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Let L/K be a field extension of characteristic p ^ 0. If L/K is purely 
inseparable and of bounded exponent, then the property that L has a sub-
basis over K (11, p. 436) is of significance in the theory of higher derivations 
(11) and in the theory of Hopf algebras (9; 10). In this case, where L/K is of 
bounded exponent, it has been shown independently in (1; 9; 5) that L/K 
having a sub-basis is equivalent to the property that L/K is modular (9, 
p. 401). Our aim in this paper is to extend and apply these properties for L/K 
purely inseparable and of unbounded exponent. 

In Theorem 1, we give several conditions on a /?-basis of L which are 
equivalent to the property that L/K has a sub-basis. In Theorem 2, we give a 
sequence of implications starting with L/K has a sub-basis. We apply both 
theorems to the theory of coefficient fields in complete local rings (see 
Theorem 4 and the Remark following it) and to the following problem: 
If every relative p-basis for a purely inseparable extension L/K is a minimal 
generating set, is L/K necessarily of bounded exponent?] The converse is known 
to be true (8). Finally, in Theorem 3, we give a partial solution to an open 
problem posed in (11, p. 439) and also show that (11, p. 442, Theorem 3) 
is now directly amenable to Zorn's lemma by using the equivalence mentioned 
in the first paragraph above; see (11, p. 439, § IV). 

If B is a ^-basis for L, then C always denotes 

{bv% | b Ç B, i is the exponent of b over K if b is 

purely inseparable over K and i = 0 otherwise}. 

1. Modular extensions. L/K always denotes a field extension of 
characteristic p ^ 0. 

THEOREM 1. Let L/K be a purely inseparable field extension. Then the following 
conditions are equivalent on a p-basis B of L: 

(0) B — K (set difference) is a sub-basis for L/K; 
(1) K = K>(C); 

Received September 10, 1968. 
^ Added in proof. It has recently been shown that the answer to this question is no 

(J. N. Mordeson and B. Vinograde, Note on relative p-bases of purely inseparable extensions, 
Proc. Amer. Math. Soc. 22 (1969), 587-590). 
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(2) C is a p-basis of K; 
(3) L = K(B) and K C Lpi(C), i = 1, 2, 

Proc/. (0) implies (1): Let {bh . . . , &r} be any finite subset of B — K and 
let et be the exponent of bt over K, i = 1, . . . , r. Then, since 

2 W ) C X, p'i . . . ̂ r ^ [ ^ (C) (6lf . . . , fer): ̂ ( C ) ] 

^ [#(&!, . . . , & , ) : X] = £ « * . . . £•'. 

Therefore, K and KP(B) are linearly disjoint over KP(C), whence 

KC\KP{B) = JS? (C) . 

Since L = K(B), KQL = LP(B) = KP(B). Thus, K = KP(C). 
(1) implies (2): Since K = KP(C), there exists a subset C of C such that 

C is a £-basis of K. Let B ' = {b \ b G 5 , bpi G C"}. Then (K(Bf))p{Bf) = 
KP{B') = Kp(C){Bf) = !£(£ ') . Hence, 5 ' is a £-basis for K(B'). Thus, L 
over K(B') preserves ^-independence, whence L = K(Br) by (2, p. 378, 
Theorem 8) and the pure inseparability of L/K. Thus, B = B' whence C = C. 

(2) implies (3) : Since C is a ^-basis of Ky we have K = Kpl(C), i = 1 , 2 , . . . . 
Therefore, X C Z/'(C), i = 1, 2, . . . . Now X = i^(C) implies X Ç KP(B). 
Hence, (K(B))P(B) = K(B) and thus 5 is a £-basis of K(B). Thus, L over 
K(B) preserves ^-independence from which it follows that L = K(B). 

(3) implies (0): Let Bi U . . . VJ Br be any finite subset of 5 — X where 
every element of Bt has exponent i over K, i = 1, . . . , r. Suppose that Bt 

has ^ ^ 0 elements (i = 1, . . . , r). Since C consists of peÛi powers of elements 
of the ^>-basis B of L, it follows that: 

(*) [Lpi+1(C)(Bi+1
pi, . . . , Bf): Lpi+1(Q] = p'^ . . . ps*. 

Now 

[X(5!, . . . , 5 r ) : K] = [X(5 l f . . . , 5 r ) : TOiP, • • • , i V ) ] 

• [2^(5^, . . . , Br*): K(B2
p2, . . . , £ / ) ] . . . . . [K{Bpr-1): K]. 

Since 
X^+i(C) 3 K(Bi+1

pi+\ . . . , Br**+1), 

we have 

[X (£<+/ , . . . , 5 / ) : X ( S j + / + 1 , . . . , Br"*1)] = ps<" . . . p'r, 

otherwise we contradict equation (*). Thus, 

[K(Blt . . . , Br): K] = pSl . . . p*rp** . . .p°r. . .p*r = psipî*2 . . . p»rm 

Hence, B — K is a sub-basis for L/X. 

In the following theorem, (3) shows that the simplest kind of purely in­
separable extension of unbounded exponent may have a relative £-basis which 
is not a minimal generating set. 
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THEOREM 2. Let L/K be an arbitrary field extension of characteristic p ^ 0. 
Then (0) implies (1) which implies (2) which implies (3), where: 

(0) L/K is purely inseparable and has a sub-basis; 

(1) L/K is modular; that is, Lv% and K are linearly disjoint (i = 1 ,2 , . . .); 
(2) There exists a p-basis B of L such that K Ç Lpt (C) {i = 1, 2, . . .). 
(3) There exists a relative p-basis M of L/K such that L Z) K(M) (strict 

inclusion), when L/K is purely inseparable and of unbounded exponent. 

Proof. (0) implies (1): Let M be a sub-basis for L/K. Then for all 
i = 1, 2,. . . , M = M/ \J Mf, where every element of M/ has exponent at most 
i over K and every element of Mt has exponent greater than i over K. Since 
L = K(M/, Mt), 

Lpi = Kpi(M/pi, Mf) = (Lpi C\ K) (Mf), i=l,2, 

For any finite subset {bi, . . . , br) Ç Mu let e;- be the exponent of bj over K, 
j = 1, . . . , r. Then 

pe.-i m m m per-i ^ [(jpi n ^ ) ( ^ _ ^ & ^ ) : jy* ^ ^ ] 

^ [i£(V\ . . . , 6 / ) : K] = p^~l. . . per-\ 

Thus, Lpl and K are linearly disjoint over Lv% C\ K, i = 1, 2, . . . . That is, 
Z/i£ is modular. 

(1) implies (2): Since LP and K are linearly disjoint over Lv C\ K, there 
exists a set C0 in K such that i£ = (Lv C\ K) (Co) and C0 is ̂ -independent in L. 
Suppose that there exist sets Cjt j = 0, . . . , i — 1, such that Cj C Lpy P\ i£, 
I / " 1 C\K = (Lpi C\ K)(Cf~l, Cf~\ . . . , C,_i) and 

cf-1 \J cf~2 u . . . u c M 

is ^-independent in Z/_1. Then C0
pi U C^'"1 U . . . U C,_i* ç 1 / H i£ and 

is ^-independent in Lv%. Since Lpt+1 and .K are linearly disjoint over 

Lpi+i n K^ LPi+i a n d LPz n K a r e l i n e a r l y disjoint over Lpi+l C\ K. Thus, 
there exists Ct CI Lpî Pi X such that 

Lpi n K = (Lpi+1 n K)(c<f, cf~\ . . . , cf) 
and C0

pl \J Civ%~1 VJ . . . U d is ^-independent in Lpt. Hence, there exists 
sets Ci (i = 0, 1, . . .) such that 

Ci c Lpr* n x, zr n i = (i>i+1 n x) (c0
p\ G**'-1,..., ct) 

and Cf \J Cf'1 VJ . . . U C< is ^-independent in L*\ i = 0, 1, . . . . Thus, 
K = (Lpi H K)(C0, . . . , Cz_x), whence K = (Lpi C\ K)(C0, G, . . .), 
i = 1, 2, . . . . Furthermore, Uzœ=o C//2?* is ^-independent in L. Augment 
Ur=o G172"' to a £-basis 5 of L. Then for C = {b** \ b £ B, i is the exponent of 
& over K if 6 is purely inseparable over K and i = 0 otherwise}, 

(**) X = (L^ H 2f)(C*), i = 1, 2, . . . , C* = Cr\K, 

since C* 2 Uzra=o Ci. Thus, i£ Ç Lpi(C), i = 1, 2, 
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(2) implies (3): Let B be a ^?-basis of L satisfying (2), where L/K is purely 
inseparable and of unbounded exponent. Suppose that L D K(B). Then since 
L = K(LP)(B), there exists a relative £-basis M of L/K such that I Ç 5 , 
Hence, K(M) Ç X(5 ) C L. Suppose that L = K(B). Then by Theorem 1, 
M = B — K is a sub-basis for L/K. Hence, there exists mi, m2, . . . G Af such 
that Wj has exponent et (et < ei+i) over K' = K(M'), where AT = Af — 
{mi, m2, . . .}, i = 1, 2, . . . . Now 

M * = M / \j M / / f jif// = {WiW<+1p^+i-«.- | i = 1, 2, . . .}, 

is a relative ^-basis for L/K and we show L Z) K ( Af * ) by showing L~2>K' {M" ). 
If L = Kf(M"), then there exists a positive integer r such that 

w i Ç L , = K'(m1m2
pe2~ei, . . . , mrmT+1

pe^l~er). 

Hence, m i + / i + r ê l G L r j i = 0, . . . , r. Let 

L r + 1 = K'(tnu mf*-\ . . . , WH-I^^ 1 " ' 1 ) -
Then LT+i Ç L r and 

{wiw2
p'2"ei,...,wrwr+ipe',+1"e'-} and fmi .w/ 2" ' 1 m ^ 1 " ' 1 ) 

are sub-bases (whence relative ^-bases) for LT/Kf and Lr+i/K', respectively. 
Thus, the intermediate field Lr+i of LT/Kf has r + 1 minimal generators over 
K' while L r has r. This contradicts (7, p. 103, Satz 28). However, this con­
tradiction can also be shown as follows: There exists G Ç K' such that 
G VJ {m1m2

pe'2~ei
} . . . , mrmr+iper+1"er} is a £-basis for L r . By Theorem 1, 

G KJ \mflm2
pe\ . . . , mpermr+1

pe^1} is a £-basis for K'. Since L r + i Ç L r, G is 
^-independent in Lf+i. Since G Ç i£' and {wi, m/*2"*1, . . . , w r+ip ' r+ r<1) is a 
relative £-basis of Lr+1/K', it follows that G U {mi, m/'2"*1, . . . , mr+iper+1~Cl} 
is ^-independent in Lr+1 and that G W ( m / 1 , m2

p*2, . . . , mr+iper+1} is 
^-independent in K' by Theorem 1. Thus, pr = [Kf: K,p(G)] ^ pr+l which 
is impossible. Hence, L D i£(Af*). 

Example. Let L /X be a purely inseparable extension. If L/K is modular, 
then L/K does not necessarily have a sub-basis. Let L be perfect. Then L/K is 
clearly modular since L = Lp. Since L = K(LP), every relative ^-basis of L /X 
is empty. Hence, L/K does not have a minimal generating set, let alone a 
sub-basis. 

THEOREM 3. Let L/K be a field extension of characteristic p ^ 0. Then 
(1) there exists a maximal intermediate field K* of L/K such that K*/K is modular 
and (2) there exists a minimal intermediate field K* of L/K such that L/K* is 
modular. 

Proof. (1) Let S = {Kj \ Kù is an intermediate field of L/K and Kj/K is 
modular}. Then S is partially ordered under set inclusion. Now K £ S whence 
S y£ 0. Let S be any simply ordered subset of 5. Let K* = UKJÇS' Kj- Let i 
be a fixed but arbitrary positive integer. Let X Ç K be a linear basis of K 

https://doi.org/10.4153/CJM-1969-167-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-167-1


1530 G. F. HADDIX, J. N. MORDESON, AND B. VINOGRADE 

over K*pi P K. Suppose that 0 = Y,t = i k*plxt1 where Xi, . . . , xr G X and 
fei*, . . . , k* £ K*. Now there exists Kj G 5 ' such that &i*, . . . , k* G Xy. 
Since X is linearly independent over K*p% P i£, X is linearly independent over 
the smaller field Kf P K. Since Kj G S, X is linearly independent over K/f%, 
whence kt*

p% = 0 (t = 1 , . . . , r). Thus, i£*p' and K are linearly disjoint. Hence, 
K* G 5 whence 5 has a maximal element. 

(2) Let S = {Kj\ Kj is an intermediate field of L/K and L/Kj is modular}. 
Then S is partially ordered under set containment. Now L £ S whence S ^ 0. 
Let S' be any simply ordered subset of S. Let K* = DKJZS' KJ. Let i be a fixed 
but arbitrary positive integer. Let X Ç Lpt be a linear basis of Lp% over 
Lpir\K*. Suppose that 0 = Y,l=ikt*xt, where kt* £ K* and x, G X, 
£ = 1, . . . , r. Clearly Xi is linearly independent over Lp% P Kj for any Kj G S'. 
Make the induction hypothesis that {xi, . . . , xm}, 1 ^ m < r, is linearly 
independent over Lv% P Kj0 for some Kj0 G S;. Let So' = {Kj\ Kj G S', 
Kj Ç i£ ; o}. Then {xi, . . . , xm} is clearly linearly independent over Lp% C\ Kj 
for all Kj G S0

;. If xm+i is in the linear span of {xi, . . . , xm} over Lp% C\ Kj 
for all Kj G So', then xm+i is a linear combination of Xi, . . . , xm over I / ' C\ Kj 
for all i£ ; G So'. Equating these linear combinations, we find that the co­
efficients all lie in C\Kj^'{Lpi C\ Kj) = Lpi Pi K*. However, this contradicts 
the linear independence of {xi, . . . , xr\ over Lpl C\ K*. Hence, there exists 
KjX G So' £ S' such that {xi, . . . , xm+i} is linearly independent over Lpt P\ Kjx. 
Therefore, by induction, there exists Kj G S' such that {xi, . . . , xr] is linearly 
independent over Lpl Pi Kj. Since Kj £ S, {xi, . . . , xr) remains linearly 
independent over Kj. Since ki*, . . . , kr* G K* Ç i^;-, fex* = . . . = ^r* = 0. 
Thus, X is linearly independent over K*. Therefore, K* G S whence S has a 
minimal element. 

Since the existence of a sub-basis for a purely inseparable extension L/K is 
equivalent to the modularity of L/K in the bounded exponent case, 
Theorem 3 (1) establishes the existence of a maximal intermediate field 
with a sub-basis over K by use of Zorn's lemma. When L/K is purely insepar­
able, but of unbounded exponent, then Theorem 3 (1) yields a partial solution 
to the problem posed in (11, p. 439). 

2. Coefficient fields. Let (A, K, N, g) denote a complete local algebra A 
(not necessarily Noetherian) over a subfield K of characteristic p ^ 0 where N 
is the unique maximal ideal of A and g is the natural homomorphism of A 
onto the residue class field A/N. Identify K and gK in A/N. 

THEOREM 4. Suppose that {A, K, N, g) is a complete local algebra (not 
necessarily Noetherian). If A/N is modular over K, then A has a coefficient 
Held containing K if and only if g(Api P K) = (A/N)pi P K, i = 1, 2, . . . . 

Proof. Suppose that g(Api P K) = (A/N)pi HK,i = 1,2, Since A/N 
is modular over K, there exists a ^-basis B of A/N such that 

K= ((A/NynK)(C*), * = 1 , 2 , . . . , 
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by (**). S'mceg(Apt C\ K) = (A/N)pt C\K, there exists a set of representatives 
B' in A of B such that Api[B'] contains C* (K and gK being identified). Since 

g(A*r\K) = {A/NYC\K, KQ (Apir\K)(c), % = 1, 2, 

Thus, Apt[B'] "D K, i — 1 , 2 , . . . , whence with respect to the iV-adic topology 
of A, n r= i (closure Api[B']) is a coefficient field olA containing i£ (12, p. 306). 
The converse is immediate. 

When A/N has no purely inseparable elements over K, then the condition 
g(Api r\K) = (A/N)pi H K always holds since (A/N)pi H K = Kpi in this 
case. Also, if A/N is separable over K, then A/N is modular over K. 

In view of Theorem 1 above and the fact that the existence of a sub-basis for 
L/K is equivalent to the modularity of L/K in the bounded exponent case, the 
following remark consolidates many of the results of (3; 4; 6). 

Remark. Let A be a commutative ring with identity, N a maximal ideal of A, 
and g the natural homomorphism of A onto A/N. Let R be a complete local 
ring (not necessarily Noetherian) of prime characteristic p such that R Ç A, 
the identities of A and R coincide and M = R P\ N is the unique maximal 
ideal of i?. If A/N is purely inseparable and has a sub-basis over R/M, then 
there exists a coefficient field of R which is extendable to one of A if and only if 
g{Api r\R) = (A/N)pi H R/M, i = 1, 2, . . . . By Theorem 1, there exists a 
£-basis B of A/N such that C is a £-basis of i?/M\ If 

g(Api n i?) = (A/N)*1 C\ R/M, i = 1, 2, . . . , 

then there exists a set of representatives i^ in A oi B such that R "D C where 
C = {6^' | b' e B', i is the exponent of b = gbf over R/M}. Since C is a 
^-basis of R/M, R has a coefficient field i£ Z) C by the existence lemma as 
stated in (6). Since B — (R/M) is a sub-basis of ^4/iV over R/M and ôr G £ ' 
has the same exponent over K that gbr has over R/M, we see that ^ [ 5 ' ] is a 
coefficient field of A. 

That this remark consolidates some of the results of (3 ; 4 ; and 6) comes about 
by varying A and R. That is, for (3; 6), we let A be a complete local ring (not 
necessarily Noetherian) and for (4), we let R be a field. 
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