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Abstract
By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers
are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic
covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by
solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible
schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is
explicit in terms of an eigenvector of the scheme.

1. Introduction

Pólya urns are a versatile modeling tool. They have been proposed as a backbone for myriad applications,
including contagion (Eggenberger-Pólya urn [5]), gas diffusion (Ehrenfest urn [6]), and random data
structures (Bagchi-Pal urn [2]). For a survey of urn models and applications, see [15], and for a textbook
discussion, see [14] or [16]. It is important to understand the urn process. Indeed, many classic papers
are focused on theoretical aspects of Pólya urn schemes. Over time, a comprehensive theory emerged
for single-ball drawing [1,4,7,10,18].

One common feature of the various theoretical formulations is the complexity of the computation of
the covariances among the number of balls of different colors in the urn. For instance, Smythe [18] gives
a central limit theorem for an extended class of Pólya urns in which the result he finds an asymptotic
multivariate joint Gaussian law. This source does not specify the covariance matrix.

There are recent developments concerning this point [10,12,13,17]. These latter sources describe
algorithms by which one gets the covariance matrix associated with a Pólya urn. However, these
algorithms are rather elaborate and fall back on the deep structure of the Pólya urn scheme. While
these papers are “structural,” our purpose here is “computational.” We propose a practicable method
for building the asymptotic covariance matrix. While admitting random replacements, we can get the
method to work for tenable balanced irreducible urns, when the so-called index is small or critical.
We can even coax the method to deliver results for some tenable balanced reducible urn schemes, as
we illustrate in Example 5.2. It appears that the method does not deliver for the so-called large-index
schemes. Perhaps, it needs finer asymptotics that are not yet available in the literature of urns.

The method proposed in this manuscript is straightforward and does not go beyond solving a system of
first-order algebraic equations. A rudiment of the method is discussed in [3], applied only to deterministic
schemes with a small index, which appear in an application in hooking networks.

The method is based on an idea commonly used in calculus. If a limit exits, the value of the limit is
determined by solving an equation satisfied by the limit. From the theoretical studies, the existence of
such a limit is ascertained for many classes of urn schemes. This is discussed further in the sequel.
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This note is organized in sections. In Section 2, we outline the mechanics of a Pólya urn scheme.
In that section, three subsections (Subsections 2.1–2.3) are set aside for specifying the notions of
tenability, balance and irreducibility and classes. In Section 3, we collect notation needed for the
analysis. Subsection 3.1 goes briefly over a classification of urn scheme by their index. In Section 4, we
go over the basic covariance recurrence from which we extract asymptotics. The small-index scheme
and critical schemes are treated in two separate subsections (Subsections 5.1 and 5.2). Limitations of
the method are discussed in Section 6.

2. Pólya urns

A multicolor Pólya urn is initially nonempty and experiences evolution according to some scheme of
ball drawing and replacements. Up to 𝑐 ball colors may appear in the urn. Suppose we numbered the 𝑐
distinct colors with elements of the set [𝑐] = {1, 2, . . . , 𝑐}. When 𝑐 is small, we can name the colors, as
in white, blue, red, green, etc. When needed, we shall always go through the palette in this order—color
1 is white, color 2 is blue, color 3 is red, and color 4 is green.

At the 𝑛th discrete point of time, a ball is drawn at random from the urn (all balls being equally
likely) and its color is noted. If the color of the ball withdrawn is 𝑖 ∈ [𝑐], we put it back in the urn and
add 𝑎𝑖, 𝑗 (𝑛) balls of color 𝑗 ∈ [𝑐]. The execution of the replacement rules are taken to be instantaneous.
These dynamics are captured in a 𝑐 × 𝑐 replacement matrix:

A𝑛 =

������
𝑎1,1 (𝑛) 𝑎1,2 (𝑛) . . . 𝑎1,𝑐 (𝑛)
𝑎2,1 (𝑛) 𝑎2,2 (𝑛) . . . 𝑎2,𝑐 (𝑛)

...
...

. . .
...

𝑎𝑐,1 (𝑛) 𝑎𝑐,2 (𝑛) . . . 𝑎𝑐,𝑐 (𝑛)

������
.

The replacement matrix is independent of the composition of the urn at any previous stage. In this
matrix, the rows are indexed with the color of the ball drawn; the element 𝑎𝑖, 𝑗 (𝑛) is the number of balls
of color 𝑗 ∈ [𝑐] that we add upon drawing a ball of color 𝑖 ∈ [𝑐]. We alert the reader to that some
authors prefer to present the urn dynamics via the transpose of A𝑛, see [9,12].

In a general setting, the entries of the replacement matrix can be negative or even random. We only
consider the case in which {A𝑛}∞𝑛=1 is a process of independent identically distributed matrices. We can
assume that A𝑛, for all 𝑛 ≥ 1, are distributed like a generic matrix A (unindexed).

We call the expectationE[A𝑛] the generator. We denote the generator by Ā𝑛. Since we are considering
independent identically distributed matrices, we have E[A𝑛] = E[A] =: Ā, for all 𝑛 ≥ 1. We assume
throughout that all the entries of Ā are finite.

2.1. Tenability

An urn scheme is called tenable if it is always possible to draw balls and execute the rules. In a tenable
scheme, the urn never becomes empty and the scheme never calls for taking out balls of a color when
there is not a sufficient number of balls of that color present in the urn. For instance, a scheme with
nonnegative entries in A is tenable. No matter which stochastic path is followed, in a tenable scheme
the drawing can be continued ad infinitum.

Some elements of A could be negative and the urn is still tenable, such as in Ehrenfest’s urn
scheme, with the generic replacement matrix

( −1 1
1 −1

)
, when such an urn starts out nonempty. For

an initially nonempty urn, untenability arises only when some entries at certain positions of A are
negative. An instance of this is an urn scheme on white and blue colors with the generic replace-
ment matrix

( 0 −1
−1 0

)
, which underlies the OK Corral gunfight. Starting with two white and five

blue balls, the drawing comes to a halt after three blue draws or six white draws, whichever comes
first.

https://doi.org/10.1017/S0269964821000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000450


62 H. Mahmoud

2.2. Balance

An urn scheme is said to be balanced, if the number of balls added at each step is constant, say 𝜃 ≥ 0,
(that is,

∑𝑐
𝑗=1 𝑎𝑖, 𝑗 (𝑛) = 𝜃). The parameter 𝜃 is called the balance factor. Note that an urn scheme can be

balanced, even when the replacement matrix contains random elements. Take, for example, the balanced
scheme with the generic replacement matrix

A =
���
𝑌 1 8 − 𝑌
𝐵 𝐵 9 − 2𝐵
2 4 3

��� ,
where 𝑌 is a binomial random variable on 4 independent identically distributed trials, with success
probability 1

2 in each, and 𝐵 is a Bernoulli random variable with success probability 0.473.
A theorem of Perron and Frobenius [8] asserts that the principal eigenvalue (of largest real part) of

a matrix of nonnegative entries is the maximal sum across any row. By the balance condition, all the
entries on a row (even if they are random) are bounded. Furthermore, the tenability necessitates that if
there are negative elements at all, they appear on the diagonal of the replacement matrix; all off-diagonal
elements are nonnegative. Hence, for large enough 𝑏 > 0, the matrix Ā + 𝑏I is all nonnegative, with
principal eigenvalue 𝜃 + 𝑏. Thus, 𝜃 is a principal eigenvalue of Ā and of Ā𝑇 .

2.3. Classes and irreducibility

Using the language of [10], we say that color 𝑖 ∈ [𝑐] dominates color 𝑗 ∈ [𝑐], if a ball of color 𝑗 appears
at some point in time (including time 0), when we start with only one ball of color 𝑖. We follow the
notation of [10] in representing the relation 𝑖 dominates 𝑗 symbolically by 𝑖 � 𝑗 . If 𝑖 � 𝑗 and 𝑗 � 𝑖, we
say 𝑖 and 𝑗 are in the same class. Since additionally 𝑖 � 𝑖, and 𝑖 � 𝑗 , 𝑗 � 𝑘 =⇒ 𝑖 � 𝑘 , being in the
same class is a reflexive, symmetric and transitive relation (i.e., an equivalence relation) and the class
to which 𝑖 and 𝑗 belong is an equivalence class. So, the relation “dominates” creates a partition of the
colors into equivalent classes.

When all the colors in [𝑐] fall in the same class, we have one part in the partition and say the scheme
is irreducible. When color 𝑖 dominates every other color, we say color 𝑖 is dominating in the urn.

To illustrate these concepts, take a scheme with the replacement matrix

�����
−1 2 3 1
0 5 0 0
0 2 3 8
0 3 1 3

����� .
In this instance, color 1 is dominating in the urn, but none of the other colors is. In this unbalanced
scheme, we have three classes, partitioning [4] as {1}, {2} and {3, 4}.

3. Notation

We typeset matrices and vectors in boldface. Toward less indexing, we leave the matrices and vectors
unsubscripted by dimensions, but if changing over time, they carry the timestamp as a subscript. For
unsubscripted matrices and vectors, the dimension is surmised from the context. For instance, the identity
matrix is I, and 0 is a matrix or a vector of zeros (the context will tell), with appropriate dimensions
discernible from the situation. Vectors are one-column matrices, and the transpose of a matrix is shown
via 𝑇 as a superscript. The notation ∼ 𝑔(𝑛), o(𝑔(𝑛)) and O(𝑔(𝑛)) is for a matrix or a vector in which all
the components are, respectively, ∼ 𝑔(𝑛), 𝑜(𝑔(𝑛)) and 𝑂 (𝑔(𝑛)) in the usual sense.

The notation Diag(𝑦1, . . . , 𝑦𝑐) is the usual representation of a diagonal matrix, with the num-
bers 𝑦1, . . . , 𝑦𝑐 on the diagonal, and the off-diagonal elements are all 0. For a column vector
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y = (𝑦1, . . . , 𝑦𝑐)𝑇 , the notation Diag(y) stands for the matrix

Diag(𝑦1, . . . , 𝑦𝑐) =
������
𝑦1 0 0 . . . 0
0 𝑦2 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . 𝑦𝑐

������
that puts the elements of y on the diagonal.

Let 𝑇𝑛 be the total number of balls in an urn. In a tenable balanced scheme with the balance factor
𝜃, we have

𝑇𝑛 = 𝜃𝑛 + 𝑇0,

For tenability, the initial number of balls 𝑇0 is at least 1.
Let 𝑋𝑛,𝑖 be the number of balls of color 𝑖 ∈ [𝑐] in the urn after 𝑛 draws, and let X𝑛 be the composition

vector with these components after 𝑛 draws. We denote the covariance matrix of X𝑛 by Cov(X𝑛). We
arrange the eigenvalues of the generator according to the decreasing order of real parts:

�(𝜆1) ≥ �(𝜆2) ≥ �(𝜆3) ≥ · · · ≥ �(𝜆𝑐).

Note that some eigenvalues may be repeated and complex. When 𝜆1 is unique (of multiplicity 1), we
call it a principal eigenvalue. The corresponding eigenvector of A𝑇 is called a principal eigenvector
and is denoted by v1.

The principal eigenvector is scaled to be of 𝐿1-norm equal to 1. This is always possible, since for
a tenable balanced irreducible urn scheme the components of the principle eigenvector are all positive
[10]. The eigenvector corresponding to 𝜆2 is scaled to have the top component equal to 1. This is always
possible, since not all the components of v2 are 0, and we can take as color 1 the one corresponding to
a nonezero component, then choose a scale that renders its value 1.

3.1. Classification by the index

For a tenable balanced urn, the ratio �(𝜆2)/𝜆1 =: Λ is called the urn index. There is a standard
classification of urn schemes by the regimes of the index. When the index is less than 1

2 , the urn scheme
is considered “small,” and when the index equals 1

2 , the scheme is “critical”; the scheme is “large” when
its index is greater than 1

2 . The reason for this particular classification is that the urn behavior is different
in each regime.

4. Covariance recursion

The next lemma requires only tenability and balance.

Lemma 4.1. In a tenable balanced Pólya urn scheme with generator Ā, the covariance of the
composition vector X𝑛 satisfies the recurrence

Cov[X𝑛] = Cov[X𝑛−1] + 1
𝑇𝑛−1

Ā𝑇
Cov[X𝑛−1] + 1

𝑇𝑛−1
Cov[X𝑛−1]Ā

+ 1
𝑇𝑛−1

Ā𝑇 Diag(E[𝑋𝑛−1,1], . . . ,E[𝑋𝑛−1,𝑐])Ā

− 1
𝑇2
𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]Ā.
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Proof. Let I𝑛,𝑖 be the indicator of the event of picking a ball of color 𝑖 in the 𝑛th draw, and let J𝑛 be
the vector with these components. For 𝑖 = 1, . . . , 𝑐, the random variable 𝑋𝑛,𝑖 satisfies the stochastic
recurrence

𝑋𝑛,𝑖 = 𝑋𝑛−1,𝑖 + 𝑎1,𝑖 (𝑛)I𝑛,1 + · · · + 𝑎𝑐,𝑖 (𝑛)I𝑛,𝑐 .

Putting these 𝑐 equations in matrix form, we obtain

X𝑛 = X𝑛−1 + A𝑇 (𝑛)J𝑛. (1)

The covariance matrix Cov[X𝑛] is E[X𝑛X𝑇
𝑛 ] − E[X𝑛] E[X𝑇

𝑛 ]. The strategy in the proof is to develop a
recurrence for Cov[X𝑛]. Take the transpose of (1), and multiply the resulting equation by (1) to get

X𝑛X𝑇
𝑛 = X𝑛−1X𝑇

𝑛−1 + A𝑇 (𝑛)J𝑛X𝑇
𝑛−1 + X𝑛−1J𝑇𝑛 A(𝑛) + A𝑇 (𝑛)J𝑛J𝑇𝑛 A(𝑛).

For 𝑖 ≠ 𝑗 , the indicators I𝑛,𝑖 and I𝑛, 𝑗 are mutually exclusive. So, the product J𝑛J𝑇𝑛 is the diagonal matrix
Diag(I𝑛,1, . . . , I𝑛,𝑐) = Diag(J𝑛). We now have

E[X𝑛X𝑇
𝑛 ] − E[X𝑛] E[X𝑇

𝑛 ] = E[X𝑛−1X𝑇
𝑛−1 + A𝑇 (𝑛)J𝑛X𝑇

𝑛−1 + X𝑛−1J𝑇𝑛 ]A(𝑛)
+ A𝑇 (𝑛) Diag(J𝑇𝑛 )A(𝑛)
− E[X𝑛−1 + A𝑇 (𝑛)J𝑛] E[X𝑇

𝑛−1 + J𝑇𝑛 A(𝑛)] .

Using the independence of A(𝑛) and X𝑛−1, we collect the terms of the covariance toward a recursion:

Cov[X𝑛] = Cov[X𝑛−1] + Ā𝑇
E[J𝑛X𝑇

𝑛−1] + E[X𝑛−1J𝑇𝑛 ]Ā
+ Ā𝑇 Diag(E[J𝑛])Ā − E[X𝑛−1] E[J𝑇𝑛 ]Ā
− Ā𝑇

E[J𝑛] E[X𝑇
𝑛−1] − Ā𝑇

E[J𝑛] E[J𝑇𝑛 ]Ā. (2)

We get the terms involving J𝑛 by conditioning on F𝑛−1, the sigma field generated by the first 𝑛−1 draws:

E[J𝑛 | F𝑛−1] = 1
𝑇𝑛−1

X𝑛−1.

An iterated expectation gives E[J𝑛] = (1/𝑇𝑛−1) E[X𝑛−1]. In the same manner, we have

E[J𝑛X𝑇
𝑛−1 | F𝑛−1] = E[J𝑛 | F𝑛−1]X𝑇

𝑛−1 =
1

𝑇𝑛−1
X𝑛−1X𝑇

𝑛−1.
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An iterated expectation gives E[J𝑛X𝑇
𝑛−1] = (1/𝑇𝑛−1) E[X𝑛−1X𝑇

𝑛−1]. Similarly, we get E[X𝑛−1J𝑇𝑛 ] =
(1/𝑇𝑛−1) E[X𝑛−1X𝑇

𝑛−1]. Plugging this back into (2), we get

Cov[X𝑛] = Cov[X𝑛−1] + 1
𝑇𝑛−1

Ā𝑇
E[X𝑛−1X𝑇

𝑛−1] +
1

𝑇𝑛−1
E[X𝑛−1X𝑇

𝑛−1]Ā

+ 1
𝑇𝑛−1

Ā𝑇 Diag(E[X𝑛−1])Ā

− 1
𝑇𝑛−1
E[X𝑛−1] E[X𝑇

𝑛−1]Ā − 1
𝑇𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]

− 1
𝑇2
𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]Ā

= Cov[X𝑛−1] + 1
𝑇𝑛−1

Ā𝑇
Cov[X𝑛−1] + 1

𝑇𝑛−1
Cov[X𝑛−1]Ā

+ 1
𝑇𝑛−1

Ā𝑇 Diag(E[X𝑛−1])Ā

− 1
𝑇2
𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]Ā.

�

5. Growing tenable balanced urns

Suppose the balance factor is 𝜃 > 0. In such a case, a positive number of balls is added after each
drawing. The urn size grows without limit. Janson [12] specifies sufficient conditions for small-index
schemes under which Cov(X𝑛) is O(𝑛). Under the same conditions, a critical urn has a covariance
matrix that is O(𝑛 ln 𝑛). These conditions are:

(1) The urn scheme is tenable.
(2) E[𝑎2

𝑖, 𝑗 (𝑛)] < ∞.
(3) 𝜆1 is real and simple.
(4) There is a dominating color and there are initially balls of that color in the urn.
(5) 𝜆1 belongs to a dominating class.
(6) The index Λ = �(𝜆2)/𝜆1 is at most 1

2 .

We call these conditions Janson’s conditions. We deal only with tenable balanced urns. So conditions
(1)–(2) are always satisfied, since in a balanced urn scheme the variables in the generic matrix are all
bounded. The rest of the conditions require a special generator structure and special initial conditions
adapted to tenability. Condition (5) means that the principal eigenvalue is determined by the submatrix
remaining after removing the rows and columns corresponding to nondominant colors. Unless otherwise
is stated explicitly, in what follows, we assume the scheme satisfies Janson’s conditions (1)–(6).

5.1. Schemes with a small index

According to [12], for a tenable balanced scheme, when the balance factor is positive and the index is
small (Λ = �(𝜆2)/𝜆1 < 1

2 ), it follows that (1/𝑛) Cov[X𝑛] converges to a 𝑐 × 𝑐 limit matrix, 𝚺. In other
words, we have

Cov[X𝑛] = 𝑛𝚺 + R𝑛, (3)

where the remainder R𝑛 is a 𝑐 × 𝑐 matrix in which all the components are 𝑜(𝑛). The methods used in
[10,12,17] do not specify the rate of convergence.
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Theorem 5.1. In a growing tenable balanced Pólya urn scheme (with the balance factor 𝜃) with a small
index satisfying Janson’s conditions, the covariance matrix is asymptotically given by Cov[X𝑛] ∼ 𝑛𝚺,
and the limiting (matrix) coefficient 𝚺 of linearity solves the equation

𝜃 𝚺 = Ā𝑇𝚺 + 𝚺Ā + 𝜃Ā𝑇 Diag(v1)Ā − 𝜃3v1v𝑇1 ,

where v1 is the principle eigenvector of Ā𝑇 .

Proof. The urn index is small. That is Λ = �(𝜆2)/𝜆1 < 1
2 . We use 1/𝑇𝑛 = (1/𝜃𝑛)(1 + 𝑂 (1/𝑛)), and

the known average relation E[X𝑛] = 𝜃𝑛v1 +O(𝑛Λ), see [10]. By Lemma 4.1, these facts give rise to the
asymptotic equation

lim
𝑛→∞

(Cov[X𝑛] − Cov[X𝑛−1]) = 1
𝜃

Ā𝑇𝚺 + 1
𝜃
𝚺Ā

+ Ā𝑇 Diag(v1)Ā − Ā𝑇 v1v𝑇1 Ā;

with the right-hand side being merely a constant, such a limit exists. As 𝜆1 is a unique principal
eigenvalue, we have Ā𝑇 v1 = 𝜆1v1 = 𝜃v1. From (3), the argument of the limit is (𝑛𝚺+R𝑛) − ((𝑛− 1)𝚺+
R𝑛−1). We can write the latter equation as

lim
𝑛→∞

(R𝑛 − R𝑛−1) = −𝚺 + 1
𝜃

Ā𝑇𝚺 + 1
𝜃
𝚺Ā + Ā𝑇 Diag(v1)Ā − 𝜃2v1v𝑇1 .

This asserts that lim𝑛→∞(R𝑛 − R𝑛−1) exists. Suppose we called this limit b. This limiting equation
implies that

R𝑛 = R𝑛−1 + b + o(1).

We conclude that b = 0, for if it were not, iterating the recurrence for R𝑛 would produce 𝑛 as the exact
order for R𝑛, contradicting the actual o(𝑛) order. �

Example 5.1 (Friedman urn). Consider Friedman’s urn on white and blue balls, with the generic
symmetric replacement matrix A =

(
𝑎 𝑏
𝑏 𝑎

)
, with −∞ < 𝑎 < 3𝑏. For tenability, if 𝑎 < 0, both 𝑏 and the

initial number of white and blue balls must be multiples of |𝑎 |.
Let 𝑊𝑛 and 𝐵𝑛 be, respectively, the number of white and blue balls after 𝑛 draws. With 𝑇𝑛 = 𝑊𝑛 + 𝐵𝑛

(deterministic), we have Var[𝑊𝑛] = Var[𝐵𝑛] = −Cov[𝑊𝑛, 𝐵𝑛]. The (matric) coefficient of linearity
has the form 𝚺 = ( 𝑥 −𝑥

−𝑥 𝑥 ). In view of this perfect symmetry, we have A𝚺 = 𝚺A.
The eigenvalues of A𝑇 = A are 𝜆1 = 𝑎 + 𝑏 = 𝜃 and 𝜆2 = 𝑎 − 𝑏, and the principal eigenvector v1 of

A𝑇 is 1
2
( 1

1
)
. With 𝑎 < 3𝑏, we have 𝜆2 < 1

2𝜆1. According to Theorem 5.1, the limit of (1/𝑛) Cov[𝑊𝑛, 𝐵𝑛]
solves the equation stated there. With A𝚺 = 𝚺A, the equation simplifies to

𝜃𝚺 = 2A𝚺 + 𝜃A Diag(v1)A − 𝜃3v1v𝑇1 ,

with the solution

𝚺 = 𝜃 (𝜃 I − 2A)−1(A Diag(v1)A − 𝜃2v1v𝑇1 )

= (𝑎 + 𝑏)
(
(𝑎 + 𝑏)

(
1 0
0 1

)
− 2

(
𝑎 𝑏
𝑏 𝑎

))−1

×
((
𝑎 𝑏
𝑏 𝑎

) ( 1
2 0
0 1

2

) (
𝑎 𝑏
𝑏 𝑎

)
− (𝑎 + 𝑏)2

( 1
2
1
2

) (
1
2

1
2

))
=

(𝑏 − 𝑎)2 (𝑎 + 𝑏)
4(3𝑏 − 𝑎)

(
1 −1
−1 1

)
.
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This result is obtained in [7]; see also Example (2.4) in [10].

Example 5.2. Consider a scheme with the generic replacement matrix A =
( 1 1 3

0 2 3
0 4 1

)
. This replacement

matrix has two classes in it, which are {1} and {2, 3}.
Let 𝑊𝑛, 𝐵𝑛 and 𝑅𝑛 be, respectively, the number of white, blue and red balls after 𝑛 draws. The

eigenvalues of A𝑇 are 𝜆1 = 5, 𝜆2 = 1 and 𝜆3 = −2. The principal eigenvector of A𝑇 is (0, 4
7 ,

3
7 )𝑇 .

We have 𝜆2 < 1
2𝜆1. According to Theorem 5.1, the limit of (1/𝑛) Cov[𝑊𝑛, 𝐵𝑛, 𝑅𝑛] solves the equation

stated there:

5𝚺 =
���
1 0 0
1 2 4
3 3 1

���𝚺 + 𝚺
���
1 1 3
0 2 3
0 4 1

��� + 240
49

���
0 0 0
0 1 −1
0 −1 1

��� ,
with the solution

𝚺 =
80
147

���
0 0 0
0 1 −1
0 −1 1

��� .
Interpretation 5.1. Suppose in Example 5.2, we combined the blue and red balls and painted them
violet. We would then have an urn scheme on white and violet balls, with the replacement matrix

( 1 4
0 5

)
;

the bottom row represents the additions upon drawing violet. White balls in this coupling behave as in
the original 3-color scheme. This is a triangular scheme. Hence, the variance of the number of blue
balls is sublinear [11,19], and the variance of the number of white balls and the covariances involving
white are sublinear, too. In the original 3-color scheme, the variance of the number of white balls, as
well as covariances involving white, are sublinear. Normalizing by 𝑛 kills all variances and covariances
involving white in the 3 × 3 covariance matrix.

5.2. Schemes with a critical index

According to [12], for a growing tenable balanced critical scheme (Λ = �(𝜆2)/𝜆1 = 1
2 ) satisfying

Janson’s conditions, the scaled covariance matrix (1/𝑛 ln 𝑛) Cov[X𝑛] converges to a 𝑐 × 𝑐 limit matrix,
𝚺. Note that the normalizing factor is not linear as in the case of a small index. So, we have

Cov[X𝑛] = 𝑛 ln 𝑛𝚺 + R𝑛, (4)

with R𝑛 = 𝑜(𝑛 ln 𝑛).

Theorem 5.2. Consider a growing tenable balanced (with a balance factor 𝜃) irreducible critical Pólya
urn scheme satisfying Janson’s conditions. The covariance matrix is asymptotically given by

Cov[X𝑛] = ℎ 𝑛 ln 𝑛v2v𝑇2 + O(ln 𝑛),

where the constant ℎ is the top left element of Ā𝑇 Diag(v1)Ā − 𝜃2v1v𝑇1 .

Proof. Scale the equation in Lemma 4.1 with (ln 𝑛)−1. We use 1/𝑇𝑛 = (1/𝜆1𝑛)(1 + 𝑂 (1/𝑛)), and the
known average relation E[X𝑛] = 𝜆1𝑛v1 + O(𝑛Λ) = 𝜆1𝑛v1 + O(𝑛 1

2 ), see [10]. Equipped with these facts,
Lemma 4.1 ascertains that

lim
𝑛→∞

1
ln 𝑛

(Cov[X𝑛] − Cov[X𝑛−1]) = 1
𝜆1

A𝑇𝚺 + 1
𝜆1

𝚺A + 0 =: K.
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From (3), the argument of the limit is

1
ln 𝑛

((𝑛 ln 𝑛𝚺 + R𝑛) − ((𝑛 − 1) ln(𝑛 − 1)𝚺 + R𝑛−1))

=
1

ln 𝑛

(
−𝑛 ln

𝑛 − 1
𝑛

+ ln(𝑛 − 1)
)
𝚺 + R𝑛 − R𝑛−1

ln 𝑛

=
1

ln 𝑛
(ln 𝑛 +𝑂 (1))𝚺 + R𝑛 − R𝑛−1

ln 𝑛
.

So, we have

lim
𝑛→∞

1
ln 𝑛

(R𝑛 − R𝑛−1) = K − 𝚺.

This limiting equation implies that

R𝑛 = R𝑛−1 + (K − 𝚺)ln 𝑛 + o(ln 𝑛).

We conclude that K − 𝚺 = 0, for if it were not, iterating the recurrence for R𝑛 would produce 𝑛 ln 𝑛 as
the exact order for R𝑛, contradicting its actual o(𝑛 ln 𝑛) order. We have thus established that the (matrix)
coefficient in (4) satisfies the equation

𝜆1𝚺 = Ā𝑇𝚺 + 𝚺Ā. (5)

In view of the criticality of the urn, for any ℎ ∈ R, the matrix ℎv2v𝑇2 satisfies this equation which on the
right-hand side gives

Ā𝑇𝚺 + 𝚺Ā = ℎĀ𝑇 v2v𝑇2 + ℎv2v𝑇2 Ā = ℎ𝜆2v2v𝑇2 + ℎ𝜆2v2v𝑇2 = ℎ𝜆1v2v𝑇2 .

Having determined the right asymptotic form of the covariance matrix, we next determine the scale ℎ.
Write Cov(X𝑛) = (ℎ𝑛 ln 𝑛 + 𝑟𝑛)v2v𝑇2 , for a scalar error term as an ansatz. We next verify that this form
asymptotically satisfies the recurrence.

With this ansatz, we have

Cov(X𝑛) − Cov(X𝑛−1) = (ℎ𝑛 ln 𝑛 + 𝑟𝑛)v2v𝑇2
− (ℎ(𝑛 − 1) ln(𝑛 − 1) + 𝑟𝑛−1)v2v𝑇2

= (ℎ ln(𝑛 − 1) + ℎ + 𝑟𝑛 − 𝑟𝑛−1)v2v𝑇2 + O
(
1
𝑛

)
.

On the right-hand side, we have

1
𝑇𝑛−1

Ā𝑇
Cov[X𝑛−1] + 1

𝑇𝑛−1
Cov[X𝑛−1]Ā + 1

𝑇𝑛−1
Ā𝑇 Diag(E[X𝑛−1])Ā

− 1
𝑇2
𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]Ā

=
ℎ(𝑛 − 1) ln(𝑛 − 1) + 𝑟𝑛−1

𝑇𝑛−1
(Ā𝑇 v2v𝑇2 + v2v𝑇2 Ā) + B𝑛

=
ℎ(𝑛 − 1) ln(𝑛 − 1) + 𝑟𝑛−1

𝑇𝑛−1
(2𝜆2v2v𝑇2 ) + B𝑛

= ℎ ln(𝑛 − 1)v2v𝑇2 + O
(
ln 𝑛
𝑛

)
+ 𝜆1𝑟𝑛−1

𝑇𝑛−1
v2v𝑇2 + B𝑛,
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where we used the criticality in 2𝜆2 = 𝜆1, the fact that v2 is the eigenvector corresponding to 𝜆2, and
collected the other terms in B𝑛, for which we have an asymptotic equivalent:

B𝑛 =
1

𝑇𝑛−1
Ā𝑇 Diag(E[X𝑛−1])Ā − 1

𝑇2
𝑛−1

Ā𝑇
E[X𝑛−1] E[X𝑇

𝑛−1]Ā

=
1

𝜆1(𝑛 − 1) + 𝑇0
Ā𝑇 Diag(𝜆1v1𝑛 + O(√𝑛))Ā

− 1
(𝜆1(𝑛 − 1) + 𝑇0)2 Ā𝑇 (𝜆1v1𝑛 + O(√𝑛))(𝜆1v𝑇1 𝑛 + O(√𝑛))Ā

= Ā𝑇 Diag(v1)Ā − Ā𝑇 v1v𝑇1 Ā + O
(

1√
𝑛

)
=: B + O

(
1√
𝑛

)
.

Putting the parts together, under such an ansatz we get

(ℎ ln(𝑛 − 1) + ℎ + 𝑟𝑛 − 𝑟𝑛−1)v2v𝑇2 + O
(
1
𝑛

)
= ℎ ln(𝑛 − 1)v2v𝑇2 + O

(
ln 𝑛
𝑛

)
+ 𝜆1𝑟𝑛−1

𝑇𝑛−1
v2v𝑇2 + B + O

(
1√
𝑛

)
.

We see the cancellation of ln(𝑛 − 1) on both sides, and after rearrangement the ansatz takes the form

𝑟𝑛v2v𝑇2 =

(
1 + 𝜆1

𝑇𝑛−1

)
𝑟𝑛−1v2v𝑇2 + B − ℎv2v𝑇2 + O

(
ln 𝑛
𝑛

)
=

𝑇𝑛
𝑇𝑛−1

𝑟𝑛−1v2v𝑇2 + B − ℎv2v𝑇2 + O
(
ln 𝑛
𝑛

)
.

The ansatz is true, if 𝑟𝑛 is a function that solves the last recurrence. Extract the top left component in
this matric recurrence. Write its recurrence as

𝑟𝑛
𝑇𝑛

=
𝑟𝑛−1

𝑇𝑛−1
+ 𝑏1,1 − ℎ

𝑇𝑛
+𝑂

(
ln 𝑛
𝑛2

)
,

where 𝑏1,1 is the top left element in B. Unwinding the recurrence, we find 𝑟𝑛 = (𝑏1,1−ℎ)𝑛 ln 𝑛+𝑂 (ln 𝑛).
(Recall that the top component of v2 is 1.) This remainder would be of order 𝑛 ln 𝑛, unless ℎ = 𝑏1,1. We
assumed 𝑟𝑛 to be 𝑜(𝑛 ln 𝑛). So, ℎ must be the top left element of

B = Ā𝑇 Diag(v1)Ā − Ā𝑇 v1v𝑇1 = Ā𝑇 Diag(v1)Ā − 𝜃2v1v𝑇1 ,

and 𝑟𝑛 = 𝑂 (ln 𝑛). �

Example 5.3 (Critical Bagchi-Pal urn). Consider the urn scheme with the generic replacement matrix
A =

(
𝑎 𝑏

𝑎−𝑏
2

𝑎+3𝑏
2

)
, for some integers 𝑎 > 𝑏 > 0, with 𝑎 − 𝑏 even.

Let 𝑊𝑛 and 𝐵𝑛 be, respectively, the number of white and blue balls after 𝑛 draws. The eigenvalues of
A𝑇 are 𝜆1 = 𝑎 + 𝑏 and 𝜆2 = (𝑎 + 𝑏)/2, and the principal eigenvector of A𝑇 is (1/(𝑎 + 𝑏)) (

𝑎−𝑏
2𝑏

)
, and

the eigenvector of A𝑇 corresponding to 𝜆2 is
( 1
−1

)
.

According to Theorem 5.2, we have

𝚺 = ℎ

(
1
−1

)
(1 − 1) = ℎ

(
1 −1
−1 1

)
,
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and ℎ is the top left component in the matrix

����
𝑎

𝑎 − 𝑏

2
𝑏

𝑎 + 3𝑏
2

����
����
𝑎 − 𝑏

𝑎 + 𝑏
0

0
2𝑏

𝑎 + 𝑏

����
(

𝑎 𝑏
𝑎 − 𝑏

2
𝑎 + 3𝑏

2

)
− (𝑎 + 𝑏)2 ����

𝑎 − 𝑏

𝑎 + 𝑏
2𝑏

𝑎 + 𝑏

����
(
𝑎 − 𝑏

𝑎 + 𝑏

2𝑏
𝑎 + 𝑏

)
;

that is, ℎ = 1
2𝑏(𝑎 − 𝑏). So, we have

Cov[𝑊𝑛, 𝐵𝑛] = 1
2
𝑏(𝑎 − 𝑏)

(
1 −1
−1 1

)
+ O(ln 𝑛).

This recovers the result in [2], where it is derived without the lower order term by an exceptionally long
procedure.

Example 5.4 (A critical urn with random entries). Consider an urn scheme with replacement matrix

A𝑛 =
���
5 𝑌 3 − 𝑌
2 4 2
1 2 5

��� ,
where 𝑌 is a binomial random variable on three independent identically distributed trials, with success
probability 2

3 in each.
The generator of this scheme is Ā =

( 5 2 1
2 4 2
1 2 5

)
. The eigenvalues of the generator are 𝜆1 = 8, 𝜆2 = 4,

and 𝜆3 = 2. The eigenvectors corresponding to 𝜆1 and 𝜆2 are, respectively, 1
3

( 1
1
1

)
and

( 1
0
−1

)
. Note that

we followed the normalization and directions of the eigenvectors as mentioned in Section 3.
Let 𝑊𝑛, 𝐵𝑛 and 𝑅𝑛 be, respectively, the number of white, blue and red balls after 𝑛 draws.
According to Theorem 5.2, we have

𝚺 = ℎ
���

1
0
−1

��� (1 0 − 1) = ℎ
���

1 0 −1
0 0 0
−1 0 1

��� ,
and ℎ is the top left component in the matrix

1
3

���
5 2 1
2 4 2
1 2 5

��� ���
1 0 0
0 1 0
0 0 1

��� ���
5 2 1
2 4 2
1 2 5

��� − 64
9

���
1
1
1

��� (1 1 1);

that is, ℎ = 26
9 . Hence, we have

Cov[𝑊𝑛, 𝐵𝑛, 𝑅𝑛] = 26
9

���
1 0 −1
0 0 0
−1 0 1

��� 𝑛 ln 𝑛 + O(ln 𝑛).

Interpretation 5.2. Suppose in Example 5.4 we combined white and red balls and painted them pink. We
would then have an urn scheme on pink and blue balls, with the generator

( 6 2
4 4

)
; the top row represents

the average additions upon drawing pink. Blue balls in this coupling behave as in the original 3-color
scheme. This is a scheme with a small index (the eigenvalues are 8 and 2). Hence, the variance of the
number of blue balls is linear (cf. Theorem 5.1), and so is the covariance between the number of pink
and blue balls. That is why in the original 3-color scheme, the variance of the number of blue balls is
linear and the covariances involving blue are linear, too. Normalizing by 𝑛 ln 𝑛 kills all variances and
covariances involving blue in the 3 × 3 covariance matrix.
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6. Limitations

The key to success in the cases of small index and critical urns is that the differencing of Cov[X𝑛] and
Cov[X𝑛−1] produces a small remainder and information can be extracted from the toll function on the
right-hand side. Variances in the large-index case are superlinear of order 𝑛2Λ, with 2Λ > 1. Differencing
then produces a large error that takes over the toll function, and we cannot extract useful information.
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