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A New Tautological Relation in M3,1

via the Invariance Constraint

Dedicated to Matteo S. Arcara∗

D. Arcara and Y.-P. Lee

Abstract. A new tautological relation of M3,1 in codimension 3 is derived and proved, using an invari-

ance constraint from our previous work.

1 Introduction

This work is a continuation of [1]. We apply the same technique to R3(M3,1) to find a

tautological relation. A general scheme and practical steps, as well as notations used
in this paper, can be found in [1] and [10].

1.1 Tautological Rings

The study of the tautological rings is one of the central problems in moduli of curves.
The reader is referred to Vakil’s survey article [12] and references therein for the var-

ious definitions, examples and motivation. In this section we merely try to fix nota-
tions.

Let Mg,n be the moduli stack of stable curves of genus g with n marked points. The

stacks Mg,n are proper, irreducible, smooth Deligne–Mumford stacks. The Chow

rings A∗(Mg,n) over Q are isomorphic to the Chow rings of their coarse moduli

spaces. The tautological rings R∗(Mg,n) are subrings of A∗(Mg,n), or subrings of

H2∗(Mg,n) via cycle maps. Note that the tautological rings are defined by generators
and relations. Since the generators are explicitly given, the study of tautological rings

is the study of relations of tautological classes.

1.2 Notations

The moduli of curves can be stratified by topological type. Each boundary stratum

can be conveniently presented by the (dual) graph of its generic curve defined in

the following way. To each stable curve C with marked points, one can associate a
dual graph Γ. Vertices of Γ correspond to irreducible components. They are labeled

by their geometric genus. Assign an edge joining two vertices each time the two
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components intersect. To each marked point one draws an half-edge incident to the
vertex, with the same label as the point. Now, the stratum corresponding to Γ is the

closure of the subset of all stable curves in Mg,n which have the same topological type
as C. For each dual graph Γ, one can decorate the graph by assigning a monomial,

or more generally a polynomial, in the ψ classes to each half-edge and one in the κ
classes to each vertex. The tautological classes in Rk(Mg,n) can be represented by Q-
linear combinations of decorated graphs. Since there are no κ or λ-classes involved in

this paper, they will be left out of our discussion below.

For typesetting reasons, it is more convenient to denote a decorated graph by an-

other notation, inspired by Gromov–Witten theory, called gwi. Given a decorated
graph Γ:

• To the vertices of Γ of genera g1, g2, . . . , we assign a product of “brackets”
〈 · 〉g1

〈 · 〉g2
. . . . To simplify the notation, 〈 · 〉 := 〈 · 〉0.

• Assign to each half-edge a symbol ∂∗. The external half-edges use super-indices

∂x1 , ∂x2 , . . . , corresponding to their labeling. For each pair of half-edges deter-
mined by an edge, a single super-index will by used, denoted by µ1, µ2, . . . . Oth-

erwise, all half-edges should use different super-indices.
• A decoration to a half-edge a by ψk is denoted by ∂a

k .
• For each vertex 〈 · 〉g with m half-edges and n external half-edges, an insertion is

placed in the vertex 〈∂x1

k1
∂x2

k2
· · · ∂µ1

h1
∂µ2

h2
· · · 〉g .

For example, the following graph

• • •
g = 1g = 0g = 0

x i j

has gwi 〈∂x∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉〈∂µ2〉1, which appears in (40).

The main tool employed in this paper is the following theorem on the Invariance

Constraint.

Theorem ([11] Theorem 5) There exist linear operators rl

rl : Rk(Mg,n) → Rk−l+1(M
•

g−1,n+2), l = 1, 2, . . . ,

where the symbol • denotes the moduli of possibly disconnected curves. In particular, if

E = 0 is a tautological relation in Rk(Mg,n), then rl(E) = 0.

The definition of rl will be given in the next section.

1.3 Motivation

Our motivation is quite simple. In earlier works [1, 7], we applied the Invariance

Constraint in genus one and two. The choice of codimension 3 in M3,1 as a next step
is almost obvious. First of all, the Invariance Constraint works inductively. Given

what we know about genus one and two, it is only reasonable to proceed to either

M2,n for n ≥ 4 or M3,1. Secondly, one also knows from the Graber–Vakil theorem in
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[8] that ψ3 on M3,1 is rationally equivalent to a sum of boundary strata containing
at least one rational component. Thirdly, Getzler and Looijenga [7] have shown that

there is only one relation in codimension 3 in M3,1. That makes it a reasonable place
to start.

1.4 Main Result

The main result of this paper is the following.

Main Theorem The new tautological relation for codimension 3 strata in M3,1 is

〈∂x
3〉3 =

5
72
〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂µ3〉2 + 1

252
〈∂µ1∂µ2∂µ2〉〈∂x

1∂
µ1〉2

+ 5
72
〈∂x∂µ1∂µ1∂µ2〉〈∂µ2

1 〉2 + 5
42
〈∂x∂µ1∂µ2〉〈∂µ1

1 ∂
µ2〉2

+ 41
21
〈∂x∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2

1 〉2 + 11
40320

〈∂x∂µ1∂µ2∂µ2〉〈∂µ1∂µ3∂µ3〉1

+ 1
13440

〈∂µ1∂µ2∂µ2〉〈∂x∂µ1∂µ3∂µ3〉1 + 1
8064

〈∂µ1∂µ2∂µ2∂µ3∂µ3〉〈∂x∂µ1〉1

+ 191
120960

〈∂x∂µ1∂µ2∂µ2∂µ3∂µ3〉〈∂µ1〉1 + 1
5040

〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3∂µ3〉1

+ 1
4032

〈∂µ1∂µ2∂µ3∂µ3〉〈∂x∂µ1∂µ2〉1 + 17
2880

〈∂x∂µ1∂µ2∂µ3∂µ3〉〈∂µ1∂µ2〉1

+ 1
840

〈∂µ1∂µ2∂µ2〉〈∂x∂µ3〉1〈∂
µ1∂µ3〉1 + 1

336
〈∂µ1∂µ2∂µ2〉〈∂x∂µ1∂µ3〉1〈∂

µ3〉1

+ 1
126

〈∂x∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉1〈∂
µ2〉1 + 23

5040
〈∂x∂µ1∂µ2∂µ2〉〈∂µ1∂µ3〉1〈∂

µ3〉1

+ 17
5040

〈∂µ1∂µ2∂µ3∂µ3〉〈∂x∂µ1〉1〈∂
µ2〉1 + 113

2520
〈∂x∂µ1∂µ2∂µ3∂µ3〉〈∂µ1〉1〈∂

µ2〉1

+ 1
210

〈∂x∂µ1∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1 + 0〈∂µ1∂µ2∂µ3〉〈∂x∂µ1∂µ2∂µ3〉1

+ 1
84
〈∂µ1∂µ2∂µ3〉〈∂x∂µ1〉1〈∂

µ2∂µ3〉1 + 211
1260

〈∂x∂µ1∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂
µ3〉1

+ 1
1260

〈∂µ1∂µ2∂µ3〉〈∂x∂µ1∂µ2〉1〈∂
µ3〉1 + 1

630
〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉1〈∂

µ3〉1

+ 11
140

〈∂x∂µ1∂µ2〉〈∂µ1∂µ3〉1〈∂
µ2∂µ3〉1 + 4

35
〈∂x∂µ1∂µ2〉〈∂µ2∂µ3〉1〈∂

µ1〉1〈∂
µ3〉1

+ 2
105

〈∂µ1∂µ2∂µ3〉〈∂x∂µ1〉1〈∂
µ2〉1〈∂

µ3〉1

+ 89
210

〈∂x∂µ1∂µ2∂µ3〉〈∂µ1〉1〈∂
µ2〉1〈∂

µ3〉1 + 1
53760

〈∂x∂µ1∂µ1∂µ2∂µ2∂µ3∂µ3〉.

Remarks. (i) While this paper was in preparation, a preprint by T. Kimura and X. Liu

[9] appeared on the arXiv. There are two major differences between our results and
theirs. First, their choice of basis of codimension 3 strata in M3,1 is different. They

use 〈∂µ1∂µ2∂µ2〉〈∂x∂µ1

1 〉2 instead of 〈∂µ1∂µ2∂µ2〉〈∂x
1∂

µ1〉2 We have checked that their

relation is equivalent to ours. Second, their approach is “traditional”: knowing that
there must be a relation from Graber–Vakil, they can then proceed to find the coeffi-

cients based on the evaluation of the Gromov–Witten invariants of P1.

Our approach is quite different. There are no computer-aided calculations of

Gromov–Witten invariants. Only linear algebra is involved in the calculation.

(ii) This technique has been applied to prove some Faber type results in tauto-

logical rings [2]. A corollary of [2] is that there is no relation between ψ1 and κ1 in
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R1(M3,1). It is easy to see, however, that there is a relation between the monomials in
κ- and ψ-classes. On the other hand, the reader may amuse him or herself with the

following result.

Proposition 1 There is no (new) relation in R2(M3,1) involving ψ2
1 and the classes in

R2(M3,1) \ R2(M3,1).

This can be shown, for example, by the same technique used in this paper. Let

{Γk} be a basis of these strata. When one sets a hypothetical equation
∑

k ckΓk = 0
and imposes the invariance constraint, the only solution is ck = 0 for all k.

2 Invariance Constraints

Here some ingredients from [10] and [11] will be briefly recalled.

2.1 The Operators rl

The invariance constraint is imposed by applying the linear operators rl. These linear
operators are defined as operations on the decorated graphs. The output graphs have
two more markings, which are denoted by i, j. In terms of gwis,

rl(〈∂
µ
k′
· · · 〉g ′ · · · 〈∂µ

k′ ′
· · · 〉g ′′) =

1
2
(〈∂ i

k′+l · · · 〉g ′ · · · 〈∂
j

k′ ′
· · · 〉g ′′

+ 〈∂
j

k′
· · · 〉g ′〈∂ i

k′ ′+l · · · 〉g ′′ )

+ 1
2
(−1)

l−1
(〈∂ j

k′+l
· · · 〉g ′ · · · 〈∂ i

k′′ · · · 〉g ′′ + 〈∂ i
k′ · · · 〉g ′〈∂ j

k′ ′+l
· · · 〉g ′′) + · · ·

+ 1
2

l−1
P

m=0

(−1)
m+1〈∂ i

l−1−m∂
j
m∂

µ
k′
· · · 〉g ′

−1 · · · 〈∂
µ
k′ ′

· · · 〉g ′′ + · · ·

+ 1
2

l−1
P

m=0

(−1)
m+1〈∂µk′ · · · 〉g ′ · · · 〈∂ i

l−1−m∂
j
m∂

µ
k′ ′ · · · 〉g ′′

−1

+ 1
2

“ l−1
P

m=0

(−1)
m+1

g ′

P

g=0

∂µ
k′
· · · (〈∂ i

l−1−m〉g〈∂
j
m〉g ′

−g )
”

〈∂µ
k′ ′

· · · 〉g ′′ + · · ·

+ 1
2
〈∂µ

k′
· · · 〉g ′

“ l−1
P

m=0

(−1)
m+1

g ′′

P

g=0

∂µ
k′ ′

· · · (〈∂ i
l−1−m〉g〈∂

j
m〉g ′′

−g)
”

,

where the notation ∂µk · · · (〈∂ i
l−1−m〉g1

〈∂
j

m〉g2
) means that the half-edge insertions

∂µk · · · act on the product of vertices 〈∂ i
l−1−m〉g1

〈∂
j

m〉g2
by the Leibniz rule. Note that

〈· · ·〉−1 := 0.

One can also denote gwi’s as decorated graphs as explained in Section 1.2. In terms

of decorated graphs, rl can be defined as follows.

• Cutting edges. Cut one edge and create two new half-edges. Label two new half-

edges with i, j /∈ {1, 2, . . . , n} in two different ways. Produce a formal sum of 4
graphs by decorating extra ψl to i-labeled new half-edges with coefficient 1/2 and

by decorating extra ψl to j-labeled new half-edges with coefficient (−1)l−1/2. (By

“extra” decoration we mean that ψl is multiplied by whatever decorations which
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are already there.) Produce more graphs by repeating the above proceedure on the
other edges of the original graph. Retain only the stable graphs. Take the formal

sum of these final graphs.
• Genus reduction. For each vertex, produce l graphs. Reduce the genus of this given

vertex by one and add two new half-edges. Label two new half-edges with i, j and

decorate them by ψl−1−m, ψm (respectively) where 0 ≤ m ≤ l − 1. Do this to all
vertices, and retain only the stable graphs. Take the formal sum of these graphs

with coefficient 1
2
(−1)m+1.

• Splitting vertices. Split one vertex into two. Add one new half-edge to each of the
two new vertices. Label them with i, j and decorate them by ψl−1−m, ψm (respec-

tively) where 0 ≤ m ≤ l−1. Produce new graphs by splitting the genus g between
the two new vertices (g ′, g ′ ′ such that g ′ + g ′ ′

= g), and distributing to the two

new vertices the (old) half-edges which belong to the original chosen vertex, in all

possible ways. Do this to all vertices, and retain only the stable graphs. Take the
formal sum of these graphs with coefficient 1

2
(−1)m+1.

Remarks. (i) In terms of graphical operations, the first two lines of the equation
above which defines rl in terms of gwis stand for “cutting edges”; the middle two

for “genus reduction”; the last two for “splitting vertices”. These are explained

in [10].
(ii) In this paper, only the l = 1 case will be used. In fact, it has been shown recently,

by Faber, Shadrin, and Zvonkine, and independently Pandharipande (and the
second author) that the l = 1 case implies general l. See Section 3 of [4].

2.2 The Algorithm of Finding Tautological Relations

Our method of finding this relation is fairly simple.

(a) By Graber and Vakil’s (∗) Theorem [8] or Getzler and Looijenga’s Hodge number

calculations [7], there is a new relation in R3(M3,1).
(b) Apply the invariance constraint [10, Theorem 5] to obtain the coefficients of the

relation.

Applying (b) gives a necessary condition. Combined with (a), this generates and

proves the new relation.

In the case of R3(M3,1), we first identify thirty “potentially independent” deco-

rated graphs with decorations coming from ψ-classes only. They are the 30 graphs
listed in the Main Theorem. More precisely, out of the tautological classes of codi-

mension 3 in M3,1 generated by ψ-class and boundary classes, many of them can be

written in terms of the others using WDVV, TRR, Mumford–Getzler, Getzler [5, 6]
and Belorousski–Pandharipande [3] relations. After applying those relations, we can

write all of the strata in terms of the thirty strata appearing in the Main Theorem.

Let Γk denote the tautological class in the k-th term of the Main Theorem. A

general combination of these 30 decorated graphs is written as E =
∑30

k=1 ckΓk where

ck is the corresponding unknown coefficient to be found. Suppose that E = 0 is
a tautological equation. The Invariance Theorem implies that r1(E) = 0, where

r1 : R3(M3,1) → R3(M
•

2,3). By analyzing the properties of the image in R3(M
•

2,3),

which is known from earlier work in genus one and two [1, 3, 5, 6], we obtain a
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system of homogeneous linear equations on the ck’s, which will be equations (1)–
(49). This system is potentially very over-determined, as there are more equations

than variables. However, the Invariance Constraint theorem predicts that this system
of linear equations uniquely determines the ck’s if there is a nontrivial tautological

relation. (We always have the trivial solution with ck = 0 for all k.)

3 Proof of the Main Theorem

We will spare the reader the explicit formula for r1(E), which would occupy several
pages. It is possible to reconstruct it from the equations below. For example, let

Γi be the decorated graph corresponding to the i-th term in the theorem. Then
r1(Γi) would contain the sum of the basis elements below for which a ci appears in

their equation, with the corresponding coefficient. To illustrate how we went about

calculating r1(E), though, we include two sample calculations in Appendix A, where
we go through all of the steps for calculating and simplifying r1(Γ3) and r1(Γ10).

Note that the (new) half-edges i and j in the output graphs are always assumed

to be symmetrized. Some of the output graphs will be disconnected. They are easier
to deal with as they involve fewer relations (e.g. WDVV). So we shall start with the

disconnected terms.
We now choose a basis of R3(M

•

2,3), and we set the coefficient in r1(E) of each
element in the basis equal to zero, obtaining an equation that the ck’s have to satisfy.
In the following list, for each equation, we write its number, the corresponding basis

vector in R3(M
•

2,3), and its coefficient in r1(E), which is set equal to zero. If a basis
vector is disconnected, we use a vertical bar to separate its connected components.

(1) 〈∂
j
1〉2|〈∂

x∂µ1∂µ2〉〈∂ i∂µ1∂µ2〉 c2 + c4 = 0.

(2) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2〉〈∂µ2
1 〉2 3c3 − c4 + 1

24
c6 = 0.

(3) 〈∂ i∂µ1∂µ1〉|〈∂µ2∂µ2∂µ3〉〈∂x∂ j∂µ3〉1 − 1
80

c3 − c8 + 1
24

c15 = 0.

(4) 〈∂ i∂µ1∂µ1〉1|〈∂
x∂µ2∂µ3〉〈∂ j∂µ2∂µ3〉 c7 − c8 − c11 = 0.

(5) 〈∂ i∂µ1∂µ1〉|〈∂x∂µ2∂µ3〉〈∂ j∂µ2∂µ3〉1
1

30
c3 − c11 + 1

24
c25 = 0.

(6) 〈∂ i∂µ1∂µ1〉|〈∂ j∂µ2∂µ3〉〈∂x∂µ2∂µ3〉1
1

30
c3 + 2c8 − c12 + 1

24
c24 = 0.

(7) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2〉〈∂µ2∂µ3∂µ3〉1 − 1
30

c3 − c7 + c8 + 1
24

c16 = 0.

(8) 〈∂x∂ i〉1|〈∂
j∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉〈∂µ2〉1 c14 − c15 + c18 − c24 = 0.

(9) 〈∂ i∂µ1〉1〈∂
µ1〉1|〈∂

x∂ j∂µ2〉〈∂µ2∂µ3∂µ3〉 c15 − c17 + c25 = 0.

(10) 〈∂ i∂µ1∂µ1〉|〈∂x∂µ2∂µ3〉〈∂ j∂µ2〉1〈∂
µ3〉1

4
5
c3 − c16 + 1

24
c27 = 0.

(11) 〈∂x∂ i∂µ1〉〈∂µ1〉1|〈∂
µ2∂µ3∂µ3〉〈∂ j∂µ2〉1 −c3 −

1
240

c6 + c14 − c15 = 0.

(12) 〈∂ i∂µ1∂µ1〉|〈∂ j∂µ2∂µ3〉〈∂x∂µ2〉1〈∂
µ3〉1

4
5
c3 + c14 + c15 − c18 + 1

12
c28 = 0.

(13) 〈∂ j∂µ1∂µ1〉|〈∂x∂ i∂µ2〉〈∂µ2∂µ3〉1〈∂
µ3〉1 − 4

5
c3 + c15 − c17 + 1

24
c27 = 0.

(14) 〈∂x∂ i∂µ1〉〈∂µ1〉1|〈∂
j∂µ2∂µ3〉〈∂µ2∂µ3〉1

1
10

c6 + 2c16 + c22 − c23 = 0.

(15) 〈∂x∂ i∂µ1〉〈∂µ1〉1|〈∂
j∂µ2∂µ3〉〈∂µ2〉1〈∂

µ3〉1
7

10
c6 + c27 + c28 − 3c29 = 0.

(16) 〈∂x∂ i〉1|〈∂
j∂µ1∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉 =

〈∂x∂ i〉1|〈∂
j∂µ1∂µ2∂µ2〉〈∂µ1∂µ3∂µ3〉 −c8 + c9 + 1

24
c14 − c21 = 0.
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(17) 〈∂x∂ i〉1|〈∂
µ1∂µ2∂µ3∂µ3〉〈∂ j∂µ1∂µ2〉 2c9 − c12 = 0.

(18) 〈∂ i∂µ1∂µ1〉|〈∂x∂µ2∂µ2∂µ3〉〈∂ j∂µ3〉1
1

48
c3 − c7 + 1

24
c17 = 0.

(19) 〈∂x∂ i∂µ1∂µ1〉|〈∂µ2∂µ3∂µ3〉〈∂ j∂µ2〉1 − 1
24

c3 −
1

240
c4 − c8 + 1

24
c14 = 0.

(20) 〈∂ i∂µ1∂µ1〉|〈∂ j∂µ2∂µ2∂µ3〉〈∂x∂µ3〉1
1

48
c3 + c8 − 2c9 + 1

24
c14 + 1

24
c18 = 0.

(21) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2∂µ3〉〈∂µ2∂µ3〉1
7

30
c3 + 2c8 − c13 + 1

24
c23 = 0.

(22) 〈∂x∂ i∂µ1∂µ1〉|〈∂ j∂µ2∂µ3〉〈∂µ2∂µ3〉1
1

10
c4 + 2c7 − c13 + 1

24
c22 = 0.

(23) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2∂µ3〉〈∂µ2〉1〈∂
µ3〉1

13
10

c3 + c15 − c19 + 1
8
c29 = 0.

(24) 〈∂x∂ i∂µ1∂µ1〉|〈∂ j∂µ2∂µ3〉〈∂µ2〉1〈∂
µ3〉1

7
10

c4 + c17 − c19 + 1
24

c28 = 0.

(25) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2∂µ2∂µ3〉〈∂µ3〉1
23

240
c3 + c8 − 2c10 + 1

24
c15 + 1

12
c19 = 0.

(26) 〈∂ i∂x∂µ1∂µ1〉|〈∂ j∂µ2∂µ2∂µ3〉〈∂µ3〉1
13

240
c4 + c7 − 2c10 + 1

24
c17 + 1

24
c18 = 0.

(27) 〈∂ i∂µ1∂µ1∂µ2∂µ2〉|〈∂x∂ j∂µ3〉〈∂µ3〉1
1

960
c6 + c9 − c10 + 1

24
c16 = 0.

(28) 〈∂x∂ i∂µ1〉〈∂µ1〉1|〈∂
j∂µ2∂µ2∂µ3〉〈∂µ3〉1

13
240

c6 + c16 + c18 − 2c19 + 1
24

c27 = 0.

(29) 〈∂ i∂µ1∂µ1〉|〈∂x∂ j∂µ2∂µ2∂µ3∂µ3〉 1
576

c3 + 1
24

c8 + 1
24

c10 − 3c30 = 0.

(30) 〈∂ i∂x∂µ1∂µ1〉|〈∂ j∂µ2∂µ2∂µ3∂µ3〉 1
960

c4 + 1
24

c7 + 1
24

c9 − 3c30 = 0.

There are several terms of the form ∗〈∂ i〉1. If we remove the 〈∂ i〉1, they become

terms in M2,2 of codimension 3, and there is a relation between them which we can
find by using Getzler’s relation [6] with ψ2 on x and ψ on j (see Appendix B). The

relation is

0 = − 3
40
〈∂x∂µ1∂µ2∂µ2〉〈∂ j∂µ1∂µ3〉〈∂µ3〉1 + 3

40
〈∂x∂µ1∂µ2∂µ3〉〈∂ j∂µ1∂µ2〉〈∂µ3〉1

− 7
120

〈∂x∂µ1∂µ2〉〈∂ j∂µ1∂µ2∂µ3〉〈∂µ3〉1 + 7
120

〈∂x∂µ1∂µ2〉〈∂ j∂µ2∂µ3∂µ3〉〈∂µ1〉1

+ 1
120

〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ3〉1 −
1

120
〈∂x∂ j∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉〈∂µ2〉1

− 1
120

〈∂x∂ j∂µ1〉〈∂µ2∂µ3∂µ3〉〈∂µ1∂µ2〉1 + 1
120

〈∂ j∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉〈∂x∂µ2〉1

+ other terms with all vertices of genus 0.

We are going to solve this relation for the term

〈∂ i〉1|〈∂
x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ3〉1

and find an equation for all of the other terms. Among those, seven of them are of
the form ∗〈∂µ〉1〈∂

i〉1 and are related by WDVV. They can be written in terms of the
following four independent vectors.

(31) 〈∂ i〉1|〈∂
j∂µ1∂µ1∂µ2〉〈∂x∂µ2∂µ3〉〈∂µ3〉1

− 3
20

c1 − c2 − 2c3 − 2c5 −
1

24
c6 − c16 + 2c19 − c24 + 1

24
c27 = 0.

(32) 〈∂ i〉1|〈∂
x∂µ1∂µ1∂µ2〉〈∂ j∂µ2∂µ3〉〈∂µ3〉1 − c2 − c4 = 0.

(33) 〈∂ i〉1|〈∂
µ1∂µ1∂µ2∂µ3〉〈∂x∂ j∂µ2〉〈∂µ3〉1

11
240

c1 + c2 + 2c3 + c5 − c18 + c24 = 0.

(34) 〈∂ i〉1|〈∂
x∂µ1∂µ2∂µ3〉〈∂ j∂µ1∂µ2〉〈∂µ3〉1 − 1

10
c1 − 2c3 − c5 + 4c19 − c23 − c24 = 0.
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There are four additional independent vectors

(35) 〈∂ i〉1|〈∂
x∂µ1∂µ2〉〈∂ j∂µ1∂µ3〉〈∂µ2∂µ3〉1

1
10

c1 + c5 + c22 − c23 − 2c25 + 2c26 = 0.

(36) 〈∂ i〉1|〈∂
x∂µ1∂µ2〉〈∂ j∂µ2∂µ3〉〈∂µ1〉1〈∂

µ3〉1 − 7
10

c1 − c6 − c28 + 3c29 = 0.

(37) 〈∂ i〉1|〈∂
j∂µ1∂µ2〉〈∂µ1∂µ3∂µ3 〉〈∂x∂µ2〉1

1
20

c1 + c2 + c3 + c5 − c14 + c15 + c18 − c22 = 0.

(38) 〈∂ i〉1|〈∂
x∂ j∂µ1〉〈∂µ2∂µ3∂µ3〉〈∂µ1∂µ2〉1 − 11

240
c1 − c2 − 2c3 − c5 − c14 + c15 = 0.

The remaining connected strata are all of codimension 3 in M2,3. We found relations
between them in two different ways (see Appendix C). First, by taking Getzler’s rela-

tion in M1,4 [5], adding another marked point, and then identifying either two of the
first four marked points or the fifth marked point with one of the others. Secondly,
by taking the Belorousski–Pandharipande relation [3], adding ψ at the marked point
x, and then simplifying. The relations we obtain are the following:

0 = 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1 + 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1

+ 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ3〉〈∂µ1∂µ2∂µ3〉1 − 〈∂x∂ i∂µ1 〉〈∂ j∂µ1∂µ2〉〈∂µ2∂µ3∂µ3〉1

− 〈∂x∂ i∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ2∂µ3〉1 − 〈∂x∂ i∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ2∂µ3〉1

− 〈∂ i∂ j∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x∂µ2∂µ3〉1 + other terms,

0 = 〈∂x∂ i∂µ1〉〈∂µ2∂µ2∂µ3 〉〈∂ j∂µ1∂µ3〉1 − 〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂ i∂ j∂µ3〉1

− 〈∂ i∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂x∂ j∂µ3〉1 + other terms,

0 = 〈∂ i∂ j∂µ1〉〈∂µ2∂µ2∂µ3〉〈∂x∂µ1∂µ3〉1 − 〈∂ i∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂ j∂x∂µ3〉1

− 〈∂ i∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂ j∂x∂µ3〉1 + other terms,

0 = −〈∂ i∂ j∂µ1〉〈∂µ1∂µ2∂µ3 〉〈∂x∂µ2〉1〈∂
µ3〉1 − 〈∂x∂ i∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ2〉1〈∂

µ3〉1

− 〈∂x∂ i∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂ j∂µ2〉1〈∂
µ3〉1 − 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ1〉〈∂µ2∂µ3〉1〈∂

µ3〉1

+ 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ3〉〈∂µ1∂µ3〉1〈∂
µ2〉1 + 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂

µ3〉1

+ 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂
µ3〉1 + other terms.

After solving the four relations above for the following four terms

〈∂x∂ i∂µ1〉〈∂ j∂µ1∂µ2〉〈∂µ2∂µ3∂µ3〉1, 〈∂
x∂ i∂µ1〉〈∂µ2∂µ2∂µ3〉〈∂ j∂µ1∂µ3〉1,

〈∂ i∂ j∂µ1〉〈∂µ2∂µ2∂µ3〉〈∂x∂µ1∂µ3〉1, 〈∂
x∂µ1∂µ2〉〈∂ i∂ j∂µ1〉〈∂µ2∂µ3〉1〈∂

µ3〉1,

we obtain the following equations for the other terms.

(39) 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ2〉〈∂µ1
1 〉2 − 1

2
c1 + 4c5 −

1
2
c6 = 0.

(40) 〈∂x∂µ1∂µ2〉〈∂µ1∂µ3∂µ3〉〈∂ i∂ j∂µ2〉1 − 1
40

c1 −
1
2
c2 −

1
2
c3 −

1
2
c5 + 2c8 −

1
2
c15 = 0.

(41) 〈∂ i∂µ1∂µ2 〉〈∂µ1∂µ3∂µ3〉〈∂ j∂x∂µ2〉1
1

240
c1 − c3 −

1
60

c5 + 4c8 + 2c12 − c15 − 3c21 = 0.
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(42) 〈∂x∂µ1∂µ2〉〈∂ i∂µ2∂µ3〉〈∂ j∂µ1∂µ3〉1 − 1
10

c1 −
29
30

c5 − 4c11 + c16 + 3c20 − 3c21 = 0.

(43) 〈∂ i∂ j∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x∂µ2∂µ3〉1
1

30
c5 − 2c11 + 1

2
c16 + 6c21 −

1
2
c24 = 0.

(44) 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1
1

15
c5 + 8c11 − c16 − 3c20 + 3c21 = 0.

(45) 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ3〉〈∂µ1∂µ2∂µ3〉1 − 1
30

c5 + 4c11 −
1
2
c16 −

1
2
c25 = 0.

(46) 〈∂x∂µ1∂µ2〉〈∂ i∂µ2∂µ3〉〈∂ j∂µ3 〉1〈∂
µ1〉1

− 7
5
c1 + 7

5
c5 − c6 + 2c23 − 2c24 − 6c25 + 2c26 + c27 = 0.

(47) 〈∂ i∂ j∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x∂µ2 〉1〈∂
µ3〉1

4
5
c5 + 2c22 + 2c24 − 2c25 + 1

2
c27 − c28 = 0.

(48) 〈∂x∂ i∂µ1〉〈∂ j∂µ2∂µ3〉〈∂µ1∂µ2 〉1〈∂
µ3〉1

3
5
c5 − 2c23 + 2c24 + 6c25 + 2c26 − c27 = 0.

(49) 〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ3〉〈∂µ1∂µ3 〉1〈∂
µ2〉1 − 4

5
c5 + 2c16 + 2c25 − c27 = 0.

Solving the equations (1)–(49) gives the coefficients of the terms in the relation in

the Main Theorem.

A Sample Calculations of r1(Γk)

We calculate r1(Γ3) and r1(Γ10) here to illustrate the process.

A.1 Calculation of r1(Γ3).

Recall that Γ3 = 〈∂x∂µ1∂µ1∂µ2〉〈∂µ2

1 〉2.

The first step in calculating r1(Γ3) is to cut the edges. There are two edges here:

µ1 and µ2. If we cut µ1, we obtain 2〈∂x∂ i
1∂

j∂µ2〉〈∂µ2

1 〉2, and if we cut µ2, we obtain

〈∂x∂µ1∂µ1∂ i
1〉〈∂

j
1〉2 + 〈∂x∂µ1∂µ1∂ j〉〈∂ i

2〉2. The next step is genus reduction, which can

only be applied to the genus 2 term to obtain − 1
2
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂ j∂µ2

1 〉1. The third

and last step is splitting the vertices. There are two vertices to split. If we split the
genus 0 vertex into two vertices, we obtain − 1

2
∂x∂µ1∂µ1∂µ2 (〈∂ i〉〈∂ j〉)〈∂µ2

1 〉2, where

the notation ∂x∂µ1∂µ1∂µ2 (〈∂ i〉〈∂ j〉) here stands for a Leibniz rule (graphically, it cor-
responds to attaching the four half-edges in all possible ways, some to the first genus

0 vertex, and the rest to the other one). We shall simplify it later. If we split the genus

2 vertex, it can only be split into two genus 1 vertices (or else, if we use a genus 2
vertex and a genus 0 vertex, the genus 0 vertex would not have enough half-edges to

be stable) to obtain − 1
2
〈∂x∂µ1∂µ1∂µ2〉∂µ2

1 (〈∂ i〉1〈∂
j〉1).

Putting these together we obtain

r1(Γ3) = 2〈∂x∂ i
1∂

j∂µ2〉〈∂µ2

1 〉2 + 〈∂x∂µ1∂µ1∂ i
1〉〈∂

j
1〉2 + 〈∂x∂µ1∂µ1∂ j〉〈∂ i

2〉2

− 1
2
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂ j∂µ2

1 〉1 −
1
2
∂x∂µ1∂µ1∂µ2 (〈∂ i〉〈∂ j〉)〈∂µ2

1 〉2

− 1
2
〈∂x∂µ1∂µ1∂µ2〉∂µ2

1 (〈∂ i〉1〈∂
j〉1).
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Next, we expand the last two terms to obtain

r1(Γ3) = 2〈∂x∂ i
1∂

j∂µ2〉〈∂µ2

1 〉2 + 〈∂x∂µ1∂µ1∂ i
1〉〈∂

j
1〉2 + 〈∂x∂µ1∂µ1∂ j〉〈∂ i

2〉2

− 1
2
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂ j∂µ2

1 〉1 − 2〈∂ i∂x∂µ1〉〈∂ j∂µ1∂µ2〉〈∂µ2

1 〉2

− 〈∂ i∂x∂µ2〉〈∂ j∂µ1∂µ1〉〈∂µ2

1 〉2 − 〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂µ2

1 〉1〈∂
j〉1.

The terms of genus 0 or 1 with a ∂∗1 in them can be simplified using Tautological
Recursive Relations, and the term 〈∂ i

2〉2 can be simplified using Mumford’s Relation

in M2,1.

For the reader’s convenience, let us recall those relations here.

• TRR in g = 0 : 〈∂a
k+1∂

b∂c〉 = 〈∂a
k∂

µ〉〈∂µ∂b∂c〉.
• TRR in g = 1 : 〈∂a

k+1〉1 = 〈∂a
k∂

µ〉〈∂µ〉1 + 1
24
〈∂a

k∂
µ∂µ〉.

• Mumford’s Relation in g = 2 :

〈∂x
k+2〉2 = 〈∂x

k+1∂
µ1〉〈∂µ1〉2 + 〈∂x

k∂
µ1〉〈∂µ1

1 〉2 − 〈∂x
k∂

µ1〉〈∂µ1∂µ2〉〈∂µ2〉2

+ 7
10
〈∂x

k∂
µ1∂µ2〉〈∂µ1〉1〈∂

µ2〉1 + 1
10
〈∂x

k∂
µ1∂µ2〉〈∂µ1∂µ2〉1

− 1
240

〈∂x
k∂

µ1〉1〈∂
µ1∂µ2∂µ2〉 + 13

240
〈∂x

k∂
µ1∂µ1∂µ2〉〈∂µ2〉1

+ 1
960

〈∂x
k∂

µ1∂µ1∂µ2∂µ2〉.

Using these relations, our r1(Γ3) becomes

r1(Γ3) = 2〈∂ i∂µ2∂µ3〉〈∂µ3∂ j∂x〉〈∂µ2
1 〉2 + 〈∂ i∂µ1∂µ3〉〈∂µ3∂x∂µ1〉〈∂

j
1〉2

+ 7
10
〈∂ j∂x∂µ1∂µ1〉〈∂ i∂µ3∂µ4〉〈∂µ3〉1〈∂

µ4〉1 + 1
10
〈∂ j∂x∂µ1∂µ1〉〈∂ i∂µ3∂µ4〉〈∂µ3∂µ4〉1

− 1
240

〈∂ j∂x∂µ1∂µ1〉〈∂µ3∂µ4∂µ4〉〈∂ i∂µ3 〉1 + 13
240

〈∂ j∂x∂µ1∂µ1〉〈∂ i∂µ3∂µ3∂µ4 〉〈∂µ4〉1

+ 1
960

〈∂ j∂x∂µ1∂µ1〉〈∂ i∂µ3∂µ3∂µ4∂µ4〉 − 1
2
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂ j∂µ2∂µ3〉〈∂µ3〉1

− 〈∂x∂µ1∂µ1∂µ2 〉〈∂ i∂µ2∂µ3〉〈∂ j∂µ3〉1 −
1

48
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂ j∂µ2∂µ3∂µ3〉

− 2〈∂ i∂x∂µ1〉〈∂ j∂µ1∂µ2〉〈∂µ2
1 〉2 − 〈∂ i∂x∂µ2〉〈∂ j∂µ1∂µ1〉〈∂µ2

1 〉2

− 〈∂x∂µ1∂µ1∂µ2 〉〈∂ i∂µ2∂µ3〉〈∂µ3〉1〈∂
j〉1 −

1
24
〈∂x∂µ1∂µ1∂µ2〉〈∂ i∂µ2∂µ3∂µ3〉〈∂ j〉1.

A.2 Calculation of r1(Γ10).

Recall that Γ10 = 〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂µ3∂µ3〉1.

The first step in calculating r1(Γ3) is to cut the edges. There are three edges here,

µ1, µ2, µ3, and we obtain

〈∂x∂ j∂µ2〉〈∂ i
1∂

µ2∂µ3∂µ3〉1 + 〈∂x∂µ1∂ j〉〈∂µ1∂ i
1∂

µ3∂µ3〉1 + 2〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂ i
1∂

j〉1.
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when we cut them (note that 〈∂x∂ i
1∂

µ2〉 and 〈∂x∂µ1∂ i
1〉 are 0 by a simple dimension

count). The next step is genus reduction, which can only be applied to the genus 1

term to obtain − 1
2
〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ1∂µ2∂µ3∂µ3〉. Finally, we need to split the ver-

tices. The genus 0 vertex cannot be split. Indeed, the only way to do so would be to

split it into two genus 0 vertices. But since we only have three half-edges to attach

to them, one of them would not be stable. If we split the genus 1 vertex, we obtain
−〈∂x∂µ1∂µ2〉∂µ1∂µ2∂µ3∂µ3 (〈∂ i〉〈∂ j〉1).

Putting these together we obtain

r1(Γ10) = 〈∂x∂ j∂µ2〉〈∂ i
1∂

µ2∂µ3∂µ3〉1 + 〈∂x∂µ1∂ j〉〈∂µ1∂ i
1∂

µ3∂µ3〉1

+ 2〈∂x∂µ1∂µ2〉〈∂µ1∂µ2∂ i
1∂

j〉1 −
1
2
〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ1∂µ2∂µ3∂µ3〉

− 〈∂x∂µ1∂µ2〉∂µ1∂µ2∂µ3∂µ3 (〈∂ i〉〈∂ j〉1).

We now leave it as an exercise to the reader to check that, after expanding the last
term and simplifying everything using TRRs, one obtains

r1(Γ10) = 2〈∂x∂ j∂µ2〉〈∂ i∂µ2∂µ3∂µ3∂µ4〉〈∂µ4〉1 + 4〈∂x∂ j∂µ2〉〈∂ i∂µ2∂µ3∂µ4〉〈∂µ3∂µ4〉1

+ 2〈∂x∂ j∂µ2 〉〈∂ i∂µ3∂µ3∂µ4〉〈∂µ2∂µ4〉1 + 2〈∂x∂ j∂µ2 〉〈∂ i∂µ2∂µ4〉〈∂µ3∂µ3∂µ4〉1

+ 4〈∂x∂ j∂µ2 〉〈∂ i∂µ3∂µ4〉〈∂µ2∂µ3∂µ4〉1 + 1
12
〈∂x∂ j∂µ2〉〈∂ i∂µ2∂µ3∂µ3∂µ4∂µ4〉

+ 2〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2∂ j∂µ4〉〈∂µ4〉1 + 2〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2∂µ4〉〈∂ j∂µ4〉1

+ 4〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂ j∂µ4〉〈∂µ2∂µ4〉1 + 4〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ4 〉〈∂µ2∂ j∂µ4〉1

+ 2〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ4〉〈∂µ1∂µ2∂µ4〉1 + 1
12
〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2∂ j∂µ4∂µ4〉

− 1
2
〈∂x∂µ1∂µ2〉〈∂ i∂ j∂µ1∂µ2∂µ3∂µ3〉 − 〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2〉〈∂ j∂µ3∂µ3〉1

− 4〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ3〉〈∂ j∂µ2∂µ3〉1 − 〈∂x∂µ1∂µ2〉〈∂ i∂µ3∂µ3〉〈∂ j∂µ1∂µ2〉1

− 2〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2∂µ3〉〈∂ j∂µ3〉1 − 2〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ3∂µ3〉〈∂ j∂µ2〉1

− 〈∂x∂µ1∂µ2〉〈∂ i∂µ1∂µ2∂µ3∂µ3〉〈∂ j〉1.

B A Relation in M2,2 in Codimension 3

We use Getzler’s and Mumford’s relations to derive a new relation for M2,2 in codi-

mension 3. Start with Getzler’s relation with k = 1 and l = 0:

〈∂x1

2 ∂
x2

1 〉2 =
13
10
〈∂x1

1 ∂
x2∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2〉1 + 4
5
〈∂x1

1 ∂
µ1〉1〈∂

x2∂µ1∂µ2〉〈∂µ2〉1

+ 23
240

〈∂x1

1 ∂
x2∂µ1∂µ1∂µ2〉〈∂µ2〉1 + 1

48
〈∂x1

1 ∂
µ1∂µ1∂µ2〉〈∂x2∂µ2〉1

+ 1
48
〈∂x1

1 ∂
µ2〉1〈∂

x2∂µ1∂µ1∂µ2〉 − 1
80
〈∂x1

1 ∂
x2∂µ2〉1〈∂

µ1∂µ1∂µ2〉

+ 7
30
〈∂x1

1 ∂
x2∂µ1∂µ2〉〈∂µ1∂µ2〉1 + 1

30
〈∂x1

1 ∂
µ1∂µ2〉1〈∂

x2∂µ1∂µ2〉

+ 1
576

〈∂x1

1 ∂
x2∂µ1∂µ1∂µ2∂µ2〉.
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We can then use Mumford’s relation to rewrite the left-hand side, and TRRs to sim-
plify the right-hand side. If we set the two sides equal to each other and simplify, we
obtain the equation

0 = − 3
40
〈∂x1∂µ1∂µ3∂µ3〉〈∂x2∂µ1∂µ2〉〈∂µ2〉1 + 3

40
〈∂x1∂µ1∂µ2∂µ3〉〈∂µ3∂x2∂µ1〉〈∂µ2〉1

− 7
120

〈∂x1∂µ1∂µ3〉〈∂µ3∂x2∂µ1∂µ2〉〈∂µ2〉1 + 7
120

〈∂x1∂µ2∂µ3〉〈∂µ3∂x2∂µ1∂µ1〉〈∂µ2〉1

+ 1
120

〈∂x1∂µ1∂µ3〉〈∂µ3∂µ1∂µ2〉〈∂x2∂µ2〉1 −
1

120
〈∂x1∂x2∂µ2∂µ3〉〈∂µ3〉1〈∂

µ1∂µ1∂µ2〉

− 1
120

〈∂x1∂x2∂µ3〉〈∂µ2∂µ3〉1〈∂
µ1∂µ1∂µ2〉 + 1

120
〈∂x2∂µ1∂µ3〉〈∂x1∂µ3〉1〈∂

µ1∂µ2∂µ2〉

+ other terms with all vertices of genus 0.

C Relations in M2,3 in Codimension 3

First of all, we use Getzler’s relation in M1,4 to find relations in M2,3 in codimension

3. Since we are only interested in terms with a total of three markings at genus 1
vertices, we start with Getzler’s relation written as follows:

3〈∂x1∂x2∂µ1〉〈∂x3∂x4∂µ2〉〈∂µ1∂µ2〉1 − 4〈∂x1∂x2∂µ1〉〈∂x3∂µ1∂µ2〉〈∂x4∂µ2〉1

+ other terms = 0.

Since in Getzler’s relation the four marked points were symmetrized, we need to
desymmetrize it first. After we add a fifth marked point, we obtain1

0 = 〈∂x1∂x2∂µ1〉〈∂x3∂x4∂µ2〉〈∂x5∂µ1∂µ2〉1 + 〈∂x1∂x3∂µ1〉〈∂x2∂x4∂µ2〉〈∂x5∂µ1∂µ2〉1

+ 〈∂x1∂x4∂µ1〉〈∂x2∂x3∂µ2〉〈∂x5∂µ1∂µ2〉1 − 〈∂x1∂x2∂µ1〉〈∂x3∂µ1∂µ2〉〈∂x4∂x5∂µ2〉1

− 〈∂x1∂x2∂µ1〉〈∂x4∂µ1∂µ2〉〈∂x3∂x5∂µ2〉1 − 〈∂x1∂x3∂µ1〉〈∂x4∂µ1∂µ2〉〈∂x2∂x5∂µ2〉1

− 〈∂x2∂x3∂µ1〉〈∂x4∂µ1∂µ2〉〈∂x1∂x5∂µ2〉1 + other terms.

If we glue the fourth and fifth marked points into an edge, we obtain that

0 = 〈∂x1∂x2∂µ1〉〈∂x3∂µ3∂µ2〉〈∂µ3∂µ1∂µ2〉1 + 〈∂x1∂x3∂µ1〉〈∂x2∂µ3∂µ2〉〈∂µ3∂µ1∂µ2〉1

+ 〈∂x1∂µ3∂µ1〉〈∂x2∂x3∂µ2〉〈∂µ3∂µ1∂µ2〉1 − 〈∂x1∂x2∂µ1〉〈∂x3∂µ1∂µ2〉〈∂µ3∂µ3∂µ2〉1

− 〈∂x1∂x2∂µ1〉〈∂µ3∂µ1∂µ2〉〈∂x3∂µ3∂µ2〉1 − 〈∂x1∂x3∂µ1〉〈∂µ3∂µ1∂µ2〉〈∂x2∂µ3∂µ2〉1

− 〈∂x2∂x3∂µ1〉〈∂µ3∂µ1∂µ2〉〈∂x1∂µ3∂µ2〉1 + other terms.

1Throughout this appendix, we label the original edges µ1 and µ2, and use µ3 for any new edge ap-
pearing when we simplify. Therefore, the relations found here need to be relabeled before they look like
the ones in Section 3.
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If we glue the third and fifth marked points (and rename the fourth marked point
x3), we obtain that

0 = 〈∂x1∂x2∂µ1〉〈∂µ3∂µ3∂µ2〉〈∂x3∂µ1∂µ2〉1 − 〈∂x1∂µ3∂µ1〉〈∂µ3∂µ1∂µ2〉〈∂x2∂x3∂µ2〉1

− 〈∂x2∂µ3∂µ1〉〈∂µ3∂µ1∂µ2 〉〈∂x1∂x3∂µ2〉1 + other terms.

Now we use Belorousski–Pandharipande’s, Getzler’s and Mumford’s relations

to derive other relations for M2,3 in codimension 3. Start with the Belorousski–
Pandharipande relation and add one descendent to the first marked point (note that
to do this, we had to first desymmetrize the relation):

0 = 12〈∂x1
1 ∂

x2∂x3∂µ1〉〈∂µ1
1 〉2 + 6〈∂x1

2 ∂
µ1〉2〈∂

µ1∂x2∂x3〉

− 6〈∂x1
1 ∂

µ1
1 〉2〈∂

µ1∂x2∂x3〉 + 6
5
〈∂x1

1 ∂
x2∂x3∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2〉1

− 12
5
〈∂x1

1 ∂
x2∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂x3〉1 −
12
5
〈∂x1

1 ∂
x3∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂x2〉1

− 12
5
〈∂x2∂x3∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂x1
1 〉1 + 24

5
〈∂x2∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂x1
1 ∂

x3〉1

+ 24
5
〈∂x3∂µ1∂µ2〉〈∂µ1〉1〈∂

µ2∂x1
1 ∂

x2〉1 −
36
5
〈∂x1

1 ∂
µ1 〉1〈∂

µ1∂x2∂µ2〉〈∂µ2∂x3〉1

− 36
5
〈∂x1

1 ∂
µ1〉1〈∂

µ1∂x3∂µ2〉〈∂µ2∂x2〉1 −
36
5
〈∂x1

1 ∂
x2∂x3∂µ1〉〈∂µ1∂µ2〉1〈∂

µ2〉1

+ 18
5
〈∂x1

1 ∂
µ1〉1〈∂

µ1∂µ2 〉1〈∂
µ2∂x2∂x3〉 − 12

5
〈∂µ1〉1〈∂

µ1∂x1
1 ∂

µ2〉1〈∂
µ2∂x2∂x3〉

+ 1
20
〈∂x1

1 ∂
x2∂x3∂µ1∂µ1∂µ2〉〈∂µ2〉1 −

3
20
〈∂x1

1 ∂
x2∂µ1∂µ1∂µ2〉〈∂µ2∂x3〉1

− 3
20
〈∂x1

1 ∂
x3∂µ1∂µ1∂µ2〉〈∂µ2∂x2〉1 −

3
20
〈∂x2∂x3∂µ1∂µ1∂µ2〉〈∂µ2∂x1

1 〉1

+ 3
20
〈∂x1

1 ∂
µ1∂µ1∂µ2〉〈∂µ2∂x2∂x3〉1 + 3

20
〈∂x2∂µ1∂µ1∂µ2〉〈∂µ2∂x1

1 ∂
x3〉1

+ 3
20
〈∂x3∂µ1∂µ1∂µ2〉〈∂µ2∂x1

1 ∂
x2〉1 −

1
20
〈∂x1

1 ∂
x2∂x3∂µ1 〉1〈∂

µ1∂µ2∂µ2 〉

+ 3
5
〈∂x1

1 ∂
x2∂x3∂µ1∂µ2〉〈∂µ1∂µ2〉1 −

3
5
〈∂x1

1 ∂
x2∂µ1∂µ2〉〈∂µ1∂µ2∂x3〉1

− 3
5
〈∂x1

1 ∂
x3∂µ1∂µ2〉〈∂µ1∂µ2∂x2〉1 −

3
5
〈∂x2∂x3∂µ1∂µ2 〉〈∂µ1∂µ2∂x1

1 〉1

+ 1
5
〈∂x2∂µ1∂µ2〉〈∂µ1∂µ2∂x1

1 ∂
x3〉1 + 1

5
〈∂x3∂µ1∂µ2〉〈∂µ1∂µ2∂x1

1 ∂
x2〉1

− 3
10
〈∂x1

1 ∂
x2∂x3∂µ1〉〈∂µ1∂µ2∂µ2〉1 −

1
10
〈∂x2∂x3∂µ1〉〈∂µ1∂µ2∂µ2∂x1

1 〉1.

Then use Getzler’s and Mumford’s relations and TRRs to simplify and obtain

0 =
1

10
〈∂x1∂µ1∂µ2〉〈∂µ1∂µ2∂µ3〉〈∂x2∂x3∂µ3〉1 −

1
5
〈∂x2∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x1∂µ2∂µ3〉1

− 1
5
〈∂x1∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x2∂µ2∂µ3〉1 −

1
5
〈∂x1∂x2∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x3∂µ2∂µ3 〉1

+ 1
20
〈∂x2∂x3∂µ1〉〈∂µ2∂µ3∂µ3〉〈∂x1∂µ1∂µ2〉1 −

1
20
〈∂x1∂x3∂µ1〉〈∂µ2∂µ3∂µ3〉〈∂x2∂µ1∂µ2〉1

− 1
20
〈∂x1∂x2∂µ1〉〈∂µ2∂µ3∂µ3〉〈∂x3∂µ1∂µ2〉1 −

1
5
〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ1 〉〈∂µ2∂µ3∂µ3〉1

+ 1
5
〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ3〉〈∂µ1∂µ2∂µ3〉1 + 1

5
〈∂x1∂x3∂µ1〉〈∂x2∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1

+ 1
5
〈∂x1∂x2∂µ1〉〈∂x3∂µ2∂µ3〉〈∂µ1∂µ2∂µ3〉1 −

24
5
〈∂x2∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x1∂µ2〉1〈∂

µ3〉1

− 24
5
〈∂x1∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x2∂µ2〉1〈∂

µ3〉1 −
24
5
〈∂x1∂x2∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x3∂µ2〉1〈∂

µ3〉1
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− 24
5
〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ1〉〈∂µ2∂µ3〉1〈∂

µ3〉1 + 24
5
〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ3〉〈∂µ1∂µ3〉1〈∂

µ2〉1

+ 24
5
〈∂x1∂x3∂µ1〉〈∂x2∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂

µ3〉1 + 24
5
〈∂x1∂x2∂µ1〉〈∂x3∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂

µ3〉1

+ other terms.

Using the two relations we found above from Getzler’s relation in M1,4, this simplifies
into

0 = −〈∂x2∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x1∂µ2〉1〈∂
µ3〉1 − 〈∂x1∂x3∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x2∂µ2〉1〈∂

µ3〉1

− 〈∂x1∂x2∂µ1〉〈∂µ1∂µ2∂µ3〉〈∂x3∂µ2〉1〈∂
µ3〉1 − 〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ1〉〈∂µ2∂µ3〉1〈∂

µ3〉1

+ 〈∂x1∂µ1∂µ2〉〈∂x2∂x3∂µ3〉〈∂µ1∂µ3〉1〈∂
µ2〉1 + 〈∂x1∂x3∂µ1〉〈∂x2∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂

µ3〉1

+ 〈∂x1∂x2∂µ1〉〈∂x3∂µ2∂µ3〉〈∂µ1∂µ2〉1〈∂
µ3〉1 + other terms.
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