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A smooth surfacein P4 not of general type has
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Abstract. We use geometric information obtained from the generic initial ideal of a hyperplane
section of asurfacein P* not of general type to bound the degree of such a surface.
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Thisis a continuation of the papers of Braun and Flgystad [BF] and Cook [C] on
the bound on the degree of smooth surfaces not of general typein P4.
We will prove the following:

THEOREM 1. Let S be a smooth surface of degree d in P* not of general type.
Then d < 66.

The new idea in this paper is to bound the degree of the sporadic zeros of a
generic hyperplane section of the surface by considering the geometricimplications
of having sporadic zerosin high degree. First, we need to collect various theorems
and formulae from earlier sources.

1. If S isasmooth surface in P* then it satisfies the double point formula ([H,

pg. 434])
d? —5d — 10(7 — 1) 4+ 2(6xOs — K?) = 0. 1)
2. Thefollowing result of Ellingsrud and Peskine gives us someinitial bounds.

PROPOSITION 2 ([EP)). If S isa smooth surface not of general typein P4, then for
o=5,60r7,eitherdegS < 5(c+1)(c —2)/(c —4) or S lieson a hypersurface,
Vs, of degreeo.

In particular, deg S < 66 or S C V7, sO we may assume that S lies on
a hypersurface of degree 7. Furthermore it is known ([K]), that if S lies on a
hypersurface of degree 3 then deg S' < 8. Therefore we may assumethat S lies on
ahypersurface of minimal degrees = 4,5,6 or 7.
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3. If S is asurface not of general type and the degree of S > 5 then K2 < 9.
([BPV])

4. In [BF], xOgs is bounded from below, using generic initial ideal theory, in
terms of invariants arising from a generic hyperplane section C' of S:

Let C[zo, 21, 22, 23] be the ring of polynomials of P3 under the reverse lexi-
cographical ordering. Let C be a curve in P2, then the generic initia ideal of C,

gin(I¢), is generated by elements of the form ziz]z5.

DEFINITION. A monomial z8z4z$ isasporadic zero of C if z3z%z§ ¢ gin(I¢),
but there exists ¢’ > ¢ such that zgz4z5 € gin(Ic).
Let oy isthe number of sporadic zerosin degreet and assume«;, = Ofort > m.
Let " be a generic hyperplane section of C'. Then

gin(Ir) = gin(Ic) S,

where the saturation is with respect to z,. The generic initial ideal of I" is of the
form

. —1 As— A
gin(Iy) = (zf, x5 t27° ™%, . .., 27°),

where> \; =dand A1 +2> X > 1 +1LThedog> A > - >X,1>0
are called the connected invariants of I".
In [BF] they show that

X052821<<>\t+3t_1>—<t;1>>_iat(t—l). 2

t=0
5. If = isthe genus of C, then

s—1 s m
7r:1+z<<zz>+(z’—l)>\i>—2at. (3)
=0 t=0
Combining all these facts we obtain
18 > 2K? = d? — 5d — 10(r — 1) 4+ 12O

> o105 (5) + - ) -
t=0

i=0
5—1 m
A +t—1 t—1
+12('Z<< t+3 >_< 3 ))‘Zat(t_1)>' 4)
—0 t=0
6. By the work of Gruson and Peskine ([GP]) on the numerical invariants of
pointsin P2 we have, for d > (s — 1)2+ 1

1+§<<>;>+(i—1)ki><g—z+(s—4)c—21+1:G(d,s). 5)
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7. Braun and Floystad ([BF]) show that if s > 2andd > (s — 1) + 1

B4 () () e (00 o

Thus
d2

d m
> 2 i i - i -
18 > d“— 54— 10 R + (s 4)2 tE:o ay

+12<s<%+3%>—1—1—(8;1)—%0@(25—1))

d? d d 4 523
—4)— 2
= d? —5d — 10(2 + (s 4)2>+123<s 3 )

S

112 (1— (3 41>> —Z%atuzt—zz). ™
We will use Equation (7) to get an initia bound on the degree and then, using
Mathematica~ and Equation (4), we will improve the bound.
Thus, we need to find the smallest possible upper bound for 37" o o (12t — 22)
or equivalently A = > o at.
We will bound A by bounding the number of sporadic zeros and then by
bounding the degree of the sporadic zeros by geometric considerations.

The bound on the number of sporadic zeros

Let v = G(d,s) — w. Any bound on ~ will aso bound the number of sporadic
zeros (see Equations (3) and (5)). By [EP], v < d(s — 1)?/2s. Furthermore, if S is
a surface not of general type (of degree > 5) we have K2 < 6y, substituting this
into the double point formula (1), we get = > (d? — 5d + 10)/10 and thus

d? —5d + 10
10
or
d? d d?—5d
TS5 tE=43- 5

Taking the minimum of the bounds for v, we get, for s

= 4,v < 9d/8, for
s=05y<d,fors=6,y<d(90—d)/60andfor s =7,y < d(

— d)/35.

The bound on the degree of sporadic zeros

For Equations (7) and (4) to hold for large degree, A will need to be large. If we
have sporadic zeros in large degree this would improve our chances of making A
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large enough. Furthermore, every generator of gin(I¢) of the form z8z%z$ with
¢ > 0 givesus asporadic zeroineach degreei fora + b <i<a+b+c— 1
Thus we could obtain the largest upper bound on A by assuming that there were
one generator of gin(/c) of the form xi‘oxé where z is the maximum number of
sporadic zeros. Then A < Y2377 ¢. But (as we saw in [C]) this bound is much
too big.

Let us consider the following situation. Suppose C C P2 is a smooth curve
such that gin(/) has at |east three generators, one of which, M, is of degreer and
al the others are of degree < r» — 2.

LEMMA 3. C has a secant line of order r.

Proof. Every minimal generator of gin(/.) either arises from a minimal gen-
erator of I or from agenerator of gin(I¢) in one degree lower. (See[B])

Let J betheideal generated by elementsof I indegree< » — 1. By considering
the Hilbert function associated to .J, we seethat degree (V' (J)) = degree (C) + 1.
Hence, V(J) = CU X and X D L aline.

Let f be the generator of I in degree r corresponding to M and let F' =
{f = 0}. By Bezout's Theorem F' N L in 7 points (up to multiplicity) and all these
pointsmust lieon C. Let F N L = Y m;p; where p; are the points of C'.

Claim. L meets C' at p; with multiplicity m,.

Proof of Claim. C' islocally cut out at p; by polynomias F; and F» of degree
r. Theline L = {l1 =l = 0} meets V' (F1) and V (F») at p; with multiplicity m;

and thus
OPS .
length [ ——2L | = m;
J <l17127Fj> e
forj =12
However
OPsapi _ OPlapi

- )
1,02, F;  Fjl—1,—0

and Fjj|;,—,—0 = t" wheret isthe local defining equation of p; in L.

Hence
OP3 .
length (- ori ) = ms
g <l13l27F17F2 i
and thisis the intersection multiplicity of L and C' at p;. O

Let us now return to the case where S C P# is a smooth surface not of general
type. Suppose that for generic hyperplanes H = {h = 0}, the generic hyperplane

https://doi.org/10.1023/A:1000150519995 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000150519995

A SMOOTH SURFACE IN P* NOT OF GENERAL TYPE HAS DEGREE AT MOST 66 5

section C}, of S issuch that gin(Z¢, ) has at least three generators, one in degree
r > d/2 and al others in degree < r — 2 and hence, by Lemma 3, C}, has an
r-secant line, Ly,.

LEMMA 4. Generically, these secant lines are secant lines of S.

Proof. Suppose for a generic h, L;, C S. Then for a generic hyperplane H,
SNH D L. Butgenericaly SN H isasmooth irreducible curve, and hence must
be L. Butthen S = P2 O

Thus we are in the following situation. For a generic hyperplane H = {h = 0}
there exists L, C H such that L, is a secant line of S of order r > d/2. Let
B C G(1, 4) parametrize these secant lines in the Grassmannian of lines in P4,
Let V = ULy, bethe union of these linesin P4,

PROPOSITION 5. S contains a plane curve of degree > r.
Proof. Asany linein P iscontainedin a2-dimensional family of hyperplanes,
thedimensionof B > 2.

V N Sisat most a2-dimensional space, so if thedimensionof B > 3, two lines
must meet. Let I; and L, be two of these intersecting lines. Let P be the plane
containing the lines. Then S intersects P in at least 2r — 1 > d points and hence
S NP D C aplane curve. Asthe secant lines L; will meet C' with multiplicity at
least r, the degreeof C' > r > d/2.

Now supposethe dimension of B = 2 and no two linesfrom B meet. Let

& BxB———— P,

send the pair (a,b) € B x B to the hyperplane containing [, and [,. As al lines
from B are skew this map is well defined away from the diagonal .

If the dimension of the image of ® is 4, then there exists a generic hyperplane
which containstwo r-secant lines. However this contradicts the generic hyperplane
section having only one r-secant line.

If the dimension of afiber is> 2, then S would be contained in the hyperplane
of theimage. However S is non-degenerate.

Thus the generic fiber is 1-dimensional and the image of @ is 3-dimensional.
That is, there is a 3-dimensional space of hyperplanes in P# each containing a
1-dimensional family of skew r-secant linesof S.

Let H = {h = 0} beahyperplanein theimage of ® containing a 1-dimensional
family of skew lines. Let S;, C H be the surface which is the union of these lines.
Is, = (fn: ).

Sp,NS=C= UbeB,leH(lb ns).

All points of C' lie on an r-secant line, henceif g € I isapolynomial of degree
< r—1, g mustvanishon Sy,. Therefore the only generator of I indegree< » — 1
is f (and h).
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S, C H and SN H = C}, isahyperplane section of .S containing C' and hence
Ic, C Ic andso all generatorsof I, indegree < r — 1 aredivisible by f,

Now S is contained in a hypersurface V, ¢ P* of degreeo < 7 < r — 1,
where V,, = {f, = 0}. Hence V,|;—o contains S, for generic H in the image of
® and thus V,, contains the union of al these surfaces, which must form a three-
dimensional space. AsV;; isirreducible, any polynomial intheideal of S of degree
< r — 1 must be divisible by f, and so Ig has only the one generator in degree
< r — 1. But thisisimpossible.

Hence there must be two secant lines meeting and asin the case of dim(B) =
3or 4, we get aplane curve of degree > r > d/2. O

LEMMA 6. If S isa smooth surface not of general typein P* of d > 50, S cannot
contain a plane curve of degreer > d/2.

Proof. Let C' C P be aplane curve of degreer > d/2 contained in S. Let H
be a hyperplane containing P.

We have

0— Ocucies = Oc ® Oc,s = Ocncies — 0,
therefore

h(Oc,) = K (Oc) + h'(Oc)
and hence

9(Ch) 2 9(C) + 9(Cres) = 9(C).

C isaplane curve of degree d¢ > d/2 and so

(do = 1)(dc = 2) (5-1(5-2
2 2 '

On the other hand, by the Gruson—Peskine ([GP]) bound

9(C) = -0

d? d
g(Ch) < 2_8 + (S —4)§ + 1
(Theinequality istrue for general hyperplane sections and as the projective genus
will stay constant it istrue for all hyperplane sections.) Hence

P i (G-DE-2)
— A +1x-2 2
28+(s 4)2+1/ >
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Thismeansfor s = 7, degree < 42, for s = 6, degree < 42 and for s = 5, degree
< 50.
For s = 4theineguality holds. However the Gruson—Peskineinequality assumes
there are no sporadic zeros. If we suppose that the number of sporadic zeros is
< 3d/4then naively wehave A < EA°+(3‘1/ D=1y, By connectedness\o < d/4+3
and hence A < (5/32)d? + (13/8)d — 3. Substituting back into Equation (7) we
get

e 23, 17
> —_ = — _ —
0> 5 -gd—-5d+33

and hence d < 25. Therefore we may assume that the number of sporadic zerosis
> 3d/4, then g(C},) < d?/8+ 1 — 3d/4 and wein fact get acontradiction. O

Thusif thedegreeof S > 50and S lieson ahypersurface of degree4, 5, 6 or 7, then
ageneric hyperplane section C of S cannot have an r-secant linewith r > d/2. In
terms of the genericinitial ideal of ', this meansthat, either

(1) All generatorsof gin(/) arein degree < d/2
or

(2) If there exists a generator of gin(I¢) in maximal degree » > d/2 then there
must exist a second generator in degreer — 1.

Wewant to maximize A = 7" ; ot subject to conditions (1) and (2). Let =z be the
maximum number of sporadic zeros.

() 1fdo+z—1<d/2then A < 0071t
(i) If o+ 2z—1 > d/2 but >\0~|—>\1~|—z—1 < dthen A < Z,ng/th+

Zz [d/2]+Xo+A1— 1t
t=A1+1

(iii) If do+A1+2—1> dletr = [(Ao+A1+2)/2[ then A < 37, t+>01 = A1+1t
To get a first estimate of A we have, by the connectedness of the invariants,
M<d/s+s—1and A1 <d/s+s—2

Using the bounds on -y, we get

fors =4, A<32d?+ Rd+ 3,
fors =5 A< 5d?+4d+ 1.

Substituting back into the original Equation (7) above, we get

fors=4, 0> 3d®—32d2—-2d-6 andhenced < 67,

fors=5 0> Zd®— %d?—32d—21 andhenced < 71.
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We now need to consider Equation (4) which is much more accurate than
Equation (7). From point 2, we know that either deg .S < 90 or S is contained
in a hypersurface of degree 5. Furthermore, if S is contained in a hypersurface
of degree 5 then d < 71 and if S is contained in a hypersurface of degree 4 then
d < 67. Therefore we can write down all possible configurations of the connected
invariants \p > A1 > --- > A\;_1 for high degree.

For exampleif s = 5and d = 71 the possible invariants are

18>16>14> 12> 11
17>16>14 > 13> 11
17> 15> 14 > 13 > 12.

(To obtain the list we used a program of Rich Liebling.)
We then obtain an upper bound on the number of sporadic zeros, z using

d? \i , 9d .
Z<§—Z<<2>—(Z—1)>\i>+§ if s =4,

and Equation (8) if s > 5.

We again get an upper bound on A using (i), (ii), or (iii). Substituting everything
into Equation (4) and see when the inegquality holds. (We checked the inequalities
on Mathematica™” .)

Weget s < 7and

for s=7, d<43
for s=6, d<44
for s=5 d<66
andfor s=4, d <65
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