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Abstract
This study focuses on the kinematic and dynamic modeling of a wheeled-legged robot (WLR), taking into account
kinematic and dynamic slippage. In this regard, the Gibbs–Appell formulation was utilized to derive dynamic equa-
tions. Determining the slippage in the wheels for movement equations is a challenging task due to its dependency
on factors such as the robot’s postures, velocities, and surface characteristics. To address this challenge, machine
vision was used to quantify the slippage of the wheels on the body based on the pose estimation method. This data
served as input for movement equations to analyze the robot’s deviation from its path and posture. In the following,
the robot’s movement was simulated using Webots and MATLAB, followed by various experimental tests involving
acceleration and changes in leg angles on the WLR. The results were then compared to the simulations to demon-
strate the accuracy of the developed system modeling. Additionally, an IMU sensor was utilized to measure the
robot’s motion and validate against machine vision data. The findings revealed that neglecting the slippage of the
wheels in the robot’s motion modeling resulted in errors ranging from 5% to 11.5%. Furthermore, lateral slippage
ranging from 1.1 to 5.2 cm was observed in the robot’s accelerated movement. This highlights the importance of
including lateral slippage in the equations for a more precise modeling of the robot’s behavior.

1. Introduction
Wheeled-legged robots (WLR) are a type of mobile robot equipped with wheels attached to legs,
enabling them to maintain balance while navigating paths with varying surface conditions. These ver-
satile robots exhibit the ability to traverse slippery paths, surmount obstacles, ascend steep inclines,
and maneuver through challenging terrains such as rocky landscapes, sand, and gravel. Achieving such
capabilities requires a comprehensive understanding of the system’s model and the dynamic environ-
mental factors at play. Recent research endeavors have been dedicated to enhancing the functionality of
these robots by developing new mechanisms, refining their models for improved accuracy, considering
potential disturbances through the integration of diverse sensors and algorithms, and designing effective
control strategies. This foundational research is essential for progressing toward the ultimate objective
of creating fully autonomous WLRs.

As it is mentioned, many of recent research efforts have focused on the development of novel mecha-
nisms as it directly influences the robot’s performance, adaptability, and ability to overcome obstacles. In
this regard, Thomas et al. have studied a wheeled mechanism that optimally distributes forces between
wheels to improve vehicle performance and assist in automated robot missions. They created mathe-
matical models for wheel movements and obstacle traversal, determining necessary motor torque [1].
The mechanism employed in this study aligns with the research conducted in this field, and the system
equations have been extended for sliding motions [2]. Some researchers have enhanced wheeled robot
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capabilities by increasing the number of degrees of freedom. Niu et al. introduced a six-degree-of-
freedom wheeled robot with three degrees of freedom per leg, improving movement with prismatic
joints. The robot demonstrated potential for mission execution through simulation and testing [3].
Additionally, Reid et al. in [4] have developed a wheeled robot with thirty-two degrees of freedom,
tested on various terrains. The robot utilized wheel rolling, walking, and rotation modes to actively con-
trol load, orientation, and workspace. Real-time analysis using body sensors provided insights into the
suspension system’s performance. Furthermore, researchers have emphasized hybrid mechanisms by
installing various types of wheels and other types of actuators to enhance robot functionality, enabling
capabilities such as leaping and jumping while in motion [5, 6].

In the next step, researchers have worked on modeling the system to build the fundamentals of control
system development, performance optimization, and enhancing terrain adaptability. In this context, in
one of the similar research studies, Toorani et al. have focused on the dynamic modeling of a reconfig-
urable WLR using a geometric constraint based on the independent Gibbs–Appell formulation. They
have proposed a method for analyzing the kinematics and dynamics of this type of robot, emphasiz-
ing the application of the Gibbs–Appell formulation to derive motion equations for the nonholonomic
wheeled mobile robotic manipulator with revolute–prismatic joints [7]. As another application of the
Gibbs–Appell formulation, Mirzaeinejad et al. have used the recursive Gibbs–Appell method to derive
the kinematic and dynamic models of a wheeled mobile robot (WMR). The Gibbs–Appell method is
then used to obtain the equations of motion for the WMR, which serve as the basis for developing new
kinematics- and dynamics-based multivariable controllers [8]. Additionally, Mata et al. have utilized
the Gibbs–Appell formulation to derive the equations of motion for the robot, which are subsequently
used to develop two efficient algorithms for computing the required joint torques to achieve a desired
motion. By employing the Gibbs–Appell method, the proposed algorithms can determine the inverse
dynamics without the need for symbolic computation or numerical integration, thus making them com-
putationally efficient and suitable for real-time control applications [9]. Korayem et al. have focused on
the stability analysis of a WLR. The authors have proposed a novel force-angle method for stability anal-
ysis, which considers the position of the center of mass relative to the geometric center of the robot as
an independent degree of freedom [10]. Aaron et al. have developed a hybrid wheeled robot for rough
terrains, incorporating a leg-wheel system based on Denavit–Hartenberg parameters. They have cre-
ated a kinematic model, analyzed degrees of freedom, and studied wheel-leg movement. Also, validated
their findings with simulation results in Adams software [11]. Alamdari et al. have enhanced the motion
capabilities of the wheeled walking robot, HiLoS, by analyzing kinematics, dynamics, and path planning
equations. They found wheel slip to be a crucial stability factor and determined stability criteria based
on platform orientation and joint configurations. By applying kinematic and dynamic equations, they
achieved path planning and motion control for the robot [12]. Doe et al. have developed a new method
for wheel movements in a walking robot to improve body tracking. By controlling torque, the robot
can navigate uneven surfaces. They used spatial vectors to extract contact and kinematic models and
combined them for precise wheel movements tailored to different conditions. Multiple algorithms were
created to analyze the robot’s structure effectively [13]. Additionally, Reid et al. in [14] have adjusted
the wheeled robot’s suspension system using inverse kinematics and terrain mapping for adaptability.
They also analyzed images from a camera and light sensor, focusing on deliberate movement aligned
with real-world behavior.

Moreover, a significant portion of recent research has been dedicated to improving control strategies
to achieve the final goal of enhancing robot maneuverability and movement. To exploit the capabilities of
hybrid mechanisms in robots, Reid et al. in [4] have developed an algorithm for a hybrid wheeled robot
to navigate uneven paths by shifting weight between legs to maintain stability. This involved lifting one
leg at a time while the other three legs bear the weight, using load redistribution to align the center of
gravity with the center of pressure for balance and smooth motion. Moreover, in determining appro-
priate degrees of freedom and mechanical relationships, Grand et al. have optimized the locomotion of
the HiLoS planetary exploration robot, an early wheeled walking robot. Subsequently, they developed
a control method for improving traction torque, leading to increased robot stability. Their approach
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was validated through practical experiments and dynamic simulations, demonstrating the robot’s per-
formance on solid and soft terrain like sand [15]. Beckman et al. have investigated the MHT wheeled
walking robot, which features an adjustable body center of gravity. Designed for improved mobility on
uneven terrain, this robot’s two-dimensional dynamic stability was studied. It can dynamically shift its
center of gravity parallel to the forward direction, move smoothly on flat ground, and employs hydraulic
actuators for leg joints [16]. Additionally, some researchers have focused on enhancing the movement
capabilities of robots on challenging terrains through advanced path planning and optimization tech-
niques. Medeiros et al. [17] have developed a sophisticated animal robot by combining wheel speed
with leg capabilities and optimizing actuator forces based on terrain information, while Ishigami et
al. [18] have created a path planning algorithm for wheeled robots considering wheel slip dynamics
and soil properties. In another similar research, Bjelonic et al. have presented an online path optimiza-
tion framework for wheeled ground robots capable of executing fast movement strategies. Their robot
quickly maps the environment and selects the best possible path for robot movement among other avail-
able paths [19]. Considering the fact that slippage can play a significant role in the locomotion of robots,
several researchers have considered this issue in the controlling process [20–23]. Also, in order to esti-
mate and predict the slip, several research have been conducted [24–27]. They have utilized various
techniques such as artificial neural networks, image processing, Doppler radar, and computer vision to
predict, compensate for, and estimate wheel slip, friction, traction forces, and wheel-to-ground contact
angles. Additionally, Reina et al. in [28–29] have used methods like deep learning, six-dimensional posi-
tional estimation, and machine vision-based algorithms to measure displacement, position, lateral slip,
and sinkage of the robots, ultimately aiming to enhance the accuracy and efficiency of mobile robots
moving on challenging terrains. This paper presents the development of a system model for a WLR,
highlighting three key innovations.

1. The Gibbs–Appell method is used to simplify rotational angle constraints for the robot’s body,
avoiding complex equations and reducing the computational burden. Assumptions are made
to develop constraint equations and calculate Gibbs functions, allowing for dynamic and slip-
page equations for each wheel to be obtained without determining Lagrangian coefficients. Also,
this method requires fewer partial derivatives to calculate joint torque by quasi-coordinates. To
the best of our knowledge, this is the first application of the Gibbs–Appell formulation on the
presented system with consideration of slippage in moving robots.

2. A machine vision method known as pose estimation to accurately estimate the slippage occurring
on the robot’s wheels is used. This method proved to be more effective in reducing the amount
of error compared to classical methods.

3. Performance of the developed model has been evaluated under different circumstances using
MATLAB and Webots and compared with the results of experimental tests.

The paper is organized as follows: Section two provides an overview of the mechatronic components
of the robot, as well as a description of the methodology utilized to estimate actual slippage during
experimental tests. Section three presents the development of kinematic equations for the robot, incor-
porating kinematic slippage as a slip ratio. Additionally, dynamic equations are derived taking into
account slippage, using the Coulomb friction model. In Section four, the results of simulations based
on the developed equations are presented and compared with the robot’s behavior during experimental
tests to assess performance and validate the accuracy of the theoretical framework.

2. Description of the robot and detection method
2.1. Robot structure
As it illustrated in Fig. 1, the WLR analyzed in this study features 8 degrees of freedom, with 2 degrees
of freedom allocated to each joint (wheel-leg). Constructed from aluminum sheets and plexiglass,
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Table I. Actual parameters of WLR.

Parameters Symbol Value Unit
Length of WLR lx 0.35 m
Width of WLR ly 0.32 m
Length of leg l 0.135 m
Radius of wheel a 0.034 m
Mass of WLR’s body MG 2.8 kg
Moment of inertia of wheel about its axis Io 0.00028 kgm2

Moment of inertia of WLR’s body about Y-axis IGy 0.00002 kgm2

Moment of inertia of WLR’s body about Z-axis IGz 0.00003 kgm2

Moment of inertia of WLR’s leg about X-axis Ilx 0.00012 kgm2

Moment of inertia of WLR’s leg about Y-axis Ily 0.00012 kgm2

Figure 1. Schematic of the robot components and its electronic circuit.

the robot’s body incorporates an aluminum sheet in the lower section, which serves to lower the center
of gravity and house electronic components, while plexiglass sheets are utilized as body covers. The
body dimensions measure 7 × 35 × 32 cms, with the legs measuring 13.5 × 5 × 5 cms. The robot’s
weight, excluding the power source, amounts to 3 kgs. The wheels, with a diameter of 6.8 cms, are
specifically designed with a tread pattern to enhance rotation on sloping and slippery surfaces, thereby
augmenting the wheels′ friction with the terrain. Mechatronic components include 8 Dynamixel motors,
each with a power rating of 150 W; this comprises four XM540-W150-R motors for hip joints and four
XL430-W250-T motors for the wheels. These motors are capable of transmitting feedback on position,
speed, and torque to the PC. The internal motor gearboxes directly link the wheels and legs, while the
electronic elements are contained in the main body of the robot. An accelerometer and gyroscope, the
MPU-6050, serve as a 6-axis IMU sensor to determine the posture and position of the robot’s center of
mass. The PC acts as the main controller for the robot, receiving all analog and digital inputs and out-
puts, allowing commands to be issued to the actuators of the wheels and legs. Table I shows the actual
parameters of WLR.
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Figure 2. Schematic of the slip estimation process.

2.2. Vision method
The effect of slippage on wheeled robots during accelerated movements can result in significant errors
between the expected and actual outcomes. Fig. 2 illustrates the application of pose estimation method
along with concentric circles to assess the displacement of robot movement and body slippage in a
controlled laboratory setting. To address the challenges posed by noise and varying lighting conditions,
this method was employed to track the position of the robot body in captured images. By identifying and
averaging the coordinates of the centers of the circles, a virtual coordinate system was established at the
midpoint of the circles on the robot body, enabling the calculation of displacement for that specific point.
By comparing the robot’s movement trajectory with the intended path, we are able to quantify the extent
of body slippage. Deviation from the path and failure to reach the final destination of the robot is caused
by two factors, slipping and skidding. The direction vectors of these two factors are opposite to each
other, and separating them from each other is difficult. Therefore, these two factors have been measured
together as the slip of the robot’s wheels and have been incorporated into the robot’s equations.

3. System model development
This section focuses on the modeling and derivation of kinematic and dynamic equations for the WLR,
assuming the presence of wheel slippage. Kinematic equations are extracted using the vector-based
method, while dynamic equations are derived using the Gibbs–Appell method. By utilizing pseudo-
acceleration equations and Gibbs functions, the forces and torques acting on the robot’s actuators are
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Figure 3. Schematic of the WLR [28].

determined. The effects of kinematic slippage are incorporated into the equations as a slip ratio, and the
dynamic effects of slippage resulting from insufficient friction force are simplified by using the Coulomb
friction model due to the complexity of the WLR equations.

Fig. 3 schematically shows the robot along with its parameters and coordinates, where rlf , rrf are the
vectors representing the centers of the left and right front wheels relative to the center of the platform,
and rlr, rrr are the vectors representing the centers of the left and right rear wheels relative to the center
of the platform. θlf , θrf , θlr, θrr are the angles of rotation of the front left and right wheels and the rear
left and right wheels, and α, β are the angles of rotation of the two front feet and the two rear feet, with
their positive directions being counterclockwise. G is the center of mass of the robot, while lx, ly are the
length and width of the robot body and O is the center of the wheels.� is the angle of rotation around the
Y-axis of the robot body and θ is the angle of rotation around the Z-axis of the robot body. xslf , xsrf , xslr,
xsrr are the longitudinal slippage of the front left and right wheels and the rear left and right wheels also
yslf , ysrf , yslr, ysrr are the lateral slippage of the front left and right wheels and the rear left and right wheels
and Zslf , Zsrf , Zslr, Zsrr represent the slippage in the vertical direction of the front left and right wheels
and the rear left and right wheels of the robot, respectively. Which these variables are extracted using
machine vision to monitor the robot’s movement. The robot’s coordinate frame is considered on the
moving surface along the center of mass of the robot, with the X-axis along the length, the Y-axis along
the width and the Z-axis along the height changes. Additionally, a represents the radius of the wheels,
and l denotes the length of the legs. In this article, the wheel-legged robot is modeled using simplifying
assumptions to streamline the analysis. In comparison to other wheel-legged robots, this particular robot
has a reduced number of degrees of freedom. The legs of the robot utilize single-link joints instead of
more complex double-link knee joints, with the waist joint and wheel steering joints being omitted from
the model. To further simplify the modeling process, the rotation angles of the front legs and rear legs
are assumed to be uniform within each set. Consequently, rotation around the x-axis is disregarded, as
the robot’s body is not expected to rotate along this axis under these specific conditions. Moreover, the
rear wheels of the robot are assumed to freely spin without external input to prevent oversteering.

3.1. Kinematics of the WLR
By writing the position vectors of the wheels relative to the center of mass of the robot and taking
derivatives of them, we determine the relative speeds of the wheels relative to its center of mass and
obtain the speeds of the wheels and legs of the robot (point O). In Eq. (1a), v is the speed of the center
of the wheels and legs of the robot (point O) [30].

v = vG + θ̇ k̂ × rO/G + vO/G (1)
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where vG represents the center of mass velocity of the platform, rO/G denotes the vector connecting the
wheel center to the center of mass, and vO/G signifies the relative velocity of the wheel with respect to
the platform. We decompose the robot’s body velocity along the coordinate axes as follows:

(vG)x = ẋ, (vG)y = ẏ, (vG)z = ż (2)

By writing Eq. (1) for each of the wheels and incorporating the linear velocities of the wheels and
their slip components on the opposite side, the kinematic equations for the robot, assuming longitudinal,
lateral and vertical slips, take the form of Eq. (3–6):

Front right wheel velocity:

vrf = (
ẋ − ẋsrf − aθ̇rf

)
î + (

ẏ − ẏsrf

)
ĵ + (

ż − żsrf

)
k̂ + θ̇ k̂ × rrf + ṙrf (3)

Front left wheel velocity:

vlf = (
ẋ − ẋslf − aθ̇lf

)
î + (

ẏ − ẏslf

)
ĵ + (

ż − żslf

)
k̂ + θ̇ k̂ × rlf + ṙlf (4)

Rear right wheel velocity:

vrr = (
ẋ − ẋsrr − aθ̇rr

)
î + (ẏ − ẏsrr) ĵ + (ż − żsrr) k̂ + θ̇ k̂ × rrr + ṙrr (5)

Rear left wheel velocity:

vlr = (
ẋ − ẋslr − aθ̇lr

)
î + (ẏ − ẏslr) ĵ + (ż − żslr) k̂ + θ̇ k̂ × rlr + ṙlr (6)

In the following, we proceed by differentiating the above relations and determining the accelerations
to formulate the dynamic equations.

3.2. Dynamics of the WLR
The Gibbs–Appell method has been used to obtain the dynamic equations. The pseudo-coordinates of the
problem are determined and then the system accelerations are extracted in terms of pseudo-coordinates.
Next, the Gibbs functions for different parts of the robot are determined and by putting them into the
Gibbs equation and taking derivatives with respect to each of the pseudo accelerations, the dynamic
equations of the robot are extracted. The pseudo-coordinates are α, β, θrf , θlf , θrr, θlr, xslf , xsrf , xslr, xsrr,
yl, yr with derivatives from the Gibbs–Appell equations in terms of pseudo accelerations, which are
second-order derivatives of the pseudo-coordinates, the governing dynamic equations of the system are
obtained. The Gibbs functions are determined separately for the three main parts of the robot.

Gibbs function for wheels:

S1 = Io

2

(
θ̈ 2

rf + θ̈ 2
lf + θ̈ 2

rr + θ̈ 2
lr

)
(7)

Gibbs function for legs:

S2 = Ily

(
α̈2 + β̈2

) + Ilxθ̈
2
(
cos2α+ cos2β

) + ml

2

(
a2

rf + a2
lf + a2

rr + a2
lr

)
(8)

Gibbs function for the body [7]:

S3 = 1

2

(
IGzθ̈

2 + IGy�̈
2 + MGaG

2
)

(9)

The final Gibbs function is obtained by combining Eq. (7–9):

S = Io

2

(
θ̈ 2

rf + θ̈ 2
lf + θ̈ 2

rr + θ̈ 2
lr

) + Ily

(
α̈2 + β̈2

) + Ilxθ̈
2
(
cos2α+ cos2β

) + ml

2

(
a2

rf + a2
lf + a2

rr + a2
lr

)

+ 1

2

(
IGzθ̈

2 + IGy�̈
2 + MGa2

G

)
(10)

In the above equations, Iois the wheel axis moment of inertia, Ily is the leg Y-axis moment of inertia,
Ilx is the leg X-axis moment of inertia, ml is the leg mass, alf , arf , alr, arr are the accelerations of each
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leg, IGz is the body Z-axis moment of inertia, IGy is the body Y-axis moment of inertia, MG is the robot
body mass, and aG is the acceleration of the robot’s center of mass, which is calculated as a vector from
the following equation:

aG = ẍî + ÿĵ + z̈k̂ + θ̇ k̂ × ẋî (11)

In which, ẍ, ÿ, z̈ represent the accelerations of the robot’s center of mass along the coordinate axes.
Subsequently, the potential energy function of the system is calculated as follows:

V = gl(ml (sin (α)+ sin (β))+ MG

2
(sin (α +�)+ sin (β +�) )) (12)

where g represents the acceleration due to gravity. To determine dynamic slip or traction force, due to
the complexity of relationships, a simplified model of the Dahl friction is employed under quasi-static
conditions, which transforms into the Coulomb friction equation [31]:

Fslip = −σ0ẑ (13)

Here, σ0 denotes the surface roughness coefficient, and ẑ represents relative displacement. In the static
case, Eq. (13) becomes the following expression for Coulomb friction force [32]:

Fslip = −μdFnsgn (υ) (14)

where μd is the coefficient of dynamic friction, Fn is the normal force on the wheel surface, and υ is the
linear velocity of the wheels. The friction function for the Gibbs–Appell equations is defined as:

D =μdx(Fnf

(
ẋsrf sgn

(
ẋsrf

) + ẋslf sgn
(
ẋslf

)) + Fnr (ẋsrrsgn (ẋsrr)+ ẋslrsgn (ẋslr))

+ 2μdy(Fnf ẏf sgn
(
ẏf

) + Fnrẏrsgn (ẏr) ) (15)

In this equation, μdx represents the longitudinal friction coefficient of the wheels, μdy represents the
lateral friction coefficient of the wheels also Fnf and Fnr are the normal forces on the front and rear
wheels, respectively. Additionally, in Eq. (15), a velocity term is multiplied by sign functions, which, by
taking derivatives from them, we will obtain the form of frictional force in the Gibbs-Appell equations.
The normal forces on the wheel surfaces are obtained from the following relationships.

Front wheel normal force:

Fnf = 1

lxcos (�)+ l(cos (α +�)− cos (β +�) )
(
1

2
MGg(

1

2
lxcos (�)− lcos (β +�) )

+ mlg(lxcos (�)+ 1

2
lcos (α+�)− 3

2
lcos (β +�) )) (16)

Rear wheel normal force:

Fnr = 1

lxcos (�)+ l(cos (α+�)− cos (β +�) )
(
1

2
MGg(

1

2
lxcos (�)+ lcos (α +�) )

+ mlg(lxcos (�)+ 3

2
lcos (α +�)− 1

2
lcos (β +�) )) (17)

After formulating the Gibbs functions, potential function and friction function, these functions are
incorporated into the final Gibbs equations to provide the dynamic equations for all pseudo-coordinates.
The general form of the Gibbs equation, considering slip, is defined as

∂S

∂ q̈
+ ∂D

∂ q̇
+ ∂V

∂q
= τ (18)

where q represents the pseudo-coordinates of the system, and τ denotes the generalized torques (inputs).
By incorporating each input into the equation above and taking derivatives, the governing dynamic equa-
tions for the system are derived. Notably, since 12 pseudo-coordinates have been obtained as independent
coordinates, a set of 12 equations serves as the dynamic model for the robot. Furthermore, the formula-
tion of the Gibbs–Appell method, Lagrange method, and their comparative analysis has been addressed
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in ref [33]. Next, by substituting pseudo accelerations in place of q for torques and forces acting on the
system, the following quantities are extracted.

Torque of front leg motors:

τα = 2Ilyα̈+ 1

2

(
ml

(
−2

(
ẍ − ẍsrf − aθ̈rf + 1

2

(
θ̈ ly − lxψ̈sin (ψ)− lxψ̇

2cos (ψ)
)

−l
(
α̈+ ψ̈

)
sin (α +ψ)− l

(
α̇ + ψ̇

)2
cos (α +ψ)

)
lsin (α +ψ)

+
(

z̈ − z̈srf + 1

2

(
lxψ̈cos (ψ)− lxψ̇

2sin (ψ)+ l
(
α̈+ ψ̈

)
cos (α +ψ)− l

(
α̇ + ψ̇

)2
sin (α +ψ)

)

l cos (α+ψ)− 2

(
ẍ − ẍslf − aθ̈lf + 1

2

(−θ̈ ly − lxψ̈sin (ψ)− lxψ̇
2cos (ψ)

) − l
(
α̈+ ψ̈

)

sin (α +ψ)− l
(
α̇ + ψ̇

)2
cos (α +ψ)

)
lsin (α +ψ)+

(
z̈ − z̈slf + 1

2

(
lxψ̈cos (ψ)− lxψ̇

2

sin (ψ)+ l
(
α̈ + ψ̈

)
cos (α +ψ)− l

(
α̇ + ψ̇

)2
sin (α +ψ)

)
l cos (α+ψ)

))
(19)

Torque of rear leg motors:

τβ = 2Ilyβ̈ + 1

2

(
ml

(
−2

(
ẍ − ẍsrr − aθ̈rr + 1

2

(
θ̈ ly + lxψ̈sin (ψ)+ lxψ̇

2cos (ψ)
)

−l
(
β̈ + ψ̈

)
sin (β +ψ)− l

(
β̇ + ψ̇

)2
cos (β +ψ)

)
lsin (β +ψ)+ (z̈ − z̈srr

+1

2

(
−lxψ̈cos (ψ)+ lxψ̇

2sin (ψ)+ l
(
β̈ + ψ̈

)
cos (β +ψ)− l

(
β̇ + ψ̇

)2
sin (β +ψ)

)

l cos (β +ψ)− 2

(
ẍ − ẍslr − aθ̈lr + 1

2

(−θ̈ ly + lxψ̈sin (ψ)+ lxψ̇
2cos (ψ)

) − l
(
β̈ + ψ̈

)

sin (β +ψ)− l
(
β̇ + ψ̇

)2
cos (β +ψ)

)
lsin (β +ψ)+

(
z̈ − z̈slr + 1

2

(−lxψ̈cos (ψ)

+lxψ̇
2sin (ψ)+ l

(
β̈ + ψ̈

)
cos (β +ψ)− l

(
β̇ + ψ̇

)2
sin (β +ψ)

)
l cos (β +ψ)

))
(20)

Torque of right front wheel motor:

τθrf = Ioθ̈rf − mla(ẍ − ẍsrf − aθ̈rf + 1

2
(θ̈ ly − lxψ̈ sin (ψ)− lxψ̇

2 cos (ψ) ) − l
(
α̈ + ψ̈

)
sin (α+ψ)− l

(
α̇+ ψ̇

)2
cos (α +ψ) ) (21)

Torque of left front wheel motor:

τθ lf =Ioθ̈lf − mla(ẍ − ẍslf − aθ̈lf + 1

2
(−θ̈ ly − lxψ̈ sin (ψ)− lxψ̇

2 cos (ψ) ) − l
(
α̈ + ψ̈

)
sin (α +ψ)− l

(
α̇ + ψ̇

)2
cos (α +ψ) ) (22)

Torque of right rear wheel motor:

τθrr =Ioθ̈rr − mla(ẍ − ẍsrr − aθ̈rr + 1

2
(θ̈ ly + lxψ̈ sin (ψ)+ lxψ̇

2 cos (ψ) ) − l
(
β̈ + ψ̈

)
sin (β +ψ)− l

(
β̇ + ψ̇

)2
cos (β +ψ) ) (23)

Torque of left rear wheel motor:

τθ lr =Ioθ̈lr − mla(ẍ − ẍslr − aθ̈lr + 1

2
(−θ̈ ly + lxψ̈ sin (ψ)+ lxψ̇

2 cos (ψ) ) − l
(
β̈ + ψ̈

)
sin (β +ψ)− l

(
β̇ + ψ̇

)2
cos (β +ψ) ) (24)
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Longitudinal friction force applied to the right front wheel:

Fxsrf = 1

2
ml

(−2ẍ + 2ẍsrf + 2aθ̈rf − θ̈ ly + lxψ̈sin (ψ)+ lxψ̇
2cos (ψ)+ 2l

(
α̈+ ψ̈

)

sin (α+ψ)+ 2l
(
α̇ + ψ̇

)2
cos (α +ψ)

)

+ μdx

(
1
2
MGg

(
1
2
lx cos (ψ)− l cos (β +ψ)

) + mlg
(
lx cos (ψ)+ 1

2
(l cos (α+ψ)− 3l cos (β +ψ))

))
(lx cos (ψ)+ l (cos (α+ψ)− cos (β +ψ)))

.

(25)

Longitudinal friction force applied to the left front wheel:

Fxslf = 1

2
ml

(−2ẍ + 2ẍslf + 2aθ̈lf + θ̈ ly + lxψ̈sin (ψ)+ lxψ̇
2cos (ψ)+ 2l

(
α̈+ ψ̈

)

sin (α+ψ)+ 2l
(
α̇ + ψ̇

)2
cos (α +ψ)

)

+ μdx

(
1
2
MGg

(
1
2
lx cos (ψ)− l cos (β +ψ)

) + mlg
(
lx cos (ψ)+ 1

2
(l cos (α+ψ)− 3l cos (β +ψ))

))
(lx cos (ψ)+ l (cos (α+ψ)− cos (β +ψ)))

.

(26)

Longitudinal friction force applied to the right rear wheel:

Fxsrr = 1

2
ml

(−2ẍ + 2ẍsrr + 2aθ̈rr + θ̈ ly − lxψ̈sin (ψ)− lxψ̇
2cos (ψ)+ 2l

(
β̈ + ψ̈

)
sin (β +ψ)

+2l
(
β̇ + ψ̇

)2
cos (β +ψ)

)

+ μdx

(
1
2
MGg

(
1
2
lx cos (ψ)+ l cos (α +ψ)

) + mlg
(
lx cos (ψ)+ 1

2
(3l cos (α +ψ)− l cos (β +ψ))

))
(lx cos (ψ)+ l (cos (α+ψ)− cos (β +ψ)))

.

(27)

Longitudinal friction force applied to the left rear wheel:

Fxslr = 1

2
ml

(−2ẍ + 2ẍslr + 2aθ̈lr + θ̈ ly − lxψ̈sin (ψ)− lxψ̇
2cos (ψ)+ 2l

(
β̈ + ψ̈

)
sin (β +ψ)

+2l
(
β̇ + ψ̇

)2
cos (β +ψ)

)

+ μdx

(
1
2
MGg

(
1
2
lx cos (ψ)+ l cos (α +ψ)

) + mlg
(
lx cos (ψ)+ 1

2
(3l cos (α +ψ)− l cos (β +ψ))

))
(lx cos (ψ)+ l (cos (α+ψ)− cos (β +ψ)))

.

(28)

Lateral friction force applied to the front wheels:

Fysf = 2μdy

(
1

2
MGg

(
1

2
lx cos (ψ)− l cos (β +ψ)

)
+ mlg

(
lx cos (ψ)+ 1

2
(l cos (α +ψ)

−3l cos (β +ψ))

))
/(lx cos (ψ)+ l (cos (α +ψ)− cos (β +ψ)) ). (29)

Lateral friction force applied to the rear wheels:

Fysr = 2μdy

(
1

2
MGg

(
1

2
lx cos (ψ)+ l cos (α +ψ)

)
+ mlg

(
lx cos (ψ)+ 1

2
(3l cos (α+ψ)

−l cos (β +ψ))

))
/(lx cos (ψ)+ l (cos (α +ψ)− cos (β +ψ)) ). (30)
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Table II. Characteristics of motors in WLR joints.

Parameters Value Unit
Accuracy of motors for reading angles 0.08 degree
XM540-W150-R no load speed 66 rpm
XL430-W250-T no load speed 61 rpm
XM540-W150-R torque stall 7.3 N.m.
XL430-W250-T torque stall 1.5 N.m.
XM540-W150-R gear ratio 152.3: 1 –
XL430-W250-T gear ratio 258.5: 1 –

Figure 4. Schematic of robot simulation in Webots, including operator torque and friction forces.

4. Simulations and experimental results
As shown in Fig. 4, the behavior of the WLR has been simulated in the Webots software environment.
Additionally, the kinematic and dynamic equations have been extracted using MATLAB and Maple
software. By providing inputs to these equations, the behavior of the robot is simulated. Since slip is a
random phenomenon and any behavior of it can have significant effects on the results, the simulation
has been conducted considering a constant slip coefficient and compared with experimental results in
order to validate them. Table II shows the characteristics of motors of WLR.

Fig. 5 illustrates the WLR used in experimental tests. The results of two experimental tests, one with
the front wheels accelerating and inputs applied to these wheels, and the back wheels rolling freely, and
the other with changing angles of both the front and back legs, have been compared with simulation
results. In this experiment, it is assumed that the wheel slip coefficient and the surface are constant.
We have demonstrated through the presentation of two distinct tests that alterations in the posture of
the robot’s body have proven to significantly impact the incidence of wheel slippage and subsequent
modifications to the robot’s movement patterns. In the robot test, placing equipment at the robot’s center
of mass improves movement and reduces slippage, as when the leg angles vary, the center of mass shifts
toward the front and back of the robot, affecting the perpendicular force on the wheels and reducing the
friction coefficient. Experimental test results were derived from the output data of the motors, motor
encoders, and an inertial sensor attached to the body.

4.1. First test
As shown in Fig. 6, in the first test, the robot is in accelerating motion, with the back legs rotating from
angles of 30 to 150 degrees and the front legs moving with a fixed angle of 30 degrees. The wheel
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Figure 5. Experimental setup.

Figure 6. Robot’s motion in first test.

speeds are set at an initial speed of zero, reaching a speed of 18.32 rev/min with an acceleration of
214.58 rev/min2 for the front wheels. The legs have a constant speed of 3.44 rev/min. During this test,
the wheels complete four rotations.

Fig. 7 shows the rotation of the robot’s joint motors, with the back wheels (motors 5 and 8) in free
mode and the front legs (motors 2 and 3) in fixed mode. The outcomes of the robot’s behavior in the
simulation environment closely align with the experimental data acquired from the encoder feedback of
the motors. However, a slight variance in the acceleration of the motors has resulted in discrepancies in
the initial movement results.

Fig. 8 shows the rotation speed of the joint motors of the robot. In the Webots simulator for test
simulation and in experimental test, the back wheels are free-spinning. Due to the free movement of
the back wheels (motors 5 and 8), their rotational speed accelerates with the movement of the body.
Additionally, the speed of the back legs is constant in the Webots and experimental test. As the legs
complete their rotation, the speed reaches zero (motors 1 and 4).

Fig. 9 shows the torque of the robot’s joint motors. By considering the gravitational force, the mass
of the robot, the inertia of the components, and the forces between the wheels and the ground surface,
the torque applied to the motors can be determined. In the Webots software, the motors are designed to
be close to the real model, which is why the output torque feedback of the motors is not as sharp and
smooth. Also, taking into account the ground conditions and the forces acting on the wheels from the
surface, a partial amount of torque is applied to the wheel motors, resulting in slightly different results
from theoretical expectations. Additionally, a small amount of torque is applied to the back wheels due
to changes in the angle of the legs and surface conditions. The results obtained from the motor torque
show a consistent trend, decreasing as the robot body stabilizes.
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Figure 7. Rotation of the robot’s joint motors, (a) legs (b) wheels.

Figure 8. Rotational speed of the robot’s joint motors, (a) leg motors and (b) wheel motors.

Figure 9. Torque of the robot’s joint motors, (a) leg motors and (b) wheel motors.
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Figure 10. Position and rotation angle of the robot, (a) linear position and (b) rotational position.

In Fig. 10, the position and linear velocity of the robot’s body in the direction of the specified coordi-
nate axes are shown. The simulation outcomes in Webots, along with theoretical simulations conducted
in MATLAB, exhibit a motion characterized by a consistent slip coefficient. However, in the experi-
mental test, due to existing slippage, the behavior of the robot differs from theoretical results. Machine
vision has effectively estimated the actual path of the robot’s movement, and the experimental test data
and machine vision are consistent with each other.

Fig. 11 shows the displacement of the robot on a two-dimensional plane. This image simulates observ-
ing the robot’s center from above perpendicularly. The results indicate that the lateral displacement of
the robot, especially at the beginning of the movement when the wheels slip, causes the robot’s center
to deviate from the straight path.

4.2. Second test
As shown in Fig. 12, in this test, the robot moves with an accelerating motion by changing the angle of
its front legs from 30 to 150 degrees and its back legs from 150 to 30 degrees. This test was started with
an initial speed of zero and reached a speed of 18.32 rev/min with an acceleration of 214.58 rev/min ˆ 2
on the front wheels of the robot, while the front and back legs moved at a constant speed of 3.44 rev/min.
The wheels in this test rotated four times.

Fig. 13 shows the rotation angle of the robot joint motors. The experimental test results acquired from
the encoder feedback of the motors align well with the simulation outcomes and exhibit congruent move-
ment behaviors. The rotation profile differs slightly between simulation in Webots and experimental test
due to differences in applying acceleration to the motors of the robot.

Fig. 14 shows the rotation speed of the robot joint motors. In the Webots simulation for testing, a
constant speed is given to the robot joints. However, in the experimental test, the joints start moving
with acceleration as the motors are initially stationary to reach the ideal input as given. The software
values in Webots are considered the set speed. The motor PID coefficients are very effective in changing
the rotation profile and speed, affecting the motors′ convergence speed with the input command. As the
legs complete their rotation, the speed of motors drops to zero (motors 1 to 4). The back wheels are
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Figure 11. The path traveled by the robot in first test.

Figure 12. Robot’s motion in second test.

Figure 13. Rotation angle of robot joint motors, (a) leg motors and (b) wheel motors.

free-spinning. Because of this free movement, the rotational speed of the back wheels increases with the
motion of the body. When the legs complete their movement, the speed of motors reaches zero (motors
5 and 8).

Fig. 15 shows the torque of the robot joints motors. In Webots software, the motors are designed
closely to the real model, which is why the output torque feedback of the motors is not as sharp and
smooth as the theoretical results. Due to the complexity of this test and differences in the motor’s PID
coefficients that determine the importance of input torque, and not seeing the applied torques from
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Figure 14. Rotation speed of robot joint motors, (a) leg motors and (b) wheel motors.

Figure 15. Torque of robot joint motors, (a) leg motors and (b) wheel motors.

other factors, the alignment of theoretical relationships with simulation has been slightly reduced to
experimental testing.

In Fig. 16, the position and linear velocity of the robot body in the direction of specified coordinate
axes are shown. The simulation outcomes within Webots, alongside the theoretical frameworks, both
suggest a motion characterized by a consistent slip coefficient. However, disparities in the applied accel-
eration procedures between the two methods account for the variations observed. The machine vision
results are close to the experimental test considering the existing slip, and the robot’s behavior differs
from theoretical results. Image processing has successfully estimated the robot’s actual movement path,
and the experimental test data and image processing are consistent with each other. Furthermore, the
inertial sensor and image processing worked well in determining the robot’s position in real conditions
and were able to estimate the deviation of the robot from the main path under slip conditions and measure
changes in the body’s height with good accuracy consistent with simulation.

Fig. 17 shows the displacement of the robot on a two-dimensional plane. This image depicts the
overall movement of the robot on the plane and its trajectory. The ideal movement state of the robot is
straight motion without lateral displacement; however, the results indicate that the lateral displacement
of the robot at the beginning of the movement, when the wheels slip, causes the robot to deviate from
the main path. At the end of the path, due to the body’s deviation from the path, significant lateral
displacement occurs.
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Figure 16. Position and rotation angle of the robot, (a) linear position and (b) rotational position.

Figure 17. The path traveled by the robot in second test.

5. Conclusion
This research focuses on the development of a mathematical formulation related to the kinematic and
dynamic modeling of a WLR with the assumption of slipping to improve the accuracy of these equations.
In the first step, kinematic equations were derived using vector methods, and then dynamic equations
were extracted using the Gibbs–Appell formulation. By utilizing pseudo-acceleration equations and
Gibbs functions, the forces and torques acting on the robot’s actuators were obtained. In comparison to
recent works, this method reduces the number of equations and computational complexity. In previous
studies, classic or intelligent estimators have often been used to estimate slippage, with less emphasis
on measuring actual slip in experimental tests. However, in this research, a slip estimation method based
on machine vision were used to determine the slippage of the wheels and body center velocity of the
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robot’s motion at each moment in the motion space. The longitudinal and lateral slip of each wheel and
the body slip at each moment were extracted for use in the developed equations. Furthermore, to validate
the developed equations, the WLR was modeled in the Webots software environment, and the results
obtained from this software were compared with the results of simulations in MATLAB software and
experimental results. The experimental results were compared with theoretical and simulation results
under two different motion scenarios: once with the front wheels accelerating and inputs applied to these
wheels while the rear wheels freely rotating and again with changes in the rear leg angles while keeping
the front legs fixed and once more with changes in both front and rear leg angles. The results of this
comparison clearly indicate an acceptable similarity between the experimental data and the simulation
results. The findings indicated that assuming a consistent slip coefficient in the robot’s motion modeling
led to an 11.5% error in accelerated straight movement when the rear legs rotated, and a 5% error in
accelerated straight movement when both the rear and front legs rotated. To reduce modeling errors, the
effects of longitudinal and lateral slip of each wheel of the robot should be considered as input terms in
the modeling system. This will make the robot’s modeling closer to its actual movement. Additionally,
slipping effects can be minimized by changing the type of tires to more adhesive ones, increasing the
robot’s weight, or altering the robot’s movement surface to one with a higher coefficient of friction.
To measure slip, GPS sensors, motion detection sensors, and IMU sensors can be utilized in addition
to machine learning methods. By fusing their data with machine learning data, the accuracy of slip
measurement and error rate can be improved. Additionally, the lateral slippage for each of the tests was,
respectively, 1.1 and 5.2 cms, indicating that the robot deviated to the sides and that lateral slippage
should be considered in the modeling to achieve more accurate results. In general, this work can be
considered a positive step toward improving the accuracy of recent works on theoretical aspects, as well
as enhancing the reliability of WLRs in practical applications.
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