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Abstract
With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and
reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health
perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor
UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the pre-
dictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the
two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and
actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one
hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state devi-
ation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to
the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients
of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life
(RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted
adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance
and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the
proposed method.

Acronym list
UAV unmanned aerial vehicle
TSKF two-stage Kalman filter
RUL remaining useful life
LQR linear quadratic regulator
PdM predictive maintenance
MPC model predictive control
LF-MPC Laguerre function-based model predictive control
SMC sliding mode control
RL reinforcement learning
GC geodetic coordinate
PDF probability density function
HD health degree

Nomenclature
HDn health degree from normal state to degenerate state
HDsf health degree when airframe performance does not meet the requirements
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ln critical threshold from normal work to degradation
lsf degradation threshold when the airframe performance does not meet requirements
laf comprehensive degradation threshold when actuator failure
tn time when the airframe enters degradation from the normal state
tsf time when the airframe performance does not meet the requirements
taf time when the actuator fails
ds comprehensive degradation

1.0 Introduction
Quadrotor unmanned aerial vehicle (UAV) is a typical underactuated system with nonlinear and strong
coupling characteristics, which is widely used in military and civilian fields [1, 2]. With the accumulation
of flight frequency and time, degraded problems in UAV components such as the thruster, reaction wheel
and gyroscope are inevitable due to aging, wear and fatigue, among which the failure probability of
actuator components accounts for 44% of the total failure rate [3]. The degradation phenomena of the
actuator present a hidden degradation characteristic for the performance of UAVs. When the degradation
is mild, negative feedback can compensate for its effect on airframe position and attitude. However, as the
degradation of the actuator accumulates, especially during the execution of control tasks, if appropriate
online autonomous maintenance is not carried out in time, the airframe performance will inevitably
exceed the expected constraint range, enter a failure state and cause security issues.

In recent years, research on prognostic and health management (PHM) for quadrotor UAVs has
achieved preliminary results [4, 5], which provide strong technical support for the maintenance and sup-
port of UAVs. Various control schemes such as linear quadratic regulator (LQR) [6], model predictive
control (MPC) [7], sliding mode control (SMC) [8], and backstepping control [9] have been proposed
to design fault-tolerant controllers to improve the security and reliability of UAVs. Although the control
methods are different, the common feature is that they all belong to the ‘post-fault’ maintenance treat-
ment scheme after the failure, none of these approaches is predictive. However, for high-safety systems
such as UAVs, avoiding faults is more applicable than tolerating faults. A new paradigm that uses both
control theory and reliability theory, health-aware control (HAC) [10–12], has injected new vitality into
improving UAV safety. However, HAC is a method to modify control actions based on system health
information to increase system running time. As the basis of PHM, remaining useful life (RUL) predic-
tive is crucially important for determining the timing and strategy of UAV maintenance. Four machine
learning algorithms, a linear sparse model, a variant of support of vector regression, a multi-layer percep-
tron and an advanced tree-based algorithm were used to predict the RUL of UAV battery [13]. A new
method for predicting the RUL of adhesive joints on composite UAV wings has been proposed [14].
However, a small amount of existing research on RUL prediction of UAVs is also focused on individual
components, lacking system-level research.

With the development of information technology, predictive maintenance (PdM) [15–17] as a gradu-
ally emerging maintenance strategy, is undoubtedly more meaningful to reduce the failure rate of UAVs
and improve their safety by analysing equipment operation data, predicting the RUL of equipment and
deciding on maintenance timing and strategy. The main methods of PdM currently include LQR [18],
MPC [19] and reinforcement learning(RL) [20] and so on. MPC is mostly used because of its low depen-
dence on model accuracy and strong robustness. However, in each rolling optimisation, it is necessary
to predict future multi-step outputs and optimise the solving control sequence, resulting in a decrease
in solving efficiency. Therefore, how to improve computational efficiency is a difficult problem in the
timely and reliable autonomous maintenance of UAVs.

Secondly, the intervention time for the autonomous maintenance strategy is directly related to the
working time and RUL of the UAV. According to the definition of the first arrival time of RUL by Refs
[21] and [22], the accurate selection of the system failure threshold is crucial for predicting the RUL
of UAVs. However, the most commonly used steady-state performance index [23, 24] does not apply
to UAVs with multiple performance requirements for both position and attitude. In addition, the UAV
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system failure threshold needs to build a comprehensive degradation state variable with multi-actuator
simultaneously degraded. Therefore, selecting an appropriate performance index and constructing a
comprehensive degradation quantity that can more comprehensively reflect the health status of UAV is
another key issue for accurately predicting the RUL.

In practical engineering, the actuator degradation cannot avoid the influence of measurement noise
and error. Although literature [25] uses augmented state Kalman filtering (ASKF) for joint estimation of
states and parameters, when the dimensionality of unknown parameters is equivalent to that of states, the
computational complexity of joint estimation algorithms based on augmented states increases sharply,
resulting in a significant decrease in estimation speed and accuracy. Compared to ASKF, the TSKF
[26] algorithm can reduce the dimensionality of the filter, effectively avoid numerical ill-conditioning
problems, and improve the stability and computational efficiency of the algorithm. Undoubtedly, it is
helpful to estimate the actual degradation accurately and reliably.

In summary, the purpose of this paper is to consider the relationship between multi-actuator degra-
dation and quadrotor UAV performance degradation, and to adopt a more computationally efficient
LF-MPC method for autonomous predictive maintenance. The innovative research work carried out
mainly includes three aspects:

• The estimation of the real-time actuator degradation rate and UAV state using TSKF, and
providing a new definition of comprehensive degradation variable based on entropy weight
method

• The concept of a UAV HD was proposed by introducing Mahalanobis distance, which evaluates
the UAV health status in real time and determines the failure threshold based on it

• The LF-MPC weight matrix is modified in real time based on the HD to extend the working time
limit and realise autonomous PdM for a quadrotor UAV

The rest of the work is organised as follows: Section 2 establishes a degradation model for quadrotor
UAV and constructs an autonomous PdM system; Section 3 describes the hidden degradation process of
actuators and predicts the RUL of UAV; Section 4 adjusts LF-MPC weight matrix based on the HD eval-
uation results to achieve autonomous PdM; Section 5 verifies the effectiveness of the proposed method;
and Section 6 gives some conclusions.

2.0 Establishment of degradation model and autonomous PdM architecture for quadrotor UAV
An in-depth analysis of the UAV control mechanism and establishment of an accurate dynamic model
is the premise and basis of carrying out the RUL prediction and autonomous PdM of a quadrotor UAV.

2.1 Establishment of degradation model for quadrotor UAV
For a quadrotor UAV shown in Fig. 1, ignoring wind interference, the Newton-Euler formula is used to
model it in a hybrid coordinate system as shown in Equation (1) [27].

ẍ = (cos φ sin θ cosψ + sin φ sinψ)Uz/m

ÿ = (cos φ sin θ sinψ − sin φ cosψ)Uz/m

z̈ = (cos φ cos θ)Uz/m − g

φ̈ = (
θ̇ ψ̇

(
Iyy − Izz

)+ Uφ

)
/Ixx (1)

θ̈ = (
φ̇ψ̇ (Izz − Ixx)+ Uθ

)
/Iyy

ψ̈ = (
θ̇ φ̇

(
Ixx − Iyy

)+ Uψ

)
/Izz

where x, y, z are the actual positions of the quadrotor UAV in the inertial frame with the original point
at the GC, φ, θ ,ψ are the roll angle, pitch angle and yaw angle, respectively. The parameters m, g refer
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Figure 1. Structure diagram of quadrotor UAV.

to the total airframe mass and gravitational acceleration of the UAV. Ixx, Iyy, Izz are the inertial moments
about each axis. Uz, Uφ , Uθ , Uψ are utilised as control inputs for position regulation. Equation (2) demon-
strates the correlation between UAV and motor inputs ui, while Uz is employed to regulate the position
in x, y, z directions. Additionally, Uφ , Uθ , Uψ are implemented to govern roll, pitch and yaw respectively.

⎡
⎢⎢⎢⎢⎣

Uz

Uθ

Uφ

Uψ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Ku Ku Ku Ku

KuLd −KuLd 0 0

0 0 KuLd −KuLd

Ky Ky −Ky −Ky

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦ (2)

The variables ui(i = 1, 2, 3, 4) represent the pulse-width modulation (PWM) input of the ith motor;
Ld denotes the distance from the quadrotor UAV motor to the centre of mass; and Ku is the thrust gain
related to the force generated by the propeller, Ky is the torque gain related to the torque generated by
the propeller.

Assuming that the quadrotor UAV is hovering with no yaw (ψ = 0), small roll and pitch angles,
ignoring the drag term, gyroscopic and Coriolis effects, Equation (1) is simplified as:

ẍ = θg φ̈ = Uφ/Ixx

ÿ = −φg θ̈ = Uθ/Iyy

z̈ = Uz/m − g ψ̈ = Uψ/Izz (3)
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Let z̈1 = z̈ + g, define state vectors x = [x, y, z1, φ, θ ,ψ , ẋ, ẏ, ż1, φ̇, θ̇ , ψ̇]T, y = [x, y, z1, φ, θ ,ψ]T, the
system inputs u = [u1, u2, u3, u4]T. By utilising the state vectors, the linearised model of the quadrotor
UAV is obtained as shown in Equation (4).{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(4)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 g 0 0 0 0 0 0 0

0 0 0 −g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

m
Ku

1

m
Ku

1

m
Ku

1

m
Ku

0 0
1

Ixx

LdKu − 1

Ixx

LdKu

1

Iyy

LdKu − 1

Iyy

LdKu 0 0

1

Izz

Ky

1

Izz

Ky − 1

Izz

Ky − 1

Izz

Ky

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 2. Structure diagram of autonomous maintenance of quadrotor UAV.

Whether the actuator can fully realise the ability of the controller to control the action u(t) depends
largely on its health level. Assuming that the initial execution capability of the ith actuator is cia0 and the
degradation state is di(t), then the degradation rate of the actuator is λi(t) = di(t)/cia0. The loss matrix
of actuator control efficiency is � = diag{λ1(t), λ2(t), · · · , λm(t)}, m represents the number of actuators,
λi(t) = 0 indicating that the actuator has not degraded and λi(t) = 1 indicating that the actuator has
completely failed. Thus, the actual output of the actuator at time t can be expressed as ua(t) = (I−�)u(t).

The linear model of a quadrotor UAV considering actuator degradation is mathematically represented
as Equation (5): {

ẋ(t) = Ax(t) + B(I − �)u(t)

y(t) = Cx(t)
(5)

2.2 Construction of autonomous PdM architecture
The autonomous PdM of a UAV refers to the real-time prediction of RUL based on the airframe condition
monitoring data, and the autonomous maintenance through the appropriate adjustment of the control
strategy as needed. Therefore, to make a quadrotor UAV with multi-actuator degradation have PdM
function should first start with the construction of an autonomous PdM architecture,as shown in Fig. 2.
The system includes modules such as the airframe, actuators, LF-MPC and PdM. The core functions of
the PdM module are twofold: first, TSKF is used to estimate the UAV state and actuators degradation
states in real-time when they are degraded, and then determine the UAV failure threshold, predict the
RUL of the airframe; the second is to determine whether the UAV needs autonomous maintenance based
on RUL and provide maintenance strategies. That is, when RUL does not meet the expected working
time limit, LF-MPC is used to enhance the constraints imposed on the control action on the actuator,
slow down actuator degradation and extend the effective service time of the quadrotor UAV to achieve
autonomous maintenance.

Where yd(t) is the expected trajectory, y(t) is the actual trajectory, e(t) is the system deviation, and
u(t) is the control effect imposed on the actuator.

3.0 Hidden degradation description and RUL prediction of the actuators for a quadrotor UAV
From Fig. 2, it can be seen that actuator degradation, as a hidden degradation variable, acts on the quadro-
tor UAV body and affects the airframe performance. Therefore, the failure threshold of the UAV can be
determined by the body performance. The airframe performance of the UAV based on the definition of
UAV position and attitude can reflect its health status more comprehensively. The TSKF algorithm can
obtain the optimal estimation of drone state x and actuator degradation rate γ while minimising mean
square error.
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3.1 Description of the actuator degradation process
The brushless DC motor is the power source of the quadrotor UAV, its health status directly determines
the service life of the UAV. During UAV flight, the execution force of the motor will decrease due to
stator coil aging, excessive rotor shaft friction, and magnetic degradation. Considering that the above
degradation processes all have nonlinear stationary degradation characteristics, the degradation of each
actuator of the UAV can be modeled using the Wiener process, which is described as follows:

d(m)(t)=d(m)(0)+
∫ t

0

μ(m)
(
τ ; θ (m)

)
dτ + σ (m)

B B(m)(t) (6)

where m = 1, · · · , 4 denotes the number of actuators. For the mth actuator, d(m)(0) represents the ini-
tial degradation of the actuator, without loss of generality, let d(m)(0) = 0. represents the standard
Brownian motion, while μ(m)(t; θ (m)) and σ

(m)
B represent the drift and diffusion coefficients of the

degeneration process, respectively. μ(m)(t; θ (m)) is a nonlinear function of time, and this paper uses
μ(m)(t; θ (m))=α(m)β (m)tβ

(m)−1 to characterise the nonlinear characteristics of the model.
It is a prerequisite and foundation for autonomous PdM to obtain online observation data to estimate

the hidden state and predict the RUL. Taking actuator degradation as a type of unknown bias in the
system, TSKF can be used to estimate the system state and degradation rate while minimising the impact
of measurement noise, thereby achieving more reliable estimation performance.

Discretise Equation (5) to obtain{
xk+1 = Akxk + Bkuk − BkUkγk +ωx

k

yk = Ckxk + vk

(7)

Here, the system noise ωx
k and measurement noise vk are uncorrelated Gaussian white noise with zero

mean, Qx
k and Rk are the variance matrices of the two, respectively.

γk =

⎡
⎢⎢⎢⎢⎢⎣

λ
(1)
k

λ
(2)
k

...

λ
(m)
k

⎤
⎥⎥⎥⎥⎥⎦ , 0<λ(m)

k < 1; m = 1, 2, · · · , 4, Uk =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(1)
k 0 · · · 0

0 u(2)
k

...

...
. . . 0

0 · · · 0 u(m)
k

⎤
⎥⎥⎥⎥⎥⎥⎦ , γk+1 = γk +ω

γ

k

The bias process propagation noise ωγk is an uncorrelated Gaussian white noise with zero means, and
its covariance matrix is represented by Qγ

k .
The augmented discrete linear time-varying state space model with bias is formulated as⎧⎪⎨

⎪⎩
xk+1 = Akxk + Bkuk − BkUkγk +ωx

k

γk+1 = γk +ω
γ

k

yk+1 = Ckxk+1 + vk+1

(8)

The minimum variance solution for estimating actuator degradation rate and state truth using TSKF
is as follows:

Bias estimation

γ̂k+1|k = γ̂k|k (9)

Pγ

k+1|k = Pγ

k|k + Qγ

k (10)

γ̂k+1|k+1 = γ̂k+1|k + Kγ

k+1

(
r̃k+1 − Hk+1|kγ̂k|k

)
(11)

Kγ

k+1 = Pγ

k+1|kH
T
k+1|k

(
Hk+1|kP

γ

k+1|kH
T
k+1|k + S̃k+1

)−1

(12)

Pγ

k+1|k+1 = (
I − Kγ

k+1Hk+1|k
)

Pγ

k+1|k (13)
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Unbiased state estimation

x̃k+1|k = Akx̃k|k + Bkuk + Wkγ̂k|k − Vk+1|kγ̂k|k (14)

P̃x
k+1|k = AkP̃

x
k|kA

T
k + Qx

k + WkP
γ

k|kW
T
k − Vk+1|kP

γ

k+1|kV
T
k+1|k (15)

x̃k+1|k+1 = x̃k+1|k + K̃x
k+1r̃k+1 (16)

K̃x
k+1 = P̃x

k+1|kC
T
k+1S̃−1

k+1 (17)

P̃x
k+1|k+1 = (

I − K̃x
k+1Ck+1

)
P̃x

k+1|k (18)

Filter residual and its covariance matrix

r̃k+1 = yk+1 − Ck+1x̃k+1|k (19)

S̃k+1 = Ck+1P̃x
k+1|kC

T
k+1 + Qv

k+1 (20)

Coupled equations

Wk = AkVk|k − BkUk (21)

Vk+1|k = WkP
γ

k|k
(
Pγ

k+1|k
)−1 (22)

Hk+1|k = Ck+1Vk+1|k (23)

Vk+1|k+1 = Vk+1|k − K̃x
k+1Hk+1|k (24)

The state optimal estimate and its estimation error covariance matrix are denoted by

x̂k+1|k+1 = x̃k+1|k+1 + Vk+1|k+1γ̂k+1|k+1 (25)

Pk+1|k+1 = P̃k+1|k+1 + Vk+1|k+1Pγ

k+1|k+1VT
k+1|k+1 (26)

The real degradation information d(m)
k of each actuator can be accurately obtained based on the actua-

tor degradation rate γ̂k estimated by TSKF, which serves as a fundamental basis for the precise prediction
of the RUL for a UAV. According to the definition of degradation rate, d(m)

k can be obtained as shown in
Equation (27).

d(m)
k = γ̂k ∗ c(m)

a0 (27)

According to the estimated hidden degradation of the actuator, a more accurate distribution of the
RUL for a UAV can be obtained by real-time updating.

3.2 Analysis of the degradation process of quadrotor UAV under actuator hidden degradation
Usually, the motors with the same parameters are installed on each rotor of the quadrotor UAV. During
flight, degradation occurs due to factors such as coil aging and magnetic degradation or other factors.
At the same time, due to various uncertain factors such as air interference and foreign matter, there
are individual differences in the degradation process and the coupled superposition effect of common
degradation. There are significant differences between multi-actuator degradation and single-actuator
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degradation on the performance of quadrotor UAVs, resulting in the uncertainty of tn, tsf and taf .
Where tn, tsf and taf represent the time when the airframe enters degradation from the normal state,
the time when the airframe performance does not meet the requirements and the time when the actuator
fails.

For the quadrotor UAV, failure means that the airframe performance no longer meets the require-
ments, and the actuator has not reached its failure threshold at this time. As an important performance
index to measure the health status of equipment or system, a HD can reflect the health status of equip-
ment or system more comprehensively. Therefore, the health state of the quadrotor UAV is quantified
as a real-time HD to measure the health of the quadrotor UAV at each monitoring time, also the system
failure threshold can be defined according to the HD.

Assuming that the desired state of the hovering quadrotor UAV is represented by the sample mean
μ= xd = (x1d, x2d, · · · , x12d)T and the actual state estimated by the kth monitoring point is denoted as
x̃ = (x̃1, x̃2, · · · , x̃12)T , then the Mahalanobis distance can be calculated.

MD(x̃) =
√

(x̃ −μ)T
−1(x̃ −μ) (28)

where  is the covariance matrix.
The Mahalanobis distance reflects the degree to which the current state deviates from the desired

state. A negative function is used to establish the relationship between Mahalanobis distance MD(x̃) and
health degree HD(x̃)

HD(x̃) = e−b·MD(x̃) (29)

where b represents the shape parameter, with b>0.
Let HDn,HDsf denote the health degree of the UAV from the normal working state to the degraded

state and the HD when the airframe performance does not meet the requirements, respectively.
Considering the full life cycle, it is assumed that multiple actuators have different degradation pro-
cesses, and curves 1, 2, 3 and 4 in Fig. 3 give one of the degradation combinations. In Fig. 3, ln, lsf , and
laf represent the critical threshold when the quadrotor UAV from normal work to degradation, the degra-
dation threshold when the airframe performance does not meet the requirements, and the comprehensive
degradation threshold when actuator failure, respectively. For each actuator, the degree of degradation
is different, resulting in tn, tsf and taf are different. Therefore, to judge the influence of the degradation
degree of each actuator on the airframe performance more conveniently, the comprehensive
degradation quantity ds(t) (shown in the red curve in Fig. 3) can be constructed by fusing the degra-
dation state of each actuator. In the case of multi-actuator degradation, it becomes more direct to predict
the RUL of the airframe with the HD as a constraint.

The comprehensive degradation of actuators based on the definition of airframe HD can be
specifically expressed as follows:

Stage 1, HD ∈ (HDn, 1], the UAV meets the work performance requirements, the integrated degrada-
tion ds(t)< ln, and the degradation of each actuator has little impact on the overall performance of the
UAV.

Stage 2, HD ∈ [HDsf , HDn], the performance of the UAV decreases, and the comprehensive degrada-
tion ds(t) ∈ [lsf , ln], indicating that the degradation degree of the actuator is gradually aggravated, which
leads to the degradation of the UAV performance, and the RUL may not meet the working deadline
requirements.

Stage 3, HD ∈ [0, HDsf ), the performance of the UAV does not meet the requirements, and the com-
prehensive degradation ds(t)> lsf , even if each actuator does not fail, but the HD of the quadrotor UAV
is less than HDsf , and the system fails at this time.
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Figure 3. Schematic diagram of the actuator degradation process based on HD.

3.3 RUL prediction of quadrotor UAV under hidden degradation of actuators
The comprehensive degradation variable, which combines the degradation state of each actuator, is
undoubtedly a healthy indicator of the airframe performance. According to the expected airframe per-
formance index, the system failure threshold of unsatisfactory performance is obtained, and then the
RUL of a UAV with multi-actuator degradation can be predicted.

Since the degradation degree of each actuator has different effects on the airframe performance, each
degradation quantity should not be treated the same when calculating the comprehensive degradation
quantity, and different weights should be given according to the degradation process. The basic idea of
the entropy weight method is to determine the objective weight according to the degradation degree of
each degradation variable [28]. In general, if the information entropy of a certain actuator degradation is
smaller, it indicates that the degree of actuator degradation is greater, the more information it provides,
the greater role it can play in the comprehensive evaluation, and the greater its weight. And vice versa,
the steps for calculating the comprehensive degradation quantity using the entropy weight method are
as follows.

(1) Data standardisation
Let datakj = (d(m))′, (k = 1, · · · , n; j = 1, · · · , m) denote m actuators and n samples, and the min-
max normalisation method is used to normalise the degradation data of each actuator

ρkj = datakj − min(datak)

max(datak) − min(datak)
(30)

(2) Information entropy of degradation quantity

Ej = −ln(n)−1

n∑
k=1

PkjlnPkj (31)

where, Pkj = ρkj/
n∑

k=1

ρkj, ρkj represent the jth actuator degradation of the kth sample; if Pkj = 0,

then lim
Pkj→∞

PkjlnPkj = 0 is defined.
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(3) Degradation quantity weight
The weight of each degradation is calculated using the information entropy.

Wj = 1 − Ej

m −
m∑

j=1

Ej

, j = 1, 2, · · · 4 (32)

(4) Comprehensive degradation

dsk =
m∑

j=1

Wjdatakj (33)

The original degradation of the BLDC motor is random, so the comprehensive degradation quan-
tity obtained based on the entropy weight method can be modeled by the Wiener process in (6).
The increment �dsk = dsk+1 − dsk of the amount of degradation between two consecutive detection
instants follows a normal distribution, �dsk ∼ N(α(tβk+1 − tβk ), σ 2

B�tk). Let DS(tk) = dsk denote the inte-
grated degradation quantity at the current time tk, and the integrated degradation state vector DS1:k =
(ds1, ds2, · · · , dsk).

Thus, for the unknown parameter θ = (α, β, σB) of the model, the likelihood function of the unknown
parameter θ in the degraded data DS1:k is given by.

L(θ |�dsi) =
∏k

i=1

1√
2π (σ 2

B�ti)
exp

[
− (�dsi − α(tβi+1 − tβi ))

2

2(σ 2
B�ti)

]
(34)

Taking the logarithm of both sides of Equation (34) yields:

ln L(θ |�dsi) =
∑k

i=1
[ln

1√
2π

+ ln
1√
σ 2

B�ti

− (�dsi − α(tβi+1 − tβi ))
2

2(σ 2
B�ti)

] (35)

The logarithmic likelihood function (35) was maximised using the ‘fminsearch’ function in
MATLAB simulation software, resulting in obtaining the maximum likelihood estimate θ̂ for the
unknown parameter θ = (α, β, σB).

Assuming that the comprehensive failure threshold of multi-actuator degradation is laf , and according
to the definition of the first reach threshold, its corresponding life distribution is as follows [29]:

f T(t|θ̂) ≈ laf − α̂tβ̂(1 − β̂)

σ̂B

√
2π t3

exp

{
−(laf − α̂tβ̂)

2

2σ̂ 2
B t

}
(36)

HDsf is selected as the index to determine the failure threshold of the quadrotor UAV, and the failure
threshold lsf is defined as the corresponding multi-actuator comprehensive degradation when the health
degree HD(x̃) is less than HDsf , then:

lsf = {
ds(t)|HD(x̃)<HDsf

}
(37)

The life of the quadrotor UAV with hidden degradation of multi-actuators refers to the life of the
airframe when it works normally to the minimum HD requirement, so the life of the UAV can be
defined as

tsf = inf {t:ds(t)> lsf |ds(0)< lsf } (38)

where inf is the infimum operator.
The RUL of the system is expressed as follows.

RUL(t) = inf { tsf > t, ds(t)> lsf } − t (39)
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Let the comprehensive degradation variable be dsk and lk be the RUL of the UAV predicted at the cur-
rent time tk. Referring to the literature [29] and combining with the comprehensive degradation threshold
determined by Equation (37), the PDF of the RUL for a quadrotor UAV is:

fL(tlk|θ ) ≈ 1√
2πσ̂ 2

B tlk
3
(dss − α̂(η(tlk) − β̂tlk(tlk + tk)

β̂−1))exp

{
− (dss − α̂η(tlk))

2

2σ̂ 2
B tlk

}
(40)

where η(tlk)=(tk + tlk)β̂ − tβ̂k ,dss = lsf − dsk.
According to the analytical expression, the real-time prediction of the RUL of a quadrotor UAV can

be quickly obtained.

4.0 MPC adaptive life extension strategy based on quadrotor UAV HD evaluation
The purpose of autonomous maintenance for quadrotor UAV is to slow down the degradation process of
actuators, extend the continuous service life of the airframe, and shorten the interval between shutdowns
and maintenance by sacrificing the health of the airframe to a small extent and quickly reconstructing
the control law when the UAV does not meet the time constraints and the minimum HD requirements.
How to design an appropriate life extension control strategy based on the RUL prediction results and the
comprehensive degradation ds(t) of the actuator, combined with the LF-MPC operation mechanism, is
the key to extending the system life.

4.1 Life extension mechanism based on LF-MPC
To implement extended life control using MPC, the first step is to discretise model (4) based on the basic
steps of MPC model prediction, feedback correction and rolling optimisation

{
xm(k + 1) = Amxm(k) + Bmu(k)

ym(k) = Cmxm(k)
(41)

where Am = A∗�t + I, Bm = B∗�t.
The original state space model (41) is augmented to obtain�u as a manipulated variable for the future

system output so that the feedback correction and rolling optimisation can be performed simultaneously.
Let �xm(k) = xm(k) − xm(k − 1), �u(k) = u(k) − u(k − 1).

[
�xm(k + 1)

ym(k + 1)

]
=

[
Am 012×6

CmAm I6×6

] [
�xm(k)

ym(k)

]
+

[
Bm

CmBm

]
�u(k) (42)

Make xu(k) = [�xm(k)T , ym(k)T]T , Equation (41) be expressed as

{
xu(k + 1) = Auxu(k) + Bu�u(k)

ym(k)=Cuxu(k)
(43)

where Au =
[

Am 012×6

CmAm I6×6

]
, Bu =

[
Bm

CmBm

]
, Cu =

[
06×12 I

6×6

]
.
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Assuming that the current time is k, Nc is the control step and Np is the prediction step, a recursive
Equation (44) can be obtained.

Y = Fxu(k) +��U (44)

F =

⎡
⎢⎢⎢⎢⎣

CuAu

CuA2
u

...

CuA
Np
u

⎤
⎥⎥⎥⎥⎦ ,�=

⎡
⎢⎢⎢⎢⎣

CuBu 0 · · · 0

CuAuBu CuBu · · · 0
...

...
...

...

CuA
Np−1
u Bu CuA

Np−2
u Bu · · · CuA

Np−Nc
u Bu

⎤
⎥⎥⎥⎥⎦

Define the prediction output Y = [ym(k + 1), ym(k + 2), · · · , ym(k + Np)], control increment�U(k) =
[�u(k),�u(k + 1), · · · ,�u(k + Nc − 1)]T .

Set Yd = [yd(k + 1), yd(k + 2), · · · , yd(k + Np)] be the system reference input at time k. To make
the system output as close as possible to the input, for MPC control, the cost function is defined as
follows.

J = (Yd − Y)TQ(Yd − Y) +�UTR�U

=
Np∑
i=1

(yd(k + i) − ym(k + i))TQi(yd(k + i) − ym(k + i))+
Nc−1∑
j=0

(�u(k + j))TRj(�u(k + j)) (45)

In the above equation, the first term reflects the ability of the UAV to follow the reference trajectory,
and the second term reflects the requirement for the smooth change of the control quantities. Q and
R are the block diagonal matrices of Qi and Ri, respectively; where,Qi = diag{q0, · · · , q0}n×n and Ri =
diag{r0, · · · , r0}m×m are the error weight and control quantity weight, q0, r0 are the initial values of MPC.
To adjust the parameters conveniently, the diagonal elements of matrices Q and R are selected as the
same values here.

By seeking the extreme value of Equation (43), the optimal control increment at the current moment
can be obtained.

�U(k) = (
�TQ�+ R

)−1 (
�TQYr −�TQFx(k)

)
(46)

Based on the idea of rolling optimisation, taking the first element of the sequence as the current
control, then

�u(k) = [10 · · · 0]�U(k) (47)

In MPC, there are many parameters in each optimisation prediction window of the control sequence,
which reduces the solution efficiency. The multi-objective control algorithm based on LF reduces the
calculation amount by approaching the finite time domain control trajectory with fewer optimisation
parameters, which can save more time for the implementation of autonomous PdM on a UAV.

At time k, the elements within the control trajectory �U are represented in the following impulse
response form using discrete δ-functions combined with �U.

�u(k + i) = [δ(i)δ(i − 1) · · · δ(i − Nc + 1)]�U(k) (48)

where ⎧⎪⎪⎨
⎪⎪⎩
δ(i) = diag([δ1(i) δ2(i) · · · δm(i)] = diag ([1 1 · · · 1])︸ ︷︷ ︸

m

), i = 0

δ(i) = diag ([1 1 · · · 1])︸ ︷︷ ︸
m

), i �= 0

According to the definition of the LF, �u(k + i) in Equation (48) is denoted by LT(i)η

�u(k + i) = LT(i)η (49)
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where η= [η1 η2 · · · ηm]T is the Laguerre coefficient and LT(i) = diag(L1(i)T ,
L2(i)T , · · · , Lm(i)T), i ∈ [1, Nc] denotes the Laguerre function.

Let Lq(i) = [l1q(i) l2q(i) · · · lNq(i)]T(q ∈ [1, m]), where Nq is the number of approximation fac-
tors of the qth actuator. The relationship of LF at adjacent times is obtained by the iterative operation as
follows.

Lq(i + 1) = AqlLq(i) (50)

where matrix Aql is a function of parameters αq and βq = 1 − αq, and the initial condition is

Lq(0) =√
βq

[
1 −αq αq

2 · · · −αq
Nq−1

]
(51)

Aql =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αq 0 0 · · · 0

βq αq 0 · · · 0

−αqβq βq αq · · · 0

...
...

...
. . .

...

−αq
Nq−2βq −αq

Nq−3βq −αq
Nq−4βq · · · αq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(52)

Substituting (49) into (43) gives the state variables and output variables of the system at time i after
time k as follows ⎧⎨

⎩ xu(k + i|k) = Au
ixu(k) +

i−1∑
p=0

Au
i−p−1BuL(p)Tη= Au

ixu(k) + φ(i)Tη

ym(k + i|k)=Cuxu(k + i|k)=CuAu
ixu(k) + Cuφ(i)Tη

(53)

where φ(i)T =
i−1∑
p=0

Au
i−p−1BuL(p)T ,(i ∈ [1, Np]).

By replacing�u(k + i) with LT(i)η, the parameter η becomes the only optimised parameter vector to
replace �U. Due to the smaller dimension of parameter η than �U, the calculation amount is reduced
and the speed is improved, which is the advantage of LF-MPC over traditional MPC in life extension.

According to the LF definition, substituting (49) into (45) yields.

J(k) =
Np∑
i=1

(yd(k + i) − ym(k + i))TQi(yd(k + i) − ym(k + i))+ηTRη (54)

Substituting Equation (53) into (54), retaining only the terms associated with η, and obtain

J(k) = ηT

(
Np∑
i=1

φ(i)�φ(i) + R

)
η+ 2ηT

(
Np∑
i=1

φ(i)�Au
ixu(k)

)
−2ηT

(
Np∑
i=1

φ(i)Cu
TQiyd(k + i|k)

)
(55)

Let ∂J
∂η

=0, then the parameter vector η that optimises the performance index can be obtained as

η∗ =
(

Np∑
i=1

φ(i)�φ(i)T + R

)−1

×
(

Np∑
i=1

φ(i)�(yd(k + i) − CuAu
ixu(k))

)
(56)

where �= Cu
TQiCu, �= Cu

TQi.
According to the life extension mechanism, by decreasing the element value of Q and increasing the

element value of R, it is possible to relax the constraint of error performance indicators, reduce actuator
execution pressure, and delay degradation, thereby achieving the goal of prolonging the RUL for the
quadrotor UAV.

Assuming that the expected safe working time of a quadrotor UAV is td, in order to achieve the
expected working time limit td, the shortest expected life extension time tex should be calculated
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Figure 4. Schematic diagram of weight matrix �q and �r adjustment based on HD.

based on the RUL prediction result tlk at time tk. When tex > 0, the system needs to be maintained
autonomously.

tex = td − (tlk + tk) = td − tsf (57)

4.2 Adaptive autonomous PdM strategy of LF-MPC based on HD
From the above analysis, it can be seen that there is a close relationship between actuator degradation
and system performance. When the degradation is small, due to the effect of feedback control, the degra-
dation has a relatively small impact on system performance, while when the degradation increases, the
system performance will deteriorate. Due to the definition of the Mahalanobis distance HD, which com-
prehensively considers the impact of actuator degradation on various states of the system, can provide a
more comprehensive evaluation of the impact of actuator degradation on the system. Therefore, when the
quadrotor UAV does not meet the requirements of a working time limit, autonomous maintenance can
adjust the weight matrices Qi and R in real-time based on HD, to achieve a balance between steady-state
performance and control capability of the UAV.

The UAV initially has no degradation, with HD = 1. As the hidden degradation of the actuator
increases, the airframe state deviates from the expected value, and the health level decreases. The more
severe the degradation, the smaller the health level. Combining the HD evaluation results with main-
tenance requirements, degradation has a relatively small impact on the UAV during HD>HDn and
does not require correction; when HDsf ≤ HD ≤ HDn does not meet the working time limit td require-
ments, adjust the weight matrix. The greater the change in HD, the greater the maintenance requirement.
Increase the Qi and R adjustment scale, and the smaller the change in HD, the smaller the maintenance
requirement, and fine-tune Qi and R; however, when HD<HDsf , the correction of the weight matrices
of Qi and R should be stopped. In summary, the adjustment trend of the weight matrix integrating HD
and maintenance demand in Fig. 4 can be obtained.

It can be seen that the changes of�q and�r with HD roughly follow an exponential law. Therefore,
the matrices Qi and R, and correction quantities �q and �r based on HD can be expressed as:⎧⎪⎪⎨

⎪⎪⎩
q(k + 1) = q(k) −�q,�q = 1

K1 + eHD

r(k + 1) = r(k) +�r,�r = 1

K2 + eHD

(58)

where, q(t) � qmin,r(t) ≤ rmax, the parameters can change the range of adjustment parameters�q and�r.
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Table 1. Physical parameters of quadrotor UAV

Variable Value
m(mass) 1.4 kg
g(gravitational acceleration) 9.8 m/s2

I=[Ixx, Iyy, Izz] I = diag [0.03, 0.03, 0.04] kg·m2

Ku(motor gain) 120
K�(torque gain) 4
[x, y, z, ϕ, θ ,ψ , ẋ, ẏ, ż, ϕ̇, θ̇ , ψ̇] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[xd, yd, zd, ϕd, θd,ψd, ẋd, ẏd, żd, ϕ̇d, θ̇d, ψ̇d] [3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4.3 Autonomous PdM process of quadrotor UAV based on HD
For the quadrotor UAV with multi-actuator degradation, the TSKF method is used to estimate the degra-
dation of each actuator and the UAV state in real-time, the entropy weight method is used to obtain the
comprehensive variables and the system HD is calculated in real-time. Considering the system perfor-
mance and deadline constraints, the online autonomous maintenance strategy of a quadrotor UAV is
implemented as in Fig. 5.

5.0 Simulation experiment and result analysis
5.1 Experimental description
To verify the effectiveness of the proposed approach in the article, the object parameters were
selected for simulation experiments as shown in Table 1. The LF-MPC control parameters are taken
as follows: Nc = 30, Np = 5. The Laguerre polynomial parameter is taken as α= [0.7, 0.7, 0.7, 0.7],
Nq = [7, 7, 7, 7]. The initial values of the error weight and control quantity weight matrix are taken
as q0 = 2 and r0 = 0.01, respectively, and the constraints qmin = 1.5 and rmax = 1.0 are satisfied, and the
sampling period is �t = 0.1.

Assuming that the HDs of the quadrotor UAV is HDn = 0.9 and HDsf = 0.7 respectively when the
airframe performance starts to degrade and does not meet the requirements, and the expected working
time limit is td = 500min.

5.2 RUL prediction of a quadrotor UAV
Set the initial value of the filter to

x̃ = x̂ = 012×1, γ̂ = 04×1, P0
x = P̃x

0 = E12

P0
γ = P̃γ

0 = E4, Qγ = 10−2 × I4×4

Qx =
[

10−10 × I6×6 06×6

06×6 10−12 × I6×6

]
, Qv =

[
10−12 × I6×6 06×6

06×6 10−14 × I6×6

]

Considering that the four actuators of the quadrotor UAV undergo varying degrees of degradation, the
TSKF algorithm is applied to obtain the estimated value of the degradation process shown in Fig. 6. It
can be seen that TSKF can effectively estimate the true values and reflect the actual degradation process.

The curve of the comprehensive degradation quantity obtained by using the aforementioned entropy
weight method is shown in Fig. 7. From the graph, it can be seen that the comprehensive degrada-
tion ds(t) has a high consistency with the degradation trend of the severely degraded actuator 1, so
the comprehensive degradation also follows the Wiener process, and the parameter estimation uses the
‘fminsearch’ function, which is obtained
α̂=0.0021, β̂=1.3373, σ̂B=0.0098.
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Figure 5. Flow chart of autonomous PdM algorithm for quadrotor UAV based on HD.

The red line in Fig. 8 shows the position and attitude changes of the quadrotor UAV during the
degradation process of the four actuators before implementing the maintenance strategy. As an impor-
tant indicator of autonomous maintenance, an airframe HD is an important basis for determining
maintenance timing and maintenance of a quadrotor UAV.

The red line in Fig. 9 shows the change curve of airframe HD before maintenance.
For the health failure threshold HDsf = 0.7, according to (37), the comprehensive failure threshold

lsf = 0.3587 is obtained, and the RUL distribution of the quadrotor UAV is calculated using (40). Then
the RUL distribution is shown in Fig. 10. When the quadrotor UAV exceeds the desired HD constraint,
the life of the UAV is tsf = 399 min, which does not meet the desired working time requirements. It can
be seen that the airframe performance is constrained based on the HD and the comprehensive degrada-
tion perception quantity is combined to make the airframe RUL prediction more direct, convenient and
accurate.
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Figure 6. True value and estimated value of actuator degradation.

Figure 7. Degradation curves for both comprehensive and individual actuator.

https://doi.org/10.1017/aer.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.8


The
AeronauticalJournal

1807

Figure 8. Response curve of quadrotor UAV with actuator degradation.
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Figure 9. Change curve of HDs.

Figure 10. Distribution of RUL of quadrotor UAV.

5.3 Autonomous PdM effect of quadrotor UAV
According to the above autonomous maintenance strategy of the quadrotor UAV, when HDn = 0.9, the
UAV enters a degraded state. If the minimum expected life extension time tex > 0, it is considered to
adaptively adjust �q and �r based on (58), and carry out autonomous maintenance by reducing the Q
matrix and increasing the weight value of each diagonal element in the R matrix.
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Figure 11. Adjustment curve of �q and �r.

Therefore, maintenance begins after the airframe enters a degraded state. Take K1 = 120 and K2 = 100
to obtain the matrix Q and R correction values �q and �r adjustment curves in Fig. 11, as well as the
weight matrix Q and R change curves after adjustment in Fig. 12.

Based on this maintenance strategy, the position, attitude and HD changes of the UAV after
maintenance are obtained as shown in Figs 8 and 9 with blue curves.

Figure 13 shows the variation curve of the control voltage u of the actuator before and after
autonomous maintenance. It can be seen that the output pressure of the actuator is effectively relieved,
the degradation process is delayed, and the HD of the UAV is also improved after maintenance, which
can provide more time for the normal work of the UAV.

After adopting the autonomous PdM method proposed in this paper, the RUL distribution of the UAV
is shown in Fig. 14, and the airframe life is extended to tsf = 551 min, which meets the requirement of
the HD and working time of the UAV at the same time. This further verifies the effectiveness of the
method of adaptively adjusting the weight matrix based on the HD for the autonomous maintenance of
the UAV.

To verify the superiority of the adaptive maintenance strategy based on HD in this paper, it is com-
pared with the fixed factor weight correction method and the MPC HD maintenance method. The
adjustment factors of Q and R are δ1 = 0.008 and δ2 = 0.009. Figure 9 shows the change curves of the
HD of the three methods, and the advantages of the proposed method can be seen.

Table 2 shows the failure thresholds and airframe life after no maintenance and different maintenance
strategies. It can be seen that there are two advantages to using the LF-MPC method. Firstly, compared
to MPC control, under the same control time domain conditions, the LF-MPC calculation efficiency
is improved and the control speed is increased. Therefore, the airframe life before the extension of
life is increased by 12 min compared to MPC, which improves the control effect; secondly, from the
perspective of maintenance strategy, MPC HD maintenance is better than fixed value maintenance, and
LF-MPC HD maintenance is better than MPC health maintenance. The reason is also that the adaptive
maintenance strategy based on LF-MPC HD is far less than the control time domain after the adoption
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Figure 12. Adjustment curve of Q and R for life extension control.

Figure 13. Control quantity curve before and after actuator maintenance.
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Table 2. Failure threshold and airframe life under different maintenance strategies

Maintenance strategies Failure threshold Airframe life (min)
Before MPC maintenance 0.2370 387
After MPC fixed value maintenance 0.3140 520
After MPC HD maintenance 0.3551 539
Before LF-MPC maintenance 0.2589 399
After LF- MPC HD maintenance 0.2587 551

Figure 14. Distribution of the RUL of the quadrotor UAV after maintenance.

of LF, resulting in a relatively reduced amount of computation in the solution of quadratic programming,
improved real-time performance and more targeted maintenance.

6.0 Conclusion
This paper focuses on the research of life prediction and autonomous maintenance methods for a hover-
ing quadrotor UAV, considering the hidden degradation of multi-actuators. The TSKF method is used
to estimate the system state and the degradation rate of each actuator in real time, and the actuator
degradation is fused into a comprehensive degradation by the entropy weight method. The first failure
threshold is determined based on the definition of system HD, and the analytical solution of the RUL of
the quadrotor UAV is obtained. Considering the HD and working time constraints, the LF-MPC weight
matrix was adjusted according to the health index to achieve the goal of autonomous maintenance.

In practice, the working state of a UAV includes hovering, pitch, yaw, roll and other attitudes. This
paper considers the basic hovering state from UAV modeling to subsequent methods, and the subsequent
research will be further extended to other states. Considering the HD and working time constraints, the
LF-MPC weight matrix was adjusted according to the health index to achieve the goal of autonomous
maintenance.

Author contributions. Conceptualisation, F.S. and W.L.; methodology, F.S.; software, F.S.; validation, F.S. and D.J.; formal
analysis, F.S.; investigation, F.S.; resources, W.L.; data curation, D.J.; writing—original draft preparation, F.S.; writing—review

https://doi.org/10.1017/aer.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.8


1812 Shen et al.

and editing, F.S. and W.L.; visualisation, F.S. and H. M.; supervision, W.L.; funding acquisition, D.J. and H. M. All authors have
read and agreed to the published version of the manuscript.

Funding. This research was funded by the National Natural Science Foundation of China (grants no. 62063017, 62263020).

Data availability statement. Not applicable.

Competing interests. The authors declare that they have no known competing financial interest or personal relationships that
could have appeared to influence the work reported in this paper.

References
[1] Geronel, R.S., Botez, R.M. and Bueno, D.D. Dynamic responses due to the Dryden gust of an autonomous quadrotor UAV

carrying a payload, Aeronaut. J., 2023, 127, (1307), pp 116–138.
[2] Wang, B., Yu, X., Mu, L. and Zhang, Y. A dual adaptive fault-tolerant control for a quadrotor helicopter against actuator

faults and model uncertainties without overestimation, Aerosp. Sci. Technol., 2021, 99, p 105744.
[3] Robertson, B. and Stoneking, E. Satellite GN&C anomaly trends, Adv. Astronaut. Sci. Breckenridge, CO, United States,

2003, pp 531–542.
[4] Dai, J. and Wang, H.F. System health management for unmanned aerial vehicle: conception, state-of-art, framework and

challenge, In Proc. IEEE Int. Conf. Electron. Meas. Instrum., ICEMI, Harbin, China, 2013, pp 859–863.
[5] Sierra, G., Orchard, M., Goebel, K. and Kulkarni, C. Battery health management for small-size rotary-wing electric

unmanned aerial vehicles: an efficient approach for constrained computing platforms, Reliab. Eng. Syst. Saf., 2018, 182,
(FEB.), pp 166–178.

[6] Cohen, M.R., Abdulrahim, K. and Forbes, J.R. Finite-horizon LQR control of quadrotors on SE2(3), IEEE Robot. Autom.
Let, 5, (4), 2020, pp 5748–5755. https://doi.org/10.1109/lra.2020.3010214

[7] Erdogan, H.F., Kural, A. and Ozsoy, C. Model predictive control of an unmanned aerial vehicle, Aircr. Eng. Aerosp. Technol.,
2017, 89, (2), pp 193–202. https://doi.org/10.1108/AEAT-03-2015-0074

[8] Yang, J., Liu, C.J., Coombes, M., Yan, Y.D. and Chen, W.H. Optimal path following for small fixed-wing UAVs under wind
disturbances, IEEE Trans. Contr. Syst. T, 2021, 29, (3), pp 996–1008. https://doi.org/10.1109/Tcst.2020.2980727

[9] Belmouhoub, A., Medjmadj, S., Bouzid, Y., Derrouaoui, S.H. and Guiatni, M. Enhanced backstepping control for an
unconventional quadrotor under external disturbances, Aeronaut. J., 127, 2023. pp 627–650.

[10] Marier, J.S., Rabbath, C.A. and Lechevin, N. Health-aware coverage control with application to a team of small UAVs, IEEE
Trans. Contr. Syst. T, 2013, 21, (5), pp 1719–1730.

[11] Salazar Cortés, J.C., Sanjuan Gomez, A., Nejjari Akhielarab, F. and Sarrate Estruch, R., Health-aware control of an octorotor
UAV system based on actuator reliability, In CoDIT 2017. Barcelona, Spain, pp 815–820.

[12] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. Health–aware and fault–tolerant control of an octorotor UAV system
based on actuator reliability, Int. J. Ap. Mat. Com.-Pol., 2020, 30, (1), pp 47–59.

[13] Mansouri, S.S., Karvelis, P., Georgoulas, G. and Nikolakopoulos, G. Remaining useful battery life prediction for UAVs
based on machine learning, IFAC Papersonline, 2017, 50, (1), pp 4727–4732.

[14] Gobbato, M., Conte, J.P., Kosmatka, J.B. and Farrar, C.R. Reliability-based framework for damage prognosis of adhesively-
bonded joints in composite UAV wings, In Collect Tech Pap AIAA ASME ASCE AHS Struct Struct Dyn Mater. Orlando, pp
2870–2883.

[15] Stanton, I., Munir, K., Ikram, A. and El-Bakry, M. Predictive maintenance analytics and implementation for aircraft:
challenges and opportunities, Syst. Eng., 2023, 26, (2), pp 216–237. https://doi.org/10.1002/sys.21651

[16] Selcuk, S. Predictive maintenance, its implementation and latest trends, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf., 2017,
231, (9), pp 1670–1679. https://doi.org/10.1177/0954405415601640

[17] Zhang, W.T., Yang, D. and Wang, H.C. Data-driven methods for predictive maintenance of industrial equipment: a survey,
IEEE Syst. J., 2019, 13, (3), pp 2213–2227. https://doi.org/10.1109/jsyst.2019.2905565

[18] Langeron, Y., Grall, A. and Barros, A. Actuator health prognosis for designing LQR control in feedback systems. Chem.
Eng. Trans., 2013, 33, pp 979–984.

[19] Salazar, J.C., Weber, P., Nejjari, F., Sarrate, R. and Theilliol, D. System reliability aware Model Predictive Control
framework, Reliab. Eng. Syst. Saf., 2017, 167, pp 663–672. https://doi.org/10.1016/j.ress.2017.04.012

[20] Jha, M.S., Weber, P., Theilliol, D., Ponsart, J.C. and Maquin, D., A reinforcement learning approach to health
aware control strategy, In Mediterr. Conf. Control Autom., MED-Proc., Akko, ISRAEL, 2019, pp 171–176.
https://doi.org/10.1109/med.2019.8798548

[21] Lee, M.-L.T. and Whitmore, G.A. Threshold regression for survival analysis: modeling event times by a stochastic process
reaching a boundary, Statist. Sci., 2006, 21, (4), pp 501–513.

[22] Zhang, Z., Si, X., Hu, C. and Lei, Y. Degradation data analysis and remaining useful life estimation: a review on Wiener-
process-based methods, Eur. J. Oper. Res., 2018, 271, (3), pp 775–796.

[23] Brown, D.W. and Vachtsevanos, G.J. A prognostic health management based framework for fault-tolerant control, Proc.
Annu. Conf. Progn. Health Manag. Soc., PHM. Montreal, QC, Canada, 2014, pp 516–526.

[24] Langeron, Y., Grall, A. and Barros, A. A modeling framework for deteriorating control system and predictive maintenance
of actuators, Reliab. Eng. Syst. Saf., 2015, 140, pp 22–36. https://doi.org/10.1016/j.ress.2015.03.028

https://doi.org/10.1017/aer.2024.8 Published online by Cambridge University Press

https://doi.org/10.1109/lra.2020.3010214
https://doi.org/10.1108/AEAT-03-2015-0074
https://doi.org/10.1109/Tcst.2020.2980727
https://doi.org/10.1002/sys.21651
https://doi.org/10.1177/0954405415601640
https://doi.org/10.1109/jsyst.2019.2905565
https://doi.org/10.1016/j.ress.2017.04.012
https://doi.org/10.1109/med.2019.8798548
https://doi.org/10.1016/j.ress.2015.03.028
https://doi.org/10.1017/aer.2024.8


The Aeronautical Journal 1813

[25] Zheng, J.F., Hu, C.H., Si, X.S., Zhang, Z.X. and Zhang, X. Remaining useful life estimation for nonlinear stochastic
degrading systems with uncertain measurement and unit-to-unit variability, AcAuS, 2017, 43, (2), pp 259–270.

[26] Chen, X.Q., Sun, R., Liu, M. and Song, D.Z. Two-stage exogenous Kalman filter for time-varying fault estimation of satellite
attitude control system, J. Franklin I., 357, (4), 2020. pp 2354–2370. https://doi.org/10.1016/j.jfranklin.2019.11.078

[27] Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J. and Gosselin,
P. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed,
J. Franklin I, 2013, 350, (9), pp 2396–2422. https://doi.org/10.1016/j.jfranklin.2013.01.009

[28] Xia, L., Yang, J.P., Lin, Q., Xie, Y.X. and Zhang, C.C. Safety assessment of radar software system based on entropy weight
method and cloud model, Progn. Syst. Heal. Manag. Conf. Qingdao, China, 2019.

[29] Si, X.S., Hu, C.H., Zhang, Q., He, H.F. and Zhou, T. Estimating remaining useful life under uncertain degradation
measurements, AcElS, 2015, 43, (1), pp 30–35. https://doi.org/10.3969/j.issn.0372-2112.2015.01.006

Cite this article: Shen F.-y., Li W., Jiang D.-n. and Mao H.-j. (2024). Autonomous predictive maintenance of quadrotor UAV
with multi-actuator degradation. The Aeronautical Journal, 128, 1789–1813. https://doi.org/10.1017/aer.2024.8

https://doi.org/10.1017/aer.2024.8 Published online by Cambridge University Press

https://doi.org/10.1016/j.jfranklin.2019.11.078
https://doi.org/10.1016/j.jfranklin.2013.01.009
https://doi.org/10.3969/j.issn.0372-2112.2015.01.006
https://doi.org/10.1017/aer.2024.8
https://doi.org/10.1017/aer.2024.8

	Acronym list
	Nomenclature
	Introduction
	Establishment of degradation model and autonomous PdM architecture for quadrotor UAV
	Establishment of degradation model for quadrotor UAV
	Construction of autonomous PdM architecture

	Hidden degradation description and RUL prediction of the actuators for a quadrotor UAV
	Description of the actuator degradation process
	Analysis of the degradation process of quadrotor UAV under actuator hidden degradation
	RUL prediction of quadrotor UAV under hidden degradation of actuators

	MPC adaptive life extension strategy based on quadrotor UAV HD evaluation
	Life extension mechanism based on LF-MPC
	Adaptive autonomous PdM strategy of LF-MPC based on HD
	Autonomous PdM process of quadrotor UAV based on HD

	Simulation experiment and result analysis
	Experimental description
	RUL prediction of a quadrotor UAV
	Autonomous PdM effect of quadrotor UAV

	Conclusion

