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Thin-film flow between a rotating sphere and
a nearly vertical moving plate
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When a sphere rotates near a rigid boundary coated with a thin layer of viscous liquid,
‘tracks’ are generated both behind and over the sphere. This paper describes a theory
for the simplest one-track configuration which can occur under particular experimental
conditions. The theoretical predictions are in good agreement with experimental
observations.
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1. Introduction

This paper is motivated by experimental observations of flows that occur when a rigid
sphere moves near a plate coated with a viscous film of depth h with the sphere immersed
in the film to a depth h(1 − h0). Such flows have been reported in Bico et al. (2009) and
references therein and similar flows have been modelled theoretically for two-dimensional
blocks and circular cylinders levitating on vertical walls by Mullin, Ockendon & Ockendon
(2020) and Dalwadi et al. (2021).

For spheres, a lateral sketch of the symmetry plane is comparable to two-dimensional
flow between a circular cylinder and a moving flat plate, as shown in figure 1. However, a
perpendicular view through a transparent wall as shown in figures 2(a) and 2(b), reveals
a new phenomenon, namely the generation of one or more ‘tracks’ that are shed behind
the sphere. In the experiments that led to these figures the plate was replaced by a coated
cylinder of large radius rotating about a horizontal axis and the centre of the sphere was
stationary inside the cylinder. We can see from figure 2 that the tracks are thin but their
depth is greater than that of the incoming film.

In our modelling, we will largely focus on the configuration in figure 2(a), which
suggests that the contact region between the sphere and the film is circular. We will see
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Figure 1. Sketch of the central plane of the sphere showing the non-dimensional parameters; tracks over and
behind the sphere are indicated by the dashed lines. The x-axis is vertical.

(b)(a)

Figure 2. Two types of steady motion for 14 mm diameter steel spheres on a 0.3 mm layer of silicone oil
coating a cylinder of radius 250 mm. (a) A single-track state which only occurs when the sphere is located on
the mid-plane of the cylinder. (b) A double-track state, which always occurs when the sphere is located below
the mid-plane. The Reynolds number is the same in each case.

that this can only happen when the sphere is at the point where the cylinder wall is vertical,
so that, by symmetry, the net lubrication force normal to the plate is zero. However, when
the flow is as in figure 2(b), the shape of the contact region would need to be determined
as the solution of a complicated free-boundary problem.

As far as the modelling is concerned, the cylinder will be replaced by a flat plate for
most of this paper and the dominant hydrodynamic forces will mostly be assumed to be
the lubrication forces calculated from the two-dimensional Reynolds equation that holds
within the circle of contact, together with the assumption of atmospheric pressure around
this circle. However, we will find that capillary effects are important in some regions.
Moreover, as has been discussed briefly in the two-dimensional cases (Mullin et al. 2020;
Dalwadi et al. 2021), there exists the possibility of ‘tongues’ of liquid that can exist
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Thin-film flow between a sphere and a nearly vertical plate

upstream of the lubricated region and thereby affect the upstream pressure. There are no
such tongues in figure 2 but, instead, these images reveal that thin ‘tubes’ of liquid of depth
greater than the incoming film inevitably occur around the circle of contact. In figure 2(a),
which is typical for small cylinder velocities, the tubes coalesce at the downstream end
of the circle, where they give birth to one track returning over the top of the sphere
and another continuing upwards on the cylinder. However, as the angular velocity of the
cylinder is increased the tubes can detach from the circle before they meet behind the
sphere, thereby generating a pair of downstream tracks and corresponding return tracks on
the sphere, as in figure 2(b).

We will begin § 2 by considering the purely theoretical problem in which the sphere
rotation is to be determined when both the plate velocity and the penetration depth of the
sphere are prescribed; such configurations have been considered by Schade & Marshall
(2011). Then, we will consider what happens when the sphere is free to rotate about its
stationary centre, whose position is to be determined, which is the configuration for which
figure 2 is relevant. The experiments will be described in more detail in §§ 3 and 4 together
with comparisons with the theory for the configuration in figure 2(a).

2. Modelling single-track flows

2.1. Flows with prescribed plate velocity and penetration depth
The simplest configuration is sketched in figure 1 which is a sideways view of the sphere in
figure 2(a). The x-axis is taken along the direction of motion of the plate, the z-axis is along
the normal to the plate through the centre of the sphere and the y-axis lies in the plate. The
dimensionless film thickness away from the sphere is taken to be 1 and the sphere rotates
about a fixed axis parallel to the y-axis. The radius of the sphere is a, which is assumed
to be large compared with the film thickness h. Lengths in the x, y and z directions are
non-dimensionalised with respect to

√
ah,

√
ah and h, respectively, and the velocities in

these directions are non-dimensionalised with U0, U0 and U0
√

h/a, respectively, where
U0 is a typical velocity of the plate along the x-axis. The velocity of the plate is U0U,
where the non-dimensional quantity U is prescribed for a particular experiment, and the
angular velocity of the sphere is denoted by U0Ω/a, where Ω is to be determined.

We assume a lubrication flow between the plate and the sphere and non-dimensionalise
the pressure deviation from atmospheric with μU0

√
a/h3/2, where μ is the dynamic

viscosity of the fluid. Henceforth, x, y, z are non-dimensional variables, u, v, w are the
corresponding non-dimensional velocities and p is the non-dimensional pressure.

In these variables, the thickness of the lubrication layer is

H = h0 + 1
2 r2, (2.1)

where r2 = x2 + y2, and the pressure in this region satisfies Reynolds equation

∂

∂x

(
H3 ∂p

∂x

)
+ ∂

∂y

(
H3 ∂p

∂y

)
= 6(U + Ω)x. (2.2a)

We now make the a priori assumption that the boundary of the lubrication region is
circular with radius r0, which is suggested by figure 2(a). Also we make the assumption
based on the observation in figure 2(a) that the tubes near r = r0 have a thickness of O(h),
and hence, from the data in § 3, that the surface tension forces are of O(10−1) compared
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with the lubrication pressure variations. Hence we apply the boundary conditions

p = 0 on r = r0 =
√

2(1 − h0). (2.2b)

The corresponding velocity in the x, y plane is

u = 1
2

z(z − H)
∂p
∂x

+ (Ω − U)

H
z + U, (2.3a)

v = 1
2

z(z − H)
∂p
∂y

. (2.3b)

Separation of the variables in (2.2a) reveals that

p = (U + Ω)F(r)cosθ, (2.4a)

where θ is a polar angle in the x, y plane measured from the x-axis, and Reynolds equation
(2.2a) then reduces to

r2
(

h0 + r2

2

)
d2F
dr2 + r

(
h0 + 7

2
r2

)
dF
dr

−
(

h0 + r2

2

)
F = 6r3

(
h0 + r2

2

)2 , (2.4b)

subject to
F(0) = 0 and F(r0) = 0. (2.4c)

We note that a particular integral of (2.4b) is F = −6r/5H2.
The angular velocity Ω and the penetration depth (1 − h0) are related by the condition

that there is no moment on the sphere about the axis through its centre, so that
∫∫

r<r0

∂u
∂z

∣∣∣∣
z=H

dx dy = 0. (2.5)

Equations (2.3a) and (2.4a) imply that that

∂u
∂z

∣∣∣∣
z=H

= H(Ω + U)

2

(
dF
dr

cos2 θ + F
r

sin2 θ

)
+ Ω − U

H
, (2.6)

and so, after one integration, we see that Ω and U are related by

Ω

(∫ r0

0
r2F dr + 2 log h0

)
= U

(
−

∫ r0

0
r2F dr + 2 log h0

)
. (2.7)

We also note that forces in both the x and y directions need to be applied at the centre of
the sphere in order to maintain equilibrium.

2.2. Tube modelling
We are now in a position to model the flow in the tube of liquid that is observed to flow
tangentially around the boundary of the lubricated region. We assume that the pressure in
this tube is always small compared with the lubrication pressure variations. We make the
further assumption that, in agreement with observation, the lateral dimensions of the tube
are greater than, but comparable to, the thickness of the incoming film.
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Thin-film flow between a sphere and a nearly vertical plate
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Figure 3. The flux balance in the tube for π/2 < θ < π.

We begin by carrying out a local analysis near the point (r0, θ) for π/2 < θ < π. From
(2.3), the fluid velocity in r < r0 averaged over the depth of the layer is

ū = (U + Ω)

(
1
2

− 1
12

(
dF
dr

cos2 θ + F
r

sin2 θ

))
, (2.8a)

v̄ = −(U + Ω)

12

(
dF
dr

− F
r

)
sin θ cos θ. (2.8b)

Hence, the averaged velocity components on r = r0 are equivalent to (U + Ω)/2 in the
x-direction in addition to 1

12(U + Ω)(dF(r0)/dr) cos θ along the radius towards the centre
of the sphere. We now let Q be the flux in the tube made non-dimensional with U0h2, and
perform a mass balance over a small angular change −δθ . As shown in figure 3, this leads
to

δQ = Uδy − (U + Ω)

2
δy + (U + Ω)

12
F′(r0)r0 cos θδθ, (2.9)

for π/2 < θ < π. Thus

dQ
dθ

= U − Ω

2
r0 cos θ + U + Ω

12
F′(r0)r0 cos θ, (2.10)

and hence

Q = U − Ω

2
r0 sin θ + U + Ω

12
F′(r0)r0 sin θ + q0, (2.11)

where 2q0 is the total flux in the track carried over the top of the sphere from the
region near θ = 0. The quantity q0 can only be determined from an analysis of the
three-dimensional Stokes flow in a region near this point. An analogous situation arises
in the two-dimensional problem for a cylinder as described in Dalwadi et al. (2021), in
which case the return flow over the cylinder depends on a power of U.

For the region 0 < θ < π/2, we assume that the flux in the tube remains fixed at the
value 1

2 (U − Ω)r0 + 1
12 (U + Ω)F′(r0)r0 + q0. Thus, the flux from this tube and its twin

in the region π < θ < 2π will create a single track behind the sphere with mass flux
(U − Ω)r0 + 1

6 (U + Ω)F′(r0)r0 together with a single track over the sphere with mass
flux 2q0.

Although the incoming film ensures that the tube remains close to the sphere for π/2 <

θ < π, the only force in the region 0 < θ < π/2 that can keep the tube close to the sphere
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s
w

Ω

Figure 4. A cross-section of the tube in a radial plane for 0 < θ < π/2; s and w are dimensional lengths.

is the radial component of the surface tension force acting on the surface of the tube. As
described by Marshall (2014) for a slightly different thin-film configuration, the dominant
surface tension force is that acting on the curved meniscus of length s sketched in figure 4.
The z-component of this force serves to hold the sphere onto the plate while the other
component provides a force along the radius in the x, y plane which acts to keep the tube
close to the sphere. It is also shown in Marshall (2014) that the assumption of a circular
meniscus gives an estimate for the force that retains the sphere on the plate which agrees
with experiment. Thus we too will assume that the radial force acting on an element of the
tube to keep it in place is of order

O(Tsr0
√

a/hδθ), (2.12)

where T is the surface tension.
If the tube is to remain attached to the sphere for 0 < θ < π/2, the capillary force (2.12)

must resist the shear exerted on the tube by the fluid exiting the lubrication region below
the tube. Assuming that the amount of fluid entrained into the tube from below is negligible
and that the shear force is at most that due to a Couette flow, the outward radial shear force
on an element of the tube will be of order

O
(

μU0

h
(U − Ω) cos θw

√
ahr0δθ

)
, (2.13)

in dimensional terms, where w is the length indicated in figure 4. Thus, making a
comparison with the dominant surface tension force, we see that we need (2.13) to be
less than (2.12) when θ = 0 to ensure that the tube stays attached to the sphere with a
circular wetted region and a single track behind the sphere. If we further assume that both
s and w are of O(h), this requires the dimensionless inequality

U − Ω < O
(

1
Ca

)
, (2.14)

to hold where the capillary number Ca = μU0/T . We will see in § 2.3 that the relationship
between U and Ω is approximately linear for the values given in § 4. Hence, from (2.14),
we conjecture that a single track will only be possible when U is less than a certain value.

We also note from (2.11) that the amount of fluid in the track behind the sphere will
decrease in magnitude as U decreases, as is observed in the experiments discussed in § 4.
We remark further that the tracks generated over and behind the sphere can be considered
as free tubes carried along on a rigid base. Their cross-section will still be governed by
surface tension forces and visual observation suggests they have a single maximum depth
and no vertical tangents.

Experimental evidence concerning the relationship between U, Ω and h0 is only at all
easy to obtain when h0 and Ω are both selected by the flow and in the next section we will
study such a configuration.

988 A7-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.455


Thin-film flow between a sphere and a nearly vertical plate

ωc

ωb

End view
Thin layer of viscous fluid

Ball

balanced

on layer

Figure 5. A schematic diagram of an end view of the apparatus; the variables are all dimensional.

2.3. More general steady-state flows
Motivated by the levitation experiments to be discussed in the next section, we now
consider the equilibrium configuration for a sphere of mass m placed inside a rotating
coated horizontal cylinder (see figure 5). Assuming the radius of the cylinder is large
compared with the radius of the sphere, the flow near the sphere is, to lowest order, the
same as that of a sphere near a moving coated flat plate. However, the position of the
sphere on the cylinder and the penetration depth are no longer prescribed but depend on
the velocity U of the cylinder, which is the control variable. Moreover, the symmetry of the
pressure given by (2.4a) ensures that in the single-track configuration there is no force on
the sphere normal to the wall and hence the centre of the sphere must lie on the mid-plane
of the cylinder.

In these circumstances, (2.7) still holds and it is convenient to write it as

(Ω − U) log ho = − (Ω + U)

4

∫ ro

0
r2F(r) dr, (2.15)

but it now needs to be coupled to a vertical linear momentum balance. Writing M =
mg/μU0a where g is the acceleration due to gravity, and remembering that (2.5) holds, we
find that

M = −
∫∫

r<r0

xp dx dy = −(U + Ω)

∫∫
r<r0

r2 cos2 θF(r) dr dθ = −π(Ω + U)

∫ r0

0
r2F(r) dr.

(2.16)

When this result is combined with (2.15) we find that

M = 4π(Ω − U) log h0, (2.17)

and Ω/U can now be considered as a function of U/M by eliminating h0 between (2.15)
and (2.17). In order to analyse this problem, it is convenient to introduce a new variable λ
by writing

h0 = 1

1 + 1
2
λ2

, F = h0
−3/2F̂ and r = h0

1/2r̂ (2.18a–c)

in (2.4b) so that

r̂2
(

1 + r̂2

2

)
d2F̂
dr̂2 + r̂

(
1 + 7

2
r̂2

)
dF̂
dr̂

−
(

1 + r̂2

2

)
F̂ = 6r̂3

(
1 + r̂2

2

)2 , (2.19a)
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subject to

F̂(0) = 0 and F̂(λ) = 0. (2.19b)

Then, if we set
∫ r0

0 r2F(r) dr = ∫ λ
0 r̂2F̂(r̂) dr̂ = −I(λ), (2.15) and (2.17) can be rewritten

as

Ω

U
=

4 log
(

1 + 1
2
λ2

)
− I(λ)

4 log
(

1 + 1
2
λ2

)
+ I(λ)

and
2πU

M
= 1

4 log
(

1 + 1
2
λ2

) + 1
I(λ)

. (2.20a,b)

Thus Ω/U can be found as a function of U/M by eliminating λ between these two
parametric expressions. This relationship will be compared with the experimental evidence
in § 4, but first we will consider it asymptotically for small and large values of λ.

(i) λ→ 0. In this case r̂ is O(λ) and so, writing r̂ = λR and F̂ = λ3F̄, (2.19a) becomes,
to lowest order in λ,

R2 d2F̄
dR2 + R

dF̄
dR

− F̄ = 6R3 (2.21)

with F̄ = 0 at R = 0, 1. Hence

F̄ = 3
4

R(R2 − 1) and I(λ) = λ
6

16
(2.22a,b)

and so Ω/U → 1 as U/M → ∞. This is to be expected since the penetration depth
is small.

(ii) λ→ ∞. When we again scale r̂ with λ and put F̂ = λ−3F̃, (2.19a) now becomes, to
the lowest order in 1/λ,

R2 d2F̃
dR2 + 7R

dF̃
dR

− F̃ = 48
R3 , (2.23)

with F̃(1) = 0. Hence

F̃ = − 24
5R3 + 24

5
R

√
10−3, (2.24)

which implies that there is a boundary layer when r̂ = O(1) such that F̂ ∼ −24/5r̂3

as r̂ → ∞. Surprisingly, we can find the relevant solution to (2.19a) which is

F̂ = − 6r̂

5
(

1 + 1
2

r̂2
)2 , (2.25)

and hence we deduce that I(λ) ∼ 24
5 log λ+ O(1). Thus we find that as λ→ ∞,

Ω

U
∼ 1

4
as

U
2πM

→ 0. (2.26)

This result is also to be expected as λ→ ∞ is equivalent to h0 → 0 and, to the
lowest order, the angular velocity of the sphere is the same as if it were fully
immersed in liquid.
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Thin-film flow between a sphere and a nearly vertical plate

Numerical solutions for Ω/U as a function of U/M as calculated from (2.20a,b)
confirm these observations and will be shown in comparison with experimental results
in figure 7(b).

Although our modelling has been confined to configurations with circular wetted regions
and a single track, the experiments to be described in the next Section will reveal that
twin-track configurations are the norm when the sphere is not on the mid-plane of
the cylinder. We also note that, when the small curvature K of the rotating cylinder is
introduced into the model as a regular perturbation, the scenario described above is only
changed by O((Ka)2), with the wetted region becoming slightly elliptical in the vertical
direction.

3. The experiment

The experiments were performed in an air-conditioned laboratory where the
air temperature was maintained at 19.0 ± 0.5 ◦C. The apparatus comprised a
precision-machined Plexiglas cylinder with inner diameter 118 ± 0.05 mm and wall
thickness 2 mm. A schematic diagram showing the essential features of the apparatus
is given in figure 5. The cylinder was 250 mm long and was held mounted on a pair of
precision bearings held in two 50 mm square 70 mm high aluminium posts. The apparatus
was mounted on a 10 mm thick machined aluminium base which could be levelled using
three adjustable feet. A volume of 25 ml of viscous silicone fluid with measured kinematic
viscosity of 13 740 cSt was placed in the cylinder. The cylinder was spun round at 1 Hz
for 24 h so that it spread to create a layer of ≈0.27 mm deep on the inner wall. The
experimental conditions were checked in a subsequent investigation using a separate
cylinder where a puddle of fluid and an internal scraper was used to set the layer thickness
at predetermined values. The results of this investigation are currently being prepared for
publication by the third author.

The cylinder was driven using a powerful DC motor which was attached to a pulley on
the bearing by a gearbox. The speed of rotation was monitored using a calibrated shaft
encoder which produced 400 pulses per revolution. A Nikon 400S camera mounted on
a tripod was used to capture images and processing was carried out primarily using the
software package ImageJ. This was used to measure the position and angular velocity of
the spheres. Detailed experiments were performed with precision steel spheres although a
wide range of glass and polypropylene spheres were also used to confirm that the general
features observed were the same.

4. Overview of observations

The results presented in figure 6 will be used to provide an overview of the main features
of the experimental results.

At small rotation rates of the cylinder, the sphere remains at a fixed location on the
rising wall. A graph of the measured angular position plotted as a function of the Reynolds
number of the cylinder is presented in figure 6, where 90◦ corresponds to the mid-plane
of the cylinder. The equilibrium position of the sphere moves upwards as the speed of the
cylinder is increased and the sphere always leaves two tracks behind it as in figure 2(b).
The path of equilibrium points is labelled AB in figure 6.

At the point B, the sphere begins to oscillate vertically above and below 90◦. When
the speed of the cylinder is then reduced, the amplitude of the oscillation decreases until
a new steady state is achieved at the point corresponding to the point C. At this new
steady state the sphere leaves a single track behind it which came as a surprise since,
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Figure 6. A response diagram for the angular location of equilibrium points for a 19 mm diameter sphere on
a 0.3 mm layer of oil.
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Figure 7. (a) Plot of the slip speeds as a function of Reynolds number for a 19 mm steel sphere on an 0.3 mm
layer. The labelling is consistent with that in figure 6. (b) Comparison of the results in (a) with the solution of
(2.20a,b).

in all experiments on a moving vertical belt, single-track configurations have never been
observed. The sphere remains at 90◦ as the cylinder speed is reduced, and the track on
the cylinder is observed to decrease in size. This continues until the cylinder reaches a
speed corresponding to the point D. At this point the track behind the sphere disappears
and the sphere rolls down the wall back to a lower angle and rapidly adopts a two-track
state. Hence both the single- and double-track steady states coexist over the speed range
corresponding to C to D in figure 6.

As mentioned above, the sphere rotates steadily at equilibrium locations. The thin
lubrication layer is formed between the surface of the sphere and the cylinder wall and a
slip speed ωba/Uw = Ω/U can be measured and compared with the theory in § 2.2. Here,
ωb is the dimensional angular velocity of the sphere and Uw is the dimensional speed of the
wall. A plot of slip speed as a function of the Reynolds number, Re = UU0h/ν, where ν is
kinematic viscosity of the fluid, is given in figure 7(a). Hence, Ω/U varies between ∼0.64
and ∼0.62 when the sphere is rising up the wall in the two-track state. It then reduces to
roughly 0.5 in the single-track state when the sphere is located at 90◦. The apparent gap in
the data between B and C corresponds to the range where the motion is oscillatory.
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Thin-film flow between a sphere and a nearly vertical plate

The results between C and D correspond to the configuration modelled in § 2 and
the predictions of (2.20a,b) are shown in comparison with the experimental results in
figure 7(b). The experimental results are plotted against Re whereas the dependent variable
in (2.20a,b) is 2πU/M = kRe where k = 2πρν2a/mgh and m is 28 g and ρ is the density
of the fluid.

Given the number of ad hoc assumptions made during the modelling, the authors believe
that the comparison in figure 7(b) is highly satisfactory.

5. Conclusion

A model has been derived for a sphere rotating close to a moving vertical wall coated with
a thin viscous fluid layer. This model predicts results for the angular velocity of the sphere
which are in good agreement with the single-track observations in figure 7. The model
also predicts the flux in the track behind the sphere but experimental confirmation of this
quantity is not available.

A more complicated free-boundary problem for the two-track configuration would be
needed to describe what happens between the points B and C in figure 7. Oscillations
are observed before the double-track solution collapses into a single-track solution at C.
Our conjecture is that, once the sphere is on the vertical section of the cylinder wall, the
condition (2.14) may hold once the cylinder velocity has decreased sufficiently so that the
single-track configuration becomes possible. Although we can only say that the two sides
of the inequality (2.14) are of the same order of magnitude between the points C and D, it
is reassuring that the inequality becomes easier to satisfy as U is decreased.

We also remark that, as the velocity is decreased from C to D, the minimum gap width
between the sphere and the cylinder decreases until the theory predicts it is of the order
of microns. Thus the boundary conditions for the lubrication model which provides the
levitating forces may become invalid.

Single-track configurations have never been observed when the cylinder is replaced by a
moving vertical planar belt, and this leads us to conjecture that this is because the curvature
of the cylinder allows the sphere to approach its 90◦ equilibrium position very gradually.
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