journal of Computational
Physics 321, 242-258.

Soize C and Ghanem R (2020) Probabilistic learning on manifolds. Foundations of Data Science 2(3), 279-307.

Sparapany MJ (2020) Aerospace Mission Design on Quotient Manifolds. PhD Thesis, Purdue University Graduate School.

Sparapany M and Grant MJ (2020) beluga. Available at https:/github.com/Rapid-Design-of-Systems-Laboratory/beluga
(accessed September 4, 2020).

Wang Z and Grant MJ (2017) Constrained trajectory optimization for planetary entry via sequential convex programming.
Journal of Guidance, Control, and Dynamics 40(10), 2603-2615.

Wang Z and Grant MJ (2018) Autonomous entry guidance for hypersonic vehicles by convex optimization. Journal of Spacecraft
and Rockets 55(4), 993—-1006.

Yan C, Xiang X and Wang C (2020) Towards real-time path planning through deep reinforcement learning for a UAV in dynamic
environments. Journal of Intelligent & Robotic Systems 98(2), 297-309.

Zheng D and Tsiotras P (202 1) Near-optimal finite-time feedback controller synthesis using supervised and unsupervised learning.
In AIAA Scitech 2021 Forum. Orlando, FL: AIAA.

A. Appendix: Setup of Continuation Schedule for the Optimal Control Solution

Table A1 displays the continuation stages setup for the solution of the OCP for the dataset described in Section 4.1. All simulations
start with a trajectory state defined by

X0 = {th’ 90 =0, ¢0 =0, vic, Yo = —90, " :O.,}’

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://github.com/Rapid-Design-of-Systems-Laboratory/beluga
https://doi.org/10.1017/dce.2022.26

€26-20 Cosmin Safta et al.

Table A1. Continuation stages for the optimal control problem.

Stage Parameters adjusted No. of steps
1 hy — 0, 0 — 0.05° 21
2 0y —0.5° 21
3 70— 0, 0p —3° 41
4 ¢f —2° 41
5 0o — Oic, $o — bic 21
6 0— 0 — Imax 41

and constraints 6y =¢,=0". This essentially leads to the initial trajectory pointing straight down from the initial altitude.
Trajectories are then gradually adjusted to satisfy the desired initial, intermediate, and final constraints through a set of continuation
stages. During Stage 1 the final height is pulled to /; = 0 and the final downrange location to &y = 0.05°. The final downrage location
is pushed further out during Stage 2. During Stage 3 the initial flight path angle is adjusted from the initial straight down direction to
horizontal direction and the final downrange location is adjusted to the value setup for this set of simulated trajectories, 6y = 3°. The
final crossrange location is pushed to the desired target, ¢, = 2°, during Stage 4, followed by Stage 5, during which the longitude and
latitude for the start point are adjusted to the set of initial conditions &ic and ¢,c, respectively. Finally, Stage 6 adjusts the path-
constraint parameter J from O (no constraint) to the maximum value desired for a particular set of runs, dyax-

Cite this article: Safta C, Ghanem RG, Grant MJ, Sparapany M and Najm HN (2022). Trajectory design via unsupervised
probabilistic learning on optimal manifolds. Data-Centric Engineering, 3, €26. doi:10.1017/dce.2022.26

https://doi.org/10.1017/dce.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.26
https://doi.org/10.1017/dce.2022.26

	Trajectory design via unsupervised probabilistic learning on optimal manifolds
	Impact Statement
	Introduction
	Modeling Framework
	Trajectory model
	Vehicle model
	Optimal control problem

	Probilistic Learning on Manifold
	Results
	Training data
	Manifold construction
	Augmented dataset consistency with the 3DOF model
	Path planning via PLoM

	Conclusion
	Acknowledgments
	Competing Interests
	Data Availability Statement
	Author Contributions
	Funding Statement
	References
	Appendix: Setup of Continuation Schedule for the Optimal Control Solution

