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The freshness of information is the most important factor in designing real-time moni-
toring systems. The theory of the Age of Information (AoI) provides an explicit way
to incorporate this perspective into the system design. This chapter is aimed at intro-
ducing the basic concept of the AoI and explaining its mathematical aspects. We first
present a general introduction to the AoI and its standard analytical method. We then
proceed to advanced material regarding the characterization of distributional proper-
ties of the AoI. Some bibliographical notes are also provided at the end of this chapter.

1.1 A General Introduction to the Age of Information

The Age of Information is a performance metric quantifying the information fresh-
ness in real-time monitoring systems. Let us consider a situation that a time-varying
information source is monitored remotely (Figure 1.1). A sensor is attached to the
information source and it observes (samples) the current status with some frequency.
Each time the sensor samples the information source, it generates an update containing
the obtained sample and sends it to a remote server, where some computational task
is performed to extract state-information from raw data. The extracted information is
then transmitted to a monitor and updates the information being displayed. The AoI
At at time t is defined as the elapsed time from the generation time ηt of the update
whose information is displayed on the monitor at time t:

At := t − ηt, t ≥ 0. (1.1)

We thus have ηt = t − At, that is, the information displayed at time t was reported
by an update generated at time t − At by the sensor. In this sense, the AoI At directly
quantifies the freshness of the information being displayed: the smaller value the AoI
At takes, the fresher the information is. Because “the sampling of the information
source” and “the generation of an update” occur simultaneously, these words could
be used interchangeably. In the rest of this chapter, however, we shall describe the
behavior of the system, consistently focusing only on the generation of updates.

By definition, ηt (t ≥ 0) is a piecewise constant function of t: ηt jumps upward
when the displayed information is updated, while it does not change its value else-
where. Therefore, we see from (1.1) that At is a piecewise linear function of t with
downward jumps at update instants. In particular, the AoI plotted along the time axis

https://doi.org/10.1017/9781108943321.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943321.001


2 1 The Probability Distribution of the Age of Information

Figure 1.1 A remote monitoring system.

has a sawtooth graph as depicted in Figure 1.2, where β†
` and α†

` (` = 0, 1, . . .) rep-
resent the `th update time at the monitor and the generation time of that update at the
sensor.

Note here that some updates generated by the sensor may not be displayed on the
monitor forever because of the loss in communication links or subsequent updates’
overtaking, where the latter is typically due to the management policy at the ser-
ver (see Figure 1.1). Therefore, (α†

` )`=0,1,... and (β†
` )`=0,1,... shown in Figure 1.2 are

subsequences of (αn)n=0,1,... of generation times of updates and (βn)n=0,1,... of their
reception times, where βn = ∞ if the update generated at time αn is not displayed on
the monitor forever. In this sense, we refer to α†

` and β†
` as the generation and reception

times of the `th effective update. A more formal discussion on overtaking of updates
will be given in Section 1.3.1.

Let G†
` and D†

` denote the intergeneration time and the system delay of the `th
effective update:

G†
` = α

†
` − α

†
`−1, D†

` = β
†
` − α

†
` . (1.2)

We observe from the definition of ηt that the AoI just after an update of the monitor
equals the system delay experienced by the latest update:

A
β

†
`

= β
†
` − α

†
` = D†

`.

On the other hand, the AoI just before an update of the monitor is called the peak AoI ,
as it corresponds to the peak of the sawtooth graph of the AoI process:

Apeak,` := lim
t→β†

`−

At = β
†
` − α

†
`−1 = D†

` + G†
` , (1.3)

where the last equality follows from (1.2). We thus see that for each interval [β†
` ,β†

`+1)
between the monitor’s updates, the AoI process linearly increases from the system
delay D†

` to the peak AoI A†
peak,`+1 with slope one (see Figure 1.2). This observation

highlights the key difference between the AoI and the conventional delay metric: The
delay D†

` represents only the information freshness immediately after an update and
it does not provide any information about the evolution of the information freshness
between updates.
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1.1 A General Introduction to the Age of Information 3

Figure 1.2 An example of the AoI process.

1.1.1 A Graphical Analysis of the Average AoI

Since the AoI (At)t≥0 is a time-varying process, we need to consider some summary
metric for the system performance, which is obtained by applying a functional to
(At)t≥0. The most commonly used summary metric is the time-averaged AoI defined
as

m]A := lim
T→∞

1

T

∫ T

0
Atdt. (1.4)

The average AoI m]A can be analyzed with a graphical argument. Here, we provide
only an informal argument to avoid technical complications; a more rigorous proof
will be given in Section 1.3.

Observe that the area of the shaded trapezoid in Figure 1.2 is given by

Qi =
(Apeak,i+1)2

2
−

(D†
i+1)2

2
.

By summing up Qi for i = 1, 2, . . ., we can calculate the area under the graph of the
AoI, except for both ends. The boundary effects are negligible under suitable regularity
conditions and we obtain

m]A = lim
T→∞

M(T)

T
·

1

M(T)

M(T)∑
i=1

Qi = λ
†
{m(Apeak)2

2
−

m(D†)2

2

}
, (1.5)

where M(T) = max{n; β†
n ≤ T} denotes the total number of displayed information

updates in time interval (0, T], λ† := limT→∞M(T)/T denotes the average effective
update rate, and

m(Apeak)2 := lim
N→∞

1

N

N∑
i=1

(Apeak,i)2, m(D†)2 := lim
N→∞

1

N

N∑
i=1

(D†
i )2.
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4 1 The Probability Distribution of the Age of Information

If the system is represented as a stationary and ergodic stochastic process,1 (1.5) is
equivalent to the following relation for the mean AoI and the second moments of the
peak AoI and system delay:

E[A] = λ†
·

E[(Apeak)2]− E[(D†)2]

2
, (1.6)

where A, Apeak, and D† denote generic random variables for stationary At, Apeak,`, and

D†
`. Furthermore, using (1.3) and noting the stationarity, (1.6) is rewritten as

E[A] = λ†

(
E[(G†)2]

2
+ E

[
G†
`D

†
`

])
, (1.7)

where G† denotes a generic random variable for stationary G†
` . It is worth noting that

the peak AoI is also given in terms of the system delay D†
` and the inter-update time

J†
` := β†

` − β
†
`−1 by

Apeak,`+1 = D†
` + J†

`+1,

so that we have yet another equivalent formula for E[A]:

E[A] = λ†

(
E[(J†)2]

2
+ E

[
D†
`J

†
`+1

])
, (1.8)

where J† denotes a generic random variable for stationary J†
` . While these three for-

mulas (1.6), (1.7), and (1.8) are equivalent, the choice of which expression to use in
the analysis often affects the degree of tractability. In the following subsection, we
briefly demonstrate applications of these formulas to first-come first-served (FCFS)
single-server queueing models.

1.1.2 Queueing Modeling of Monitoring Systems

As we have seen, the AoI process (At)t≥0 is characterized in terms of effective gener-
ation times (α†

` )`=0,1,... of updates by the sensor and their reception times (β†
` )`=0,1,...

by the monitor. Because β†
` ≥ α

†
` always holds by their definitions, we can think of

a queueing system defined by the sequences of arrival times (α†
` )`=0,1,... and depart-

ure times (β†
` )`=0,1,....2 To be more specific, consider a virtual service system, where

updates enter it immediately after their generations and leave it when they are received
by the monitor (see Figure 1.3). This service system can be considered as an abstrac-
tion of a series of components that intermediate between the information source and
the monitor. For example, it may represent a communication network to transfer update

1 Stationarity refers to the property that probability distributions representing the system dynamics are
time-invariant. Also, ergodicity refers to the property that time-averages coincide with corresponding
ensemble averages. A more detailed explanation will be given in Section 1.3.3.

2 In the later sections, we will consider a modeling that includes arrival and departure times of
noneffective updates as well as effective updates.
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Figure 1.3 An abstraction of monitoring systems (cf. Figure 1.1).

packets, a server to extract status information from raw data, or a combination of them
(see Figures 1.1 and 1.3).

The simplest model of the service system would be an FCFS single-server queue,
that is, assuming that the service system consists of a first-in first-out (FIFO) buf-
fer and a server. In what follows, we consider the mean AoI E[A] in two different
FCFS single-server queues, where service times are assumed to follow an exponential
distribution with mean 1/µ (µ > 0).

First, suppose that the intergeneration time G† of effective updates is constant and
equal to τ , that is, the D/M/1 queue in Kendall’s notation. For the system stability, we
assume τ > 1/µ. In this case, the formula in (1.7) is useful because we readily have
λ†
= 1/τ , E[(G†)2] = τ 2, and E[G†

`D
†
`] = τE[D†], yielding

E[A] =
τ

2
+ E[D†].

From the elementary queueing theory (Kleinrock 1975, p. 252), the system delay in
the FCFS D/M/1 queue follows an exponential distribution with mean 1/{µ(1− x?)},
where x? is the unique solution of the following equation:

x = e−τµ(1−x), 0 < x < 1. (1.9)

The mean AoI is thus given by

E[A] =
τ

2
+

1

µ(1− x?)
. (D/M/1)

Next, suppose that the sensor randomly generates effective updates according to
a Poisson process with rate λ†, that is, the FCFS M/M/1 queue, where we assume
0<λ†<µ for stability. The intergeneration time G† then follows an exponential dis-
tribution with mean 1/λ†. In this case, the formula in (1.8) provides an easy way to
calculate E[A]. If an update does not depart the service system before the arrival of
the next update (i.e., D†

` ≥ G†
`+1), then the next service starts just after the depart-

ure, so that the next inter-departure time J†
`+1 equals a service time. If D†

` <G†
`+1,

on the other hand, J†
`+1 equals the sum of the residual inter-arrival time (exponen-

tially distributed with mean 1/λ† because of the memoryless property) and a service
time. In both cases, J†

`+1 is conditionally independent of D†
`, given either D†

` ≥G†
`+1

or D†
` <G†

`+1. Using the fact that the system delay in the FCFS M/M/1 queue follows
an exponential distribution with mean 1/(µ−λ†) (Kleinrock 1975, p. 205), we obtain
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6 1 The Probability Distribution of the Age of Information

E
[
D†
`J

†
`+1

]
= E

[
1{D†

` ≥ G†
`+1}D

†
`J

†
`+1

]
+ E

[
1{D†

` < G†
`+1}D

†
`J

†
`+1

]
=

∫
∞

0
x ·

1

µ
· (1− e−λ

†x) · (µ− λ†)e−(µ−λ†)xdx

+

∫
∞

0
x ·

(
1

λ†
+

1

µ

)
· e−λ

†x
· (µ− λ†)e−(µ−λ†)xdx

=
1

µλ†

(
1− ρ +

ρ

1− ρ

)
, (1.10)

and

E
[
(J†)2

]
= E

[
1{D†

` ≥ G†
`+1}(J

†)2
]
+ E

[
1{D†

` < G†
`+1}(J

†)2
]

=

∫
∞

0

2

µ2 · (1− e−λ
†x) · (µ− λ†)e−(µ−λ†)xdx

+

∫
∞

0

(
2

(λ†)2
+

2

µλ†
+

2

µ2

)
· e−λ

†x(µ− λ†)e−(µ−λ†)xdx

=
2ρ2

µλ†
+

2(1− ρ)

(λ†)2
· (1+ ρ + ρ2), (1.11)

where ρ := λ†/µ denotes the traffic intensity. Therefore, we obtain from (1.8), (1.10),
and (1.11),

E[A] =
1

µ

(
1+

1

ρ
+

ρ2

1− ρ

)
. (M/M/1)

We conclude this section by presenting some numerical examples. We set the time
unit so that µ = 1 holds throughout. Figure 1.4 shows the mean AoI E[A] as a func-
tion of the generation rate λ† (i.e., the rate at which effective updates are generated).
We observe that E[A] forms a U-shaped curve with respect to λ†. This U-shaped
curve of E[A] is understood to be due to the trade-off between the generation inter-
val G† and the system delay D†: while reducing the generation interval would be
effective in keeping the information fresher, it would also increase the delay in the
service system. To illustrate this fact, in Figure 1.4, we also plot the mean back-
ward recurrence time E[(G†)2]/(2E[G†]) of the generation process (i.e., the expected
elapsed time since the last generation instant) and the mean system delay E[D]. Note
here that the sum of these terms E[(G†)2]/(2E[G†]) + E[D] can be regarded as an
approximation to the mean AoI E[A] ignoring the dependence between G†

` and D†
`

(cf. (1.7)). We observe that the former term is dominant for small λ†, whereas the
latter term becomes dominant for large values of λ†. The mean AoI E[A] is then
minimized at a moderate value of λ†, where these effects on E[A] are appropriately
balanced.

Figure 1.5 compares the mean AoI in the FCFS M/M/1 and D/M/1 queues. We
observe that constant generation intervals are preferable to exponential generation
intervals in terms of the mean AoI. Intuitively, the superiority of constant gener-
ation intervals can be understood as follows. Firstly, the constant generation intervals
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1.2 The Probability Distribution of the AoI 7

Figure 1.4 The mean AoI E[A] in the FCFS M/M/1 queue.

Figure 1.5 The mean AoI E[A] in the FCFS M/M/1 and D/M/1 queues.

minimize the mean backward recurrence time of the generation process, which can be
verified with

E[(G†)2]

2E[G†]
=

Var[G†]+ (E[G†])2

2E[G†]
=

1+ (Cv[G†])2

2
· E[G†],

where Cv[Y ] =
√

Var[Y ]/E[Y ] denotes the coefficient of variation of random variable
Y . Because we have Cv[G†] ≥ 0 and the equality holds if and only if G† is constant,
the mean backward recurrence time is minimized by constant generation intervals.
Secondly, the mean delay 1/{µ(1− x?)} in the FCFS D/M/1 queue is smaller than the
mean delay 1/{µ(1 − ρ)} in the FCFS M/M/1 queue because x? defined by (1.9) is
smaller than ρ.

1.2 The Probability Distribution of the AoI

The rest of this chapter is devoted to discussions on the probability distribution of the
AoI. As mentioned in the previous section, we need to use some summary metric of
the AoI process (At)t≥0 for performance evaluation. The asymptotic frequency distri-
bution (AFD) of the AoI process is considered to be one of the most fundamental
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8 1 The Probability Distribution of the Age of Information

Figure 1.6 An example of different AoI processes with equal time-averages.

quantities among various kinds of summary metrics. The AFD F]A(x) of the AoI
process is defined as

F]A(x) = lim
T→∞

1

T

∫ T

0
1{At ≤ x}dt, x ≥ 0,

where 1{·} denotes an indicator function. The value of the AFD for fixed x ≥ 0 thus
represents the long-run fraction of time that the AoI does not exceed the threshold x.
As in the previous section, the system is usually modeled as a stationary and ergodic
stochastic process in theoretical studies on the AoI. Within such a framework, the AFD
can be equated with the probability distribution of the stationary AoI A, which has the
same distribution as At for all t ≥ 0:

F]A(x) = Pr(A ≤ x) = Pr(At ≤ x).

For the time being, we again focus on the stationary and ergodic system. We will
provide a more detailed discussion on this point later in Section 1.3.

The probability distribution of the AoI (the AoI distribution in short) has several
appealing properties in characterizing AoI performances. Firstly, although the time-
averaged AoI (1.4) is the most widely used summary metric, it has a serious weakness
as a performance metric: It cannot capture how the information freshness fluctuates
over time. Figure 1.6 depicts an example of two AoI processes, which differ substan-
tially in their fluctuations, but cannot be distinguished by the time-average alone. On
the other hand, the AoI distribution contains much information about the fluctuation
of the process. For example, a standard method to quantify the degree of fluctuation is
to use the variance of the process

(σ ]A)2 := lim
T→∞

1

T

∫ T

0

(
At − m]A

)2
dt,

which can be readily computed from the probability distribution:

m]A =
∫
∞

0
xdFA(x),

(σ ]A)2
=

∫
∞

0

(
x− m]A

)2
dFA(x) =

∫
∞

0
x2dFA(x)−

(∫
∞

0
xdFA(x)

)2

.

Also, another common way to capture the variability is the use of a box-and-whisker
diagram, which will be demonstrated in Section 1.4.
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1.2 The Probability Distribution of the AoI 9

Secondly, it is often the case that the cost of stale information increases nonlinearly
as time passes since its generation. The AoI value averaged with a nonlinear cost
function g(·) is of interest in such a situation:

m]g(A) := lim
T→∞

1

T

∫ T

0
g(At)dt. (1.12)

The AoI distribution FA(·) provides a simple way to calculate the average nonlinear
cost:

m]g(A) =

∫
∞

0
g(x)dFA(x),

that is, an analysis of the AoI process with any nonlinear cost functions reduces to
that of the AoI distribution. An indicator function g(y) = 1{y > θ} with a threshold
θ is a particular example of a nonlinear cost function, whose time-average is equal
to the value of the complementary AoI distribution FA(x) := 1 − FA(x) evaluated
at x = θ . This form of the cost function is of interest for system reliability because
making FA(θ ) < ε be satisfied for small ε guarantees that the AoI value is below the
threshold θ for a fraction (1− ε) of the time.

Thirdly, the AoI distribution is useful in characterizing monitoring errors when the
dynamics of the information source is specified. Suppose that the information source
is represented as a stochastic process (Xt)t≥0 and that the monitor displays the latest
state information X̂t received:

X̂t = Xt−At .

Assuming that the AoI (At)t≥0 and the monitored state (Xt)t≥0 are independent,3 the
expected error measured with a penalty function L(·, ·) is given by

E
[
L(Xt, X̂t)

]
= E

[
L(Xt, Xt−At )

]
=

∫
∞

0
E [L(Xt, Xt−x)] dFA(x),

that is, it is represented in terms of the AoI distribution FA(·), given the knowledge
about the transition dynamics of Xt. This quantity further equals the time-average of
the error L(Xt, X̂t) if the monitored process (Xt)t≥0 is also ergodic.

Finally, the AoI distribution will play an important role in developing statistical the-
ory of the AoI, which would allow us to perform such tasks as parameter estimation,
hypothesis testing, model selection, and so on the basis of a collection of observed
AoI data, under situations where one does not have complete knowledge about the
AoI-generating process of interest. The usefulness of the AoI distribution in this con-
text as well is ascribed to the fact that a distribution is far more informative than a
small number of statistics (summary metrics).

Since one cannot generally expect to explicitly write down the likelihood function
for common models of the AoI process discussed in the literature, one would perform
parameter estimation by first taking a set of statistics, evaluating their values on the
basis of the observed AoI data, and then estimating the model parameters therefrom.

3 This is usually the case if generation timings of updates are determined independently of the state Xt .
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10 1 The Probability Distribution of the Age of Information

As an AoI model defines a mapping from its parameter space to the space of the
statistics, parameter estimation amounts to evaluating the inverse of this mapping. It
is, however, only possible if the forward mapping is one-to-one. Several existing AoI
models, on the other hand, have more than one parameter, so that any single statistic,
like the mean AoI, should be insufficient for parameter estimation, and one would
therefore require at least as many statistics as the number of parameters in the model.
Knowledge of the AoI distribution not only allows us to evaluate the forward mapping
for a selected set of statistics, but furthermore would provide us with guidance on how
to choose the statistics to be used in parameter estimation.

In model selection, in its simplest form, one takes two alternative AoI models, and
decides which of the two models better explains the observed AoI data. For successful
model selection, it is desirable that the ranges of the forward mappings associated
with the two models are disjoint and well-separated. Such properties also depend on
the choice of the statistics to be used, and knowledge of the AoI distributions plays an
essential role here as well.

It should be noted that for a full-fledged statistical theory of the AoI one should
go beyond the AoI distribution: in statistical procedures, such as obtaining confidence
interval, performing hypothesis testing, and so on, one usually requires knowledge
about distributions of the statistics evaluated on the basis of a finite-sized dataset from
a prescribed AoI model. For example, in order to decide how reliable an estimate
of the mean AoI from a finite dataset is, one would need to evaluate its variance,
which in turn requires knowledge of the autocorrelation of the AoI process (Bhat &
Rao 1987). In this regard, a full statistical theory of AoI is yet to be explored, and the
AoI distribution may be recognized as a first step toward this direction.

1.3 A General Formula for the AoI Distribution

1.3.1 Model Description

We start by providing a formal description of the mathematical model to be con-
sidered. We suppose that updates are generated by the sensor with generation intervals
(Gn)n=1,2,.... The sequence of generation times (αn)n=0,1,... is then determined by the
initial generation time α0 and the recursion

αn+1 = αn + Gn+1, n = 0, 1, . . . .

We refer to the update generated at time αn as the nth update. Just after its generation,
the nth update arrives at the service system (cf. Figure 1.3), which imposes a delay of
length Dn. The information contained in the nth update is thus received by the monitor
at time βn, where

βn = αn + Dn, n = 0, 1, . . . .

Without loss of generality, we set the time origin so that β0 ≤ 0.
The AoI process (At)t≥0 is then constructed as follows. We first note that the AoI

refers to the elapsed time of the latest status information displayed on the monitor.
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1.3 A General Formula for the AoI Distribution 11

That is, the AoI process is not affected by status updates overtaken by newer updates.
More formally, let I denote the index set of updates that are not overtaken by other
updates:

I = {n; βn < min{βn+1,βn+2, . . .}}. (1.13)

Also, let Ic denote the complement of I:

Ic
= {0, 1, . . .} \ I.

An update in I (resp. Ic) is said to be effective (resp. noneffective) in the sense that
its information is newer (resp. older) than that displayed on the monitor just before
its reception by the monitor update. As shown in what follows, the AoI process is
completely characterized in terms of the generation times (αn)n∈I and the reception
times (βn)n∈I of effective updates only.

Recall that the AoI at time t is given by (1.1) in terms of ηt, which denotes the
generation time of the latest information displayed on the monitor at time t. In the
current setting, ηt is written as

ηt = sup{αn ; n ∈ {0, 1, . . .}, βn ≤ t}.

For each noneffective update i ∈ Ic, there exists an integer k ≥ i+1 such that βk ≤ βi

(cf. Eq. (1.13)), that is, βi ≤ t implies the existence of an update k with βk ≤ t
and αk ≥ αi. Therefore, the value of ηt is not affected by excluding all noneffective
updates from consideration:

ηt = sup{αn ; n ∈ I, βn ≤ t}. (1.14)

We thus restrict our attention to the effective updates only. Recall that we use
the superscript “†” to represent quantities of effective updates. Let (α†

` )`=0,1,... and

(β†
` )`=0,1,... denote the sequences of effective generation and reception times:

(α†
` )`=0,1,... = (αn)n∈I , (β†

` )`=0,1,... = (βn)n∈I .

Also, we define the intergeneration time G†
` (` = 1, 2, . . .) and the system delay D†

`

(` = 0, 1, . . .) of the `th effective update as in (1.2). Note here that while the effective
system delay D†

` equals the original system delay Dn for some n ∈ I, the effective

intergeneration time G†
` is given by the sum of intergeneration times

G†
` = Gn+1 + Gn+2 + · · · + Gn+k+1, (1.15)

for some n ∈ I such that n+ 1 ∈ Ic, n+ 2 ∈ Ic, . . . , n+ k ∈ Ic, and n+ k + 1 ∈ I.
From the construction of the sequence of effective updates, it is clear that

` < `′ ⇒ β
†
` < β

†
`′

,

that is, the effective updates enter and depart the service system in a first-in first-
out (FIFO) manner. In other words, during the time interval [β†

` ,β†
`+1) between the

consecutive receptions of the `th and (` + 1)st effective updates, the `th update’s
information is the latest at the monitor. With this observation, (1.14) is considerably
simplified as

ηt = α
†
` , t ∈ [β†

` ,β†
`+1).
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12 1 The Probability Distribution of the Age of Information

Therefore, the expression (1.1) for the AoI is rewritten as follows:

At = t − α†
` , t ∈ [β†

` ,β†
`+1), ` = 0, 1, . . . . (1.16)

Our assumption β0 ≤ 0 implies β†
0 ≤ 0, so that the AoI At is well-defined for all

t ∈ [0,β†
∞), where β†

∞ := lim`→∞ β
†
` . Note that we must have β†

∞ = ∞ in practical
situations because otherwise there exists Tsup < ∞ such that the monitor will never
be updated again after time t = Tsup.

Finally, recall that the `th peak AoI Apeak,` is defined as the AoI just before the
reception of the `th update, and it is given by (1.3).

1.3.2 The Asymptotic Frequency Distribution (AFD) of the AoI

In this subsection, we present a sample-path analysis of the AoI process. Mathemat-
ical analysis in this subsection deals with a deterministic (i.e., not random) sequence
of generation intervals (Gn)n=1,2,..., system delays (Dn)n=0,1,..., and a deterministic
value of the initial generation time α0. As we have seen in the previous subsection,
these quantities completely determine the AoI process (At)t≥0, the peak AoI process
(Apeak,`)`=1,2,..., and the effective system delay process (D†

`)`=0,1,.... In the next sub-
section, we will turn our attention to a stochastic version of the AoI process, which is
usually dealt with in the AoI literature.

The main purpose of this subsection is to derive a general relation satisfied by the
AFDs of the (deterministic) AoI process (At)t≥0, peak AoI process (Apeak,`)`=1,2,...,

and effective system delay process (D†
`)`=0,1,.... As mentioned previously, the AFD of

a process is defined for each x ≥ 0 as the long-run fraction of time that the process
does not exceed x. More specifically, the AFDs of the AoI, peak AoI, and the effective
system delay are defined respectively as

F]A(x) = lim
T→∞

1

T

∫ T

0
1{At ≤ x}dt, x ≥ 0, (1.17)

F]Apeak
(x) = lim

N→∞

1

N

N∑
`=1

1{Apeak,` ≤ x}, x ≥ 0, (1.18)

F]
D† (x) = lim

N→∞

1

N

N−1∑
`=0

1{D†
` ≤ x}, x ≥ 0, (1.19)

provided that these limits exist.
In order to obtain nontrivial results from the analysis, we need to impose several

basic assumptions: (i) finiteness and positivity of the effective generation rate, (ii) rate
stability of the FIFO sequence of effective updates, and (iii) the existence of the AFDs
of the peak AoI and system delay. To be more specific, let λ† denote the mean effective
generation rate:

λ† := lim
T→∞

1

T

∞∑
`=1

1{α
†
` ≤ T} = lim

N→∞

(
1

N

N∑
`=1

G†
`

)−1

, (1.20)
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1.3 A General Formula for the AoI Distribution 13

provided the limits exist. We note that the second equality of this equation implies
that the mean effective generation rate equals the reciprocal of the mean effective
generation interval of updates; a formal proof of this intuitive relation can be given
with a deterministic version of the elementary renewal theorem (El-Taha & Stidham
Jr. 1999, Lemma 1.1).

The assumptions just mentioned are then formally stated as follows:

ASSUMPTION 1.1

(i) The effective generation rate satisfies λ†
∈ (0,∞).

(ii) The effective update rate equals the effective generation rate:

lim
T→∞

1

T

∞∑
`=1

1{β
†
` ≤ T} = λ†. (1.21)

(iii) The limits in (1.18) and (1.19) exist.

The key observation in our analysis is that for each interval [β†
` ,β†

`+1) between
effective updates at the monitor, the contribution of the AoI process to its frequency
distribution (for a fixed x ≥ 0) is represented as∫ β

†
`+1

β
†
`

1{At ≤ x}dt =
∫ β

†
`+1

β
†
`

1{t − α†
` ≤ x}dt

=

∫ β
†
`+1−α

†
`

β
†
`−α

†
`

1{u ≤ x}du

=

∫ Apeak,`+1

D†
`

1{u ≤ x}du

=

∫ x

0
1{Apeak,`+1 > u}du−

∫ x

0
1{D†

` > u}du, (1.22)

where we have the first equality from (1.16), the second equality by letting u = t−α†
` ,

the third equality from (1.2) and (1.3), and the last equality from the following identity:∫ y

0
1{u ≤ x}du =

∫
∞

0
1{u ≤ x}1{u < y}du =

∫ x

0
1{y > u}du, x ≥ 0, y ≥ 0.

Using 1{y > x} = 1− 1{y ≤ x}, we further rewrite (1.22) as∫ β
†
`+1

β
†
`

1{At ≤ x}dt =
∫ x

0
1{D†

` ≤ u}du−
∫ x

0
1{Apeak,`+1 ≤ u}du.

Therefore, we obtain the following relation by summing up both sides of the above
equation for ` = 0, 1, . . . , N − 1:∫ β

†
N

β
†
0

1{At ≤ x}dt =
∫ x

0

N−1∑
`=0

1{D†
` ≤ u}du−

∫ x

0

N∑
`=1

1{Apeak,` ≤ u}du,
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14 1 The Probability Distribution of the Age of Information

which is equivalent to that for T > 0,

1

T

∫ β
†
N

β
†
0

1{At ≤ x}dt

=
N

T

{∫ x

0

1

N

N−1∑
`=0

1{D†
` ≤ u}du−

∫ x

0

1

N

N∑
`=1

1{Apeak,` ≤ u}du

}
. (1.23)

Letting T = β†
N − β

†
0 , we then see that this equation relates the frequency distribution

of the AoI to those of the effective system delay and the peak AoI for the finite time
interval [β†

0 ,β†
N ), using the effective update rate N/T in that interval.

With Assumption 1.1, this relation is further extended to its limiting version, which
is the main result of this subsection:

LEMMA 1.2 Under Assumption 1.1, the AFD of the AoI F]A(x) is related to those of

the peak AoI F]Apeak
(x) and effective system delay F]

D† (x) as

F]A(x) = λ†
∫ x

0

(
F]

D† (y)− F]Apeak
(y)
)
dy, x ≥ 0,

where λ† denotes the mean generation rate defined as in (1.20).

Proof Let M(t) denote the total number of effective updates at the monitor in a time
interval (β†

0 , t]:

M(t) = sup{` ∈ {0, 1, . . .}; β†
` ≤ t} =

∞∑
`=1

1{β
†
` ≤ T}.

For an interval [0, T), the frequency distribution of the AoI is then written as

1

T

∫ T

0
1{At ≤ x}dt

=
1

T

∫ β
†
M(T)

β
†
0

1{At ≤ x}dt −
1

T

∫ 0

β
†
0

1{At ≤ x}dt +
1

T

∫ T

β
†
M(T)

1{At ≤ x}dt

=
M(T)

T
· ST (x)+

εT (x)

T
,

where ST (x) and εT (x) are defined as follows (cf. (1.23)):

ST (x) =
∫ x

0

1

M(T)

M(T)−1∑
`=0

1{D†
` ≤ u}du−

∫ x

0

1

M(T)

M(T)∑
`=1

1{Apeak,` ≤ u}du, (1.24)

εT (x) = −
∫ 0

β
†
0

1{At ≤ x}dt +
∫ T

β
†
M(T)

1{At ≤ x}dt.
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1.3 A General Formula for the AoI Distribution 15

To prove Lemma 1.2, it is then sufficient to show that

lim
T→∞

M(T)

T
= λ†, (1.25)

lim
T→∞

ST (x) =
∫ x

0

(
F]

D† (y)− F]Apeak
(y)
)
dy, (1.26)

lim
T→∞

εT (x)

T
= 0. (1.27)

Note first that (1.25) immediately follows from Assumption 1.1 (ii). This further
implies M(T) → ∞ as T → ∞, since we have λ†> 0 from Assumption 1.1 (i).
We thus readily obtain (1.26) from (1.18), (1.19), and (1.24) using the dominated
convergence theorem.

We then consider εT (x). By definition of εT (x) and M(T), we have∣∣∣∣εT (x)

T

∣∣∣∣ ≤
∣∣∣∣∣β

†
0

T

∣∣∣∣∣+
∣∣∣∣∣∣βM(T)+1 − β

†
M(T)

T

∣∣∣∣∣∣ .

The first term on the right-hand side converges to zero as T→∞ because |β†
0 |<∞.

It thus suffices to consider the second term. Similarly to (1.20), we have from
the deterministic version of the renewal theorem (El-Taha & Stidham Jr. 1999,
Lemma 1.1) (

lim
T→∞

M(T)

T

)−1

= lim
N→∞

1

N

N∑
`=1

(β†
` − β

†
`−1)

= lim
T→∞

1

M(T)
(β†

M(T) − β
†
1 )

= lim
T→∞

T

M(T)
·
β

†
M(T)

T
,

which together with (1.25) imply

lim
T→∞

β
†
M(T)

T
= 1.

We then have

lim
T→∞

∣∣∣∣∣∣βM(T)+1 − β
†
M(T)

T

∣∣∣∣∣∣ = 0,

so that (1.27) holds. �

1.3.3 The Stationary AoI Distribution in Ergodic Systems

In the previous subsection, we have derived Lemma 1.2 assuming deterministic
sequences of intergeneration times (Gn)n=1,2,... and system delays (Dn)0,1,..., and a
deterministic value of the initial generation time α0. In this subsection, we investigate
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16 1 The Probability Distribution of the Age of Information

implications of this result to status update systems formulated as ergodic stochastic
models. In the rest of this chapter, we follow a convention that for any nonnegative
random variable Y , the cumulative distribution function (CDF) is denoted by FY (x)
(x ≥ 0), the probability density function (if it exists) is denoted by fY (x) (x ≥ 0), and
the Laplace–Stieltjes transform (LST) is denoted by f ∗Y (s) (s > 0):

FY (x) := Pr(Y ≤ x), fY (x) =
dFY (x)

dx
, f ∗Y (s) = E[e−sY ] =

∫
∞

0
e−sxdFY (x).

Suppose that intergeneration times (Gn)n=1,2,..., system delays (Dn)0,1,..., and the
initial generation time α0 are given as random variables defined on a common prob-
ability space (�,F , Pr); Gn, Dn, and α0 are then considered as functions Gn(·), Dn(·),
and α0(·) from the sample space � to real values R. From the discussions in Section
1.3.1, the effective intergeneration times (G†

`(ω))`=1,2,..., the effective system delays

(D†
`(ω))`=0,1,..., the peak AoI values (Apeak,`(ω))`=1,2,..., and the AoI values (At(ω))t≥0

for each sample-path ω ∈ � are given in terms of (Gn(ω))n=1,2,..., (Dn(ω))n=0,1,..., and
α0(ω).

Also, we see that Lemma 1.2 holds for each ω ∈ �. For stationary and ergodic
systems, we can rewrite Lemma 1.2 as a relation of stationary probability distributions.
More specifically, we make the following assumptions:

ASSUMPTION 1.3

(i) The joint process (G†
` , D†

`)`=1,2,... of effective intergeneration times
and effective delays is stationary and ergodic.

(ii) The effective generation rate is constant λ†(ω) = λ† almost surely (a.s.)
with some λ†

∈ (0,∞).
(iii) The rate stability (1.21) holds a.s.
(iv) The AoI process (At)t≥0 is stationary.

Remark 1.1 Assumption 1.3 (i) and (ii) have a little redundancy because the
ergodicity of (G†

`)`=1,2,... implies that λ†(ω) is constant a.s.

Recall that we have Apeak,` = G†
` + D†

` as given in (1.3). The stationarity assumed
in Assumption 1.3 thus implies the existence of generic random variables A, Apeak,

and D† with the same distributions as At, Apeak,`, and D†
`, respectively:

Pr(At ≤ x) = FA(x), x ≥ 0, t ≥ 0,

Pr(Apeak,` ≤ x) = FApeak (x), x ≥ 0, ` = 1, 2, . . . ,

Pr(D†
` ≤ x) = FD† (x), x ≥ 0, ` = 1, 2, . . . .

For each sample-path ω ∈ �, let F]A(ω, x), F]Apeak
(ω, x), and F]

D† (ω, x) denote the AFDs
of the AoI (At(ω))t≥0, the peak AoI (Apeak,`(ω))`=1,2,..., and the effective system delay

(D†
`(ω))`=0,1,..., respectively (cf. (1.17), (1.18), and (1.19)).

The ergodicity of (G†
` , D†

`)`=1,2,... (Assumption 1.3 (i)) implies that for x ≥ 0,

F]Apeak
(ω, x) = FApeak (x), F]

D† (ω, x) = FD† (x), a.s.
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1.3 A General Formula for the AoI Distribution 17

Therefore, we have, from Lemma 1.2,

F]A(ω, x) = λ†
∫ x

0

(
FD† (y)− FApeak (y)

)
dy, a.s,

which obviously implies

E[F]A(x)] = λ†
∫ x

0

(
FD† (y)− FApeak (y)

)
dy.

On the other hand, we have, from the dominated convergence theorem,

E[F]A(x)] = lim
T→∞

1

T

∫ T

0
E[1{At ≤ x}]dt = FA(x), x ≥ 0.

We thus conclude as in the following theorem:

THEOREM 1.4 Under Assumption 1.3, the CDF of the stationary AoI distribution is
given by

FA(x) = λ†
∫ x

0

(
FD† (y)− FApeak (y)

)
dy, x ≥ 0.

Therefore, the AoI has an absolutely continuous distribution with density

fA(x) = λ†(FD† (x)− FApeak (x)
)
, x ≥ 0. (1.28)

Furthermore, the LST of the AoI is given by

f ∗A (s) = λ†
·

f ∗
D† (s)− f ∗Apeak

(s)

s
, s > 0. (1.29)

COROLLARY The kth moment of the stationary AoI is given by

E[Ak] = λ†
·

E[(Apeak)k+1]− E[(D†)k+1]

k + 1
, (1.30)

provided that E[(Apeak)k+1] <∞.

Notice that the previously presented formula (1.6) for the mean AoI E[A] is repro-
duced by letting k = 1 in (1.30). In this sense, Theorem 1.4 can be regarded as a
generalization of (1.6) to its distributional version. It is also worth noting that the
expression (1.28) for the density function of the AoI distribution can be interpreted
as a level-crossing identity (Brill & Posner 1977; Cohen 1977) for the AoI process.
More specifically, for fixed x ≥ 0, the density function fA(x) represents the mean
number of upcrossings at level x of the AoI process per time unit because the AoI At

linearly increases with slope one almost every t (cf. Figure 1.2). On the other hand,
the right-hand side of (1.28) represents the mean number of downcrossings at level
x per time unit, which is the product of the number of downcrossings (i.e., monitor
updates) occurring per time unit and the probability of {Apeak,` > x ≥ D†

`}, which can
be rewritten as
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18 1 The Probability Distribution of the Age of Information

Pr(Apeak,` > x ≥ D†
`) = Pr(Apeak,` > x)− Pr(D†

` > x) = FD† (x)− FApeak (x).

The formula (1.28) thus indicates that the mean numbers of upcrossings and down-
crossings at level x occurring per time unit are equal.

Theorem 1.4 shows that the stationary distribution of the AoI A is given in terms
of those of the peak AoI Apeak and the effective system delay D†. In many cases, char-
acterizing the probability distributions of the peak AoI Apeak and the effective system
delay D† is quite easier than directly analyzing the AoI process. In the following sec-
tion, we demonstrate how to apply Theorem 1.4 to AoI analysis, dealing with basic
single-server queueing models as examples.

1.4 The AoI Distribution in FCFS and LCFS Single-Server Queues

In this section, we present an analysis of the AoI distribution for FCFS and last-come
first-served (LCFS) single-server queues, which are described as follows. The sen-
sor observes the state of a time-varying information source with independent and
identically distributed (i.i.d.) generation intervals (Gn)n=1,2,.... The service system is
represented as a single-server queue, where each update receives service with i.i.d.
length of time. Let (Hn)n=1,2,... denote the i.i.d. sequence of service times. We define
G and H as generic random variables for intergeneration times and service times. We
also define λ as the mean generation rate:

λ =
1

E[G]
.

Let ρ := λE[H] denote the traffic intensity. With Kendall’s notation, this queueing
model is denoted by GI/GI/1. We define G̃ as a generic random variable for residual
(equilibrium) intergeneration times, that is, the time to the next generation from a
randomly chosen time instant. Similarly, we define H̃ as a generic random variable for
residual service times. The density functions and LSTs of G̃ and H̃ are given by

fG̃(x) =
1− FG(x)

E[G]
, f ∗

G̃
(s) =

1− f ∗G (s)

sE[G]
, (1.31)

fH̃ (x) =
1− FH (x)

E[H]
, f ∗H̃ (s) =

1− f ∗H (s)

sE[H]
. (1.32)

We consider two different service policies of the server: the FCFS and the preemp-
tive LCFS service policies. Under the FCFS service policy, status updates are served
in order of their arrivals, so that no overtaking of updates can occur. Under the pre-
emptive LCFS service policy, on the other hand, the newest update is given priority:
each update starts to receive service immediately after its arrival at the server, whereas
its service is preempted when a newer update has arrived before the service comple-
tion. Recall that an update is said to be effective if it is not overtaken by other updates.
It is readily seen that all updates are effective under the FCFS service policy, while
there are noneffective updates under the preemptive LCFS service policy.
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1.4 The AoI Distribution in FCFS and LCFS Single-Server Queues 19

1.4.1 The Stationary AoI Distribution in FCFS Single-Server Queues

We first consider the FCFS case. Because all updates are effective in this case,

G†
n = Gn, D†

n = Dn, λ†
= λ, (1.33)

so that the peak AoI is given by (cf. (1.3))

Apeak,n = Dn + Gn. (1.34)

In order for Assumption 1.3 to be satisfied, we assume ρ < 1, which ensures the
stability of the queueing system.

We note that Dn and Gn on the right-hand side of (1.34) are dependent in general:
an update arriving after a long interval Gn tends to find less congested system than
the time-average. For the FCFS queue, however, (1.34) can be rewritten in terms of
independent random variables, using the well-known Lindley recursion for system
delays (Dn)n=0,1,...: because the waiting time of the nth update equals Dn−1 − Gn if
Dn−1 > Gn and otherwise it equals zero, we have

Dn = max(0, Dn−1 − Gn)+ Hn, n = 1, 2, . . . .

(1.34) is then rewritten as

Apeak,n = max(Gn, Dn−1)+ Hn, n = 1, 2, . . . . (1.35)

Observe that Gn, Dn−1, and Hn are independent. Because we have

Pr(max(Gn, Dn−1) ≤ x) = Pr(Gn ≤ x, Dn−1 ≤ x)

= Pr(Gn ≤ x) Pr(Dn−1 ≤ x),

the relation (1.35) implies

FApeak (x) =
∫ x

0
FG(x− y)FD(x− y)dFH (y), x ≥ 0,

where D denotes a generic random variable for the stationary Dn. Therefore, we obtain
the following result from Theorem 1.4:

THEOREM 1.5 In the stationary FCFS GI/GI/1 queue, the probability density
function of the AoI distribution is given by

fA(x) = λ
(

FD(x)−
∫ x

0
FG(x− y)FD(x− y)dFH (y)

)
. (1.36)

Noting that λ, FG(·), and FH (·) are model parameters, we see from Theorem 1.5
that the AoI distribution is given in terms of the stationary delay distribution FD(·).
We can find expressions for the delay distribution FD(·) for standard FCFS queueing
systems in textbooks on the queueing theory (Asmussen 2003; Kleinrock 1975).

We first introduce a general result, assuming that service times follow a phase-type
distribution with representation (γ, SSS):

FH (x) = 1− γ exp[Sx]e, fH (x) = γ exp[Sx](−S)e, (1.37)
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20 1 The Probability Distribution of the Age of Information

where e denotes a column vector (with the same size as S) whose elements are all
equal to one. The queueing model considered is then denoted by GI/PH/1. We do not
lose much generality with this assumption on service times because the set of phase-
type distributions covers a fairly wide class of nonnegative probability distributions;
in fact, it is known that the phase-type distributions form a dense subset in the set
of all nonnegative probability distributions (Asmussen 2003, p. 84). Readers who are
not familiar with phase-type distributions are advised to take a look at Appendix A.1,
where we provide a brief introduction.

It is readily verified that for the phase-type service time distribution,

E[H] = γ(−S)−1e, (1.38)

and the residual service time distribution defined in (1.32) is also of phase-type with
representation (γ̃, S), where

γ̃ :=
γ(−S)−1

γ(−S)−1e
. (1.39)

LEMMA 1.6 (Asmussen 1992) Consider an FCFS GI/PH/1 queue, which has a
general inter-arrival time distribution with CDF FG(x) and the phase-type service
time distribution with representation (γ, S). The stationary system delay in this model
follows a phase-type distribution with representation (γ, Q):

FD(x) = 1− γ exp[Qx]e, x ≥ 0,

where Q is defined as

Q = S+ (−S)eπ∗, (1.40)

with π∗ defined as the limit π∗ := limn→∞ πn of a sequence (πn)n=0,1,... given by
π0 = 0 and the following recursion:

πn = γ

∫
∞

0
exp[(S+ (−S)eπn−1)y]dFG(y), n = 1, 2, . . . . (1.41)

Remark 1.2 (Asmussen 2003, p. 241) (πn)n=0,1,... is an (elementwise) nondecreas-
ing sequence of subprobability vectors (i.e., πne < 1), and its limit π∗ is also a
subprobability vector, provided that the stability condition ρ < 1 holds.

We hereafter focus on the Poisson and constant generation policies discussed in
Section 1.1.2, that is, we consider the FCFS M/PH/1 and D/PH/1 queues:

FG(x) = 1− e−λx, x ≥ 0, (M/PH/1) (1.42)

FG(x) = 1{x ≥ τ }, x ≥ 0, (D/PH/1), (1.43)

where τ := 1/λ. In the M/PH/1 queue, π∗ is given explicitly by

π∗ = ργ̃, (M/PH/1) (1.44)

which can be verified with the following observation: substituting (1.42) into (1.41)
and taking the limit n→∞, we have

π∗(−S + λI + Seπ∗) = λγ, (1.45)
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which is equivalent to

π∗(−S) = λγ, (1.46)

because π∗(−S)e = λ is obtained by post-multiplying both sides of (1.45) by e and
rearranging terms. We thus obtain (1.44) from (1.38), (1.39), and (1.46). In the D/PH/1
queue, on the other hand, (1.41) is simplified as

πn = γ exp[(S + (−S)eπn−1)τ ], (D/PH/1)

so that π∗ is easily computed by iterations.
Furthermore, the formula (1.36) for the AoI distribution is simplified in the M/PH/1

and D/PH/1 queues:

THEOREM 1.7

(i) In the stationary FCFS M/PH/1 queue, the density function and the CDF of the
AoI are given by

fA(x) = ργ0 exp[B0x](−B0)e0 + γ1 exp[B1x](−B1)e1, (1.47)

FA(x) = 1− ργ0 exp[B0x]e0 − γ1 exp[B1x]e1, (1.48)

where B0 and B1 are defined as

B0 = exp
[(

Q (−Q)eγ̃
0 S

)
x

]
,

B1 =

Q− λI −(Q− λI)eγ 0
0 S (−S)e
0 0 −λ

 ,

and γ0 (resp. γ1) denotes a row vector with the same size as B0 (resp. B1), which
is expressed as

γ0 = [γ 0], γ1 = [γ− π∗ 0].

Also, e0 (resp. e1) denotes a column vector with the same size as B0 (resp. B1)
whose elements are all equal to one.

(ii) In the stationary FCFS D/PH/1 queue, the density function and the CDF of the
AoI are given by

fA(x) =


1− γ exp[Qx]e

τ
, 0 ≤ x < τ ,

γ(I− exp[Qτ ]) exp[Q(x− τ )]e

τ
, x ≥ τ .

(1.49)

FA(x) =


x− γ(−Q)−1e+ γ exp[Qx](−Q)−1e

τ
, 0 ≤ x < τ ,

1−
γ(I− exp[Qτ ]) exp[Q(x− τ )](−Q)−1e

τ
, x ≥ τ .

(1.50)

The derivation of Theorem 1.7 is detailed in Appendix A.2.
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Using Theorem 1.7, the probability distribution of the AoI in M/PH/1 and D/PH/1
queues is easily computed. We provide a few numerical examples using the following
special class of phase-type distributions, which is uniquely identified by its mean E[H]
and coefficient of variation Cv[H] (the standard deviation divided by the mean):

Mixed Erlang Distribution (0 < Cv[H] < 1)

fH (x) = pµ ·
e−µx(µx)k−1

(k − 1)!
+ (1− p)µ ·

e−µx(µx)k

k!
,

where

k = b1/(Cv[H])2
c,

p =
k + 1

1+ (Cv[H])2

(Cv[H])2
−

√
1− k(Cv[H])2

k + 1

 ,

µ =
pk + (1− p)(k + 1)

E[H]
.

This distribution is also represented as a phase-type distribution by letting γ and T
be a row vector and a matrix of size (k + 1) given by

α = (1 0 . . . 0), T =



−µ µ 0 · · · 0 0 0
0 −µ µ · · · 0 0 0
0 0 −µ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −µ µ 0
0 0 0 · · · 0 −µ (1− p)µ
0 0 0 · · · 0 0 −µ


.

Exponential Distribution (Cv[H] = 1)

fH (x) = µe−µx.

This is a phase-type distribution with γ= 1 and S= −µ, and we have µ= 1/E[H].
This case corresponds to the M/M/1 and D/M/1 queues.

Hyper-Exponential Distribution with Balanced Means (Cv[H] > 1)

fH (x) = pµ1e−µ1x
+ (1− p)µ2e−µ2x,

where

p =
1

2

1+

√
(Cv[H])2 − 1

(Cv[H])2 + 1

 , µ1 =
2p

E[H]
, µ2 =

2(1− p)

E[H]
.

This is a phase-type distribution with

γ = (p 1− p), S =

(
−µ1 0

0 −µ2

)
.
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(a) (b)

(c) (d)

Figure 1.7 Boxplots of the AoI distribution in the FCFS M/PH/1 queue. The whiskers represent
10 and 90 percentiles.

We set E[H] = 1 throughout. Figure 1.7 shows boxplots of the AoI distribution in
the M/PH/1 queue for several values of the coefficient of variation Cv[H] of service
times and the generation rate λ. As previously mentioned, the case of Cv[H] = 1.0
refers to the M/M/1 queue, whose mean AoI was examined with Figure 1.4. We
observe that using too small or too large generation rate λ leads to a significant
increase in the variability of the AoI as well as the increase in the median value.
We also observe that larger variability of service times leads to a significant increase
in the AoI percentiles: its effect on the AoI distribution is prominent, particularly for
large values of λ, because the system delay has a dominant impact on the AoI in that
region, as discussed in Section 1.1. Figure 1.8 shows similar boxplots of the AoI distri-
bution in the D/PH/1 queue. We see that the same observations as those for the M/M/1
queue apply regarding the impacts of the generation rate and the service-time variabil-
ity on the AoI distribution. On the other hand, from Figures 1.7 and 1.8, we see that
the variability of the AoI is reduced drastically by using constant generation intervals
instead of exponential generation intervals. This again highlights the superiority of
using constant generation intervals, which we observed at the end of Section 1.1.2.

1.4.2 The Stationary AoI Distribution in Preemptive LCFS Single-Server Queues

We next consider the case of preemptive LCFS service policy. In this case, an update
immediately starts to receive service just after its generation. The update finishes the
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(a) (b)

(c) (d)

Figure 1.8 Boxplots of the AoI distribution in the FCFS D/PH/1 queue. The whiskers represent
10 and 90 percentiles.

service without being overtaken (i.e., becomes an effective update) if the next update
is not generated until the end of the service. If the generation of the next update
occurs before the service completion, on the other hand, the update is overtaken and
becomes noneffective. Therefore, the probability that an update becomes noneffective
is given by

ζ := Pr(G < H).

If ζ = 1, then updates cannot finish receiving service with probability one, so that the
AoI continues to increase all the time and never decreases a.s. If ζ = 0, on the other
hand, updates become effective with probability one, so that the model reduces to the
FCFS case. We thus assume 0 < ζ < 1 hereafter. Also, we assume Pr(G = H) = 0 for
simplicity. Similarly to the FCFS case, we first derive a general result for the GI/GI/1
queue and then specialize it to the M/PH/1 and D/PH/1 queues.

We use the notation [Y | E] to represent a random variable Y conditioned on an
event E . From the previous discussion, we see that the effective system delay D† has
the same distribution as the conditional random variable H<G := [H | H < G]:

D† d
= H<G, (1.51)

where
d
= stands for the equality in distribution. Recall that the effective intergeneration

time G†
` is given by the sum of intergeneration times of the form (1.15). In the current

setting, we have that the terms on the right-hand side of (1.15) are characterized as
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Gn+1
d
= G>H , Gn+i

d
= G<H , i = 2, 3, . . . , k + 1,

where we define G>H = [G |G>H] and G<H = [G | G<H]. We can also verify that
these intergeneration times Gn+1, Gn+2, . . . , Gn+k+1 are independent. Furthermore,
the number k of intermediate noneffective updates follows a geometric distribution
with success probability Pr(G>H) = 1 − ζ ; let K denote this discrete random
variable:

Pr(K = k) = ζ k(1− ζ ), k = 0, 1, . . . . (1.52)

The distribution of the effective intergeneration time is then characterized as

G†
`

d
= G>H +

K∑
i=1

G[i]
<H ,

where (G[i]
<H )i=1,2,... denotes an i.i.d. sequence of random variables with the same

distribution as G<H . From (1.3) and (1.51), we then have that

Apeak,`
d
= G>H +

K∑
i=1

G[i]
<H + H<G, (1.53)

and that all random variables on the right-hand side of this equation are independent;
note that D†

` is dependent on the next intergeneration time Gn+k+1 (as D†
` < Gn+k+1

should hold for this update to be effective), whereas it is independent of the preceding
intergeneration times Gn+1, Gn+2 . . . , Gn+k .

As the expression (1.53) for the peak AoI contains the geometric random sum of
i.i.d. random variables, it is easier to consider its LST instead of directly dealing with
its CDF. More specifically, the LST of the geometric random sum is expressed as

E

[
exp

[
−s

K∑
i=1

G[i]
<H

]]
=

∞∑
k=0

ζ k(1− ζ ){f ∗G<H
(s)}k =

1− ζ

1− ζ f ∗G<H
(s)

.

Therefore, the LST of the peak AoI is given by

f ∗Apeak
(s) = f ∗G>H

(s) ·
1− ζ

1− ζ f ∗G<H
(s)
· f ∗H<G

(s).

Substituting this equation, λ†
= λ(1−ζ ), and f ∗

D† (s) = f ∗H<G
(s) (cf. (1.51)) into (1.29),

and rearranging terms using

f ∗G (s) = ζ f ∗G<H
(s)+ (1− ζ )f ∗G>H

(s),

we obtain the following result:

THEOREM 1.8 In the preemptive LCFS GI/GI/1 queue, the LST of the stationary AoI
distribution is given by

f ∗A (s) = f ∗
G̃

(s) ·
(1− ζ )f ∗H<G

(s)

1− ζ f ∗G<H
(s)

, (1.54)

where G̃ is defined as in (1.31).
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Furthermore, we can interpret (1.54) as follows:

COROLLARY In the preemptive LCFS GI/GI/1 queue, the stationary AoI has the
same distribution as the sum of two independent random variables,

A = G̃+ Z,

where Z is defined as

Z =
K̂∑

n=1

min(Gn, Hn), (1.55)

K̂ = min{n = 1, 2, . . . ; Hn < Gn}, (1.56)

in terms of the i.i.d. sequences (Gn)n=1,2,... and (Hn)n=1,2,... of intergeneration and
service times.

Remark 1.3 By definition, we have K̂
d
= K + 1 (cf. (1.52)).

We then focus on the M/PH/1 and D/PH/1 queues, where the service time dis-
tribution is given by (1.37). We can readily verify from (1.31) that the residual
intergeneration time G̃ has simple characterizations in these cases:

fG̃(x) = λe−λx, x ≥ 0, (M/PH/1) (1.57)

fG̃(x) =
1

τ
· 1{x ≤ τ }, x ≥ 0, (D/PH/1), (1.58)

that is, G̃ follows an exponential (resp. a uniform) distribution in the M/PH/1 (resp.
the D/PH/1) queue. Therefore, it is sufficient to consider the distribution of Z defined
in (1.55).

In the M/PH/1 queue, Z follows a phase-type distribution with representation
(γ, S − λI + λeγ), that is,

FZ(x) = 1− γ exp[(S − λI + λeγ)x]e. (M/PH/1) (1.59)

This fact can be verified with the following observation. Note that min(Gn, Hn) in
the M/PH/1 queue is equal to the absorption time of a Markov chain with transition
rate matrix S − λI and initial-state distribution γ. This Markov chain transitions to
its absorbing state according to a rate vector (−S)e + λe, where the first (resp. sec-
ond) term corresponds to the event min(Gn, Hn) = Hn (resp. min(Gn, Hn) = Gn).
Therefore, we can obtain a realization of Z with the following procedure: (i) start this
Markov chain with the initial-state distribution γ, (ii) whenever an absorption with the
rate vector λe occurs, restart the Markov chain with the initial-state distribution γ, and
(iii) terminate the process when an absorption with the rate vector (−S)e occurs. The
whole process of this procedure is then represented as a Markov chain with initial-
state vector γ and transition rate matrix S − λI + λeγ, which proves the preceding
claim.

In the D/PH/1 queue, on the other hand, we have G<H = τ and H<G ∈ [0, τ ) with
probability one. Also, we have

ζ = γ exp[Sτ ]e. (D/PH/1) (1.60)
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It is then readily verified that for k = 0, 1, . . .,

FZ(x) = 1− ζ kγ exp
[
S(x− kτ )

]
e, x ∈ [kτ , (k + 1)τ ). (D/PH/1) (1.61)

Therefore, we obtain the AoI distribution in the M/PH/1 and D/PH/1 queues from
Corollary 1.4.2, (1.57), (1.58), (1.59), and (1.61):

THEOREM 1.9

(i) In the stationary preemptive LCFS M/PH/1 queue, the density function and the
CDF of the AoI are given by

fA(x) = γ exp[CCCx](−CCC)e, x ≥ 0,

FA(x) = 1− γ exp[CCCx]e, x ≥ 0,

where CCC is defined as

CCC =

(
S− λI+ λeγ (−S)e

0 −λ

)
.

(ii) In the stationary preemptive LCFS D/PH/1 queue, the density function and the
CDF of the AoI are given as follows: for x ∈ [0, τ ),

fA(x) =
1− γ exp[Sx]e

τ
,

FA(x) =
x− γ(I− exp[Sx])(−S)−1e

τ
,

and for x ∈ [kτ , (k + 1)τ ) (k = 1, 2, . . .),

fA(x) =
ζ k−1(1− ζ )

τ
· γ exp[S(x− kτ )]e,

FA(x) = 1−
ζ k−1γ

τ

(
ζ I− exp[Sτ ]+ (1− ζ ) exp

[
S(x− kτ )

])
(−S)−1e,

where ζ is given by (1.60).

Finally, we present numerical examples employing the same class of service time
distributions as those in the previous subsection, that is, the mixed Erlang and balanced
hyper-exponential distributions with mean E[H] = 1, which is uniquely identified by
the coefficient of variation Cv[H]. Figures 1.9 and 1.10 show comparisons of the FCFS
and preemptive LCFS service policies in terms of the AoI distribution for M/PH/1 and
D/PH/1 queues. As we previously observed in Figures 1.7 and 1.8, the large variabil-
ity of service times has a significant negative impact on the AoI performance under
the FCFS service policy. From Figures 1.9 and 1.10, however, we observe that the
AoI performance is not negatively impacted under the preemptive LCFS service pol-
icy. Moreover, quite the contrary to the FCFS case, we find that under the preemptive
LCFS service policy, the AoI even tends to be smaller when service times have larger
variability. Intuitively, this phenomenon is due to the fact that the larger the variability
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(a)

(b)

Figure 1.9 Comparison of the AoI distribution in FCFS and LCFS M/PH/1 queues.

(a)

(b)

Figure 1.10 Comparison of the AoI distribution in FCFS and LCFS D/PH/1 queues.
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of the service times, the more frequently service times take substantially smaller val-
ues than their mean. Updates with such small service times can update the monitor just
after their generations under the preemptive LCFS service policy, which contributes
to the timeliness of information updates.

While the preemptive LCFS service policy is quite efficient for highly variable
service times, it should be noted that this policy does not always achieve superior
performance compared to the FCFS service policy. For the case of Cv[H] = 0.2 in
Figure 1.9, we observe that the preemptive LCFS service policy has slightly worse AoI
performance (in terms of the percentiles) than the FCFS service policy, except for large
values of λ. This is because, when service times have small variability, the preemptive
LCFS service policy may cause inefficient interruptions of service, resulting in a long
update interval.

1.5 Bibliographical Notes

Section 1.1 The graphical analysis of the mean AoI and the queueing modeling of
monitoring systems are due to the seminal work (Kaul, Yates, & Gruteser 2012b)
on the AoI analysis, where the formulas for the mean AoI in the FCFS M/M/1 and
D/M/1 queues are given. The expression (1.8) for the mean AoI focusing on the inter-
departure time is given by Costa, Codreanu, and Ephremides (2016), where the authors
also introduce the concept of the peak AoI Apeak as an alternative freshness metric.

Section 1.2 The nonlinear AoI cost function (1.12) is introduced by Sun, Uysal-
Biyikoglu, Yates, Koksal, and Shroff (2017), where the optimal sampling policy
minimizing the mean nonlinear AoI cost is discussed. Several expressions for the mean
nonlinear AoI cost are also derived by Kosta, Pappas, Ephremides, and Angelakis
(2020a) assuming specific cost functions. The effect of the AoI on the monitor-
ing accuracy is first considered by Costa, Valentin, and Ephremides (2015) for a
discrete-time two-state Markov chain, where the monitoring accuracy is defined as
the probability that the actual and displayed states coincide. The monitoring accuracy
for a continuous-time Markov chain is also analyzed by Inoue and Takine (2019). Sun,
Polyanskiy, and Uysal (2020) show that if the information source is represented as a
Wiener process and the AoI process is not affected by its state, then the mean AoI
equals the mean squared error of the displayed information. Sun and Cyr (2018) also
propose the use of the mutual information in quantifying the monitoring accuracy.

Sections 1.3 and 1.4 Most of the discussions in these sections are based on those
given by Inoue, Masuyama, Takine, and Tanaka (2019), where the formula (1.4) for the
AoI distribution is derived under a more general setting. In fact, this formula follows
from the observation that the stochastic properties of the stationary AoI are character-
ized in terms of those of AoI values immediately before and after an update, so that the
assumptions on underlying mechanisms (i.e., sampling intervals (Gn)n=0,1,... and sys-
tem delays (Dn)n=0,1,...) are not essential. Theorems 1.7 and 1.9 for the AoI distribution
in queues with phase-type service time distributions are new, although most of those
are specializations of more general results derived by Inoue et al. (2019). We have

https://doi.org/10.1017/9781108943321.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943321.001


30 1 The Probability Distribution of the Age of Information

not included discussions on LCFS service policies without service preemption for the
brevity of explanation. The analysis of the AoI distribution for non-preemptive LCFS
queues can be found in the papers (Inoue et al. 2019) and Champati, Al-Zubaidy, and
Gross (2019), which are extensions of earlier studies on the mean AoI analysis (Kaul,
Yates, and Gruteser 2012a; Costa et al. 2016).

Further Studies on the AoI Distribution The general formula (1.4) serves as a start-
ing point of the analysis of the distributional properties of the AoI. For instance, its
applications to a single-server queue with packet deadlines (Inoue 2018) and infinite-
server queues (Inoue 2020) are reported. While this formula is derived assuming
continuous-time systems, a discrete-time analog of this formula is also considered by
Kosta, Pappas, Ephremides, and Angelakis (2020b). Furthermore, Jiang and Miyoshi
(2020) give a generalization of (1.4) to the joint distribution of the AoI values
considering multiple source-monitor pairs.

Appendix

A.1 A Brief Summary of Phase-Type Distributions

Consider an absorbing Markov chain (Xt)t≥0 with finite states. Generally, states in
an absorbing Markov chain are classified into transient states and absorbing states,
and the Markov chain eventually reaches an absorbing state after repeating transitions
among transient states. The phase-type distribution is a class of probability distri-
butions on [0,∞), which can be formulated as the absorption time T (i.e., the first
passage time to a set of absorbing states) in an absorbing Markov chain. In the con-
text of the phase-type distribution, transient states are called phases. In this appendix,
the absorbing Markov chain (Xt)t≥0 is assumed to have M (M ≥ 1) phases and let
M = {1, 2, . . . , M}.

In general, the absorbing Markov chain (Xt)t≥0 is defined by the M-dimensional
initial state vector α and M × M matrix Q, where the ith (i ∈ M) element of α is
given by Pr(X0 = i) and the (i, j)th (i, j ∈M, i 6= j) off-diagonal element qi,j of Q is
given by the transition rate from state i to state j, that is,

qi,j = lim
1t→0

Pr(Xt+∆t = j | Xt = i)

∆t
, i 6= j,

and the ith (i ∈M) diagonal element qi,i is given by

qi,i = −
∑

j∈M\{i}

qi,j.

We assume that Q + (−Q)eα is irreducible. For a given (α, Q), the probability
distribution function FT (x) = Pr(T ≤ x) of the absorption time T is given by

FT (x) = 1− α exp[Qx]e, x ≥ 0,

where e denotes a column vector with an appropriate dimension, whose elements are
all equal to one. Note here that FT (0) = Pr(T = 0) = 1 − αe ≥ 0. For simplicity,
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Figure A.1 A three-stage Erlang distribution.

Figure A.2 A two-stage hyper-exponential distribution.

we assume FT (0) = 0, that is, αe = 1. The probability density function fT (x) is then
given by

fT (x) = α exp[Qx](−Q)e, x ≥ 0,

and the nth (n = 1, 2, . . .) moment E[Tn] is given by

E[Tn] =
∫
∞

0
xnf (x)dx = n!α

[
(−Q)−1]ne.

Figures A.1 and A.2 show phase diagrams for a three-stage Erlang distribution and a
two-stage hyper-exponential distribution.

We define α̃ as a 1×M probability vector given by

α̃ =
α(−Q)−1

α(−Q)−1e
.

Note that α̃ satisfies α̃[Q+ (−Q)eα] = 0. The probability distribution function FT̃ (x)
of the equilibrium random variable T̃ for T is then given by

FT̃ (x) = 1− α̃ exp[Qx]e, x ≥ 0.

The phase-type distribution is close under the convolution, minimum, and max-
imum operations. Let Ti (i = 1, 2) denote an independent phase-type random variable
with representation (αi, Qi). The probability distribution function of T1 + T2 is then
given by

Pr(T1 + T2 ≤ x) = 1− αsum exp[Qsumx]e, x ≥ 0,

where

αsum =
(
α1 0

)
, Qsum =

(
Q1 (−Q1)eα2

OOO Q2

)
.
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We can also obtain the phase-type distribution functions of min(T1, T2) and
max(T1, T2) using Kronecker product/sum. In particular, if T2 follows an exponen-
tial distribution with parameter λ (i.e., the phase-type distribution with representation
(1,−λ)), we have

Pr(min(T1, T2) ≤ x) = 1− α1 exp[(Q1 − λI)x]e, x ≥ 0,

Pr(max(T1, T2) ≤ x) = 1− αmax exp[Qmaxx]e, x ≥ 0,

where

αmax =
(
α1 0 0

)
, Qmax =

Q1 − λI λI (−Q1)e
OOO Q1 0
0 0 −λ

 .

Another advantage of the phase-type distribution is computational feasibility, that
is, the uniformization technique is applicable. For a phase-type distribution with
representation (α, Q), we define θ as

θ = max
i∈M
|qi,i|.

It can be readily verified that

exp[Qx] = e−θx exp[(I + θ−1Q)θx] =
∞∑

n=0

e−θx (θx)n

n!
PPPn,

where PPP = I + θ−1Q. Note here that PPP can be regarded as a defective transition
probability matrix because I + θ−1Q ≥ OOO and (I + θ−1Q)e ≤ e. The technique for
expressing exp[Qt] in terms of PPP is called uniformization.

The probability distribution of the phase-type random variable T with represen-
tation (α, Q) may be computed as follows. For x ≥ 0, let FT (x) = Pr(T > x) =
α exp[Qx]e. The following procedure yields an approximation F

approx
T (x) to FT (x),

which satisfies

0 < FT (x)− F
approx
T (x) ≤ ε,

for a predefined error bound ε (0 < ε � 1).

1. Find a positive integer N∗ such that

N∗∑
n=0

e−θx (θx)n

n!
≥ 1− ε.

2. Let

yyyN∗ =
θx

N∗
PPPe,

and compute

yyyn =
θx

n
PPP(e+ yyyn+1),

recursively in descending order from n = N∗ − 1 to 1.
3. Let F

approx
T (x) = exp(−θx)α(e+ yyy1).
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A.2 Derivation of Theorem 1.7

We first consider (i). Because the intergeneration time G and the system delay D are
absolutely continuous in the M/PH/1 queue, we have that max(G, D) is also absolutely
continuous with density:

fmax(G,D)(x) = fG(x)FD(x)+ FG(x)fD(x)

= λe−λxFD(x)+ (1− e−λx)fD(x)

= fD(x)+ e−λx(λFD(x)− fD(x))

= fD(x)−
d

dx

[
FD(x)e−λx] .

We then rewrite (1.36) as

fA(x) = λ
{∫ x

0
fD(y)dy−

∫ x

0

(
fD(y)−

d

dy

[
FD(x)e−λy])FH (x− y)dy

}
= ρ

∫ x

0
fD(y) ·

1− FH (x− y)

E[H]
dy+ λ

∫ x

0

d

dy

[
FD(y)e−λy]FH (x− y)dy

= ρfD ∗ fH̃ (x)+ λ
∫ x

0
FD(y)e−λyfH (x− y)dy

= ρfD ∗ fH̃ (x)+
∫ x

y=0

(∫ y

t=0
fD(t)e−λt

· λe−λ(y−t)dt

)
fH (x− y)dy

= ρfD ∗ fH̃ (x)+ (1− ρ)fD<G ∗ fG ∗ fH (x), (A.62)

where D<G := [D | D < G] denotes the system delay D conditioned to be smaller
than an intergeneration time G. The density function of D<G is given by

fD<G (x) =
fD(x)e−λx

Pr(D < G)

=
fD(x)e−λx

1− ρ

=
γ exp[(Q− λI)x](−Q)e

1− ρ

=
γ{(−Q− λI)}−1(−Q) exp[(Q− λI)x]{(−Q− λI)}e

1− ρ

=
(γ− π∗) exp[(Q− λI)x]{(−Q− λI)}e

1− ρ
, (A.63)

where the second equality (Pr(D < G) = 1−ρ) follows because (i) Pr(D < G) equals
the stationary probability p0 that an arriving customer finds the system empty and
(ii) due to the Poisson-arrivals-see-time-averages (PASTA) property, p0 in the M/PH/1
queue equals the time-average probability that the system is empty, which is given by
1 − ρ. Also, the third equality follows because Q and Q − λI commute and the last
equality (γ − π∗ = γ{−(Q − λI)}−1(−Q)) is verified, noting that π∗ satisfies (cf.
(1.40) and (1.45))

π∗ = λγ{−(Q− λI)}−1.

https://doi.org/10.1017/9781108943321.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943321.001


34 1 The Probability Distribution of the Age of Information

We then readily obtain (1.47) from (A.62) and (A.63). Also, (1.48) is obtained by
integrating (1.47) and using

ργ0e0 + γ1e1 = ρ + (1− π∗e) = 1,

where the last equality follows from (1.44).
We next consider (ii). Recall that (1.36) has been derived using the expression

(1.35) for the peak AoI instead of (1.34). For the case of deterministic intergener-
ation times, however, it is simpler to directly work on (1.34) because it reduces to
Apeak,n = Dn + τ , so that we have

FApeak (x) =

{
0 0 ≤ x < τ ,

FD(x− τ ), x ≥ τ .

It then follows from Theorem 1.4,

fA(x) =


FD(x)

τ
, 0 ≤ x < τ ,

FD(x)− FD(x− τ )

τ
, x ≥ τ .

=


1− γ exp[Qx]e

τ
, 0 ≤ x < τ ,

γ exp[Q(x− τ )]e− γ exp[Qτ ] exp[Q(x− τ )]e

τ
, x ≥ τ ,

which implies (1.49). Also, (1.50) is readily obtained by integrating (1.49).
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