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PLURAL ANCESTRAL LOGIC AS THE LOGIC OF
ARITHMETIC

OLIVER TATTON-BROWN

Abstract. Neo-Fregeanism aims to provide a possible route to knowledge of arithmetic via
Hume’s principle, but this is of only limited significance if it cannot account for how the
vast majority of arithmetic knowledge, accrued by ordinary people, is obtained. I argue that
Hume’s principle does not capture what is ordinarily meant by numerical identity, but that we
can do much better by buttressing plural logic with plural versions of the ancestral operator,
obtaining natural and plausible characterizations of various key arithmetic concepts, including
finiteness, equinumerosity and addition and multiplication of cardinality—revealing these to be
logical concepts, and obtaining much of ordinary arithmetic knowledge as logical knowledge.
Supplementing this with an abstraction principle and a simple axiom of infinity (known either
empirically or modally) we obtain a full interpretation of arithmetic.

One of the main aims of Neo-Fregeanism is to provide a possible route to knowledge of
arithmetic, by taking Hume’s principle to be in some sense constitutive of what is meant
by identity and difference between numbers.1 However even if successful in this, an
important question remains: can this account somehow contribute to explaining how
the vast majority of arithmetic knowledge—accrued by ordinary people in complete
ignorance of the Neo-Fregean project—is actually obtained? The importance of this
question is emphasised by Wright [23, p. 162].2 Heck [8, chap. 11] has discussed this
issue and proposed a modification of Hume’s principle that better fits an ordinary
understanding. However as I argue here, neither Hume’s principle nor Heck’s modified
principle is satisfactory as an account of what is ordinarily meant by numerical identity,
undermining their ability to account for the bulk of actual arithmetic knowledge.

This paper puts forward a new logic which allows for very natural and plausible
characterizations of various key arithmetic concepts, including finiteness, equinu-
merosity (for finite pluralities), and addition and multiplication of cardinality,
characterizations which—I argue—match a pretheoretic understanding reasonably
closely. In particular, the characterization of equinumerosity is much more faithful
to an everyday understanding of the concept than the famous definition in terms of
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1 Neo-Fregeanism is concerned with other branches of mathematics as well, of course.
2 The issue is also key to satisfying Frege’s application constraint as applied to numbers, where

the ordinary applications of numbers in counting and arithmetic are crucial [5].
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bijections used in Hume’s principle. This logic is obtained by simply buttressing plural
logic with plural versions of the ancestral operator. Various authors have defended
plural logic and ancestral logic separately as “real logics,” with neither dependent on
the other, and I argue that if this is correct then the combination of them put forward
here should also be regarded as a real logic. If so then finiteness and equinumerosity
are revealed to be purely logical concepts, and much of ordinary arithmetic knowledge
is straightforwardly obtained as logical knowledge (or perhaps inductively inferred
knowledge of logical truths). The rest of arithmetic is obtained by supplementing this
logic with a predicative numerical abstraction principle, together with a very simple
axiom of infinity—which could be obtained as an empirically known statement that
there are some things which are not collectively finite, or can take a modal form.
Alternatively one can use an impredicative abstraction principle and obtain a version
of Neo-Fregeanism which relies on a more innocent logic than the standard version,
and is much more plausible as an account of the ordinary meaning and epistemology
of statements of arithmetic.

The work here has a precursor in that of Martin [12, 13]. He set up a nominalist
system by supplementing a mereological base theory with a generalized ancestral
operator. The definitions of finiteness, equinumerosity and multiplication given here
are essentially those given by him, except that we work with pluralities of arbitrary
things instead of the fusions of atoms (mereological simples) that he uses. He did not
put his definitions to the same philosophical uses however—he appears to have been
aiming just to give a fairly strong nominalistic system for doing maths in, giving little
philosophical discussion, and not claiming his work had implications for the semantics
or epistemology of arithmetic. Here there is also a technical advance on his work, in
that in our logic we are able to prove a fact which he takes as a nonlogical postulate—as
seen in Section 5. Nonetheless, all due credit to Martin. If nothing else, the discussion
here can be seen as an argument that versions of his ideas are very relevant today.

Section 1 discusses Neo-Fregeanism and various problems with it as an account of
an ordinary person’s grasp of arithmetic. Our base plural logic is essentially that of
Oliver & Smiley [14], and Section 2 summarizes the relevant parts of their account.
In Section 3 we supplement their logic with plural versions of the ancestral operator,
and defend the result as a “real logic.” Section 4 then discusses how the result allows
a natural definition of finiteness. Section 5 discusses how it can be used to define the
notion “just as many as” and its relatives, and derives some of their basic properties,
and the validity of some practical applications. Section 6 then uses the logic to define
the notions of addition and multiplication for pluralities. Finally Section 7 discusses the
introduction of numbers via a predicative abstraction principle, with an impredicative
alternative also mentioned. There is also an appendix which briefly lays out the natural
deduction rules and semantics for plural logic as understood here.

§1. Neo-Fregeanism. The aim here is to develop a potential semantics and
epistemology for the understanding that an ordinary person (with a basic education)
has of arithmetic and finite cardinalities—this being the source of the bulk of actual
arithmetic knowledge. The kinds of arithmetic statements we seek to understand
here include paradigmatic examples such as “5+7=12,” as well as statements of
equinumerosity between pluralities, and of cardinalities of pluralities, such as “there
are twice as many cages as animals,” “there are as many tennis players here as rugby
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and football players put together,”3 and “there are three toasters in this kitchen.” The
account follows the cardinal conception of arithmetic, where numbers are taken to be
answers to “how many” questions. The most prominent existing version of the cardinal
conception is Neo-Fregeanism, whose suitability as an account of an ordinary person’s
understanding is criticised by Linnebo [11, chap. 10], in the course of motivating his
own account based on the ordinal conception of arithmetic—where numbers are taken
to be the answers to questions about the position of objects within suitable discrete
orderings. We start by discussing problems with Neo-Fregeanism as an analysis of an
everyday understanding of number, arguing that these problems are significant but also
specific to Neo-Fregeanism rather than applying to the cardinality conception more
generally. The way is thus open to a new account of arithmetic based on the cardinality
conception, which the remainder of the paper develops.

The main idea behind Neo-Fregeanism [6, 8, 22] as an account of arithmetic is to
take what is known as Hume’s principle as constitutive of what is meant by identity
between numbers. Hume’s principle states that if F and G are concepts, then the number
of things falling under F is the same as the number of things falling under G iff there is
a one-to-one correspondence between the things falling under F and the things falling
under G. This can be formalized by supplementing full second-order logic with the
abstraction principle

N (F ) = N (G) ↔ ∃R(F ∼R G),

where we write F ∼R G for the condition that R is a bijection between the x such
that F (x) and the x such that G(x). N here is an operator delivering a (first-order)
term “N (F )” given a concept F. Using full second-order logic supplemented with this
abstraction principle, one can derive the existence of an infinite progression of natural
numbers satisfying the axioms of second-order arithmetic.

For the Neo-Fregean approach to provide an account of the semantics and
epistemology of an ordinary person’s understanding of arithmetic, Hume’s principle
needs to be constitutive of what an ordinary person means by numerical identity.
Though Wright initially believed this condition to be satisfied [22, pp. 106–117], later
evolutions of Neo-Fregeanism aimed primarily to argue only that Hume’s principle
provides a possible route to a priori knowledge of arithmetic [6, chap. 5], that it
can perhaps be stipulated as something like an implicit definition of the concept of
number. Heck [8, chap. 11] defends a modified version of Hume’s principle, in which
Hume’s principle is relativized to finite concepts, as providing a plausible account of
an ordinary person’s understanding of arithmetic. As we will see though, neither the
original version of Neo-Fregeanism nor Heck’s proposed modification can be defended
as properly capturing a layman’s grasp of arithmetic.

First, there is Linnebo’s point that the number zero took a long time to be accepted
as a genuine number—whereas if a grasp of number was given by Hume’s principle,
it should have been obvious that zero was a number, since it is obvious that there are
concepts with no instances [11, p. 179].4 This I think is a reasonable objection to both

3 This statement leaves ambiguous whether a player of both rugby and football is counted
once or twice; either option is available using the resources to be developed here.

4 This can be seen as an objection even to modelling a present-day person’s grasp of arithmetic
using Hume’s principle, since if Hume’s principle is appropriate today it has presumably been
appropriate for many centuries at least.

https://doi.org/10.1017/S1755020322000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000041


308 OLIVER TATTON-BROWN

versions of Neo-Fregeanism (the original, and Heck’s modified version) as properly
fitting an everyday grasp of number, but it is sidestepped if we regard attributions of
number as applying not to a concept, but to some things—to a plurality of things.5

In colloquial English, some things must consist of at least two things, in which case
one cannot properly attribute a number to no things, so that it is no surprise that
the number zero was a late arrival. An obvious reply is that in this case, the number
one should also have aroused suspicion, as a single thing is not some things; and the
answer is that in fact it did, with the Pythagoreans for instance holding that “The One
is prior to the numbers proper” [9, p. 28]. Indeed if we are going to take the history of
number concepts as evidence for what a grasp of them consists in, then the suspicion
of the number one tells against the ordinal conception that Linnebo defends, since
there the existence of the number one—denoted by the first element of any numeral
progression—is immediate.

Obviously if we want to give an account of arithmetic as currently understood it will
have to include the numbers zero and one, so numbers cannot only be attributed to
pluralities of at least two objects. However we can reasonably hold that the “number
of” operator is rightly applied to plural terms, that plural terms have historically been
taken to necessarily denote at least two objects (when they denote at all)—hence the
status of numbers zero and one—but that in fact, we can have a perfectly coherent
conception of plural terms as terms that can denote no objects, or one object, or some
objects. This expanded conception of plural terms can properly underlie an ordinary
person’s grasp of number even if they do not consciously recognise it themselves.6

The next objection to Neo-Fregeanism is the simple point that for many examples,
the definition of equinumerosity in terms of the existence of a bijection just does not
intuitively get the meaning right. If one says for instance that there will come a day as
many days in the future as there are birds in the sky, intuitively—to me at least—this
statement does not assert some way of pairing up birds with days. I conjecture that if
one surveyed members of the public about the meaning of such a statement, few would
volunteer a suggestion in terms of pairing; perhaps an answer in terms of counting
the birds, and then counting that many days into the future, would be more likely.
Similarly, if one says that there are at least as many planets in the universe as grains of
sand on earth, this does not appear intuitively to be an assertion about the existence of
an injective function from grains of sand to planets (and I think if surveyed, members
of the public would be even less likely to volunteer this as an answer).

Of course this is not conclusive—we do not have direct introspective access to the
conceptual workings of our minds. But it is telling that neither Heck nor Wright
claims that the bijection definition of equinumerosity is obviously correct. Indeed
Heck in fact argues that a basic understanding of equinumerosity does not require
grasping the bijection characterization [8, pp. 168–172], arguing instead for three basic
equinumerosity principles. In the presence of full second-order logic one can argue

5 In English the “number of” operator attaches to a bare plural, rather than a definite plural,
but there are cases (as in “rabbits are mammals”) where interpreting bare plurals in terms of
pluralities is appropriate.

6 And in allowing plural terms that denote no objects, or one object, we are not changing the
subject (as moving to an interpretation in terms of concepts would be): we are using a view
of plurals that might always have been in use had there not been philosophical objections to
it, which Oliver & Smiley [14] work to defuse.

https://doi.org/10.1017/S1755020322000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000041


PLURAL ANCESTRAL LOGIC AS THE LOGIC OF ARITHMETIC 309

that for finite concepts, these principles are equivalent to the bijection definition (we
will return to these principles in Section 5, and see that they are closely related to our
definition of equinumerosity). Heck later gives a similar argument that by considering
the act of counting one can see that if F has finitely many instances, then the number
of Fs is the number of Gs iff there is a bijection between the Fs and the Gs [8, p. 248].
Wright, too, does not claim the immediate correctness of the bijection definition of
equinumerosity, instead arguing again that in the presence of second-order logic, one
can come to be convinced that the bijection definition is equivalent to one’s existing
concept [22, pp. 106–107]. But all any of these arguments establish is that the bijection
definition is extensionally equivalent to what is ordinarily meant by equinumerosity,
not that it is what a grasp of that concept typically consists of.

Further evidence against the latter comes from considering infinite cardinalities.
Indeed if an understanding of equinumerosity is given by the definition in terms of
bijections, the extension of Hume’s principle to the infinite case would and should be
immediate—whereas it took a singular genius in the form of Cantor to define and
explore the notion of cardinality of infinite sets, and when he did so “he encountered
widespread incomprehension and opposition” [11, p. 180]. This incomprehension
persists to some extent today. The idea that there are different sizes of infinity—
though very basic, mathematically speaking—is often discussed as an example of
a counterintuitive feature of modern mathematics. Students are also reported to find
this idea challenging, with Heck [8, p. 244] describing one who finds it “very worrying,”
a source of genuine unease, this kind of case emphasising (in Heck’s view) the size of
the conceptual leap required to move from finite to infinite cardinalities. If Hume’s
principle is a proper formalization of an ordinary grasp of number, the magnitude of
this conceptual leap is inexplicable—cardinalities of infinite concepts work in exactly
the same way as the familiar finite cardinalities, so what is the problem? Heck tries
to address this issue by claiming that Hume’s principle should be replaced by “Finite
Hume’s principle,” Hume’s principle relativized to finite concepts:

Finite(F ) ∨ Finite(G) → (N (F ) = N (G) ↔ ∃R(F ∼R G)).

Heck argues that by reflecting on the ordinary process of counting, one can come
to see that this equivalence (as a material conditional) is true—that if the right-
hand side holds, then the left-hand side holds, and vice versa [8, p. 248]. Since this
argument involves the notion of counting, it does not extend to infinite concepts, and
so—Heck thinks—one has a good reason for the version of Hume’s principle relativized
specifically to finite concepts, and an explanation of why infinite cardinalities require
a conceptual leap. The problem with this is simple. If Finite Hume’s principle was
actually a proper formalization of an ordinary person’s grasp of number, then there
would still (as with Hume’s principle) be no conceptual leap to the infinite case—
our layman already thinks about equinumerosity in terms of bijections, and they just
have to be told that the same conceptual machinery that they use for finite concepts
also applies to infinite concepts. But this is patently not the case—the reaction to
Cantor’s work, and the troubled reaction of present-day students to different sizes
of infinity, indicates that something genuinely novel is taking place in the move from
finite to infinite cardinalities, more than just the dropping of a restriction to a special
case (finite concepts). And this point is entirely consistent with Heck’s argument: Heck
shows how one who thinks of cardinality in terms of counting can be convinced that this
is equivalent to a definition in terms of bijections, but that leaves open the possibility
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that thinking in terms of bijections may be basically new—as it is, for many people.
If a formal account of an ordinary person’s grasp of arithmetic employs concepts
understanding of which would not naturally lead to a grasp of infinite cardinality, that
is an advantage.

A final problem with Heck’s version of Hume’s principle is that it can only formalize
the layman’s understanding of arithmetic if the layman has an understanding of
successor functions as formalized in full second-order logic—rather than merely
predicative second-order logic. Indeed for Heck, finiteness of a concept is given by
the existence of an appropriate successor function, repeated application of which takes
one from a distinguished initial element, through every object falling under the concept
(with each hit exactly once), to a distinguished final element. But in predicative second-
order logic the existence of such a function depends on it being definable, and there
is no obvious way to define such a function for the finitely many atoms in the earth,
say—we cannot just enumerate them by name, as our language does not contain such
names. At any rate, our confidence in the ability to define such a successor function
for these objects, or many other examples of finitely many objects, is much lower than
our confidence in their finiteness.

The distinction between predicative and full second-order logic matters here, since
a grasp of the former can plausibly be attributed to a person with an ordinary grasp
of English, but a grasp of the latter much less so. If an ordinary educated person can
be said to have an innate understanding of full second-order logic today, presumably
the same has been true for a number of centuries at least. But the modern notion
of function provided by second-order logic, the notion of function as an arbitrary
correspondence—rather than a geometric curve, or given by an analytic formula—
is a recent invention, whose evolution in mathematics was gradual, hesitant and
contested [10]. As late as the early twentieth century, eminent mathematicians were
questioning whether the notion of function as arbitrary correspondence is legitimate,
or whether justifying the existence of a function requires specifying it in a lawlike way—
this was part of the controversy over the axiom of choice [10, pp. 296–297]. Today, too,
students have difficulty with the notion of function as arbitrary correspondence—for
many, “functions given by more than one rule are not functions... and functions must
consist of algebraic symbols” [7, p. 706]. If people typically already had a pre-existing
grasp of full second-order logic, one would expect both historical mathematicians
and modern-day students to find the notion of function as arbitrary correspondence
more natural, and not to latch on so much more easily to the rival predicative notion
of function (seen in the preference for functions given by algebraic expressions). If
an account of everyday arithmetic competence can avoid attributing a grasp of full
second-order logic to the layman, that is a point in its favour.

Though there are thus many objections to Neo-Fregeanism as an account of a
layman’s understanding of arithmetic, these should not be taken as general objections
to the cardinality conception of arithmetic. There clearly is something that an ordinary
person means when they talk of certain things being finite, or being as many as certain
other things; and it is worth investigating if we can give a plausible analysis of this, and
whether such an analysis has to be dependent on a prior account of numerals, or of
numbers as objects—as it would be on the view developed by Linnebo [11, chap. 10].
There is also some initial plausibility to developing an account of arithmetic based
on such notions, stemming from the common sense idea that “2+2=4” means that
if you have two things, and add two more things, then you have four things. I find
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that something like this is often volunteered by laymen if the question of the meaning
of arithmetic arises, and I would speculate that empirical studies of the philosophical
views of ordinary people would find the same. This kind of view is also the basis for
old puzzles about arithmetic, such as the claim that 1+1 is not always 2, since one
raindrop meeting a second may combine with it, resulting in 1 rather than 2. Of course
the fact that ordinary people think they mean something by certain statements is not
conclusive evidence that they actually do, but it is reasonable grounds for taking the
possibility seriously.

This is the motivation for the account put forward in the following, a version of the
cardinal conception of arithmetic. It has something of an ordinal flavour to it though,
on the view of ordinal numbers as measures of iteration—a view which comes to the
fore in Tait’s account of finitism [18, p. 27], and which gives the sense in which the
transfinite ordinals are ordinal numbers. Indeed the key concepts such as finiteness
and equinumerosity are defined in terms of ancestral operators, and the ancestral can
be viewed as a natural way of capturing iteration of a relation. My account avoids
Linnebo’s objection regarding the number zero by being based on plural logic, as
discussed above; it avoids the intuitive implausibility of an account in terms of pairings;
it makes clear formally why the extension to infinite cardinalities is a conceptual leap;
and it avoids attributing the layman a grasp of full second-order logic. Linnebo makes
two further objections to the cardinality conception of arithmetic which I do not think
are convincing [11, pp. 180–182], but which I do not have space to address before
continuing with the main argument of the paper.

§2. Plural logic. As has been advertised, the view of arithmetic to be put forward
here is one where a number is stated to be the cardinality of some things—a plurality of
things. The logic of reference to, and reasoning about, multiple things at once—rather
than just one individual at a time—is known as plural logic. The modern study of
plural logic stems from Boolos [1, 2], who argues that certain statements of ordinary
English, such as the Geach–Kaplan sentence “some critics admire only one another,”
cannot be given an analysis in first-order logic: they require instead an analysis which
takes seriously the plural quantifier “there are some ...”. The analysis of plural idioms
such as this has since been carried forward by various authors. We employ here the
account of Oliver & Smiley [14], of whose most relevant parts we give a brief summary
(for much more detailed discussion and argument, refer to the original).

The central thesis of Oliver & Smiley [14] is that there is such a thing as plural
denotation—a semantic relation holding between terms and things, plural in the sense
that a particular term may denote more than one thing at once [14, p. 2]. A term thus
capable of denoting more than one thing is called plural, contrasted with the familiar
singular terms capable of denoting at most one thing. There are plural proper names
(“The Rocky Mountains”), plural definite descriptions (“the cars in the garage”) and
plural terms obtained by applying a function sign to its arguments (“Queen Victoria’s
children”) [14, pp. 2 and 78–80]. Plural terms feature significantly in arguments, such
as “John’s kids are Sally and Laurence; John’s kids are spoilt; so Sally and Laurence
are spoilt.”

Predicates that can take singular terms as arguments can typically take plural terms
as arguments as well: “the chocolates are in the cupboard/are liable to melt/are
delicious.” Examples such as these are termed distributive predicates—a predicate being
distributive if it is analytic that it holds of some things iff it holds of each individually. A
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predicate is collective if it is not distributive—for instance “the men carried the coffin”
(they didn’t each carry the coffin individually). The same expression can sometimes
be read as either distributive or collective, such as “they cost $5” (each individually
or all taken together). For n-place predicates,7 the distributive/collective distinction
applies to each place separately. For instance “[certain people] wrote [certain books]”
is collective at its first place, distributive at its second [14, pp. 2–3].

As well as arguing for admitting terms which can denote more than one object, Oliver
& Smiley [14, sec. 5.6] argue for the importance of allowing for empty terms, where
a term—either singular or plural—is empty if it does not, in fact, denote anything.8

Consonant with this, they argue too that definite descriptions should be regarded as
genuine singular terms, despite Russellian qualms [14, chaps. 5 and 8]. I find their
arguments very plausible, and will follow their lead here. They identify four kinds
of definite descriptions, of which we will use two: the familiar singular definition
descriptions—terms of the form “the x such that φ,” formally written “�x φ,” which
denotes the unique object satisfying “φ” if there is a unique such object; and exhaustive
descriptions, of the form “those x which individually φ,” written “x:φ,” which denotes
those objects y such that y (by itself) satisfies “φ.” Thus for instance “x:x = x” denotes
every object. The term “zilch” is introduced as “the x which is not self-identical,” as a
paradigmatic empty term, which we write as o.

It has typically been held that if we apply a function sign f to terms t1, ..., tn,
then the resulting term f(t1, ... , tn) is empty if any ti is empty. Oliver & Smiley [14,
p. 87] define a function sign as strong if it is analytic that it behaves in this way,
weak otherwise. Though various authors have objected to the idea of weak function
signs, Oliver and Smiley argue these objections are feeble [14, pp. 87–88]. They give
natural examples of weak function signs such as “{x | x = y},” which applied to an
empty term such as “Pegasus” gives “{x | x = Pegasus},” which denotes the empty
set—rather than denoting nothing. Similarly, if we take the mereological fusion of
Lloyd George with Pegasus, we obtain Lloyd George (rather than nothing). A weak
function sign will typically express a function which is co-partial—a function which
maps nothing to something, the dual of the notion of partial function, which maps
something to nothing. Co-partial functions are important for our purposes here, since
we want for instance “the number of black holes in our solar system” to be the object
zero, rather than nothing—so that “the number of [some things]” expresses a co-partial
function.9

As well as weak function signs, Oliver & Smiley [14, p. 90] defend the notion of weak
predicates, where a one-place predicate F is strong if it is analytic that if t is empty then
Ft is false, and is otherwise weak. For n-place predicates the distinction between strong

7 We use the term “predicate” to include n-place predicates, not just 1-place predicates,
following Oliver & Smiley [14, p. 3]. We distinguish n-place predicates from relations, which
are what the predicates express (in the same way a 1-place predicate expresses a property).

8 Since a plural term is defined as a term capable of denoting more than one object, an empty
plural term is a term capable of denoting more than one object—such as “the eggs in the
cupboard”—but which that in fact denotes nothing.

9 The examples that Oliver and Smiley give of co-partial functions are not one that would be
used by a layman, so one might worry whether we should really see co-partial functions as
playing a role in an ordinary person’s understanding of arithmetic. This can just be viewed
though as another reason why the number zero took time to be accepted, as it is obtained by
applying the co-partial function “number of” to no things.
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and weak applies to each place. The logical predicate “is identical to,” or =, is taken to
be a strong predicate, with a = b holding only if a and b both exist (we sometimes call
this strong identity to emphasise this). An example of a weak predicate is “do/does not
exist.” Our plural ancestral operators, discussed in Section 3, form weak predicates,
and the predicates for finiteness and equinumerosity that we define via these operators
in Sections 4 and 5 are weak.

A logical relation that makes an appearance when we move from singular to plural
logic is that of inclusion, which we will symbolise � [14, sec. 7.2]. In a � b with b
plural, � can be read as “is/are among,” and with b singular, � can be read “is/are.”
Thus � can be read “is/are, or is/are among, as the case may be.” This is a strong
predicate, with the truth of a � b implying that “a” and “b” are not empty terms.

Oliver & Smiley [14, chap. 13] present a formal account of the logic just described,
defining its syntax, axiom system and semantics. However their formal account is not
a perfect fit for our purposes here. First, we want what Oliver and Smiley call the
“inclusive” interpretation of plural quantifiers, where the range of a plural quantifier
∀xx or ∃xx includes the case where xx is assigned no values, and is an empty term.
On our intended inclusive interpretation, ∃xx φ can be read as “zilch or some thing
φs or some things φ,” and ∀xx φ can be read as “whenever you have no things, or
some thing, or some things, that thing φs or those things φ.”10 Second, since Oliver
and Smiley present the deductive system as a Hilbert style axiom system rather than
a natural deduction system, it takes more effort than it could to discern from their
account how reasoning using the deductive system will actually proceed in practice.
Third, they present the semantics of the system using an unspecified form of higher-
order logic as the metalanguage—a higher-order logic whose intended properties are
unclear. Typical higher-order logics only allow quantification over a single type at
a time, where all individuals form a type, and relations of different arities, or over
different types, are themselves of different types (similarly for functions). But the key
notion in Oliver and Smiley’s semantics is that of a valuation, a function assigning each
linguistic expression of the object language—its variables, constant symbols, predicates
and function symbols—the object, relation or function that linguistic expressions take
as a value. Thus a valuation is a function from objects of the base type (linguistic
expressions) to objects of various different types—such as functions and relations
of different arities. Presumably Oliver and Smiley have in mind some conception of
higher-order logic that allows a function to take values in separate types, but it isn’t
clear what it is.

Thus in the Appendix to this paper, we give a new formal presentation of plural
logic as understood here. Though closely following Oliver and Smiley’s in spirit, it
addresses the three issues just mentioned: it uses the inclusive interpretation of the
plural quantifiers; it presents the deductive system in a form of natural deduction,
making it more transparent how deductions according to the logic proceed; and it uses
set theory, phrased with plural logic as the background logic, as the metalanguage. This
base plural logic is buttressed with plural ancestral and plural generalized ancestral
operators in Section 3 to give the “logic of arithmetic” that is the subject of this paper.
In the background plural set theory, we use {aa} to denote the set whose members are
exactly the objects aa, if such a set exists.

10 See the discussion of Oliver & Smiley [14, p. 113]. This is the form of quantification intended
by Burgess & Rosen [3, pp. 153–156].
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We use x, y, ... for singular variables and xx, yy, ... for plural variables. Quantifiers
can bind either, and no further syntactic distinction is made between singular and
plural terms—for the reasons discussed by Oliver & Smiley [14, p. 218]. Any function
symbol can be applied to any terms as arguments, as can any predicate; if for instance
a function symbol expresses a function that can only take a singular argument, then it
applying it to a term denoting more than one object will produce an empty term as a
result.

To allow us to express notions like that of a term taking some value (rather than
being empty), or taking at most one value, we introduce various abbreviations, along
similar lines to Oliver & Smiley [14, chap. 13]. If t is a term we write E! (t), meaning “t
exists,” for ∃x x � t; we write S(t), meaning “t is singular” for ∀x (x � t → x = t);
and we write S! (t), meaning “t exists and is singular” for ∃x (x = t)—where x is
the first singular variable not free in t according to some ordering of the singular
variables. Then for instance if we want f to be a function symbol expressing a function
that can only take singular arguments, rather than plural arguments, we can state
that ∀xx ¬S(xx) → ¬E! (f(xx)). Additionally, if s and t are terms we write s ≡ t
for s = t ∨ (¬E! (s) ∧ ¬E! (t)), the predicate termed “weak equality” by Oliver and
Smiley—equality which holds with empty terms as arguments.

One feature of the base plural logic that is worth mentioning is that, like that of
Oliver and Smiley, it allows the domain of quantification to be empty. This is argued
by Oliver & Smiley [14, sec. 11.1] to be an important aspect of topic neutrality, and
allows us to properly handle the case where there are no individuals to be counted (and
so the number of individuals is zero). It is thus a universally free logic. We follow Oliver
& Smiley [14, sec. 11.1] in avoiding the usual problems with universally free logic by
allowing variable assignments to be partial, and to assign no value to a variable (so
that variables may be empty terms). Importantly, though our logic is universally free,
this is no real hindrance: under the assumption that there is an object, one can in effect
reason as though the singular variables are all nonempty, as discussed near the end of
the Appendix (this is a point that Oliver and Smiley do not make, and which may be
much less obvious from the point of view of their Hilbert style axiomatization).

§3. Plural ancestrals. To obtain the “logic of arithmetic” that is the subject of this
paper, we supplement the base plural logic from the Appendix with plural versions of
the ancestral operator.

The ancestral operator is an operator which takes a formula φ and distinct (singular)
variables x1, x2, and produces a binary predicate symbol φ∗x1,x2

in which occurrences
of x1 and x2 in φ are bound, where the relation expressed by φ∗x1,x2

is the reflexive
transitive closure of the relation expressed by φ(x1, x2) [16, p. 227]. In other words,
φ∗x1,x2

(r, s) states that the object denoted by s can be reached from the object denoted by
r by finite iteration of the relation expressed by φ(x1, x2). The operator takes its name
from the fact that “s is r or is an ancestor of r” is the instance (Parent(x1, x2))∗x1,x2

(s, r)
of the ancestral.11 We will term this operator the singular ancestral to differentiate it
from the versions that follow.

11 One gets a more exact match of the ancestral operator with the predicate “ancestor of” if
one takes the ancestral to give the transitive closure of a relation, rather than the reflexive
transitive closure—as [4] do—but the latter is more suited to our purposes here.
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Formally, we can give a semantics for the singular ancestral by stating that D, v �
φ∗x1,x2

(r, s) iff there are individuals a0 ... an ∈ D with n � 0 such that v(r) = a0, v(s) =
an and for each i ∈ {0 ... (n – 1)}, we have that D, v[ai |x1, ai+1|x2] � φ. Importantly
if our metalanguage contains the singular ancestral, we can instead give a semantics
using the operator in the metalanguage, and eschewing sequences: we state that D, v �
φ∗x1,x2

(r, s) iff

(D, v[b1|x1, b2|x2] � φ)∗b1,b2(v(r), v(s)),

where “b1” and “b2” are distinct singular metavariables. This can be proved equivalent
to the first semantics, if for instance our metalanguage is set theory with the singular
ancestral in its logic (and the standard deductive rules for the singular ancestral), with
the separation scheme expanded to include formulae containing the singular ancestral.
There are standard deductive rules associated with the singular ancestral, which we
omit for reasons of brevity. In the context of our base plural logic, they can be obtained
by restricting the rules for the plural ancestral below to singular nonempty terms (terms
t satisfying S! (t)), with the principle that if φ∗x1,x2

(r, s) then S! (r) and S! (s).
The plural ancestral is just the singular ancestral but with the restriction to singular

arguments lifted. It takes a formula φ and distinct plural variables xx1, xx2 and
produces a binary predicate symbol φ∗xx1,xx2

in which occurrences of xx1 and xx2 in
φ are bound. If our background metalogic allows us to form the reflexive transitive
closure of a binary relation which can take plural arguments (for instance if it has
a comprehension scheme which allows us to form arbitrary intersections of such
relations) then we can characterize φ∗xx1,xx2

again as expressing the reflexive transitive
closure of the relation expressed by φ(xx1, xx2).

We can also again view φ∗xx1,xx2
(r, s) as stating that the things denoted by t can

be reached from the things denoted by s by finite iteration of the relation expressed
by φ(xx1, xx2). We can give an informal characterization of the operator along these
lines, saying that (φ)∗xx1,xx2

(qq, zz) holds iff

• qq ≡ zz;
• Or φ[qq|xx1, zz|xx2];
• Or there are uu such that φ[qq|xx1, uu|xx2] and φ[uu|xx1, zz|xx2];
• Or there are uu and there are uu′ such that φ[qq|xx1, uu|xx2] and
φ[uu|xx1, uu

′|xx2] and φ[uu′|xx1, zz|xx2];
• Or there are uu and there are uu′ and there are uu′′ such that we

have φ[qq|xx1, uu|xx2] and φ[uu|xx1, uu
′|xx2] and φ[uu′|xx1, uu

′′|xx2] and
φ[uu′′|xx1, zz|xx2];

and so on. If one replaced the plural variables here with singular variables, one would
have an informal characterization of the singular ancestral.

We can give formal semantics along similar lines to those for the singular ancestral,
stating that D, v � φ∗xx1,xx2

(r, s) iff there is a sequence (p0, ... , pn) of subsets of D with
n � 0 such that {v(r)} = p0, {v(s)} = pn and for each i ∈ {0 ... (n – 1)}, if aai are the
elements of pi and aai+1 are the elements of pi+1 we have D, v[aai |xx1, aai+1|xx2] � φ.
We need to use a sequence (p0 ... pn) of subsets since we have no direct way to talk
about the values taken by variably many plural terms, but we are not committed to
interpreting plural terms via sets, since again we can give an alternative semantics using
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the operator in the metalanguage: stating that D, v � φ∗xx1,xx2
(r, s) iff

(D, v[bb1|xx1, bb2|xx2] � φ)∗bb1,bb2 (v(r), v(s)),

where “bb1” and “bb2” are distinct plural metavariables.
As an example of how this operator forms predicates of a general kind that is familiar

and unsuspicious (though giving the exact details of the example is somewhat fiddly),
we can consider the case of a secretive cabal of ne’er-do-wells—formed from some
initial group of members, with periodic ceremonies where the new membership of the
cabal is decided on. Then if the uu are the initial membership, and we let C (xx, yy)
be the relation that holds between the xx and the yy if the xx hold an appropriate
ceremony sanctioning the yy as the new membership, then

(C (xx, yy))xx,yy(uu, zz)

is a rough attempt to characterize the zz being the membership of the cabal at some
stage.12

The plural ancestral is governed by rules which parallel those normally given for the
singular ancestral, except applying to any terms, rather than just singular nonempty
terms. We write P∗ to identify these rules as those for the plural ancestral operator.

P∗-I1
φ∗�xx(r, r)

φ∗�xx(r, s1) φ[s1|xx1, s2|xx2]
P∗-I2

φ∗�xx(r, s2)

∀xx1 xx2 ((� ∧ φ) → �[xx2|xx1]) φ∗�xx(r, s)
P∗-E

�[r|xx1] → �[s |xx1]

In rule P∗-I2 we require that s1 and s2 are free for xx1 and xx2 respectively in φ, and in
rule P∗-E we require that xx2 is not free in �.

Importantly unlike the singular ancestral, the plural ancestral forms weak
predicates—predicates which can hold with empty terms as arguments. For instance
suppose we write Children(xx1, xx2) to abbreviate

xx2 = (y: ∃x x ≺ xx1 ∧ Parent(x, y)),

i.e., the statement that the xx2 are exactly the children of all the xx1. Then applying the
ancestral to this predicate gives a weak predicate, where (Children(xx1, xx2))∗�xx(s, o)
holds iff some generation of descendants of the things s is empty.

12 This conveys the intuitive idea, but doesn’t quite work since if the xx hold a membership
ceremony sanctioning the yy as the new membership, but do so before the xx themselves
were sanctioned as the membership, then the yy do not thereby become the membership of
the cabal. We can iron out this wrinkle by using time segments of people instead (at the cost
of intuitiveness), with time segments xx of people with inter-ceremony duration sanctioning
time segments yy of people as the new membership, with the yy also having inter-ceremony
duration.
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The plural ancestral includes the singular ancestral as a special case, with φ∗x1,x2
(r, s)

being definable as

S! (r) ∧ (∃x1 ∃x2 x1 = xx1 ∧ x2 = xx2 ∧ φ)∗xx1,xx2
(r, s),

where xx1 and xx2 are distinct plural variables not free in φ. Indeed if both operators
are included in the logic then these two expressions are provably equivalent, and if
only the plural ancestral is included then the latter expression can be proved to have
the intended semantics of the former (on either semantics), and to satisfy its deductive
rules.

The third and final form of the ancestral we will consider is that of the plural
generalized ancestral. This takes a formula φ, together with four distinct plural
variables xx1, xx2, yy1, and yy2, and produces a binary predicate symbol φ∗xx1,xx2,yy1,yy2
in which occurrences of xx1, xx2, yy1, and yy2 in φ are bound. We can give an informal
characterization of this operator along similar lines to that of the plural ancestral, but
more verbose, saying that φ∗xx1,xx2,yy1,yy2

(pp, qq,ww, zz) holds iff

• pp ≡ ww and qq ≡ zz;
• Or φ[pp|xx1, qq|yy1, ww|xx2, zz|yy2];
• Or there are uu and there are vv such that:

φ[pp|xx1, qq|yy1, uu|xx2, vv|yy2];

φ[uu|xx1, vv|yy1, ww|xx2, zz|yy2];

• Or there are uu and there are uu′, and there are vv and there are vv′, such that:

φ[pp|xx1, qq|yy1, uu|xx2, vv|yy2];

φ[uu|xx1, vv|yy1, uu
′|xx2, vv

′|yy2];

φ[uu′|xx1, vv
′|yy1, ww|xx2, zz|yy2];

• Or there are uu and there are uu′ and there are uu′′, and there are vv and there
are vv′ and there are vv′′, such that:

φ[pp|xx1, qq|yy1, uu|xx2, vv|yy2];

φ[uu|xx1, vv|yy1, uu
′|xx2, vv

′|yy2];

φ[uu′|xx1, vv
′|yy1, uu

′′|xx2, vv
′′|yy2];

φ[uu′′|xx1, vv
′′|yy1, ww|xx2, zz|yy2];

and so on.
We can give a formal semantics along the same lines as before, stating that

D, v � φ∗xx1,xx2,yy1,yy2
(q, r, s, t) iff there is a sequence ((l0, p0), ... , (ln, pn)) of pairs of

subsets of D with n � 0 such that {v(q)} = l0, {v(r)} = p0, {v(s)} = ln, {v(t)} =
pn and for each i ∈ {0 ... (n – 1)}, if aai are the elements of li , bbi are the
elements of pi , aai+1 are the elements of li+1 and bbi+1 are the elements of pi+1

then D, v[aai |xx1, aai+1|xx2, bbi |yy1, bbi+1|yy2] � φ. Again we are not committed to
interpreting plural terms via sets, since we can give an alternative semantics using the
operator in the metalanguage: stating that D, v � φ∗xx1,xx2,yy1,yy2

(q, r, s, t) iff

(D, v[aa1|xx1, aa2|xx2, bb1|yy1, bb2|yy2] � φ)∗�aa, �bb(v(q), v(r), v(s), v(t)),

where “aa1,” “aa2,” “bb1” and “bb2” are distinct plural metavariables.
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We can illustrate the meaning of this operator, and its ability to form unsuspicious
predicates, by another version of the cabal example from before. This time we have
the A-cabal and its sister cabal, the B-cabal. The new membership of each cabal
is determined in a joint ceremony, in which the existing members of both cabals
are required to be present; the existing members of the A-cabal play a certain
ceremonial role; the existing members of the B-cabal play a different ceremonial
role; and the proposed new membership of each cabal plays a further distinct role.
Again we can give an intuitive but rough characterization of this concept using the
plural generalized ancestral, letting C (xx1, xx2, yy1, yy2) as the relation holding if a
membership ceremony is correctly held by the xx1 and xx2 which sanctions the yy1 as
the new membership of the A-cabal, the yy2 as the new membership of the B-cabal,
and with the xx1 playing the role of the A-cabal members, and the xx2 playing the role
of the B-cabal members. Then if we let uu be the initial members of the A-cabal, and
the vv the initial members of the B-cabal, then we have that

(C (xx1, xx2, yy1, yy2))∗xx1,xx2,yy1,yy2
(uu, vv, ww, zz)

is a rough characterization of the ww and the zz being the membership of the A-cabal
and B-cabal respectively at some contemporaneous stage.13 This predicate does not
appear to be definable in terms of the plural ancestral alone.14

The plural generalized ancestral is governed by rules paralleling those of the plural
ancestral, but with more arguments. We write PG∗ to identify these rules as those for
the plural generalized ancestral operator.

PG∗-I1
φ∗�xx, �yy(q, r, q, r)

φ∗�xx, �yy(q, r, s1, t1) φ[s1|xx1, s2|xx2, t1|yy1, t2|yy2]
PG∗-I2

φ∗�xx, �yy(q, r, s2, t2)

∀xx1 xx2 ((� ∧ φ) → �[xx2|xx1, yy2|yy1]) φ∗�xx, �yy(q, r, s, t)
PG∗-E

�[q|xx1, r|yy1] → �[s |xx1, t|yy1]

In rule PG∗-I2 we require that s1, s2, t1 and t2 are free for xx1, xx2, yy1, and yy2

respectively. In rule PGG∗-E we require that xx2 and yy2 are not free in �.
The plural ancestral can be defined in terms of the plural generalized ancestral.

Indeed φ∗xx1,xx2
(r, s) can be defined as φ∗xx1,xx2,yy1,yy2

(r, c, s, c) where the yyi are not
free in φ and c is any closed term. These expressions are provably equivalent if both the

13 Again this conveys the intuitive idea, but doesn’t quite work since if the xx1 and the xx2 hold
a membership ceremony sanctioning the yy1 and the yy2 as the new memberships, but do
so before they themselves were sanctioned as the memberships, then the yy1 and the yy2 do
not thereby become the memberships of the respective cabals. We can again iron this wrinkle
out by using suitable time segments of people instead (at the cost of intuitiveness).

14 It appears one cannot for instance define the predicate “the xx are the membership of the
two cabals combined, at some stage” using the plural ancestral, because we need to know
which cabals each participant in the ceremony is a member of to ensure the ceremony has
been carried out correctly.
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plural ancestral and plural generalized ancestral are present in the logic, and if only
the plural generalized ancestral is present then the latter expression can be proved to
have the intended semantics of the former, and to satisfy its deductive rules.

We will take the logic of this paper to be the base plural logic of the Appendix
supplemented by the plural ancestral and plural generalized ancestral operators
(though the former is redundant, as just noted). This logic has a plausible claim
to being a “real logic” (though this notion is not without obscurity). Of course, this is
dependent on us regarding the base plural logic itself as a real logic. Oliver & Smiley
[14] draw a convincing parallel between plural terms and plural quantification and
singular terms and singular quantification, so that in as much as we have reason to
regard standard first-order logic as a real logic, the same should go for their plural logic
(and our base plural logic). Plural logic, on their approach, is ontologically innocent:
we are not requiring the existence of any new entities, such as mysterious “pluralities,”
but are just appealing to a plural notion of denotation—the ability of a term to denote
multiple objects.

Supplementing the base plural logic with our ancestral operators arguably should
not impact its status as a real logic, either. The logic remains ontologically innocent,
as we are still not committed to interpreting plural terms via sets, and can instead
state the semantics by just using the same operators in the metalanguage. Smith [17]
argues that the singular ancestral should be regarded as a genuine logical operator, a
conceptual primitive intermediate between first- and second-order logic, and Parsons
[15, chap. 8] argues that one can introduce the predicate “natural number” by laying
down the relevant introduction rules as canonical ways of attributing the predicate to
objects—an argument which generalizes immediately to other instances of the singular
ancestral. If these defences of the singular ancestral—which in no way appeal to
an interpretation of it in plural logic—are correct, then exactly the same should go
for the plural ancestral operators we have introduced here, about which very similar
points can be made. The ancestral operators are governed by simple introduction and
elimination rules, in the same manner as the propositional connectives and quantifiers
are. The rules characterize these operators uniquely, in the sense that in each case,
if there are two predicates φ∗ and φ+ satisfying the deductive rules for the predicate
symbol formed from φ (with a given choice of bound variables) then one can prove
these predicates coextensional. The rules are conservative in the sense that following a
sequence of instances of the introduction rules by an instance of the elimination rule
always gives a result that was already provably without using the ancestral; arguing
this requires the ability to argue by induction or recursion in the metalanguage—
which is no more circular than obtaining the parallel conservativeness results for
propositional connectives using the corresponding logical rules in the metalanguage.
They also satisfy Tarki’s permutation-invariance requirement, when the ancestral is
regarded as a function from relations to relations [19]. Of course how we should
determine which concepts should count as those of “real logic” is a difficult question,
and merits much further discussion, but there is no obvious objection to the plural
ancestral and plural generalized ancestral that would not apply equally to the singular
ancestral, and moreover to the propositional connectives and quantifiers. One residual
worry may concern the status of induction—whether somehow this is less “obvious”
as a primitive form of reasoning than other varieties of deduction. I note this worry,
but in my view it is not compelling.
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As with other logical concepts, we can view a grasp of these ancestral operators
as given—at least in paradigmatic cases, being aware of the points made by
Williamson [21]—by proficiency with their introduction and elimination rules. Then
the cabal examples earlier suggest that ordinary people typically do grasp at least
some instances of the plural ancestral and plural generalized ancestral, with the
predicates “member of [the/the A/the B] cabal” being of an ordinary kind, and most
naturally seen as defined via the plural ancestral and plural generalized ancestral in
the manner above. Almost everyone would be proficient with uses of the introduction
and elimination rules for these examples; this is obvious for the introduction rules,
and an instance of the elimination rule for “member of the cabal in year I” is the
inference that if all initial members of the cabal are murderers, and each year all new
members admitted are murderers, then all members of the cabal in every year are
always murderers. One can give a similar example for the A-cabal and B-cabal, say
with murderers and arsonists. These kinds of inductive inferences would, I think, be
immediately accepted by almost anyone.

As mentioned in the introduction, the work here has a precursor in that of Martin
[12, 13]. He was (as far as I’m aware) the first to define the generalized ancestral,
giving a version of the operator for singular variables. Martin’s purpose was to give a
nominalistic system in which a reasonable amount of mathematics could be carried out,
rather than to argue for a philosophical analysis of arithmetic in terms of ancestrals.
But ancestrals do have plausibility as the basis of numerous arithmetic concepts: as
well as the concepts discussed here that can be defined in terms of our plural ancestrals,
I have argued previously [20] that the double ancestral (slightly less general than the
singular generalized ancestral) can be seen as the basis of a usual grasp of primitive
recursion.

§4. Finiteness. The first arithmetic concept we will characterize in our logic is that
of finiteness. First we define what it is for a plurality yy to be the same as the xx but
with one additional object, which we write as Succ(xx, yy), “Succ” for “successor.”
This holds if every x amongst the xx is also among the yy, and if there is a unique
y which is amongst the yy but not the xx. Using the plural ancestral we can form
the relation (Succ(xx1, xx2))∗xx1,xx2

, where (Succ(xx1, xx2))∗xx1,xx2
(ww, zz) holds if the

zz are obtained as a finite extension of the ww. Then we can define what it is for a
plurality to be finite: they are just the finite extensions of zilch. Symbolically, we have

∀xx Finite(xx) ↔ (Succ(xx1, xx2))∗xx1,xx2
(o, xx).

It is easy to see that D, v � Finite(xx) iff v(xx) are finitely many elements of D, in our
metalanguage of plural set theory.

If one likes one can read us as meaning “are finitely many” when we say “are finite,”
as one perhaps ordinarily only talks about some things being finite if they are plural,
whereas “finitely many” does naturally apply to no things, or one thing: if the room is
free of chairs, or has one chair in it, then it has finitely many in it (it certainly doesn’t
have infinitely many).

The introduction and elimination rules for the plural ancestral, specialized to this
predicate, state:

https://doi.org/10.1017/S1755020322000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000041


PLURAL ANCESTRAL LOGIC AS THE LOGIC OF ARITHMETIC 321

Fin-I1
Finite(o)

Finite(xx) Succ(xx, yy)
Fin-I2

Finite(yy)

∀xx1 xx2 ((�(xx1) ∧ Succ(xx1, xx2)) → �(xx2)) Finite(xx)
Fin-E

�(o) → �(xx)

This definition of finiteness has great plausibility as a characterization of what is
ordinarily meant by the term—and is more plausible than the Neo-Fregean alternative.
We do not attribute to ordinary people an innate grasp of second-order logic, and
instead use the plural ancestral operator, which as seen in Section 3 is a concept
forming operator that ordinary people grasp at least some instances of.

Recalling the informal characterization of the plural ancestral seen in Section 3, that
characterization when specialized to this predicate states that the zz are finite iff they
are zilch; or they are obtained from zilch by the addition of a single element; or they
are obtained from the uu by addition of a single element with the uu obtained from
zilch by the addition of a single element; or are obtained from the uu′ by the addition
of a single element, where the uu′ are obtained from the uu by the addition of a single
element, and the uu are obtained from zilch by the addition of a single element; and
so on. The finite things are the things which can be reached by iterating the “add a
single object” operation (where it is implicit that this is finite iteration, an ordinary
person not having a concept of transfinite iteration)—a very natural way to state what
we ordinarily mean by finiteness.

The introduction rules for the plural ancestral, specialized to this predicate, are also
very plausible as a partial characterization of what is ordinarily meant by finiteness:
they state that zilch is finite, and that if the xx are finite, and the yy are obtained by
adding a single additional object to the xx, then the yy are finite.

The elimination rule’s status in this regard is more questionable. It gives that for
each definable property if that property holds of zilch, and that property is preserved
whenever one adds one new object to some things, then it holds of any finite things.
As an example, if we wanted to argue that every finite nonempty group of people has
a tallest person, we could argue as follows: any group consisting of exactly one person
has a tallest person, and if the xx have a tallest person u and people yy are just the
xx with an extra person v then either u or v will be a tallest person among the yy.
The status of this kind of argument is less clear than that of the introduction rules
for finiteness. An ordinary person might have no interest in this example argument,
as they would assume the conclusion is obvious. More significantly, even if persuaded
to seriously consider the question at hand, this is not the kind of argument we would
expect any ordinary person to spontaneously make. It may be more plausible that they
might give an informal variation of the argument, saying that if there’s one person then
they’re the tallest; if you add a second person, then if they’re taller than the previous
person then they’re the tallest, otherwise the previous person was the tallest; if you
add a third person, then if they’re taller than the previous two then they’re the tallest,
otherwise the tallest of the previous two is the tallest; and so on. Though phrased
differently this has essentially the same content as the first version.

Though it is thus not obvious that an ordinary person will typically have an
innate grasp of this elimination rule, this is not actually a strong objection to our
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characterization of finiteness. We can draw a parallel with other logical operations.
The introduction rule for the universal quantifier ∀x involves reasoning about an
arbitrary, unspecified x, using no premises involving x, and then deducing that whatever
conclusion reached actually holds of all x. It is not clear whether there are any
cases when an ordinary person would spontaneously or explicitly use this kind of
reasoning, or even whether they would necessarily see why it was valid. It is a method
of mathematical proof that requires time and effort for school age students to learn, if
they are able to learn it at all. Nonetheless we do regard this rule as partly constituting
what is normally meant by “for all”—with ordinary people perhaps not proficient in
the full use of the concept, but meaning the same as logicians when they say “for
all” in virtue of speaking the same language. Exactly the same can be said of our
characterization of finiteness.

§5. Equinumerosity. We now treat the predicate15 “equinumerous with,” and its
relatives “at least as many as” and “more than” (for count nouns), discussing their
definition and basic properties. Here “the xx are equinumerous with the yy” is taken
to mean “there are just as many xx as yy,” not necessarily with any connotations of
the xx and the yy being assigned numbers as cardinalities. Of course we do naturally
think of there being a close relationship between equinumerosity (thus understood)
and equality of number, and we will introduce numbers as objects that can play this
standard role in Section 7. It is worthwhile first investigating how much of a normal
understanding of equinumerosity can be recovered without treating numbers as objects.

The definition of equinumerosity for finite pluralities is very similar to that
of finiteness, but using the plural generalized ancestral in place of the plural
ancestral. With the plural generalized ancestral we can form the predicate symbol
(Succ(xx1, xx2) ∧ Succ(yy1, yy2))∗�xx, �yy . We have that

(Succ(xx1, xx2) ∧ Succ(yy1, yy2))∗�xx, �yy(pp, qq,ww, zz)

holding means that the ww are obtained from the pp by adding in as many additional
elements as it takes to obtain the zz from the qq. Abbreviating (Succ(xx1, xx2) ∧
Succ(yy1, yy2))∗�xx, �yy by Eq-Add, we define the binary predicate of equinumerosity,
symbolized by “≈,” to be that satisfying:

∀ww ∀zz (ww ≈ zz ↔ Eq-Add(o, o, ww, zz)).

It is easy to see that D, v � xx ≈ yy iff v(xx) are finite and there are as many v(xx)
as v(yy) (in our metalanguage of plural set theory).

The introduction rules for the plural generalized ancestral, specialized to this
predicate, state:

≈-I1o ≈ o

s1 ≈ t1 Succ(s1, s2) ∧ Succ(t1, t2) ≈-I2s2 ≈ t2

∀xx1 xx2 ((�(xx1, yy1) ∧ Succ(xx1, xx2) ∧ Succ(yy1, yy2)) → �(xx2, yy2))
≈-E

(xx ≈ yy ∧ �(o, o)) → �(xx, yy)

15 Recall that we include n-place predicates as predicates, as discussed in footnote 7.
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In other words, the introduction rules state that zilch is equinumerous with zilch, and
that if the xx are equinumerous with the yy, and the xx′ and the yy′ are obtained
from the xx and the yy respectively by the addition of a single object, then the xx′

are equinumerous with the yy′. The elimination rule gives that for each open formula
�(xx1, yy1), if:

• �(o, o),
• Whenever �(xx1, yy1), and the xx2 and the yy2 are obtained from the xx1 and

the yy1 respectively by the addition of a single object, then �(xx2, yy2),

then xx ≈ yy implies �(xx, yy). We will refer to this elimination rule as ≈-induction.
We now use these rules to prove some standard properties of equinumerosity.

Proposition 1.

(i) If xx ≈ yy then the xx are finite and the yy are finite.
(ii) If the xx are finite then xx ≈ xx.
(iii) If xx ≈ yy then yy ≈ xx.

Proof. (i) is immediate by ≈-induction, and (ii) is immediate by induction on xx.
(iii) is immediate by ≈-induction, with �(xx1, yy1) being the formula yy1 ≈ xx1.

For the following, recall the definition of weak equality ≡ from near the end of
Section 2 (equality where empty terms are counted as equal).

Proposition 2. If xx ≡ o and xx ≈ yy then there are xx′ and yy′ such that xx′ ≈
yy′, Succ(xx′, xx) and Succ(yy′, yy).

Proof. Immediate by ≈-induction.

Corollary 3. xx ≈ o iff xx ≡ o

Proof. The “if” direction is just the first ≈ introduction rule. The “only iff” direction
is immediate from the preceding proposition.

Arguing that ≈ is transitive appears to require more work. First we prove a
preliminary result. Say that yy and yy′ differ in one element if there is a unique y
amongst the yy but not the yy′, and a unique y′ amongst the yy′ but not amongst
the yy.

Proposition 4. If the yy are finite, and yy and yy′ differ in one element then yy ≈ yy′.
Proof. The proof is by induction on yy. The conclusion is trivial for yy ≡ o. Suppose

it holds for yy, and that we have Succ(yy, zz), with a unique x amongst the zz but
not the yy; and that we have that zz ′ differs from zz in one element, with a unique
z amongst the zz but not the zz ′ and a unique z ′ amongst the zz ′ but not the zz.
If x = z then we let yy′ consist of the same elements as yy but with z ′ added and z
removed; thus yy′ differs from yy in one element, so by the induction hypothesis we
have yy ≈ yy′, but we have Succ(yy, zz) and Succ(yy′, zz ′) by construction, and so
zz ≈ zz ′ as required. If on the other hand x = z then Succ(yy, zz ′) and so zz ≈ zz ′.
Thus either way we are done.

Corollary 5. If the yy are finite and Succ(yy, zz) and Succ(yy′, zz) then yy ≈ yy′.
Proof. If the hypotheses hold then either yy = yy′, or the yy differ from the yy′ in

one element, and so either way yy ≈ yy′.
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Proposition 6. If xx ≈ yy and yy ≈ zz then xx ≈ zz.
Proof. The proof is by induction on finite xx that for all yy and all zz, if xx ≈ yy

and yy ≈ zz then xx ≈ zz. This is true for xx ≡ o. Suppose true for xx, and that
Succ(xx, xx∗), and let xx∗ ≈ yy and yy ≈ zz. By Proposition 2, there are xx′,
yy′, yy′′, and zz ′ such that xx′ ≈ yy′, Succ(xx′, xx∗), Succ(yy′, yy), yy′′ ≈ zz ′,
Succ(yy′′, yy) and Succ(zz ′, zz). Then we also have xx ≈ xx′ and yy′ ≈ yy′′ by
Corollary 5. Thus xx ≈ xx′ ≈ yy′ ≈ yy′′ ≈ zz ′, and so by the induction hypothesis
xx ≈ zz ′. Thus xx∗ ≈ zz as required.

Thus ≈ is an equivalence relation, when each argument consists of finitely many
things.

Proposition 7. If Succ(xx, xx∗) and Succ(yy, yy∗) then xx ≈ yy iff xx∗ ≈ yy∗.

Proof. Suppose that Succ(xx, xx∗) and Succ(yy, yy∗). The “only if” direction of
the conclusion is just the second introduction rule for ≈. For the converse, we have
by Proposition 2 that if xx∗ ≈ yy∗ then there are xx′ and yy′ with xx′ ≈ yy′,
Succ(xx′, xx∗) and Succ(yy′, yy∗). Then by Corollary 5 we have xx ≈ xx′ and
yy ≈ yy′, so since ≈ is an equivalence relation we have xx ≈ yy as required.

In these arguments for transitivity and related results we make a technical advance
on the work of Martin [12], since he posits a non-logical axiom [12, IV, R6(2), p. 11]
which, translated into our logic, states:

∀xx ∀yy (∃xx′ ∃zz (Succ(yy, zz) ∧ Succ(xx′, zz) ∧ xx′ ≈ xx) → xx ≈ yy).

He used this axiom to derive transitivity [12, V, ∗T2.293 and ∗T2.294, p. 16]. However
for us this fact follows from Proposition 7 and the fact that ≈ is an equivalence relation,
and positing it as an axiom is unnecessary.

For the following discussion we introduce a predicate � for weak inclusion, where
s � t is defined as an abbreviation for (¬E! (s)) ∨ s � t—the version of inclusion
where zilch is counted as included amongst everything.

We now prove a significant proposition.

Proposition 8. If xx′ � xx and xx′ ≈ xx then xx′ ≡ xx.

Proof. This is by induction on xx. The base case is trivial. For the induction step
suppose the conclusion holds for xx and we have Succ(xx, yy), and that we have
yy′ � yy and yy′ ≈ yy. Let y be the unique object amongst yy which is not amongst
xx. If y � yy′ then let z = y, otherwise let z be an arbitrary element of yy′. Then
let xx′ be the objects of yy′ not equal to z, so that Succ(xx′, yy′) and xx′ � xx.
Then since yy′ ≈ yy, Succ(xx, yy) and Succ(xx′, yy′), by Proposition 7 we obtain
xx′ ≈ xx. Thus the induction hypothesis gives xx′ = xx, so we must have been in
the case where z = y, and thus yy′ consists of xx together with y, i.e., yy′ = yy as
required.

This is equivalent to saying that if xx � yy and xx ≡ yy then xx ≈ yy. In other
words, the whole is greater than the part. This proposition is not an idle observation,
and plays an essential role in some of the following proofs. We have here an important
difference from the Cantorian conception of cardinality: for us the principle follows
from the most natural characterization of equinumerosity in our logic, whereas one can
only obtain this principle on the Cantorian conception if one arbitrarily restricts oneself
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to finite concepts (which is a complication rather than simplification of the theory).
Commitment to this proposition was one of the main roadblocks to acceptance of the
Cantorian conception, and on our approach we can appreciate why it would earn this
commitment—with its value illustrated by its role in the following proofs.

Proposition 9. If xx′ � xx and xx ≈ zz then there are zz ′ � zz such that xx′ ≈ zz ′.
Proof. We prove this by induction on xx. The base case is trivial. Suppose the

conclusion holds for xx and we have Succ(xx, yy), yy′ � yy and yy ≈ zz. Then
zz = o and we can let z � zz, and let ww be the objects of zz not equal to z. Then
Succ(ww, zz), so xx ≈ ww by Proposition 7. Let y be the unique object amongst yy
but not xx. If y � yy′ then we are done by the induction hypothesis. Otherwise let
xx′ be yy′ but with y removed; then the induction hypothesis gives ww′ � ww with
xx′ ≈ ww′, and thus yy′ ≈ zz ′ where zz ′ are ww′ but with z added.

We now introduce a predicate �, where xx � yy is to be read “there are at least as
many yy as xx,” and is defined to hold if ∃zz(xx ≈ zz ∧ zz � yy).

Proposition 10.

(i) If xx � yy then the xx are finite.
(ii) If the xx are finite then xx � xx.
(iii) If xx � yy and yy � zz then xx � zz.
(iv) If xx � yy and yy � xx then xx ≈ yy.

Proof. (i) and (ii) are immediate by Proposition 1.
For (iii), ifxx � yy andyy � zz then there areyy′ and zz ′ such thatxx ≈ yy′ � yy,

and yy ≈ zz ′ � zz; then by Proposition 9 there are zz ′′ ≺ zz ′ such that yy′ ≈ zz ′′, and
thus xx ≈ zz ′′ � zz ′ � zz as required.

For (iv), if xx � yy and yy � xx then there are yy′ � yy such that xx ≈ yy′,
and xx′ � xx such that yy ≈ xx′. Then by Proposition 9 there are xx′′ � x′ such
that yy′ ≈ xx′′, and thus xx ≈ yy′ ≈ x′′ and so xx = xx′′ by Proposition 8. Thus
xx � xx′ � xx, and so xx = xx′, and so yy ≈ xx as required.

Property (i) may seem odd, but it is not unnatural in a context where we can only
make sense of equinumerosity for finite arguments. One could read xx � yy as “xx
are finite and there are at least as many t as yy” if one preferred.

Now we introduce a predicate �, where xx � yy is to be read “there are strictly
more yy than xx,” and is defined to hold if ∃zz(xx ≈ zz ∧ zz � yy ∧ zz ≡ yy). This
is equivalent to ∃ww ∃zz(Succ(xx,ww) ∧ (ww ≈ zz) ∧ (zz � yy)).

Proposition 11.

(i) If xx � yy then the xx are finite.
(ii) ¬xx � xx.
(iii) If xx � yy and yy � zz then xx � zz.
(iv) If xx � yy and yy � zz then xx � zz.
(v) If xx � yy then xx ≈ yy.
(vi) If xx � yy then yy � xx.

Proof. (i) is again immediate, and (ii) is immediate by Proposition 8. (iii) and (iv)
are similar to (iii) of Proposition 10. For (v), suppose that xx � yy. Then there are
yy′ such that xx ≈ yy′, yy′ � yy and yy′ ≡ yy. Thus by Proposition 8, yy′ ≈ yy,
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so since xx ≈ yy′ we can’t have xx ≈ yy. (vi) follows from (v) since if xx � yy and
yy � xx then xx ≈ yy by Proposition 10 (iv).

We can also prove a theorem scheme showing, in effect, that finite pluralities with a
definable bijection between them are equinumerous.

Proposition 12. Let x, y be distinct singular variables, let xx be a plural variable,
and let α, �, φ be formulae such that y and xx are not free in α, x is not free in � ,
and xx is not free in φ. Let Γ be a set of formulae in which xx is not free. Suppose
that Γ proves ∀x (α(x) → ∃! y(�(y) ∧ φ(x, y))), and proves ∀y (�(y) → ∃!x(α(x) ∧
φ(x, y))). Then Γ proves:

∀xx (Finite(xx) → (∀x (x � xx → α(x)) → xx ≈ (y: ∃x(x � xx ∧ φ(x, y))))).

Proof. The proof is immediate by induction on xx.

Thus if we expand our logic to include binary relation variables and quantifiers, then
we can prove that if the xx are finite and R is a bijection between the xx and the yy
then xx ≈ yy. The converse, that if xx ≈ yy then there is a bijection R between the
xx and the yy, is also straightforward. Thus it is a theorem for us that the bijection
characterization of equinumerosity, specialized to finite pluralities, is materially correct
(in the presence of polyadic second-order logic).

Given these facts about equinumerosity and its relatives, we can argue that certain
standard practical properties of equinumerosity do hold. First, we can argue for
the validity of counting as a way of determining equinumerosity. Like Linnebo [11,
chap. 10] we will just take a system of numerals to be a discrete linear order (this is all
the structure we need). If j is a numeral in a given system, we will write [� j] for the
numerals at most j. Then a fundamental result about numerals is the following.

Proposition 13. If j and j′ are numerals in a given system of numerals, and [� j] ≈
[� j′], then j = j′.

Proof. Suppose that j′ < j, with [� j] and [� j′] finite. Then [� j′] � [� j] and
[� j′] ≡ [� j], so [� j′] ≈ [� j] by Proposition 8.

To discuss counting we will quantify over acts of counting, by which we mean
an attempted assignment of numerals to objects.16 If a is an act of counting and i a
numeral, we will write Assign(a, i, x) to signify that i is assigned to object x by a. We will
say that an act of counting a enumerates thexx via I if I is an initial segment of numerals
such that if Assign(a, i, x) then i ∈ I , and such that the map I � i �→ Assign(a, i, x)
gives a bijection between I and the xx. We will write Count(a, j, xx) if a enumerates
the xx via [� j]. Then the basic principle behind counting as a way of determining
equinumerosity is the following.

Proposition 14. Suppose thexx and theyy are finite, and that we have Count(a, j, xx)
and Count(b, k, yy). Then j = k iff xx ≈ yy.

Proof. The function Assign(a, -, -) gives a bijection between [� j] and xx, and the
function Assign(b, -, -) gives a bijection between [� k] and yy. Thus by Proposition 12

16 Thus we are no longer in the domain of pure logic—but this is inevitable when reasoning
about counting as a physical activity.
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we have [� j] ≈ xx and [� k] ≈ yy, and in particular [� j] and [� k] are finite. Thus
xx ≈ yy iff [� j] ≈ [� k] iff j = k, by Proposition 13.

As a special case of this we have by taking yy = xx that if the xx are finite, and a and
b are two acts of counting that enumerate the xx, then the largest numerals reached
during a and b are the same: counting the same things twice gives the same answer.

As a final practical example we consider Heck’s case of a child assigning cookies
to children [8, p. 171]: in their view, to have a basic grasp of the notion of “at least
as many,” one needs to understand that if there at least a many cookies as children,
then if you give each child one cookie then you’ll have enough cookies for everyone to
receive one (and similarly for “as many as” and “more than”). We can see that on our
definition of “at least as many” this fact does indeed follow. Let us consider here an act
b of assigning cookies to children, where we require that during b at most one cookie
goes to each child, and cookies only stop being given to children if either every child has
a cookie, or the cookies have run out. Let us suppose we have finitely many children xx
and at least as many cookies cc as children. We will write g(b, c, x) if under b, cookie c is
assigned to child x. By assumption we have that if g(b, c, x) and g(b, c′, x) then c = c′,
and have that either ∀c ∃x g(b, c, x) or ∀x ∃c g(b, c, x). Suppose for contradiction that
we end up with a child with no cookie. Then ∃x ∀c ¬ g(b, c, x), and so by our second
assumption ∀c ∃x g(b, c, x). Thus g defines a bijection from cookies cc to some xx′

of the children, and by assumption xx′ ≡ xx. Then Proposition 12 gives cc ≈ xx′,
and thus cc � xx, and thus xx � cc by Proposition 11(vi), giving us our required
contradiction.

As with finiteness, this account of equinumerosity has great plausibility as a
characterization of what is ordinarily meant by the term—and is more plausible than
the Neo-Fregean alternative. We do not attribute to ordinary people an innate grasp
of second-order logic, and instead use the plural generalized ancestral, which as seen
in Section 3 is a concept forming operator that ordinary people grasp at least some
instances of.

Recalling the informal characterization of the plural generalized ancestral from
Section 3, that characterization when specialized to this predicate states that yy ≈ zz
iff both are zilch; or both are obtained from zilch by the addition of a single element;
or there are uu and vv such that uu and vv are obtained from zilch by the addition
of a single element, and yy and zz are obtained from uu and vv respectively by the
addition of a single element; or there are uu and vv and uu′ and vv′ such that uu and
vv are obtained from zilch by the addition of a single element, and the uu′ and vv′

are obtained from the uu and vv respectively by the addition of a single element, and
the yy and the zz are obtained from the uu′ and vv′ respectively by the addition of
a single element; and so on. The predicate “equinumerous” applies to arguments that
can be reached from zilch by iterating the “add a single object to each side” operation
(again, it being implicit that this is finite iteration)—a very natural way to state what
we ordinarily mean by equinumerosity (before being introduced to Cantor’s ideas,
at least). Being thus informally characterizable in terms of iteration, this account of
equinumerosity has an ordinal flavour, on the understanding of ordinals as measures
of iteration.

The introduction rules for the plural generalized ancestral, specialized to this
predicate, are also very plausible as a partial characterization of what is ordinarily
meant by equinumerosity: they state that zilch is equinumerous with zilch (or that no
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things are equinumerous with no things), and that if the xx are equinumerous with
the yy, and the xx′ and the yy′ are obtained from the xx and the yy respectively by
addition of a single object, then the xx′ are equinumerous with the yy′.

These are closely related to the first two of the three principles that Heck thinks
are constitutive of a basic grasp of equinumerosity [8, p. 170]. Heck states these
principles using quantification over concepts (which can be thought of as formalized
using unary second-order variables) instead of our use of plural logic, and uses the
relation “JAMx(Fx,Gx)” to formalize that there are just as many Fs as Gs , which is
the equivalent of our x : Fx ≈ x : Gx. Heck’s three principles are:

¬∃x(Fx) → (JAMx(Fx,Gx) ↔ ¬∃x(Gx)), (ZCE∗)

(JAMx(Fx,Gx) ∧ ¬Fa ∧ ¬Gb) → JAMx(Fx ∨ x = a,Gx ∨ x = b), (APC∗)

(JAMx(Fx,Gx) ∧ Fa ∧Gb) → JAMx(Fx ∧ x = a,Gx ∧ x = b). (RPC∗)

Heck’s first principle ZCE∗ can be split into two claims:

¬∃x(Fx) ∧ ¬∃x(Gx) → JAMx(Fx,Gx),

¬∃x(Fx) ∧ JAMx(Fx,Gx) → ¬∃x(Gx),

the former of which is the equivalent in their logic of our first introduction rule ≈-I1,
and the latter the equivalent of an consequence of our definition, as seen in Corollary 3.
Heck’s second principle APC∗ is the equivalent in their logic of our second introduction
rule ≈-I2. Their third principle RPC∗ is the equivalent in their logic of our result
Proposition 7.

As was the case with finiteness, the status of the elimination rule is more debatable.
It gives that for any definable relation R, if that relation holds between zilch and zilch,
and the relation holding between xx and yy implies that it holds between xx′ and yy′

whenever xx′ and yy′ are obtained from xx and yy respectively by the addition of a
single object, then R holds between xx and yy whenever xx ≈ yy. As an example of
this, suppose we sought to argue that whenever there are as many people xx as people
yy then the xx and the yy can be lined up facing each other, with each person in
each line directly opposite one person in the other line. This is true (in a trivial sense)
whenever there are no xx and no yy. If it’s true for xx and yy, and the xx′ are the
xx with extra person u, and the yy′ are the yy with extra person v, then the xx and
the yy can be lined up facing each other, with u and v facing each other at one end.
As with the case of finiteness, this is probably a kind of argument few ordinary people
would spontaneously make (even if persuaded to consider the question seriously).
They might be more likely to give a more informal version with essentially the same
content, arguing that the conclusion held when the xx were one and the yy were one,
and the conclusion still holds if you add one person to each, and add another, and so
on. As with the case of finiteness, it seems about as reasonable to take a grasp of the
rules governing ≈ to be implicit in an ordinary person’s understanding of the concept
as it does to take the natural deduction rules for “∀” to be implicit in an ordinary
person’s understanding of the concept.

Indeed as we have seen, these definitions of equinumerosity and the related predicates
“at least as many as” and “strictly more than” allow the derivation of all their standard
properties, including properties like reflexivity and transitivity (Propositions 1, 6, and
10), the fact that the part is not equinumerous with the whole (Proposition 8), the ability
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to determine equinumerosity by counting (Proposition 14), and the facts required for
Heck’s example of the cookies and the children.

The definitions also do not overreach, in an important sense. They all come with
a built in restriction to finite concepts. The only obvious way to extend the notion of
equinumerosity as we have defined it here to the non-finite case is to declare all infinite
pluralities to be equinumerous—which is more or less what the layman’s notion of
cardinality appears to amount to (if they allow cardinality comparisons of infinite
pluralities at all). We can derive a theorem scheme showing that pluralities related by
a definable bijection are equinumerous (Proposition 12), but this is just one derived
result about equinumerosity amongst many, and no more fundamental than many
others. Indeed it is not obviously more fundamental than the result that the whole is
greater than the part (Proposition 8). Thus on our approach we can very well see why
Cantor’s definition of equinumerosity via bijections for infinite concepts was such a
conceptual leap: it required taking one derived property of equinumerosity as basic,
and as having priority over other properties that were (apparently) just as basic. This
represents a major advantage of our approach over Neo-Fregeanism.

§6. Arithmetic operations. We now give definitions of the xx being one greater in
size than the yy, or the same size as the sizes of the yy and the zz added or multiplied,
and prove some basic properties of these concepts.

First we define S(xx, yy) to hold if there are yy′ such that xx ≈ yy′ and
Succ(yy′, yy). This predicate states that the yy are one greater in size than the xx.

Proposition 15.

(i) If S(xx, yy) then the xx and the yy are finite.
(ii) If xx ≈ xx2 and yy ≈ yy2 then S(xx, yy) iff S(xx2, yy2).
(iii) If S(xx, yy) and S(xx, yy2) then yy ≈ yy2.
(iv) If S(xx, yy) and S(xx2, yy) then xx ≈ xx2.

Proof. (i) is immediate.
For (ii), it is clear that if xx ≈ xx2 then S(xx, yy) iff S(xx2, yy), so we need to only

show that if yy ≈ yy2 then S(xx, yy) iff S(xx, yy2). Thus it suffices to assume that
yy ≈ yy2 and that S(xx, yy) and argue that S(xx, yy2). But on these hypotheses there
are yy′ withxx ≈ yy′ and Succ(yy′, yy), and thus we can find yy′2 with Succ(yy′2, yy2),
and then yy′2 ≈ yy′ by Proposition 7, and so yy′2 ≈ xx and we are done.

For (iii), we have by assumption that there are yy′ and yy′2 such that xx ≈ yy′, xx ≈
yy′2, Succ(xx, yy′) and Succ(xx, yy′2). Thus yy′ ≈ yy′2 so we are done by Proposition 7.

For (iv), we have by assumption that there are yy′ and yy′′ with xx ≈ yy′,
xx2 ≈ yy′′, Succ(yy′, yy) and Succ(yy′′, yy). Thus yy′ ≈ yy′′ by Proposition 7 so
xx ≈ xx2.

(ii) here gives that S is a well-defined relation up to ≈-equivalence. With (iii), we
have that S is a well-defined partial function up to ≈-equivalence, and with (iv), that
it is a well-defined injective partial function up to ≈-equivalence.

For addition, we use the predicate Eq-Add, which was defined at the start of Section 5
as an abbreviation for (Succ(xx1, xx2) ∧ Succ(yy1, yy2))∗�xx, �yy . We define +(xx, yy, zz)
to hold if there are xx′ with xx′ ≈ xx and such that Eq-Add(o, xx′, yy, zz). In other
words, zz can be obtained from xx′ by adding as many elements as it takes to obtain
yy from zilch, i.e., as many elements as there are in yy.
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An alternative definition of addition states that +′(xx, yy, zz) means that there are
xx′ and yy′ with xx ≈ xx′, yy ≈ yy′, and the zz the disjoint union of the xx′ and
the yy′. It is not difficult to see that is equivalent to our definition (though we will not
prove that).

Proposition 16.

(i) If +(xx, yy, zz) then the xx, the yy and the zz are finite.
(ii) +(xx, o, zz) iff xx ≈ zz.
(iii) If yy ≡ o and +(xx, yy, zz) then there are yy′ and zz ′ with Succ(yy′, yy) and

Succ(zz ′, zz) and +(xx, yy′, zz ′).
(iv) If xx ≈ xx2 then +(xx, yy, zz) iff +(xx2, yy, zz).
(v) If yy ≈ yy2 then +(xx, yy, zz) iff +(xx, yy2, zz).
(vi) If zz ≈ zz2 then +(xx, yy, zz) iff +(xx, yy, zz2).
(vii) If +(xx, yy, zz) and +(xx, yy, zz2) then zz ≈ zz2.
(viii) If S(yy, yy∗) and +(xx, yy, zz) then S(zz, zz∗) iff +(xx, yy∗, zz∗).

Proof. (i) is trivial for xx, and an immediate Eq-Add-induction for yy and zz.
For (ii), we obtain by Eq-Add-induction that Eq-Add(xx1, xx2, yy1, yy2) implies

that if xx1 ≈ xx2 then yy1 ≈ yy2. Thus Eq-Add(o, xx′, o, zz) implies xx′ ≈ zz, so
+(xx, o, zz) implies xx ≈ zz. The converse is easy.

For (iii) we obtain by Eq-Add-Induction that if Eq-Add(uu, xx, yy, zz) with uu ≡ o

and yy ≡ o then:

(∃yy′ ∃zz ′ (Succ(yy′, yy) ∧ Succ(zz ′, zz) ∧ Eq-Add(o, xx, yy′, zz ′))))

(iv) is immediate.
For (v) we prove by induction on yy that if yy ≈ yy2 and +(xx, yy2, zz) then

+(xx, yy, zz). The base case where yy ≡ o is trivial. For the induction step, we
suppose the conclusion holds for yy, and that we have Succ(yy, yy∗) and yy∗ ≈
yy∗2 with +(xx, yy∗2 , zz

∗). Then by (iii) there are yy2 and zz with Succ(yy2, yy
∗
2 )

and Succ(zz, zz∗) and +(xx, yy2, zz), so that yy ≈ yy2 and thus by the induction
hypothesis +(xx, yy, zz) and so +(xx, yy∗, zz∗) as required.

For (vi) we prove by induction on yy that if zz ≈ zz2 and +(xx, yy, zz) then
+(xx, yy, zz2). The base case where yy ≡ o follows from (ii). For the induction step, we
suppose we have yy for which the induction hypothesis holds, and that Succ(yy, yy∗),
with zz, zz2 such that zz ≈ zz2 and +(xx, yy∗, zz). Then by (iii) there are yy′ and zz ′

such that Succ(yy′, yy∗) and Succ(zz ′, zz) and +(xx, yy′, zz ′). Thus yy′ ≈ yy, so by
(v) we have +(xx, yy, zz ′). Then if we let zz ′2 be zz2 but with one element removed then
Succ(zz ′2, zz2), and so zz ′2 ≈ zz ′, and thus by the induction hypothesis +(xx, yy, zz ′2),
and thus +(xx, yy∗, zz2) as required.

(vii) is straightforward by induction on yy, using (iii). The “if” direction of (viii)
follows from (iii), (v) and (vii), and the “only if” direction is easy.

Thus we obtain that + is a well-defined partial binary operation in its first two
arguments, up to ≈-equivalence. Properties (ii) and (vii) parallel the axioms governing
addition in Peano arithmetic.

Finally, we treat multiplication. We define ×(xx, yy, zz) to hold if

Finite(xx) ∧ (Succ(uu1, uu2) ∧ +(vv1, xx, vv2))∗�uu, �vv(o, o, yy, zz).
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In other words, this means that zz is obtained from zilch by repeatedly adding as many
elements as there are in xx to zilch, as many times as there are elements in yy.

Proposition 17.

(i) If ×(xx, yy, zz) then the xx, the yy and the zz are finite.
(ii) If the xx are finite then ×(xx, o, zz) iff zz = o.
(iii) If y ≡ o and ×(xx, yy, zz) then there are yy′ and zz ′ with Succ(yy′, yy) and

+(zz ′, xx, zz) and ×(xx, yy′, zz ′).
(iv) If xx ≈ xx2 then ×(xx, yy, zz) iff ×(xx2, yy, zz).
(v) If yy ≈ yy2 then ×(xx, yy, zz) iff ×(xx, yy2, zz).
(vi) If zz ≈ zz2 then ×(xx, yy, zz) iff ×(xx, yy, zz2).
(vii) If ×(xx, yy, zz) and ×(xx, yy, zz2) then zz ≈ zz2.
(viii) If S(yy, yy∗), and ×(xx, yy, zz) then +(zz, xx, zz∗) iff ×(xx, yy∗, zz∗).

Proof. The proofs of (i)–(iii) are similar to those of (i)–(iii) from Proposition 16.
(iv) is clear from Proposition 16(iv). The proof of (v) is similar to that of Proposition
16(v). The proof of (vi) is similar to that of Proposition 16(vi) (induction on yy, with
a simpler induction step than before). (vii) follows by an easy induction on yy. The
“if” direction of (viii) follows from (iii), (v) and (vii), and the “only if” direction is
easy.

Thus again × is a well-defined partial binary operation in its first two arguments up
to ≈-equivalence. (i) and (vii) parallel the two Peano axioms governing multiplication.

One can define exponentiation in a similar way, and continue to further hyperoper-
ations if one desires.

§7. Numbers. We have seen how in our setting we can obtain many arithmetic
concepts, and many of their basic properties, without relying on numbers as objects.
It would be interesting to see how much of arithmetic can be obtained on this basis
(for instance on the adjectival interpretation), but our priority is instead to introduce
numbers as objects via an abstraction principle.

Our preferred option is to use a predicative abstraction principle. Linnebo [11] ably
defends predicative abstraction principles as a way of obtaining reference to a new
domain of entities, by laying down a criterion of identity for those entities, and thus
establishing how such an entity can be reidentified, encountered again under different
circumstances—an ability fundamental to a notion of reference to such entities [11,
chap. 2]. Using a predicative rather than impredicative abstraction principle means that
the criterion of identity is stated in terms of language that is antecedently understood,
and there is no question of it being circular—with the holding of an identity between the
new entities depending on other facts about them (including, perhaps, other instances
of identities between them). It also means that truth conditions for statements about
the new domain of objects can be given in our existing language, which is not the case
for impredicative abstraction principles in general [11, chap. 6]. Additionally it avoids
the bad company problem [11, chap. 3], the problem that many natural impredicative
abstraction principles are inconsistent or have unwelcome consequences.

To state our abstraction principle we move to a two-typed logic, with one type
U consisting of the non-arithmetical objects, and the other N the type of numbers
introduced by the principle (this is what makes the principle predicative). As noted at
the end of the Appendix it is straightforward to accommodate multiple types in our
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base plural logic—and the addition of ancestral operators does not change this. We
will write x, y, xx, yy, ... for the variables of type U, and write n,m, p, ... for singular
variables of typeN. For our abstraction principle we introduce a unary function symbol
N, with arity U → N. Then our abstraction principle states:

∀xx ∀yy (N (xx) = N (yy) ↔ xx ≈ yy). (∗)

In other words, the number of xx is the same as the number of yy iff the xx and the yy
are equinumerous—clearly basic to what we mean by number and equinumerosity (so
basic that we had to distinguish sameness of number from our notion of equinumerosity
at the start of Section 5). Since numbers are the things obtained by this principle—this
principle being constitutive of what identity between numbers means—we also state
that ∀n ∃xx (N (xx) = n).

There are actually difficult questions about whether an abstraction principle like
this, with singular denotation of the new objects obtained via plural denotation in the
existing domain, should license plural denotation to the new entities,17 but we will not
need plural quantifiers over numbers, just using our background logic for its provision
for co-partial functions and definite descriptions.

It follows from (∗) that N is a co-partial function, since o ≈ o and so N (o) = N (o),
and in particular E! (N (o)). We introduce the symbol 0 for N (o). In general N is
also a partial function, since if ¬Finite(xx) then ¬xx ≈ xx, in which case (∗) gives
¬N (xx) = N (xx), from which ¬E! (N (xx)) follows in our logic—in other words,
if the xx are infinite, then N (xx) is an empty term. This tallies with the ordinary
conception of cardinality.

If k, l are terms of type N, we write S(k) for the term

�n ∃xx ∃yy (k = N (xx) ∧ S(xx, yy) ∧ n = N (yy))

and similarly +(k, l) for the term

�p ∃xx ∃yy ∃zz (k = N (xx) ∧ l = N (yy) ∧ p = N (zz)) ∧ +(xx, yy, zz)

and ×(k, l) similarly.

Proposition 18.

(i) E! (S(N (xx))) iff there are yy with S(xx, yy).
(ii) E! (+(N (xx), N (yy))) iff there are zz with +(xx, yy, zz).
(iii) +(k, 0) ≡ k.
(iv) +(k, S(l)) ≡ S(+(k, l)).
(v) E! (×(N (xx), N (yy))) iff there are zz with ×(xx, yy, zz).
(vi) If k exists then ×(k, 0) ≡ 0.
(vii) ×(k, S(l)) ≡ +(×(k, l), k).

17 Linnebo’s defence of singular reference via predicative abstraction principles and Oliver and
Smiley’s defence of plural logic via plural denotation do not obviously complement each
other in this case of a principle like (∗), since Oliver and Smiley explain plural denotation
in terms of plural denotation at the metalevel, but on Linnebo’s account at the metalevel
identities between numbers reduce to statements of equinumerosity between pluralities—and
one could only carry out such a reduction for plural number terms via a principle like (∗) if
one accepted superplural quantifiers for the base type U.
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Proof. (i) follows from Proposition 15, (ii)–(iv) follow from Proposition 16, and
(v)–(vii) follow from Proposition 17.

Thus + and × behave like the normal arithmetic operations, with the proviso that
they may not be total.

We can also prove the validity of an induction scheme for numbers.

Proposition 19. Suppose that Γ � φ[0|n] and Γ � ∀n (φ → φ[S(n)|n]). Then
Γ � ∀n φ.

Proof. On these hypotheses we obtain by the induction rule for finiteness, with
induction hypothesis φ[N (xx)|n], that

Γ � ∀xx (Finite(xx) → φ[N (xx)|n]),

giving the result.

This is broader than the PA induction scheme, holding when Γ and φ include any
vocabulary available in our language (with its two types).

Thus we obtain an interpretation of all of PA, except without the assurance that
S, +, and × are total functions. What is needed is that S is total, since then totality
of addition follows from (iii) and (iv) of Proposition 18 by induction, and totality of
multiplication follows in turn by (vi) and (vii) of Proposition 18 by induction.

We outline two possible routes to knowledge that S is total. First, there is the simple
possibility that there are infinitely many things, and that this is known—perhaps
empirically—to be the case. In our context we can state a very simple axiom of infinity:
that there are xx such that ¬Finite(xx). It is immediate by induction on xx that if
the xx are finite and yy � xx then the yy are finite, so that this axiom of infinity is
equivalent to the statement that all the things that there are collectively infinite, or in
symbols, ¬Finite(x:x = x). Thus given the axiom of infinity, if the xx are finite then
they are not all the objects that there are, so there is x with x � xx, and thus if we
obtain xx∗ by adding x to the xx then Succ(xx, xx∗). It follows that the function S is
total.

As an example, one could obtain this result for instance from empirical facts about
space-time (if the world co-operated). If there was a world line w such that for any
finitely many points on the world line, there was a strictly later point in terms of w’s
proper time, then it would follow that

¬Finite(x : x is a point on w),

giving us our axiom of infinity.
Our second route is modal. It is very plausible to think that whenever the xx are

finite, there could have been an x not amongst them.18 Symbolically,

�(∀xx Finite(xx) → �(∃yy Succ(xx, yy))). (M)

We will give an informal sketch of an argument from this principle that S is total.19

We can argue intuitively that, given (M), it should be the case that from m=N (xx) it

18 This could plausibly be obtained from the fact that whatever things there are, there could be
a thing not identical to any of them.

19 Giving a fully formal argument would require developing a modal version of our logic, which
is beyond the scope of this paper.
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follows that �(m=N (xx) ∧ ∃yy Succ(xx, yy)), and thus that from E! (m) it follows
that �(∃n n=S(m)). Then since arithmetic facts are necessary if they hold, this in
turn implies that ��(∃n n=S(m)), and thus by the principles of S5 that ∃n n=S(m).
Thus, ∀m ∃n n=S(m).

On either approach, we have a plausible account of arithmetic knowledge. Much of
arithmetic consists of what we could call “conceptual” truths: either purely logical, of
the form seen in Sections 5 and 6, or following from logic together with the abstraction
principle (∗)—which can be seen as an innocent semantic fact, of a similar status to
the fact that all bachelors are unmarried, and justified metasemantically by Linnebo’s
account of reference via criteria of identity. Many of the facts from Sections 5 and
6 were simple to derive, so that even though ordinary people would not consciously
know how to derive them one can plausibly see knowledge of them as given by an
implicit grasp of how the concepts work (similar to a truth such as ∃x∀yφ → ∀y∃xφ).
Other facts, such as Proposition 6, required more work, and these we can view as
logical truths the layman establishes by inductive reasoning, seeing that they hold in
every case they consider. Finally, some of arithmetic relies on the fact that S is a total
function: this can be derived from the fact there are infinitely many things, which
might be known empirically, or can otherwise by derived from highly plausible modal
principles (modal principles which a layman might intuitively appeal to, even if they
cannot carry out a formal derivation themselves).

Finally we briefly note that one can otherwise introduce numbers via an impred-
icative abstraction principle, if one prefers to stick more closely to the Neo-Fregean
route—though predicative abstraction principles have many advantages, as discussed
above. For the impredicative principle we stick to our original logic with only a single
type, again stating as an axiom:

∀xx ∀yy (N (xx) = N (yy) ↔ xx ≈ yy).

We define the numbers to be the things of the formN (xx) for some things xx. As with
Hume’s principle, it follows with no additional assumptions that there are infinitely
many numbers. The key fact in this argument is that

(z: ∃xx (z=N (xx) ∧ xx � yy ∧ xx ≡ yy)) ≈ yy,

which isn’t hard to show by induction for yy finite. Then it follows that

S(yy, z:∃xx (z=N (xx) ∧ xx � yy))

(using Proposition 8), and thus that every number has a successor.

§Appendix. A plural logic. Here we give a formal presentation of the system of
plural logic used in this paper, sketching its syntax, deductive system and semantics.
This is a bivalent, positive universally free logic (though its primitive notion of identity
is that of strong identity, which holds only between nonempty terms).

As logical vocabulary, we have a countably infinite stock x, y, z, ... of singular
variables, and a countably infinite stock xx, yy, zz, ... of plural variables (disjoint
from the singular variables); distinguished binary predicate symbols = (for strong
identity) and� (for the inclusion relation); logical connectives∧,∨,→,¬ ; parentheses;
quantifiers ∀ and ∃; and symbols � and : for forming definite descriptions. In addition
to these, a language L for plural logic consists of a set of constant symbols; a set of
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function symbols, each with a specified arity n ∈ N�1; and a set of predicate symbols,
each with a specified arity n ∈ N�0.

We follow Oliver and Smiley in not making a syntactic distinction between
singular and plural terms, apart from for variables—this is due to the inability of
a syntactic distinction to properly reflect the semantic difference between singular and
plural terms, where a plural term is one capable of denoting more than one object
[14, p. 218]. Due to the presence of definite description operators, we introduce terms
and formulae together using simultaneous inductive clauses. All variables, singular and
plural, are terms; all constant symbols are terms; a function symbol applied to a list of
terms of the appropriate arity is a term; if φ is a formula and x a singular variable then
(�x φ) is a term (the singular definite description formed from φ); and if φ is a formula
and x a singular variable then (x:φ) is a term (the exhaustive description formed
from φ). Then we obtain atomic formulae by applying a predicate symbol to a list of
terms of the appropriate arity; if φ and� are formulae then so are ¬φ, φ ∧ � etc., with
the usual conventions for parentheses; and if φ is a formula, x a singular variable, and
xx a plural variable, then ∀x φ, ∃x φ, ∀xx φ and ∃xx φ are formulae. Free and bound
variables are as usual, with �x in �x φ and x: in x:φ binding any occurrences of x in φ.

As discussed in Section 2, we introduce various abbreviations along similar lines to
Oliver & Smiley [14, chap. 13]. If t is a term we write E! (t), meaning “t exists,” for
∃x x � t; we write S(t), meaning “t is singular” for ∀x (x � t → x = t); and we write
S! (t), meaning “t exists and is singular” for ∃x (x = t)—where x is the first singular
variable not free in t according to some ordering of the singular variables. When we
state the deductive rules for our logic, it will be clear that any of these abbreviations is
equivalent to the formula obtained by taking x to be any other variable not free in t. If
s and t are terms we write s ≡ t for s = t ∨ (¬E! (s) ∧ ¬E! (t)), the predicate termed
“weak equality” by Oliver and Smiley—the form of equality which holds with empty
terms as arguments.

We give the deductive system for our logic as a form of natural deduction, specifically
as a kind of sequent calculus, or what Gentzen called an L system. For the logic
discussed here, this presentation is essentially a notational variant of the paradigmatic
natural deduction trees labelled with discharging annotations, but is simpler and more
compact. Compared to a Hilbert style axiomatization like that of Oliver & Smiley
[14, chap. 13], this kind of presentation arguably makes clearer how to actually reason
using the logic in practice.

A sequent is a pair (Γ, φ), where Γ is a (possibly empty) set of formulae and φ a
formula. We typically use the notation Γ � φ for sequents. The idea behind sequent-
based approaches to deduction is that at each stage of a deductive argument, we
establish the validity of a sequent Γ � φ, where Γ � φ being valid means that φ is
a consequence of Γ. We will present various deductive rules, each stating either that
certain sequents are valid, or stating a way to obtain new valid sequents from previously
established valid sequents. Formally, we define a sequent to be valid if it is a member
of all sets of sequents in which all of the following deductive rules hold.

When stating these rules we intend Γ,Δ,Λ to range over arbitrary sets of formulae,
φ,� to range over arbitrary formulae, x and xx to range over arbitrary singular
and plural variables respectively, and s and t to range over arbitrary terms (typically
with a free variable restriction, as stated). The part of the system corresponding to
propositional logic is standard. We have φ � φ for every φ, we have Γ � φ and Γ ⊆ Δ
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implying Δ � φ, and we have that if Γ � � for all � ∈ Δ and Γ ∪ Δ � φ then Γ � φ. We
then have rules for introducing and eliminating conditionals:

Γ, φ � �
→-I

Γ � φ → �
Γ � φ Δ � φ → �

→-E
Γ ∪ Δ � �

disjunctions:

Γ � φ
∨-I

Γ � φ ∨ �
Γ � �

∨-I
Γ � φ ∨ �

Γ � φ ∨ � Δ, φ � � Λ, � � �
∨-E

Γ ∪ Δ ∪ Λ � �
conjunctions:

Γ � φ Δ � �
∧-I

Γ ∪ Δ � φ ∧ �
Γ � φ ∧ �

∧-E
Γ � φ

Γ � φ ∧ �
∧-EΓ � �

and a single rule for negation:

Γ, φ � � Δ, φ � ¬�
¬ -E/I

Γ ∪ Δ � ¬φ
as well as the law of excluded middle, ∅ � φ ∨ ¬φ, and the law of explosion,

φ ∧ ¬φ � �.
It is in the rules for quantifiers, identity and definite descriptions that the distinctive

character of the logic becomes apparent. Since terms can denote either nothing, one
thing, or more than one thing (and even variables can be empty), the introduction
and elimination rules for singular variable quantifiers have to be adjusted using the
predicate S!, defined above as an abbreviated formula which holds of terms that denote
a single object:

Γ � S! (x) → φ
∀x-IΓ � ∀x φ

Γ � ∀x φ
∀x-E

Γ � S! (t) → φ[t|x]

Γ � S! (t) ∧ φ[t|x]
∃x-IΓ � ∃x φ

Γ, S! (x) ∧ φ � �
∃x-EΓ, ∃x φ � �

Here we require in ∀x-I that x is not free in any formula in Γ, and in ∃x-E that x is
not free in � or any member of Γ. We require in the rules where φ[t|x] appears that t
is free for x, i.e., that there is no free occurrence of x in φ in the scope of a quantifier
that binds a variable of t. In each case if one removes the conjuncts and antecedents of
the form S! (x) and S! (t), one obtains the usual rules for quantifier introduction and
elimination.

On our intended interpretation, the rules for plural variable quantifiers take a very
simple form, essentially the normal introduction and elimination rules:

Γ � φ
∀xx-IΓ � ∀xx φ

Γ � ∀xx φ
∀xx-E

Γ � φ[t|xx]

Γ � φ[t|xx]
∃xx-IΓ � ∃xx φ

Γ, φ � �
∃xx-EΓ, ∃xx φ � �
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Again, we require in∀xx-I that x is not free in any formula in Γ, and in∃xx-E that x is
not free in� or any member of Γ, and require in rules whereφ[t|xx] appears that t is free
for xx in φ. These rules take this simple form because on our intended interpretation,
quantification over plural variables includes the case where those variables denote only
one thing, or no things: for instance, with o our paradigmatic empty term zilch, defined
above, we intend that ∀xx φ implies φ[o|xx], and that φ[o|xx] implies ∃xx φ.

We state what are essentially the usual rules governing identity, but using weak
identity (defined above as an abbreviation, the version of identity in which empty
terms are taken as equal):

≡-I
∅ � s ≡ s

Γ � s ≡ t Δ � φ[s |xx]
≡-E

Γ ∪ Δ � φ[t|xx]

where we require in ≡-E that s and t are free for xx in φ.
We state various further rules involving the primitive notions = and �, and our

abbreviations E!, S and S!:

∅ � s = t ↔ (s � t ∧ t � s),
∅ � S(x),

∅ � s � t ↔ (E! (s) ∧ ∀x(x � s → x � t)).

From20 the first we obtain thatS! (t) → E! (t), and from the second thatS! (t) → S(t).
The converse to these, thatE! (t) ∧ S(t) → S! (t), is immediate. From the third and the
first we obtain that s = t → (E! (s) ∧ E! (t)). It then follows that (s = s) → E! (s),
and thus (using ≡-I) it follows that (s = s) ↔ E! (s). From the third and the first we
obtain that

s = t ↔ (E! (s) ∧ E! (t) ∧ ∀x(x � s ↔ x � t)).

It then follows that s ≡ t ↔ ∀x(x � s ↔ x � t). Also if t is any term then the above
reflexivity axiom for weak identity gives t ≡ t, so that (t = t) ∨ ¬E! (t); thus we obtain
E! (t) → (t = t). Thus, since in general s = t → (E! (s) ∧ E! (t)), we have E! (t) ↔
(t = t).

This allows us to derive a reflexivity axiom for singular variables with respect to
strong identity. Indeed for any term t we have S! (t) → (t = t), and in particular for x
a singular variable we have S! (x) → (x = x), thus obtaining ∀x x = x by ∀x-I.

The final elements of the deductive system are rules governing our definite description
operators �x φ and x:φ. We have that

∅ � S(�x φ)

that

∅ � ∀y ((y = �x φ) ↔ ∀x (φ ↔ x = y))

for y distinct from x and not free in φ, and that

∅ � ∀x((x � x:φ) ↔ φ).

20 These are essentially drawn straight from Oliver & Smiley [14, secs. 12.2 and 12.3].
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It follows that for instance E! (�x φ) → φ(�x φ), and that E! (x:φ) ↔ ∃xφ. This
characterization of exhaustive description also removes the need for a comprehension
scheme for pluralities, as for any φ we can immediately derive ∃xx ∀x (x � xx ↔ φ).21

With the syntax and deductive system for the logic in hand, we will now sketch our
semantics. Our intended metalanguage is a version of set theory using our plural logic
as its logic, so using deductions that follow the above deductive rules (though we have
not given an explicit definition of what it is for a finite list of sequents to be a proof
according to the above deductive rules, it is clear how such a definition would proceed).
We can take the axioms of set theory to be those of ZFC, except that separation is
phrased using a plural quantifier

∀x ∀xx ∃y ∀z ((z ∈ y) ↔ (z ∈ x ∧ z � xx)).

The usual separation scheme then follows using instances of exhaustive description.
The use of plural logic in the metalanguage is not essential, and one could replace
plural talk in the semantics with talk of sets in the obvious way—we use plural logic
just to make clear that the semantics does not require assigning plural variables sets as
extensions.

Our semantics differs from that of Boolos [2], which is specific to the case of second-
order set theory, and differs from that of Yi [24] in allowing plural constants, empty
terms (both singular and plural), functions (including multivalued, partial and co-
partial functions), definite descriptions, and both strong and weak predicates. It differs
from that of Oliver and Smiley in using plural set theory, rather than an unspecified form
of higher-order logic, as its metalanguage (see the discussion at the end of Section 2).

Oliver & Smiley [14, sec. 11.1] argue that to be properly topic neutral, a semantics
cannot be phrased using set theory, as a semantics should also apply to domains of
quantification in which there are too many individuals to form a set. We do not have
to regard our semantics as intending to literally state the truth conditions for all object
languages, however—a goal that is likely impossible, on pain of paradox: instead we
can think of ourselves as modelling the relationship between our words and reality, a
worthwhile project that sets are excellent tools for, even if they do not literally have any
semantic properties.

With these preliminaries addressed, on to the semantics. We use a, b, ... as singular
metavariables, and aa, bb, ... as plural metavariables. If aa are some objects we write
{aa} for the set whose elements are exactly the objects aa, if such a set exists.22 If L is
a language for our logic, a structure D for L consists of the following data: a base set
D (perhaps empty); for each constant symbol c (of L) some elements cD of D (zero or

more);23 for each function symbol f of arity n, a functionf
D

: P(D)n → P(D); and for

each relation symbol P of arity n, a subset P
D

of P(D)n. It is required that (p, q) ∈ =D

iff ∅ = p = q—i.e., iff the elements of p are the same (in the sense of strong identity)

21 The attractions of this are discussed by Oliver & Smiley [14, sec. 13.5].
22 The availability of this notation is the reason for how Oliver and Smiley choose to denote

exhaustive description: given a formula φ, we can form the exhaustive description term x:φ,
and then {x:φ} has its usual meaning.

23 Set theoretically, (-)
D

for constant symbols can be taken to be a one-to-zero-or-more relation
from constant symbols to elements of D. Then “cD” can be taken to be a plural term in the
metalanguage, defined by exhaustive description.
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as the elements of q—and that (p, q) ∈ �D
iff ∅ = p ⊆ q—i.e., iff the elements of p

are among the elements of q (in the sense of inclusion as a strong predicate).

Here if f is a function symbol of arity n, the relation f
D

(p1, ... , pn) = q represents
the function expressed by f taking the elements of q as values, when applied to the
elements of p1, and the elements of p2, ... and the elements of pn (which can include
the case where q or any of the pi are empty). If P is a predicate of arity n, then

(p1, ... , pn) ∈ P
D

represents the relation expressed by P holding of the elements of p1,
and the elements of p2, ... and the elements of pn.

If D is a structure, a variable assignment v over D assigns zero or more elements
v(xx) of D to each plural variable, and zero or one elements v(x) of D to each singular
variable.24 If v is a variable assignment, xx a plural variable and aa are zero or more
of D, we write v[aa|xx] for the variable assignment which agrees with v everywhere
except assigning aa to xx. Similarly if x is a singular variable and aa are zero or
one elements of D, we write v[aa|x] for the variable assignment which agrees with v
everywhere except assigning aa to x.

Given a structure D and a variable assignment v over D, we will now define the
interpretation v(t) of each term with respect to v and D, which consists of zero or more
elements of D, and also define whether each formula φ of the language is satisfied with
respect toD and v, writtenD, v � φ. We define these by a simultaneous induction, since
the concepts are related through our definite description operators. The interpretation
of a variable consists just of the values v assigns to that variable. If c is a constant
symbol then v(c) is defined to be the values cD. If we have terms t1, ... , tn and f is a
function symbol of arity n, then v(f(t1, ... , tn)) is defined to be the elements of the set
f({v(t1)}, ... , {v(tn)}). Given a formula φ, if there is a unique element a of D such
that D, v[a|x] � φ then v(�x φ) is defined to be that a, and otherwise v(�x φ) is defined
to consist of zero elements of D. Also given φ, v(x:φ) is defined to consist of all those
elements a of D such that D, v[a|x] � φ.

Then if we have defined interpretation for terms t1, ... , tn and we have a predicate

symbol P of arity n, then we define D, v � P to hold iff ({t1}, ... , {tn}) ∈ PD
. We define

satisfaction for propositional connectives in the usual way. Finally, we have quantifiers.
Given φ, if x is a singular variable, then we define D, v � ∀x φ to hold iff for every
element a of D, D, v[a|x] � φ holds (dually for ∃x). Then given φ and a plural variable
xx, we define D, v � ∀xx φ to hold iff whenever we have zero or more elements aa of
D, D, v[aa|xx] � φ (dually for ∃xx).

Then given a sequent Γ � φ, we define D and v to satisfy Γ � φ if either D and v
satisfy φ, or they fail to satisfy some element of Γ. We define a sequent Γ � φ to be
universally satisfied if it is satisfied by every D, v. It is a routine check that the set of
universally satisfied sequents is closed under all the deductive rules of the deductive
system of our logic, and thus that all valid sequents are universally satisfied.

Our deductive system is necessarily incomplete, as in this logic one can straight-
forwardly characterize the notions of 	-sequence and complete ordered fields, and
the set of truths about these structures in the relevant languages are not recursively
enumerable. For instance in a language with the usual function symbols S, + and × we

24 As with the interpretation of constant symbols, a variable assignment can be taken set
theoretically to be a one-to-zero-or-more relation between variables and elements of D.
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can state versions of the Peano axioms for arithmetic, using as our induction principle

∀xx((0 � xx ∧ ∀x(x � xx → S(x) � xx)) → ∀x(x � xx)).

Then if TPA is the resulting theory, for any statement φ of the ordinary language of
first-order Peano arithmetic, we have that TPA � φ is universally satisfied (as defined
above) iff φ is true under its normal interpretation. Thus the semantic consequence
relation of our logic is not recursive.

We conclude by noting two facts about this logic. First, we observe that the deductive
system is not hobbled by being universally free (with an empty domain allowed in the
semantics). Indeed we can argue straightforwardly that on the assumption that there
is an object—which can be symbolised as ∃xE! (x), for any variable x25—one can
reason essentially as normal, without worrying about whether variables are empty. We
introduce a new deductive system, which we call the existential assumption deductive
system, denoted EA, which is the same as above except that we have S! (x) as an
additional postulate for every singular variable x (instead of just S(x)). In the presence
of this assumption, the rules of ∀x-I and ∃x-E are equivalent to ones of a simpler form,
though we still have a singular existence requirement on ∀x-E and ∃x-I:

Γ � φ
∀x-IΓ � ∀x φ

Γ � ∀x φ
∀x-E

Γ � S! (t) → φ[t|x]

Γ � S! (t) ∧ φ[t|x]
∃x-IΓ � ∃x φ

Γ, φ � �
∃x-EΓ, ∃x φ � �

The deductive system EA would be sound if we restricted the semantics to require the
base set D of each structure to be nonempty, and required the value v(x) assigned to
each singular variable to be an element of D, rather than zero or one elements.

Then in a precise sense, we can argue that reasoning in EA can be carried out in the
universally free deductive system, on the assumption that an object exists. Indeed if
Γ � φ is a sequent, we let Θ(Γ � φ) be the sequent

Γ, ∃x E! (x), E! (x1), ... , E! (xn) � φ,
where x1, ... , xn are the singular variables free in φ or any element of Γ. Then we can
argue that for each deductive rule of EA, if one applies Θ to each sequent, one obtains
a rule that can be derived in the universally free deductive system. For instance if we
take the rule ∧-E:

Γ � φ ∧ �
∧-E

Γ � φ
applying Θ to each sequent gives:

Γ,∃x E! (x), E! (z1), ... , E! (zp) � φ ∧ �
Γ,∃x E! (x), E! (x1), ... , E! (xn) � φ

which is easily seen to be a valid derived rule in the universally free deductive system—
the assumption ∃xE! (x) allows one to discharge the hypotheses E! (zi) for zi not free
in φ or any element of Γ. It is a routine check that the same holds for all rules of EA

25 Though we have not mentioned it, relabelling bound variables results in provably equivalent
formulae, as usual.
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(whether one takes the singular variable quantifier rules to be the original ones, or
the simpler ones valid in the presence of the axiom S! (x), mentioned above). Thus
if Γ � φ is a sequent derivable in EA, then Θ(Γ � φ) is derivable in the universally
free deductive system—and if we were to define a notion of derivation involving these
deductive rules, a derivation in EA of Γ � φ could be transformed into a similar (and
not too much longer) derivation of Θ(Γ � φ). Thus in a precise sense, if we assume that
there is an object, then we are able to reason in a natural way as though all our variables
are nonempty. The universally free nature of our deductive system is no hindrance.26

This point is not made by Oliver & Smiley [14], and indeed is much easier to make
in the context of a natural deduction style system like ours here, than when using a
Hilbert style axiomatization like theirs.

Finally, we note that modifying the logic to allow multiple different types of
individuals is straightforward. This is relevant to the presentation of a predicative
version of numerical abstraction in Section 7. Syntactically, one would include a set
of types in the specification of a language, have disjoint stocks of singular and plural
variables for each type, specify the type of each constant symbol, specify the arity of a
function symbol as a list of the types of the arguments and a value type, and specify
the arity of a predicate symbol as a list of the types of the arguments. One would
introduce versions of the equality and inclusion symbols for each type. Terms would
only be formed by applying function symbols to terms of the appropriate type, and
atomic formulae would only be formed by applying predicate symbols to terms of the
appropriate type. Definite descriptions would have the type of their bound variable.
Semantically, one would specify a base set (there is no need to make them disjoint) for
each type, and adjust the definition of interpretations of constant symbols, function
symbols and predicate symbols so that everything is appropriately typed. The semantics
of variable assignments and quantifiers would be relativized to the base set of the type
of the relevant variable. Apart from that everything would proceed as above.
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