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We discuss the dyadic John-Nirenberg space that is a generalization of functions of
bounded mean oscillation. A John—Nirenberg inequality, which gives a weak type
estimate for the oscillation of a function, is discussed in the setting of medians
instead of integral averages. We show that the dyadic maximal operator is bounded
on the dyadic John—Nirenberg space and provide a method to construct nontrivial
functions in the dyadic John—Nirenberg space. Moreover, we prove that the
John—Nirenberg space is complete. Several open problems are also discussed.
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1. Introduction

The space of functions of bounded mean oscillation (BMO) was introduced by John
and Nirenberg in [19]. Let Qo be a cube with sides parallel to the coordinate axis
in R™. A function f € L'(Qo) belongs to BMO(Qy) if

Sup]{g |f — foldz < oo, (1.1)

where the supremum is taken over all subcubes of @y. Throughout, we denote
the integral average over a cube by a barred integral sign or fp. A more general
BMO-type space was also discussed in [19]. A function f € L'(Q) belongs to the
John-Nirenberg space JN,(Qo), 1 < p < o0, if

w30 <]{2 f - fou

where the supremum is taken over countable collections {Q; };cn of pairwise disjoint
subcubes of Qy. The space BMO(Qy) is obtained as the limit of JN,(Q) as p — oc.
John [18] considered a way to define BMO(Qy) for any measurable function f on
Qo and this approach has been developed further by Strémberg [27] and Jawerth
and Torchinsky [17]. In this case, (1.1) is replaced with

dx)p < 00, (1.2)

sup irelﬂginf{a >0:{x e |f(z)—c >a}| <s|Q} < oo, (1.3)
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2 J. Kinnunen and K. Myyryldinen

where the supremum is taken over all subcubes of ()¢ and s is a fixed parameter with
1

0 < s < 1. Perhaps, the most common parameter value is s = 5 and, for 0 < s <1,
we obtain a biased notion of s-median. Medians have been studied and applied in
many problems; see for example [7, 8, 10-18, 20-22, 25, 27-29].

This paper discusses several new results related to the definition and proper-
ties of the John—Nirenberg space with s-medians (definition 3.1). In particular,
this extends the median approach of BMO in (1.3) to John-Nirenberg spaces. We
restrict our attention to the dyadic case, that is, the cubes in (1.2) are assumed
to be dyadic subcubes of QQy. The dyadic structure has many advantages in the
theory of John—Nirenberg spaces. For some of our results, it does not matter
whether we consider dyadic cubes or all subcubes of @)y, but some results hold
exclusively for dyadic cubes. We study a John—Nirenberg inequality for the dyadic
John-Nirenberg space with s-medians (theorem 3.5). Our proof is based on rela-
tively standard arguments. Related questions on metric measure spaces have been
studied by Lerner and Pérez [22] and Myyryldinen [23]. We reconsider dyadic ver-
sions of these results in the Euclidean context. As a consequence (corollary 3.7), we
show that the dyadic John—Nirenberg space with medians coincides with the dyadic
John—Nirenberg space with integral averages. Thus, it does not matter which one
we consider. However, assumptions in the median approach are initially weaker,
since the function does not need to be integrable.

Bennett et al. [2] showed that the Hardy-Littlewood maximal operator is
bounded on BMO. For a short proof, we refer to Chiarenza and Frasca [4]. We
show that the dyadic maximal operator is bounded on the dyadic John-Nirenberg
space JNJ(Qo) (theorem 4.2). To our knowledge, this result is new. The proof is
based on the John—Nirenberg inequality. A similar argument, with the weak type
estimate for the maximal operator, gives an L' result for the dyadic maximal oper-
ator (theorem 4.3). Using this result together with a theorem of Stein [26], we
obtain a method to construct functions in JNJ(Qo) \ LP(Qo). This complements
results by Dafni et al. [6] in the dyadic case. Motivated by theorem 4.3, it is an open
question whether there exists a Coifman—Rochberg [5] type characterization for the
dyadic John—Nirenberg space. A one-dimensional example in §4 demonstrates that
the L' result in its generality does not hold for the standard John-Nirenberg space.
The standard BMO is complete with respect to the BM O seminorm; see [24]. We
prove that the dyadic John-Nirenberg space is complete (theorem 5.1). This also
holds for the standard John-Nirenberg space JN,(Qo). The connection between
the dyadic BMO and the standard BM O has been studied by Garnett and Jones
in [9]. The corresponding result is also true for the John—Nirenberg spaces.

2. Preliminaries

The Lebesgue measure of a measurable subset A of R™ is denoted by |A|. The
integral average of f € L1(A) in A, with 0 < |A| < oo, is denoted by

fA:]{lfdx:ﬁ/Afdx.

In many cases, it is preferable to consider medians instead of integral averages.
Let 0 < s < 1. Assume that A C R™ is a measurable set with 0 < |A| < oo and that
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f:A— [—00,00] is a measurable function. A number a € R is called an s-median
of f over A, if

Hz e A: f(x) >a}| <s|A] and |{z € A: f(z) <a}| < (1-—s)]Al

In general, the s-median is not unique. To obtain a uniquely defined notion, we
consider the maximal s-median as in [25].

DEFINITION 2.1. Let 0 < s < 1. Assume that A CR"™ is a measurable set with
0 < |A] <0 and that f: A — [—00,00]| is a measurable function. The mazimal
s-median of f over A is defined as

m}(A) =infla e R: [{z € A: f(z) > a}| < s|Al}.

The maximal s-median of a function is an s-median [25]. In the next lemma,
we list the basic properties of the maximal s-median. We refer to [23] where the
properties are proven in metric measure spaces. The arguments are identical for
Euclidean spaces. The proofs of properties (i), (ii), (v), (vii), (viii) and (ix) can also
be found in [25]. In addition, most of these properties are listed without proofs in
(14, 15].

LEMMA 2.2. Let 0 < s < 1. Assume that A C R™ is a measurable set with 0 < |A| <
oo and that f,g: A — [—00,00] is a measurable function. The mazimal s-median
has the following properties.

(i) m;/ (A) < m3(A) for s < s'.
(ii) m3(A) < mg(A) whenever f < g p-almost everywhere in A.
(iii) If A C A" and |A'| < c|A] with some ¢ > 1, then m%(A) < mj/c(A/).

(iv) mgo;(A) = o(m3}(A)) for an increasing continuous function ¢: f(A) —
[—o0, 00].

(v) m3(A) +c=mj, (A) forceR.
(vi) mg;(A) = em3(A) forc>0.
(vid) |m3(A4)] <m0 A),
(viii) m3%,,(A) < m?} (A) +mf2(A) whenever t; +t2 < s

(ix) For f € LP(A) and p > 0,

1/p
win) < (s f e as)

(x) If A; are pairwise disjoint for every i € N, then

1nfmf <mj <UA> supmf(A).
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REMARK 2.3. Assume that 0 < s < % Then property (vii) assumes a slightly
simpler form
s min{s,1—s s
Im3(A)] < m g ¢ }(A) =mf; (4),

since
mlljflS(A) < mff‘(A)
for 0 < s < %

A cube @ is a bounded interval in R™, with sides parallel to the coordinate axes
and equally long, that is, @ = [a1,b1] X -+ X [ay, b,] with by —ay; =+ = b, — ay,.
The side length of @ is I[(Q) = by — a1. In case we want to specify the centre of a
cube, we write Q@ = Q(z,r) ={y e R" : |y; —x;| <r,i=1,...,n} for z € R™ and
r > 0. We consider closed cubes, but the results hold for open and half open cubes
as well.

Let Qo C R™ be a cube. The dyadic decomposition D(Qg) of Qo is defined as
D(Qo) = U;2, Dj(Qo), where each D;(Qo) consists of 2/" cubes Q, with pair-
wise disjoint interiors and side length 1(Q) = 2771(Qy), such that Qo = U{Q : Q €
D;(Qo)} for every j € No. If j > 1 and Q € D;(Qo), there exists a unique cube
Q' € Dj_1(Qop) with @ C Q'. The cube @' is called the dyadic parent of (), and @
is a dyadic child of Q.

We recall the Lebesgue differentiation theorem for medians. The proof can be
found in [25].

LEMMA 2.4. Let f : R" — [—00, 0] be a measurable function which is finite almost
everywhere in R™ and 0 < s < 1. Then

lim m(Q:) = f(x)

71— 00

for almost every x € R™, whenever (Q;)ien is a sequence of (dyadic) cubes
containing x such that lim; . |Q;| = 0.

We discuss a Calderén—Zygmund decomposition with medians instead of integral
averages. The proof is a simple modification of the corresponding argument for
integral averages in [19].

LEMMA 2.5. Let Qo C R™ be a cube and 0 < t < 1. Assume that [ : Qo — [—o00, 0]
is a measurable function. For every \ > mTfI(QO), there exist dyadic cubes Q; €

D(Qo), i € N, with pairwise disjoint interiors, such that
(ii) mltf‘(Qg) < X where Q) is the dyadic parent of Q;,

(iii) [f(z)] < X for almost every x € Qo \ Ui~ Qi-
The collection {Q;}ien is called the Calderdn—Zygmund cubes in Qo at level A.
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Proof. Consider the collection
Fr={Q € D(Qo) : m|tf|(Q) > A}

For every z € Ugcr, @, there exists a cube Q € F\ with » € Q and mltf Q) >
A. It follows that there exists a unique maximal cube @, € F) with x € éz and
m{;(Qz) > A. Maximality means that if Q, C @ € D(Qo), then m[;(Q) < A. Let
{Qi}ien be the subcollection of F of such maximal cubes. If Q, = Qq for some z €
Qo, then Fy = {Qo} and there are no cubes Q € D(Qp) with @, € Q. This happens
if and only if A < mltf‘ (Qo), which contradicts the assumption A > mltf‘(Qo).

For two dyadic subcubes of Qq, it holds that either one is contained in the other
or the cubes have pairwise disjoint interiors. Thus, the collection {Q;};en consists
of cubes with pairwise disjoint interiors with m"ffl(Qi) > X, i € N. This proves (i).
By maximality, it holds that mlt £1(Q7) < A for every i € N, where Q) is the dyadic
parent of @;. This implies (ii). To prove (iii), assume that z € Qo \ Ui, @;. We
have mf 7] (Q) < A for every dyadic subcube @ of Qg containing x. Hence, there exist
a decreasing sequence of dyadic subcubes @y such that x € Q. for every k € N and
Qr+1 S Q. The Lebesgue differentiation theorem for medians (lemma 2.4) implies

that
£(a)] = Jim miy(Qu) < A
for almost every point z € Qo \ U;=; Q;- O

3. John—Nirenberg inequality with medians

This section discusses the John-Nirenberg inequality for median-type John-—
Nirenberg spaces.

DEFINITION 3.1. Let Qo CR™ be a cube, 1 <p < oo and 0 < s < %, and assume
that f: Qo — [—00,00] is a measurable function. We say that f belongs to the
median-type dyadic John—Nirenberg space JN;,{O_’S(QO) if

e p
11, 0 =50 D0 11 i (@) <
i=1

where the supremum is taken over countable collections {Q;}ien of pairwise disjoint
dyadic subcubes of Q.

The constants ¢; in the definition of JN;I,O,S can be replaced by maximal ¢-
medians with 0 < s < ¢ < 4. A simple proof can be found in [23]. For more on the
median-type John—Nirenberg space, see [23].

LEMMA 3.2. Let Qo CR™ be a cube and assume that f: Qo — [—00,00] is a
measurable function. It holds that

00
p
P . s . P
HfHJN;,o,s(QO) < SupZ; |Qz| <m|f_m}(Ql)\(Qz)) < 2p||fHJN§’075(QO)7
1=

whenever 0 < s <t < %
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DEFINITION 3.3. Let Qg C R™ be a cube and 0 <t < 1, and assume that f: Q¢ —
[—00,00] is a measurable function. The median-type dyadic maximal function is
defined by

d,
MG f(z) = sup mis(Q),
where the supremum is taken over all dyadic subcubes @ € D(Qp) with x € Q.

The following good-A inequality is the main ingredient in the proof of the
John—Nirenberg inequality.

LEMMA 3.4. Let 0 <t <1/2""', K >1 and f € JN, (Qo) for some 0 <s <
t/2K?, and assume that mm(Qo) < A. Then

p
2P ||fHJN1{JlO 1

E <
|EraA(Qo TS\, + o

|Ex(Qo)l,

where Ex(Qo) = {z € Qo : ./\/lszf(x) > A}

Proof. We apply the Calderén—Zygmund decomposition (lemma 2.5) for f in Qo at
levels A and KA to obtain collections of cubes {Q; x }ien and {Q; xa}jen such that

EX( U Qixn and Ega(Qo) = U Qj,K -

=1

Denote

Ji={j eN:Qjrx CQir}
for every ¢ € N, and

I'=qieN: Qi <2K? UQJ,KA
JjeJi

Since each @ k» is contained in some @); », we get the partition
UQ]K)\— U U Qi
i=1j€J;
By lemma 2.2(ii), (v), (vii), (iii) and lemma 2.5(ii) in this order, we obtain
M e ) (Qiix) = mip (Qjxex) = [mF*(Qin)l = mip (Qjrex) —mif(Qix)
> mip(Qjxx) —mip(Qf ) = KA = A= (K = 1)),

where @’ . Is the parent cube of Q;,x. Since Q) x are pairwise disjoint, property
(x) of lemma 2.2 implies that

t
m|f—m?"t(Qi,>\)| 9] Qj,K)\ > (K — 1)\
J€Jdi
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By applying lemma 2.2(iii), we get

D 1Qkal < Qinl < W'Ql Al mff,m?nt(QM)‘ U Qix

Jj€J: JEJi
m @)
|f m2"t(Q 2l i\

for ¢ € I. Hence, by summing over all indices i € I, we obtain

P
t/2KP )
< - mﬁnt(Qi,A)(Q’vAO

< - -
= (K — )p)\p

> Y 1Qikal < w1 -

i€l je;

op ”f”JNgo.s

< ,
(K—1)p W

where in the last inequality we used lemma 3.2 with ¢ < 1/2""! and 0 < s < t/2K?.
On the contrary, if ¢ ¢ I, we have

> 1Qjkal < m@m

J€J;

Summing over all indices i ¢ I, it follows that

S Y Qi < 5 Z 1Qul € 575 1A (0]

¢l jEJ;

By combining the cases i € I and i ¢ I, we conclude that

217 Hf||$Nd0 1
|Era(Qo)| = Zl ZJ |Qj,xa| < ~Ty )\ppv s 2Kp|E)\(QO)‘ O
K3 J1€J;

We are ready to prove the John—Nirenberg inequality for JN,
that JNZ ,(Q) is contained in LP>*(Q) for all cubes @ C R"™.

p 0,s Which implies

THEOREM 3.5. Let 0 < s < 1/2"*3 and s <r < % If feJN po +(Qo), then there
exists a constant ¢ = c(p) such that for every )\ > 0 we have

p
”f”JNg,O,s(QO)

H{z € Qo [f(x) =m}(Qo)l > A} < e \
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Proof. Since f € JNg,o,s (Qo), lemma 3.2 implies that

|Q0|1/pm|tf—m;(Qo)\(Q0) <2/ fllywe,

where t = 1/2""‘1 and s <r < % Therefore, the condition in lemma 3.4 holds for
| f —m'(Qo)| with the choice

2 fll s,

0= -
|Qol1/?
For 0 < A < g, we have

T AR I
{z € Qo : |f(z) —mH(Qo)| > A} < [Qo| = 2P o <2 e
Ao AP
Assume then that A > Ag. Let K = 2/? and choose N € N such that
KNXg < A< KNTL).

‘We have

{z € Qo= [f(z) —m}(Qo)l > A}
<z € Qo |f(x) —m5(Qo)|l > KN Ao} < |Exnz, (Qo)l,
where the last inequality follows from lemma 2.5(iii). We claim that

15 v,
(K Ao)P

for every m =0,1,..., N, where ¢y = 2PT1KP(K — 1)7P. We prove the claim by
induction. First, observe that the claim holds for m = 0, since

| Exma, (Qo)| < co

AR V1
1B (Q)] < Qo] = 2522 < o520
0 0

Assume then that the claim holds for k£ € {0,1,..., N — 1}, that is,

p
”fHJNg,o,s

| Excra, (Qo)] < COW.
This together with lemma 3.4 for K* ) implies the claim for k + 1:

o I 4
Ercroonn Qo S 13 TRiag)y T 2w P (@)

_o My, e Wy,
S (K —1)p (KR 2K (KFA)P

P KP n Co ||fH‘;I;NS,0,s o ||fH$N§,OYS
(K—1)p " 2 ) (K~ ORI
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Hence, the claim holds for k£ + 1.
We conclude that

{z € Qo:|f(z) —m5(Qo)l > A}

MWy, MWy, Wy,
SO KN N @ (KN+1)\O) VI
with ¢ = coKP = 2PTLK2P(K — 1)7P = 2p+3(21/P — 1)~P, O

As an application of the John—Nirenberg inequality (theorem 3.5), we discuss the
connection between the John-Nirenberg spaces with medians and integral averages.

DEFINITION 3.6. Let Qo C R™ be a cube and 1 < p < co. We say that f € L*(Qo)
belongs to the dyadic John—Nirenberg space JN;}(QO) if

171 e mm?%@d(éﬂfﬂm

where the supremum is taken over countable collections {Q;}ien of pairwise disjoint
dyadic subcubes of Q.

P
dx) < 00,

As a corollary of theorem 3.5, the median-type dyadic John—Nirenberg space coin-
cides with the dyadic John—Nirenberg space with integral averages. In particular,
it follows that all results for the dyadic John-Nirenberg spaces with integral aver-
ages also hold for the median-type dyadic John—Nirenberg spaces and vice versa.
We note that theorem 3.5 also holds for the John—Nirenberg space over all sub-
cubes instead of dyadic subcubes of @y. Thus, the corollary below also holds for
the standard John—Nirenberg spaces.

COROLLARY 3.7. Let 1 < p < 0o and 0 < s < 1/2"F3. It holds that

20p
=g, o)

3||f||JNgO .(Qo) ||f||JNd(Q0) S
where ¢ is the constant from theorem 3.5.

Proof. Let {Q;}ien be a collection of pairwise disjoint dyadic subcubes of Qq. The
first inequality follows in a straightforward manner from lemma 2.2(ix). For the
second inequality, we use Cavalieri’s principle together with theorem 3.5 to obtain

| 1f=mi@)lds

=AIWEQwU—m%@N>MMA

. |Q:| 1/prHJNgOS(Qi>
g/ cA” prHJNd (e i)d)\+/ - @l
Q= # 1 s o ’
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IQZ\1 VPN FIL v

p,0,s

CP
< D |Q1‘1 l/p”fHINgos(Qi)’

@)t \Qi|1_1/p||fHJNg,0,S(Qi)

where ¢ is the constant from theorem 3.5. This implies that

[e'e) p
d(inff [f—eld
;yQ|ng;v c|@

Z'Q”(][ 7= mf(Qz)|dl'>p
(p ) ZWHJN% (Q)g(p ) 12, (o)

Thus, it follows that

1fllsvg@o) < Hf”JNp 0..(Qo)" 0

4. The dyadic maximal function on JN;}

In this section, we discuss the behaviour of the Hardy—Littlewood maximal function
on the John-Nirenberg space with integral averages as in definition 3.6.

DEFINITION 4.1. Let Qo C R™ be a cube and assume that f € LY (Qq). The dyadic
mazimal function of f is defined by

Mg, f( —sup][ 1£()] dy,

where the supremum is taken over all dyadic subcubes @ € D(Qo) with x € Q.

Let f,g € L'(Qo) and = € Qy. Using the definition, it is easy to show that
Mg, f(x) > 0,
MG, (f + 9)(w) < M, f(2) + M, g(x),

and

MG (af)(x) = |a|ME, f(z)

for every a € R.
The Calderén—Zygmund decomposition with integral averages implies that the
dyadic maximal function satisfies the weak type estimate

e € Qo A, ) > NI <5 [ 17 de (1)

for every A > 0 and is a bounded operator on LP(Qp) with 1 < p < co. Moreover,
the dyadic maximal operator is bounded on BMO(Qy); see [2]. We show that the
dyadic maximal operator is bounded on the dyadic John-Nirenberg space.
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THEOREM 4.2. Let 1 < p < oo and assume that f € JNg(QO), Then there exists a
constant ¢ = c¢(n,p) such that

HMQOfHJNd(Qo) C||fHJNd(Qo)

Proof. Let {Q;}ien be a collection of pairwise disjoint dyadic subcubes of Q.
Denote

Ey={z€Q;: My f(x) =M f(x)}, ieN.

For 2 € Q; \ E;, the supremum in the definition of M%Of(x) is attained in a dyadic
cube @, 3 z that intersects Qg \ @;. Since both @, and @Q; are dyadic subcubes of
Qo and x € Q; N Q,, it follows that Q; C Q.. Since Q; C Q. for every x € Q; \ E;,
the cube @, for which the supremum in the maximal function is attained is the
same cube for every x € Q; \ F;. Thus, for every i € N, there exists a constant M;
such that Mgof(:v) = M, for every z € Q; \ E;. We observe that

M&f (MQDf) MQZ - |fQi| = M&f - Mgb(sz) < Mgb(f - sz)
This implies that

1
3 L 1MAT (3, Do |

+

= [ (0,7 018,900)" s

i

= [ g u na) e [ (- 000 de

= [ s =g pe) des [ (4 (4, 1)a)" da

/zMsz fa.)d /MQlfsz

where in the second last inequality we also used M; < (Mc%(,f)Qm i € N, which
follows from M; < Mgof(x) for every x € @Q;. From the proof of the John-Nirenberg
lemma [1, pp. 11-13], [3, p. 7], we see that

115 s
[ € Qs MG, (f — fo)(@) > A} < 20

for some constant ¢ = ¢(n, p). Applying this together with Cavalieri’s principle, we
obtain

/ M (f — fo.)da
Qi

= /O°° {z € Qi ME (f — fa.)(x) > A} dA
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o ‘Qz‘rl/p”fHJNg(Qi)
<[ AN g0 A+ [ @i
|Qi|_1/p“f”,/Ng(Q )

C _ —
= —lail’ VPN fllng oo + Qi VP I lanacen

cp _
< 71|Q72|1 1/p||f||JNg(Qi)'

Therefore, we can conclude that
o0 P
Solul (£, 18,7 - 48, el az)
i=1 Qi
o0 P
<r el (f, 8,0~ sa)ar)

2 2
<(: Cp) anm@)\(p CP) 171 s

Taking the supremum over all collections of {Q;}ien, we get

2¢cp
1M, g0 < (225) 1 Pgconr .

By a similar argument as in the proof of theorem 4.2, we obtain an L' result for
the dyadic maximal function. The weak type estimate (4.1) is used instead of the
John—-Nirenberg inequality in the argument.

THEOREM 4.3. Let 1 < p < oo and assume that f € L*(Qo). Then there exists a
constant ¢ = ¢(p) such that

||(MQ0 )l/p”JNd (Qo) X ch”Ll(Qo)'

Proof. We use the same notation as in the proof of theorem 4.2. Analogously, we
observe that

g s - ( [aag,01] — M.J — M, (fo)

P
< MG, f -

Qi) a.f

since |fq,| < M, f(x) for every x € @;. This implies

1

5 |0 = [coad 0]

dx

i

- (o mw%) .

i

<, (s (o], )) e
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1/p

[ (vt ([, )) "o
' /Q\E (Mgof - <[(M50f>””] Q>) i/p da
- [ (s~ ([0, ) :/p i

o i, )

< [ Mg o] o< [ [ME (7~ fo)]"

i i

where in the second last inequality we also used
P
M; < ([<Mgof)1/p]Q> , ieN.

Applying Cavalieri’s principle together with the weak type estimate (4.1) for the
dyadic maximal operator, we obtain

[ -

i

1 o0
- Z;/ NP € Qs ME,(F — fo.)(x) > A} dA
0
< 1‘/ B - i (Qi)d)\
|

f_qu‘,HLl(Q,i)/‘Qi‘

1 IF—faillig, /Il
+ 7/ AY/PHQ; A
P Jo

1 _ 1 _ 1
= 1@l IS = falig, + 1QTVTIS = faulla,

p
i< 27 IR I I

—ml P\ f — faully

Therefore, we can conclude that

S, o oy

<2”Z|Qz< (M, (f ~ fcg)]”pdx)p

p
p , p
<2 (p— 1) Z\Ifllu(@,.,) <2 (p— 1) 11121 (Qo)-
i=1

SNV = [(8,1)7)

i
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Taking the supremum over all collections of {Q; };cn, we obtain

P
d 1 +1 p
2,1 g < 2% (527) 1120 o

COROLLARY 4.4. Let 1 < p < 0o and assume that f € L'(Qo) \ Llog™ L(Qo). Then
(M&, )7 € TN (Qo) \ LP(Qo).

Proof. Since f € L'(Qy), it follows that (Méof)l/p € JN{(Qo) by theorem 4.3. We
know that a function ¢ is in Llogt L(Qo) if and only if Mgog is in L'(Qo) [26].
Therefore, we have Mgof ¢ L'(Qo), and thus (Mgof)l/p ¢ LP(Qo). O

This provides a method to construct functions in JNZ‘f\Lp. Consider a one-
dimensional example. Let Iy = (0, §) and f: Iy — R,
- X(0,1/2)(33)
J) = z(logz)?

It holds that f € L*(Iy) \ Llog™ L(Iy). Since f is monotone on Iy, its maximal func-
tion is monotone on Iy as well. Hence, it cannot be in the standard John-Nirenberg
space JN,(lp), 1 <p < oo, since JN,(Iy) = LP(Iy) for monotone functions [6].
Thus, we have (M{ f)1/? € JNZ(Iy) \ JNy(Io) and (M f)1/7 € JNZ(Io) \ LP(Io).
5. Completeness of JNg

The standard BMO is complete with respect to the BM O seminorm; see [24]. We
prove that the dyadic John—Nirenberg space is complete. Our proof also works for
the standard John-Nirenberg space JN,; see (1.2).

THEOREM 5.1. Let Qo C R™ be a cube. The space JN;f(QO) is complete with respect
to the seminorm in definition 3.6.

Proof. Assume that (f;);en is a Cauchy sequence in JNg(QO) and let ¢ > 0. There
exists je € N such that

If; — fk”JNg(QO) < e whenever j, k > j..

Consider a collection {Q; }ien of pairwise disjoint dyadic cubes Q; C Qq, i € N. Let

9; = ZXQi (fi = (fia.)

and observe that

§;|Qi| (]{2 |9 —gkdx>p _ §|Qi| <]{2 = (B — (o — (o) dx)p
= ngil (][Q \fi = fro — (fi = fo)a dx)p

< Hf] - kagNg(QU)-
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Choose a subsequence (fj,, )men such that

1
||fjm+1 - fijJN{,L(Qo) < 27771

for every m € N. Denote

l 00
M= |Gjnir = il and h=>"lgi. ., —gj.l

m=1 m=1

It then holds that lim; ... h; = h. By using Fatou’s lemma and Minkowski’s

inequality, we obtain
oo P\ /P
< T _
< limint (2_; Qi (]{2 ] dx) )

; hld
(;m(]{gﬂ | x))
! o p\ /P
< hlrggf; (2} Qi <]2 7 gjmdx> )

i

1/p

0 & 1
<D Mies = Fimllango < Y om — 1

m=1 m=1

Thus, h € L(Q;) for every i € N and consequently h(z) < co for almost every x €
U;=; Qi. This implies that the series in

o0
9=+ > (Gjir — %)

m=1

converges absolutely for almost every x € [J;2, Q;. Hence, we have

m=1 m=1

0o -1
9=+ > (Gjss = Gin) = Jim <9j1 + > (G — gjm)>
= lli>1£lo g]l = TT’}E)HOO gj'm
for almost every z € |J;2, Q;. By Fatou’s lemma, we obtain
oo P o0 P
S (o= slae) <tmint 310l ( las, - la0)
i=1 Qi T Qi
< 1}Y?Liglof“fjm - fjH?Ng(QO) < 5p7 (5'1)

whenever j > j..
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Consider the collection consisting only of the cube Qy. Then as above, we have

=fi = (fi)qo

and

o gjl + Z gjm+1 g]?,?) = lim g -

m—00

almost everywhere in (Qy. Similarly, we obtain

P V4
Q0 (][ |gQ°g?O|da:) < liminf|Qol (][ |gj;g§?°|dx)
Qo m—oo Qo
p7

. . p
< lgri}?of”fjm - fj”JNg(QO) <eg

whenever j > j.. We see that g@° € L'(Q) and ngO = fi — (fi)g, — g% in L*(Qo)
as j — oo, and thus

(fim)@: = (fin)ao Z]{?i (fim = (fim)Qo) d *]éi g® da
as m — oo. Hence, for almost every = € @;, it holds that
9% —g= lim (f;, = (fi)a = (fi, = (fi.)a)
= 1im_((fi.)e. ~ (fi)an) = (4%)a.

This together with (5.1) implies

o0 p
i Qo _ - Qo __ Qs d )
;@(ng 5 - (9% - ol da
o0 P
=21 (f, 16 - 60 i)

i

—Z@ (][ g ggldx) <e,

whenever j > j.. Since this holds for any collection {Q;}ien, we can take the
supremum over the collections to obtain

199° = fillivacqo) <&

whenever j > j.. This concludes that g0 = (g9 — f;)+ f; € JN;f(QO) and f;
converges to g®?° in JNg(QO) as j — oo. |
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