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This study conducts particle-resolved direct numerical simulations to analyse how
finite-size spherical particles affect the decay rate of turbulent kinetic energy
in non-sustained homogeneous isotropic turbulence. The decaying particle-laden
homogeneous isotropic turbulence is generated with two set-ups, i.e. (1) releasing particles
into a single-phase decaying homogeneous isotropic turbulence and (2) switching off the
driving force of a sustained particle-laden homogeneous isotropic turbulence. With both
set-ups, the decay of turbulent kinetic energy follows a power-law when the flow is fully
relaxed, similar to their single-phase counterparts. The dependence of the power-law decay
exponent n on the particle-to-fluid density ratio, particle size and volume fraction is also
investigated, and a predictive model is developed. We find that the presence of heavier
particles slows down the long-time power-law decay exponent.
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1. Introduction

The decaying homogeneous isotropic turbulence (DHIT) in a periodic domain is the
simplest form of turbulent flow. Although this kind of flow only approximately exists in
nature and industrial applications, it provided opportunities to understand the complexity
of turbulence. How the turbulent kinetic energy (TKE) decays with time is one of the
basic questions in DHIT. The theoretical studies on this topic started from the classic
work of Kolmogorov (1941), who argued that the decay of TKE in DHIT should be
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independent of the viscosity and followed a power law E(t)/E(t0) ∝ t−n, where E(t) and
E(t0) are the current and initial volume-averaged TKE, respectively. Kolmogorov also
derived the analytical exponent n = 10/7 for large-Reynolds-number isotropic turbulence
(Kolmogorov 1941). Batchelor (1948) provided a more complete analysis of the decay rate
with different assumptions. In the same work, he pointed out that exponent n would change
from 10/7 to 5/2 when DHIT reached its final stage. However, Saffman (1967) argued that
the prerequisite leading to n = 10/7 so that the ‘Loitsianskii integral’ remained constant in
the decay process could not generally hold, so n = 6/5 was to be expected. In the literature,
the former type of turbulence following the 10/7 decay rate is usually termed the Batchelor
turbulence, while the latter one obeying the 6/5 law is the Saffman turbulence. Under
the limiting case of infinite Reynolds number, n = 1 was derived by George (1992) as
the exponent of power-law decay at the asymptotic state (George 1992). Lin (1948) also
reached a similar conclusion and showed good agreement between the theory and those
early experimental results.

Other than the theoretical studies, experiments and numerical simulations were also
conducted to calibrate the decay rate of TKE in DHIT. With a few exceptions observing
a log-law decay of TKE (Hurst & Vassilicos 2007; Seoud & Vassilicos 2007; George
& Wang 2009), most studies confirmed that fully developed turbulence would follow
power-law decay. However, as reviewed by Yoffe & McComb (2018), the exponent n
reported in the literature varies. The pioneering experiments of Comte-Bellot & Corrsin
(1966, 1971) with grid turbulence found that the decay exponent n ranged between 1.16 and
1.37. Similar exponents were reported in other grid-turbulence experiments, to name a few:
n ≈ 1.3 by Mohamed & Larue (1990); n = 1.13 ± 0.02 by Krogstad & Davidson (2010);
and n = 1.18 ± 0.02 by Sinhuber, Bodenschatz & Bewley (2015). Unlike experimental
studies, simulations can easily generate both Batchelor and Saffman types of turbulence
by prescribing different initial forms of energy spectra (Huang & Leonard 1994; Mansour
& Wray 1994; Yu, Girimaji & Luo 2005; Anas, Joshi & Verma 2020). However, due to
the limitation of computational resources, most simulations are restricted to relatively low
Reynolds numbers. At small Reynolds numbers, n generally decreased with the Reynolds
numbers (Huang & Leonard 1994; Mansour & Wray 1994; Djenidi, Kamruzzaman &
Antonia 2015).

When a dispersed phase is present in the carrier turbulence, it can significantly
modify the properties of turbulence. Such effects are called turbulence modulation.
Over the years, turbulence modulation has been extensively studied in different types
of turbulent flows. Specifically, particular attention was paid to whether particles would
augment or attenuate the intensity of turbulence. Due to its relative simplicity of DHIT,
turbulence modulation in DHIT was also extensively studied. Elghobashi & Truesdell
(1993) conducted numerical simulations to investigate the interaction between decaying
turbulence and inertial particles and reported that a faster decay rate of TKE could be
observed with particles when the effect of gravity was absent. When particles follow the
Stokes drag, (v − u)/τp would appear in the fluid momentum equation, where v and u are
the velocity of the fluid and particle phases, respectively, and τp is the particle response
time. As a result, the presence of particles induces an extra term (〈u′ · v′〉 − 〈u′ · u′〉)/τp
in the TKE budget equation, where 〈· · · 〉 means the ensemble averaging. Since the
self-correlation 〈u′ · u′〉 is usually greater than the cross-correlation 〈u′ · v′〉 when |u′|
and |v′| are of the same order, this extra term is expected to be negative and acts
as an additional dissipation rate. However, Ferrante & Elghobashi (2003) described an
opposite scenario where heavy tracer particles reduced the decay rate of the TKE in
DHIT. Unlike inertial particles, these heavy tracer particles do not increase viscous
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dissipation, but their large density could significantly enhance the system inertia and resist
the TKE decay. By summarizing the results of turbulence modulation in the literature,
Elgobashi (2006) generated a classification map of turbulence modulation based on the
ratio between particle response time and Kolmogorov time τk, i.e. the Stokes number.
This map suggested that the decay rate of TKE would be enhanced by particles when
τp/τk ≥ 1 and reduced when τp/τk ≤ 0.1. Particles with intermediate τp/τk behaved like
ghost particles, causing insignificant modulation to TKE. Abdelsamie & Lee (2012) also
observed an increased decay rate of TKE in DHIT when particles have τp/τk ≥ 1.

Turbulence modulation can be far more complex when the sizes of the dispersed
particles are comparable or greater than the Kolgomorov length, i.e. finite-size particles.
Such complexity is mainly due to the significant distortion and discontinuity brought
by the particles to the fluid phase, which makes it challenging to model the disturbed
flow around particles (Eaton 2009). Burton & Eaton (2005) contrasted the TKE and
dissipation rate around a fixed particle in a DHIT with the unladen case. They observed
significantly enhanced local dissipation in the region within 1.5 diameters from the particle
surface, which described the turbulence modulation as a local effect. Lucci, Ferrante &
Elghobashi (2010) simulated the two-way coupling effect between particles with sizes
around the Taylor microscale and DHIT. Although particles generated additional TKE
through the two-way coupling effect, it was insufficient to compensate for the locally
enhanced dissipation rate, which eventually resulted in a faster decay rate of TKE than the
unladen case. Similar observations were made by Schneiders, Meinke & Schröder (2017),
who used accurate numerical simulations to study the effect of Kolmogorov-scale particles
with particle-to-fluid density ratio ranging from 40 to 5000 on a DHIT and found that the
decay rate of TKE in particle-laden flows was always faster with particles. In contrast,
Luo et al. (2017) studied the modulation of DHIT by heavy particles but found that heavy
particles slowed down the decay rate of TKE. These opposite observations of Schneiders
et al. (2017) and Luo et al. (2017) are possibly due to the different particle sizes in the two
studies, which are larger in the latter.

These above studies covered how particles modified the decay rate of TKE in DHIT.
However, we noted that most of them focused on the early stage of the decay, where the
particle-turbulence system is not fully relaxed. Since the power-law decay requires the
flow to evolve until a specific form of the energy spectrum is established, the lack of
data in the late stage brings uncertainty about whether particle-laden DHIT still follows a
power law. In a few studies focusing on validating simulation methods, power-law decay
of TKE in particle-laden DHIT was shown, but whether this observation is generalizable
requires some further investigation (Brändle de Motta et al. 2019; Peng et al. 2019). How
the exponent of the power-law decay changes with the flow and particle parameters still
needs to be answered.

Another piece of information missing in the literature is the lack of criteria to predict
under what conditions a fully relaxed particle-laden DHIT would decay faster or slower
than the unladen single-phase case. For other types of turbulent flows, such as turbulent
jets and wall-bounded turbulence, predictive criteria depending on the flow and particle
parameters are available to identify the threshold when the turbulence modulation transits
from augmentation to attenuation (Gore & Crowe 1989; Righetti & Romano 2004; Tanaka
& Eaton 2008; Yu et al. 2021). Compared with other types of turbulence, modelling the
turbulence modulation in HIT could contribute more to the development of multiphase
large-eddy simulation (LES) or Reynolds-averaged Navier–Stokes (RANS) simulation
since the subgrid turbulence is usually assumed to be isotropic. However, as mentioned
earlier, the existing criterion that a faster decay is expected when τp/τk ≥ 1 applies better
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to the early stage, where the addition of particles introduces a sudden enhancement of local
dissipation.

The present study conducts particle-resolved direct numerical simulation (PR-DNS) to
investigate the turbulence modulation induced by monodispersed finite-size particles in
HIT. Unlike the previous studies focusing on the early stage of decay, e.g. Lucci et al.
(2010) and Gao, Li & Wang (2013), this study pays more attention to the later times where
a power-law decay is possibly established. Since the initial condition could significantly
affect the power-law decay exponent, we configure particle-laden DHIT simulation with
two different set-ups, i.e. releasing particles to a single-phase DHIT or turning off the
large-scale forcing in a sustaining particle-laden HIT. Simulations with varying particle
sizes, density ratios and volume fractions are conducted to investigate how particle
parameters affect turbulence modulation. A model to predict the effect of particle presence
on the decay exponent is also developed from the energy budget equation of the two-phase
DHIT and validated by the simulation results.

The remainder of the paper is structured as follows. In § 2, we introduce the two set-ups
to initialize particle-laden DHIT simulations and the associated parameter settings. The
simulation details are also briefly covered. The main results of the simulations and the
efforts to establish a model to predict how particles affect the decay rate of TKE in DHIT
are discussed in § 3. Finally, we recapitulate the main conclusions in § 4.

2. Parameter setting and simulation details

The present study conducts PR-DNS to analyse how particles affect the decay rate
of DHIT. The simulations are conducted using the lattice Boltzmann method, a
second-order accurate flow solver that solves the Navier–Stokes equations indirectly in
the higher dimensional phase space where the model Boltzmann equation is applied.
This mesoscopic approach tracks the evolution of the particle distribution function. Here,
the particles are the model fluid molecular particles travelling on designated straight
lines; they are microscopic objects utterly different from the macroscopic finite-size solid
particles.

The no-slip boundary conditions on the moving particle surfaces are treated with
interpolated bounce-back schemes to ensure the velocity field preserves second-order
accuracy. The short-range hydrodynamic interactions between nearby particles and
particle collisions are handled with the lubrication force and the soft-sphere collision,
respectively (Brändle de Motta et al. 2013). For a detailed introduction to the simulation
method and validations, readers can refer to Peng (2018). The capability of this method to
simulate single-phase and particle-laden decaying HIT was also cross-examined with other
methods developed by our collaborators, e.g. the finite-volume-based immersed boundary
method and Lagrangian volume of fluid method by Brändle de Motta et al. (2019), and
our in-house lattice-Boltzmann method based immersed boundary method by Peng et al.
(2019).

The background HIT is generated using the stochastic large-scale forcing scheme of
Eswaran & Pope (1988). We recently used the same approach to generate sustainable HIT
and study how particle and flow parameters affected the turbulence modulation (Peng,
Sun & Wang 2023). Since this approach was validated against an in-house pseudo-spectral
code in our recent work (Peng et al. 2023), we do not perform further validations of the
numerical approach in the present study.

There are at least two ways to generate decaying particle-laden HIT. The first way
is to create an unladen single-phase DHIT, then release particles at the initial state of
the decay. Under this set-up, the primary turbulence modulation happens right after the
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Case Reλ,0 Reλ,d ρ dp/〈η0〉 φp(%)

SP [39.4, 69.9]; [73.1, 80.4] [17.0, 28.4]; [22.8, 29.4] — — —
PL1 [73.1, 80.4] [13.7, 33.1] 1, 2, 5, 10 10, 13.3, 16.7 5, 10, 20
PL2 [26.0, 56.3] [9.3, 25.2] 4, 8, 16 7.2, 10.1, 14.3 4, 8, 12

Table 1. Parameter settings of the single-phase and particle-laden DHIT simulations. Quantities from the
second to the last column are the Reynolds number when the flow starts to decay, the Reynolds number at
the starting point of the power-law decay stage, the particle-to-fluid density ratio, the ratio between particle
diameter and the time-averaged Kolmogorov length of the single-phase sustained HIT simulation, and the
particle volume fraction. Acronyms ‘SP’, ‘PL1’ and ‘PL2’ represent single-phase DHIT and particle-laden
DHIT initialized with the first and second set-ups. A total number of 336 cases are simulated. For conciseness,
the information for different cases is condensed as ranges. The specific values in each simulated case are
provided in the Supplementary Materials available at https://doi.org/10.1017/jfm.2024.698.

addition of particles in the form of suddenly increased dissipation rates since the fluid
flows need some time to relax due to the significant local disturbances induced by the
presence of particles (Burton & Eaton 2005; Lucci et al. 2010; Gao et al. 2013). The
main advantage of this set-up is that for each particle-laden case, there is a well-defined
corresponding single-phase case sharing the same starting point, which makes assessing
the turbulence modulation contributed by particles easy. However, the suddenly enhanced
dissipation rate decays quickly and may become invisible when the power-law decay
starts. In most previous studies of particle-laden DHIT, the flow is initialized this way
(Lucci et al. 2010; Gao et al. 2013; Brändle de Motta et al. 2019). An alternative way
to generate particle-laden DHIT is to first simulate sustainable HIT with the large-scale
forcing until the statistical stationary state, then turn off the forcing so the fully relaxed
particle-laden HIT would decay with time. Since the dispersed and carrier phases have
already been sufficiently mixed, this set-up avoids sudden dissipation rate jumps at the
initial stage. However, since the decay starts from an already disturbed particle-laden flow,
the corresponding single-phase flow is no longer retrievable.

In the present study, we shall consider particle-laden DHIT generated in both ways.
From the dimensional analysis, one can conclude that the turbulence modulation depends
on four non-dimensional parameters: the flow Reynolds number Reλ, where λ is the Taylor
microscale, the particle-to-fluid density ratio ρ = ρp/ρf , the relative particle size dp/η,
where η is the Kolmogorov length, and the volume fraction φp. Note that, for simplicity,
the sedimentation of particles due to the gravitational acceleration and its effects on
the turbulence modulation are not considered in the current paper. Except for the flow
Reynolds number Reλ, the other three controlling non-dimensional parameters are varied,
whose values are summarized in table 1. For the first set-up, we initialize the single-phase
HIT with the velocity and pressure fields taken from a sustained HIT simulation at
eight different moments. The time-averaged Reynolds number of this sustained HIT is
Reλ = 74.15 ± 0.33, and the actual Reλ when the flow starts to decay ranges from 73.08
to 80.43. With or without the addition of particles, the decaying flow would require some
time for the power-law decay to be established. We also record the Reynolds number when
the power-law decay begins, i.e. Reλ,d. The values of Reλ,d with different initial conditions
vary between 13.73 and 33.13.

To save computational resources, the initial conditions for the second set-up come
directly from the fluid and particle information saved from our sustained particle-laden
HIT simulations reported in Peng et al. (2023). The flow and particle parameters with this
set-up are also compiled in table 1. Same as the first set-up, for each set of flow and particle
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parameters, we configure multiple realizations with initial conditions taken from different
moments of the specific sustained particle-laden HIT simulation.

All simulations are conducted with the computational domain of 5123. For the Reynolds
number chosen in the present study, this 5123 mesh results in a grid resolution of kmaxη ≥
5.7, sufficient to resolve the Kolmogorov eddies in the flow fields (see validations in Peng
et al. 2023). PR-DNS also requires sufficient grid resolutions to represent particles, i.e.
dp/�x should also be large enough. In our previous study (Peng et al. 2019), we compared
the simulation results from two grid resolutions, dp/�x = 12 and dp/�x = 24 for a similar
decaying particle-laden HIT but with a higher initial Reynolds number Reλ,0 = 87.6.
Although the resolution of dp/�x = 12 was not able to obtain very accurate results of
local TKE and dissipation rate distribution in the close vicinity of particle surfaces, it was
sufficiently accurate to capture the temporal evolution of the averaged TKE, which is the
essential quantity for the present study. In the present study, dp/�x ranges from 16 to 40.
Based on our previous grid convergence investigation, a resolution of dp/�x = 16 should
be sufficient for the main objective of the present study.

3. Results and discussions

3.1. Decay rates of TKE in single-phase DHIT
Before analysing the decay rate in particle-laden HIT, we quantify the corresponding decay
rate in the unladen single-phase cases for later comparisons. As mentioned in the last
section, with the first set-up, we start the decaying flows from eight different time frames
in a sustainable HIT simulation. The interval between arbitrary two consecutive frames
exceeds 20 eddy turnover times to ensure sample independence of each realization. For
the second set-up, there is no corresponding unladen DHIT for each specific particle-laden
case since the flow has already been entirely disturbed. However, we may still create
unladen DHIT cases with similar large-scale forcing for the purpose of comparison. Like
the first set-up, these unladen DHIT cases are initialized with flow fields taken at different
time frames of a sustainable HIT simulation. Sufficient time intervals are also kept between
those time frames to ensure mutual independence among various realizations.

Figure 1 shows the temporal evolution of the normalized TKE, E/E0, in some selective
single-phase DHIT, where E0 = 3u′2

0 /2 denotes the value of the initial TKE and u′
0 is the

initial root-mean-square velocity. After the driving force is turned off, the flow still takes
some time to get rid of the memory effects of the large-scale forcing and reaches a fully
developed stage where the power-law decay is established. To quantify the exponent n
more accurately, it is important to determine the beginning point of the power-law decay.
As shown in figure 1, the power-law decay starts around (t − t0)/τ0 = 3 for different initial
Reynolds numbers, where τ0 = u′

0
2
/ε0 is the initial large eddy turnover time, ε0 represents

the initial dissipation rate. Other than visually identifying the starting point of power-law
decay, the Taylor microscale λ ∝ t1/2 is another commonly used criterion (George 2013).
This criterion validates since a power-law decaying TKE E(t) = E0t−n would result in

dE
dt

= −nE0t−n−1 = −n
E
t

= −ε = −10νE
λ2 , (3.1)

where ν is the kinematic viscosity, which leads to λ ∝ t1/2 for arbitrary exponent n. We
also choose the λ ∝ t1/2 criterion to identify the starting point of the power-law decay.

The temporal evolution of λ normalized by its initial value, i.e. λ/λ0, in the single-phase
cases is shown in figure 2 for some representative cases. The green dash-dotted line is a
reference line for λ ∝ t1/2. For cases with both set-ups, the power-law decay starts roughly
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100

(t – t0)/τ0

10–2

100

E/
E 0

Reλ,0 = 39.36

Reλ,0 = 53.81

Reλ,0 = 65.41

Reλ,0 = 80.43

Figure 1. Decay of the fluid TKE in single-phase DHIT with various initial Reλ. The time is normalized by the
initial large eddy turnover time τ0 = u′

0
2
/ε0, where u′

0 and ε0 are the root-mean-square velocity and dissipation
rate at the initial time t0, respectively. The black vertical dashed line at t − t0 = 3τ0 shows roughly the starting
point of the power-law decay.

from t − t0 = 4τ0. We used the least squares to fit the data points after t − t0 = 4τ0 onto a
straight line of λ ∝ t1/2 and obtained the R2 value no less than 0.98 in all cases. Other than
the criterion mentioned above, some references, e.g. Huang & Leonard (1994) and Djenidi
et al. (2015), identify the power-law decay stage when the changing rate of the Taylor
Reynolds number, Reλ, becomes small. We also show Reλ/Reλ0 of the representative cases
in figure 3 and compute the relative change of Reλ after t − t0 = 4τ0. It is confirmed that
�Reλ/Reλ0 is less than 10 % for all cases, where �Reλ is the change of Reλ from t − t0 =
4τ0 to the end of the simulation, which is approximately t0 + 8τ0. Based on this evidence,
we believe using t − t0 = 4τ0 as the starting time of the power-law decay is appropriate for
the present study. The same criteria are used to determine the starting points of power-law
decay in the particle-laden cases.

After determining the starting points, the power-law decay exponent nsp for the
single-phase DHIT can be quantified from the numerical results using the least square
fitting. To enhance the accessibility of the data, we compile those data in table 2 for
the simulated single-phase DHIT. Most of the exponents fall between 1.5 and 1.8,
which is higher than the counterparts observed in the experiments of grid turbulence,
as summarized by Yoffe & McComb (2018). However, such deviation could be mainly
because the Reynolds numbers in our simulations are relatively small. It is well known
that the decay exponent strongly depends on Reλ and increases as the turbulence weakens,
e.g. from 10/7 to 5/2 as analysed by Batchelor (1948). In a range of Reynolds number
Reλ,0 between 25.8 and 51.6, Yoffe & McComb (2018) observed 1.55 ≤ n ≤ 1.61 in their
direct numerical simulations, which is similar to the values we obtained. It is also notable
from table 2 that for similar Reynolds numbers, n can vary significantly with the specific
realizations used for the flow initialization.

3.2. Decay rates of TKE in particle-laden DHIT
We now move to the particle-laden cases. Figure 4 shows the temporal variation TKE in
our particle-laden DHIT simulations, together with the data acquired from some previous
studies (Lucci et al. 2010; Luo et al. 2017; Schneiders et al. 2017). All those previous
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10–1 100

(t – t0)/τ0

1

2

λ
/λ

0

Reλ,0 = 39.36

Reλ,0 = 53.81

Reλ,0 = 65.41

Reλ,0 = 80.43

Figure 2. Temporal development of Taylor microscale λ normalized by its initial value, λ/λ0, of single-phase
flow for several selected cases with different Reλ. Here, λ0 denotes the value of Taylor microscale at t = 0. The
black vertical dotted line indicates the time, t − t0 = 4τ0, after which the power-law decay is established.

2 4 6 8

(t – t0)/τ0

0

0.5

1.0

Re
λ
/R

e λ
0

Reλ,0 = 39.36

Reλ,0 = 53.81

Reλ,0 = 65.41

Reλ,0 = 80.43

Figure 3. Taylor Reynolds number Reλ of single-phase flow for several sets of cases with different Reλ in
both set-ups.

Case Reλ,0 Reλ,d nsp Case Reλ,0 Reλ,d nsp

SP-1 78.53 23.06 1.723 ± 0.001 SP-10 65.41 22.64 1.742 ± 0.001
SP-2 75.35 26.85 1.526 ± 0.001 SP-11 62.52 28.40 1.613 ± 0.006
SP-3 80.43 24.72 1.692 ± 0.004 SP-12 69.88 27.55 1.765 ± 0.006
SP-4 78.16 29.30 1.501 ± 0.002 SP-13 56.76 27.74 1.655 ± 0.008
SP-5 73.08 22.78 1.815 ± 0.002 SP-14 53.81 20.49 1.619 ± 0.002
SP-6 79.81 29.40 1.548 ± 0.003 SP-15 56.90 24.17 1.728 ± 0.007
SP-7 78.06 24.01 1.638 ± 0.001 SP-16 50.53 19.53 1.981 ± 0.005
SP-8 75.65 23.81 1.762 ± 0.002 SP-17 40.49 18.07 1.664 ± 0.004
SP-9 39.36 16.99 1.489 ± 0.003 — — — —

Table 2. Reynolds number and power-law decay exponent of single-phase DHIT.
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Figure 4. Decay of the fluid TKE in particle-laden DHIT for some representative cases: (a) cases with the
first set-up, the symbols are the datasets abstracted from previous studies (Lucci et al. 2010; Luo et al. 2017;
Schneiders et al. 2017); (b) cases with the second set-up.
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Figure 5. Temporal development of Taylor microscale λ normalized by its initial value in particle-laden
DHIT: (a) cases with the first set-up; (b) cases with the second set-up.

studies generated particle-laden DHIT with the first set-up. Although these previous
studies only had data points in limited time intervals as they mainly focused on studying
the turbulence modulation at the initial decay stage, we can still observe that power-law
decay starts to be established. One should note that the results of Luo et al. (2017) have
been rescaled in figure 4 since this work may have used a different definition of τ0, i.e.
0.5u′2

0 /ε0 instead of u′2
0 /ε0 as in other studies. Together with the results from the present

cases, it is safe to conclude that the power-law decay exists even when finite-size particles
are present.

The starting points of the power law are also determined using the λ ∝ t1/2 criterion.
As shown in figure 5, although different ways of adding particles do affect the temporal
evolution of λ to some extent, all particle-laden cases establish the power-law decay after
t/τ0 ≈ 4. The R2 values of the data points to fit the ideal case λ ∝ t1/2 are no less than
0.85 for all cases.

To further understand the power-law decay in particle-laden DHIT, we investigate the
time evolution of total kinetic energy K for the particle phase, which is the summation
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Figure 6. Decaying particle kinetic energy in particle-laden DHIT. Here, K0 denotes the values of particle
kinetic energy at t = t0.

of translational and rotational kinetic energy, K = 0.5mp〈v′〉2 + 0.5I〈ω′〉2, where mp, I,
〈v′〉 and 〈ω′〉 stands for the particle mass, the moment of inertia, the averaged particle
translation and angular velocity, respectively. In figure 6, the normalized particle kinetic
energy change, K/K0, for a few selected cases with both set-ups are presented. Like the
fluid TKE, the power-law decay of particle kinetic energy also establishes after the system
evolves for a certain amount of time. Compared with cases with the first set-up, cases with
the second set-up generally require longer periods to reach the power-law decay stage,
probably because the flow has been pre-mixed, so the memory effects of the large-scale
forcing require more time to disappear. At the power-law decay stage, the exponents for
the fluid and particle kinetic energy, i.e. npl and npl,p, can be computed for each case.
To enhance the data availability, the original data for these cases are provided in the
Supplementary Materials.

Since the present study aims to investigate how particles affect the decay of TKE, we
would mainly focus on the cases initialized with the first set-up, as their corresponding
single-phase DHIT can be clearly defined. Figure 7 shows the correlation between npl and
npl,p for cases belonging to the first set-up. An almost linear correlation between the two
exponents is observed, which implies that the particle–fluid system can be approximately
regarded as a single-phase flow at the power-law decay stage. The linearly correlated decay
exponents between the fluid and particle phases could also bring convenience to modelling
npl, as one shall see shortly in § 3.3.

To find out how the power-law exponents npl in the particle-laden DHIT change with
the particle parameters, we classify the simulated cases according to their parameters and
plot the probability distribution functions (p.d.f.s) of npl in figure 8. Cases with lower
particle-to-fluid density ratios ρ have overall higher npl than the counterparts with higher
ρ. For ρ = 1, the peak of p.d.f. occurs between 1.6 and 1.7, and approximately 54.2 %
of the simulated cases have npl > 1.6. However, less than 20 % of cases with ρ = 10 have
npl > 1.6. The particle volume fraction φp also significantly impacts the p.d.f. of npl, where
smaller values of npl are more likely to be obtained with larger φp. As can be seen in
figure 8(b), for the cases φp = 0.05, 0.10 and 0.20, the peaks of the corresponding p.d.f.s
fall at npl = 1.5–1.6, 1.4–1.5 and 1.3–1.4, and the percentage of cases showing npl > 1.6
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Figure 7. Correlation between npl and npl,p for cases with the first set-up.

are 44.8 %, 35.4 % and 14.9 %, respectively. The particle size, however, does not show any
clear preference for the distribution of npl, as shown in figure 8(c).

As discussed in our recent work (Peng et al. 2023), the contribution from ρ and φp
may be combined as the influence of particle mass fraction φm, indicating the impact
of enhanced system inertia on turbulence modulation. In figure 8(d), we classify the
simulated cases into three groups with different φm, i.e. φm ≤ 0.1, 0.1 < φm ≤ 0.5 and
φm > 0.5, and plot their p.d.f.s of npl. For the cases with φm > 0.5, the peak of the
corresponding p.d.f. falls between npl = 1.3 and 1.4, while the other two groups peak
beyond npl = 1.5. The percentage of cases with npl > 1.6 are 55.6 %, 34.0 % and 4.3 %
for φm ≤ 0.1, 0.1 < φm ≤ 0.5 and φm > 0.5, respectively. These results show a clear
trend for lower npl with higher φm. To verify this trend, we select three particle mass
fractions φm = 0.05, 0.182 and 0.714, and plot npl in the corresponding cases in figure 9.
Although the data points are quite scattered, cases with higher φm are likely to have smaller
exponents, indicating slower decay rates at the power-law decay stage.

We use npl/nsp to quantify the modulation of the power-law decay exponent n due to
the presence of particles. The addition of particles increases n when npl/nsp > 1, and
vice versa. In all 286 simulated cases with the first set-up, only 22.0 % have npl/nsp >
1. In figure 10, we classify these cases into three groups according to their particle
mass fractions, i.e. φm ≤ 0.1, 0.1 < φm ≤ 0.5 and φm > 0.5, and plot their probability
distribution on npl/nsp. The number of cases with npl/nsp > 1 are 37.5 %, 23.6 % and
2.9 % for the three groups. The addition of particles in most of the cases makes TKE
decay slower than the unladen flow during the power-law decay stage, which is opposite
to the particle effect at the initial stage right after the release of particles, as reported in
previous studies (Lucci et al. 2010; Gao et al. 2013; Schneiders et al. 2017).

In DHIT, particles not only transfer kinetic energy into the fluid phase through interfacial
work that strengthens turbulence, but also enhance the dissipation rate, leading to faster
decay of TKE. Both mechanisms exist throughout the whole process of decay, but
their relative importance changes with time. At the initial stage, particularly right after
particles are released, the mechanism of enhancing the dissipation rate dominates as the
flow around the particles has not adapted to the presence of particles. As time evolves,
the dissipation enhancement reduces and the interfacial transfer of TKE becomes the
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Figure 8. Histogram of the probability density of npl. Cases with different (a) particle-to-fluid density ratio
ρ, (b) particle volume fraction φp, (c) relative particle diameter dp/〈η0〉 and (d) particle mass fraction φm
distinguished by different colours.
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Figure 9. npl and npl,p for three representative cases with φm = 0.050, 0.182, 0.714 in the first set-up.
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Figure 10. Histogram of the probability density of npl/nsp. Cases with different particle mass fraction φm
distinguished by different colours.

dominating mechanism since the kinetic energy of heavy particles decays relatively slower
due to their large inertia. The same phenomenon was also reported in previous studies. In
the study of Lucci et al. (2010), the time variations of the dissipation rate and particle
work were both computed. Although they did not show the direct comparisons between
the enhancement of dissipation rate �ε = 〈ε〉 − 〈εsp〉 and the particle work ψ after the
addition of particles, one can further process their data and see the trend of ψ surpasses
�ε as the flow evolves. Schneiders et al. (2017) directly showed the difference between ψ
and�ε as a function of time. Although particles in this work are on the Kolmogorov scale
compared with the Taylor scale particles in the present study, ψ −�ε was also found to
be negative at the initial stage and turned positive at a later time. The simulation results
of the present study provide another piece of evidence for this observation, as shown for
two selected cases in figure 11. One should also note that when a pair of single-phase
and particle-laden DHIT enters the power-law decay stage, the initial amounts of TKE are
different. Therefore, the faster or slower decay does not mean the amount of TKE reduction
over a certain amount of time, but rather how long the power-law decay may last.

3.3. Modelling of the decay rates
In this section, we develop a model to predict the decay rate change due to the presence
of particles. The model starts from the TKE budget equation, which can be derived
from the method of volume averaging (Crowe et al. 2011). Considering the isotropy and
homogeneity of HIT, the TKE budget equation of the fluid phase without the mean velocity
reads

ρfφf V
d
dt

〈
1
2

u′
αu′
α

〉
= −φf Vρf 〈ε〉 +

∮
SI

nβ(−pδαβuα + ταβuα) dS, (3.2)

where V is the averaging volume, which can be the volume of the whole domain L3 and
φf = 1 − φp is the fluid volume fraction. Here, 〈· · · 〉 indicates that a quantity has been
phase averaged, i.e. averaged over the volume occupied by a specific phase, and 〈ε〉 is
the phase-averaged dissipation rate. The last term of the above equation is the interfacial
energy flux integrated over the entire particle surface submerged in V , i.e. SI, and nβ is
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Figure 11. Temporal variation of the particle-induced dissipation rate �ε and the particle work ψ normalized
by the initial dissipation rate of single-phase flow ε0,sp in two selected cases of the present study. The particle
work ψ is computed from the TKE balance as dE/dt + ε.

the outer normal direction pointing to the particle phase. If we ignore the particle rotation
and note that on the particle surfaces, the fluid velocity must satisfy a no-slip condition,
we have ∮

SI
nβ(−pδαβuα + ταβuα) dS =

∑
i

vα,i

∮
δS

nβ(−pδαβ + ταβ) dS, (3.3)

where vα,i is the translational velocity of the ith particle immersed in V , and δS is the
particle surface area. For the particle phase, if we ignore the particle–particle interactions
and external body forces, the equation of particle motion reads

mp
dvα,i

dt
= −

∮
δS

nβ(−pδαβ + ταβ) dS. (3.4)

Multiplying the above equation by the particle velocity and summing over all Np particles,
we have

mp
d
dt

∑
i

(
1
2
vα,ivα,i

)
= Npmp

d
dt

〈
1
2
vα,ivα,i

〉
= −

∑
i

vα,i

∮
δS

nβ(−pδαβ + ταβ) dS.

(3.5)
Applying the short-hand notation, kf = 〈0.5u′

αu′
α〉 and kp = 〈0.5vα,ivα,i〉, and

combining (3.2) and (3.5) together, the interfacial energy flux terms are cancelled out
and we obtain

(1 − φp)
dkf

dt
+ φpρ

dkp

dt
= −(1 − φp)〈ε〉. (3.6)

In figure 12, we compare the amount of particle translational and rotational kinetic
energy in our simulations. The results show that the assumption in the above derivation
to ignore the particle rotation applies safely to the present simulations, given that the
particle-to-fluid density ratio is considerably large. However, for more general cases where
the rotational kinetic energy occupies a significant part of total kinetic energy, ignoring the
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Figure 12. Correlations between the averaged translational and rotational kinetic energy of particles:
(a) correlations for all cases with the first set-up at the beginning of the power-law decay; (b) temporal evolution
of the correlation in a few selected cases.

particle rotation in the above derivations could lead to certain imbalances, so we may add
a correction coefficient Cω (Cω ≥ 1) to the second term in (3.6) to ensure balance.

Since the decay of both the fluid and particle kinetic energy follows a power law, and the
exponents are roughly the same (see figure 7), we can replace dkp/dt as (kp0/kf 0) dkf /dt
in the balance equation, where kp0 and kf 0 are the initial kinetic energy of the particle and
fluid phase when the power-law decay begins, respectively:

[
(1 − φp)+ Cωφpρ

kp0

kf 0

]
dkf

dt
= −(1 − φp)〈ε〉. (3.7)

The remaining task is to determine the averaged dissipation rate 〈ε〉 on the right-hand
side. It is well known that particles can create highly dissipative regions around their
surface in particle-laden turbulent flows. The dissipation rate in the highly dissipative
regions increases with the magnitude of the slip motion between the particle and its
ambient fluid, while the volume of the region is related to the thickness of the boundary
layer around a particle, which is essentially a function of the particle Reynolds number.
Outside the high dissipation rate regions, the dissipation rate is close to the value in the
unladen case (Burton & Eaton 2005; Wang et al. 2016) if the particle volume fractions are
low, and the flow outside the boundary layer can be regarded as undisturbed. Based on this
understanding, we may formulate the dissipation rate in the particle-laden HIT as

(1 − φp)〈ε〉 = hφp

(
Cε
ν�u2

d2
p

)
+ (1 − φp)〈εul〉, (3.8)

where hφp is the total volume fraction of the highly dissipative region, Cε is the coefficient
for dissipation rate enhancement in the region,�u is the magnitude of the slip velocity and
〈εul〉 is the phase-averaged dissipation rate in the unladen case. Substituting (3.8) into (3.7)
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leads to

dkf

dt
= −

hφp

(
Cε

ν�u2

〈εul〉d2
p

)
+ (1 − φp)

(1 − φp)+ Cωφpρ
kp0

kf 0

〈εul〉. (3.9)

Obviously, in the limiting case of φp → 0, the above equation would regress to the TKE
budget equation of single-phase DHIT.

The above equation indicates the two competing mechanisms on the decay rate of TKE
induced by particles. The first mechanism is the increased system inertia appearing in the
denominator, which reduces the decay rate. This mechanism was also identified in the
point-particle simulations, where heavy particles with large inertia were found to transfer
energy back to the fluid phases at the late stage of decay (Ferrante & Elghobashi 2003).
The second mechanism is the enhanced dissipation in the vicinity of particle surfaces,
which increases the decay rate. The competition between the two mechanisms could lead
to either faster or slower decay of TKE.

Since the decay rates of both single-phase and particle-laden DHIT follow a certain
power-law, i.e.

kf (t) = kf 0(t − t0)n, (3.10)

where kf 0 is the initial TKE when the power-law decay starts, the above equation can be
approximately written as

dkf

dt
= −n

kf

t − t0
≈ −n

kf 0

t − t0
(3.11)

in a short period of time after t0. Given (3.9), we have

npl

nsp
=

hφp

(
Cε

ν�u2

〈εul〉d2
p

)
+ (1 − φp)

(1 − φp)+ Cωφpρ
kp0

kf 0

kf 0,sp

kf 0,pl
. (3.12)

Ideally, we may have kf 0,sp = kf 0,pl if the corresponding particle-laden and single-phase
cases have the same initial TKE. Although we will examine (3.12) with the simulation
results shortly, it should be noted that it is difficult to establish the ideal match-up between
the laden and unladen cases that satisfy all the assumptions made above. The main reason
for the mismatch is that DHIT needs some time to reach the power-law decay stage,
which brings difficulty to the cancellation of t − t0 and 〈εul〉(t) in the particle-laden and
single-phase cases. The primary use of (3.12) is to provide some theoretical guidance on
when to expect faster or slower decay of TKE in a particle-laden HIT compared with the
unladen flow.

When the particle response time is greater than the Kolmogorov time but smaller than
the characteristic time of the large eddies, we may expect�u/uk = C�uSt0.5k , where Stk =
(2ρ + 1)(dp/η)

2/36 is the particle Stokes number and uk is the Kolmogorov velocity
(Balachandar 2009; Ling, Parmar & Balachandar 2013). Substituting this empirical
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relationship into (3.12), we eventually obtain

npl

nsp
=

hφpCεC�u
(2ρ + 1)

36
+ (1 − φp)

(1 − φp)+ Cωφpρ
kp0

kf 0

kf 0,sp

kf 0,pl
. (3.13)

To examine (3.13) with the simulation results, we need to determine the fitting
parameters in (3.13), i.e. h, Cε , C�u, Cω, kp0/kf 0 and kf 0,sp/kf 0,pl. Those parameters
depend on specific simulation settings, so their optimal values could vary with cases. The
rotational kinetic energy 0.5Iω′

iω
′
i is usually minor compared with the translational kinetic

energy (see figure 12), so Cω = 1 can be a reasonable guess. For simplicity, kp0/kf 0 and
kf 0,sp/kf 0,pl can be also set to one.

Here, h is a coefficient indicating the size of the volume where the dissipation rate is
enhanced, which can be estimated as

h = (a + δBL)
3 − a3

a3 , (3.14)

where a = 0.5dp is the particle radius. Additionally, δBL ∼ a/
√

Rep is the thickness of
the particle boundary layer, which is a function of the particle Reynolds number. From
the previous numerical results of radial distribution of the dissipation rate, e.g. Burton &
Eaton (2005), Lucci et al. (2010), Brändle de Motta et al. (2016), Wang et al. (2016) and
Peng et al. (2019), and the trials to determine the slip velocity between a particle in the
turbulent field and its ambient fluids, e.g. Naso & Prosperetti (2010) and Kidanemariam
et al. (2013), with various flow and particle conditions, it is safe to set δBL = dp, leading
to h = 26. Here, Cε represents the relative enhancement of the dissipation rate around
particles. Assuming a Stokes disturbance flow around the particle, the local dissipation
rate reads (Wang et al. 2016)

ε = ν�u2

r2

(
3
2

)2 {
cos2 θ

[
3
(a

r

)2 − 6
(a

r

)4 + 2
(a

r

)6
]

+
(a

r

)6
}
, (3.15)

which means

Cε = d2
p

ν�u2

∫ 2π

0
dφ
∫ π

0
sin θ dθ

∫ 3a

a
r2ε dr∫ 2π

0
dφ
∫ π

0
sin θ dθ

∫ 3a

a
r2 dr

= 0.3704. (3.16)

The dissipation rate around the particle is more significantly enhanced for non-Stokes
disturbance flow. Since there is no analytic solution to estimate Cε , we may amplify Cε
by a factor of 2.5, which comes from the conditionally averaged dissipation rate profiles
published by Burton & Eaton (2005) and Wang et al. (2016).

Finally, for particles whose sizes are much smaller than the Kolmogorov length η, C�u
can be chosen as (1 − 3/(2ρ + 1))2 ∈ (0, 4) (Balachandar 2009). However, this formula
implies that the enhanced dissipation rate term vanishes for neutrally buoyant particles
with ρ = 1, which conflicts with our observation from PR-DNS. Here, we keep C�u as
a free parameter whose optimal value is obtained by fitting the numerical results. As one
shall see in the next section, the optimal value for C�u that fits our simulation data is 0.52.
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Figure 13. Comparison between the model predicted npl/nsp and the simulation results.

3.4. Model validations and its implication of turbulence modulation
Following the parametrization in the last section, (3.13) can be essentially simplified as

npl

nsp
= 0.3478φp(2ρ + 1)+ (1 − φp)

(1 − φp)+ φpρ
. (3.17)

One can directly observe that the relative particle size dp/η does not appear in the equation,
which indicates its minor effects on the power-law exponent. This observation is consistent
with the results shown in figure 8(c), where the data points associated with each particle
size almost cover the whole range of npl, and no explicit dependency on dp/η could be
seen. The previous study of Lucci et al. (2010) reported a similar observation for the
turbulence modulation at the early stage, where particles with fixed volume and mass
fraction showed only minor size effects on the change of dissipation rate.

The comparison between the numerical simulation results and the model predictions
is shown in figure 13. Overall, the match is reasonable, but the numerical data contain
significant uncertainties, which creates difficulties for more precise validations. Unlike
in sustained turbulence, where time averaging can significantly reduce the uncertainty
of quantifying turbulence modulation, in time-evolving DHIT, the relative change of the
decay exponent, i.e. npl/nsp, is strongly affected by the specific flow realization used for
the initialization. When different initial flow fields are created at different time frames
of the same sustainable HIT simulation, the decay rate of the unladen DHIT could
change significantly, i.e. nsp,max/nsp,min > 1.33. For a given set of particle parameters,
the Reynolds number when the power-law decay starts, Reλ,d, and the decay exponent in
particle-laden DHIT, npl, also vary with the initial conditions, as demonstrated in figure 14.
Although we try multiple realizations for each set of particle parameters, the uncertainties
of npl/nsp are still significant. To enhance data availability, the value of npl/nsp for each
specific simulation is provided in the Supplementary Materials.

With certain manipulation and approximation, (3.17) can be recast as

npl

nsp
= 0.3478φp(2ρ + 1)+ (1 − φp)

(1 − φp)+ φpρ
≈ 1 − (0.3 − 0.35ρ)φp

(1 − φp)+ φpρ
. (3.18)
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Figure 14. Variation of npl/nsp for cases with the same set of particle parameters.
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Figure 15. (a) Histogram of the probability density of npl/nsp. Cases with different particle-to-fluid density
ratio ρ distinguished by different colours. (b) Average values of npl/nsp for cases in set-up 1. The dotted line
represents npl/nsp = 1.

The last term in this equation is close to the definition of the mass increase due to the
addition of particles. If more mass is added to enhance the system’s inertia, a smaller
decay rate is achieved compared with the corresponding unladen case. From (3.18), we
have 0.35 − 0.3ρ > 0, or ρ < 1.17, to result in a faster decay rate in nnp/nsp > 1. The
value of 1.17 may not be accurate because of the various assumptions and estimations we
made leading to (3.17), but the overall trend that heavier particles result in slower decay of
TKE at the power-law decay stage is supported by the numerical results. In figure 15(a), we
classify different cases according to the density ratio and plot their probability distribution
on nnp/nsp. For ρ = 2, 5, 10, 76.4 %, 88.9 % and 88.6 % of the simulated cases have
nnp/nsp < 1, respectively. However, only 58.3 % of the neutrally buoyant particle cases
have nnp/nsp < 1.

The importance of density ratio on turbulence modulation was widely recognized. In
the initial stages of turbulent decay, most previous studies observed that the addition of
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particles accelerated TKE decay, and such acceleration amplifies with the density ratio
ρ and particle volume fraction φp (Lucci et al. 2010; Gao et al. 2013; Schneiders et al.
2017). However, the current study shows that when the turbulence decay enters the later
power-law decay stage, the presence of particles tends to slow down the turbulence decay.
Schneiders et al. (2017) found that even at the early stage, particles could release kinetic
energy to the fluid by doing work, compensating for the dissipation enhancement around
the particle surface. We believe that this mechanism is more pronounced in the power-law
decay stage, resulting in a slower decay rate.

Despite most cases with heavy particles, e.g. ρ = 5, 10, showing lower decay rates
than the single-phase case, some exceptions still show nnp/nsp > 1. These exceptions
are exclusively with the small volume fraction φp = 0.05. Based on this observation, it
is reasonable to deduce that a sufficiently large particle volume fraction is a necessary
condition to trigger slower decay rates in the power-law decay stage.

Finally, previous studies based on the Lagrangian point-particle simulations reported
that particles resulted in faster TKE decay when the particle Stokes number τp/τk = (1 +
2ρ)(dp/η)

2/36 > 1. This criterion does not apply to DHIT laden with finite-size particles
presented in the present study. Even at the power-law decay stage where turbulence is
relatively weak and η is large, most of our simulations still have τp/τk > 1. However,
slower decay of TKE was more frequently observed. This conflict is partially because
the particle Stokes number is no longer a suitable indicator for turbulence modulations
resulting from finite-size particles (Lucci, Ferrante & Elghobashi 2011; Shen et al. 2022;
Peng et al. 2023), although some researchers believed the particle Stokes number was
still applicable but the fluid characteristic time should change from Kolmogorov time to
turnover time of large scales (Oka & Goto 2022). More importantly, it indicates a very
different picture of turbulence modulation at the early and late stages of decay. At the
early decay stage, the enhanced dissipation rate around particle surfaces overwhelms the
interface transfer of kinetic energy, while the interface transfer of kinetic energy becomes
dominant as the flow further evolves.

4. Summary and conclusions

The present study conducts PR-DNS based on the lattice Boltzmann method to investigate
the turbulence modulation results from finite-size particles in DHIT. The main focus is
to answer if there is a power-law decay stage in particle-laden DHIT and how the decay
exponent depends on the particle parameters. To study the sensitivity of results on the flow
initialization, we configure the particle-laden DHIT using two different approaches, i.e.
releasing particles into single-phase DHIT and turning off the driving force in sustainable
particle-laden HIT. A large number of particle-laden DHIT simulations are conducted
with particle-to-fluid density ratios, particle size and volume fractions. We also perform
multiple realizations for each set of particle parameters to obtain more reliable statistics of
the particle-laden DHIT.

For both ways of initialization, the decay of fluid TKE in particle-laden DHIT follows
a power law after the flow evolved for a sufficient long time to eliminate the memory
effect of the large-scale forcing. Multiple methods were used to identify the starting point
of the power-law decay. For the initial Reynolds number ranging from 26.0 to 80.4, the
power-law decay starts roughly from t = t0 + 4τ0 in both set-ups, similar to the base case
of single-phase DHIT, where τ0 is the large-eddy turnover time measured at the initial time
t0. We further note that the evolution of the particle kinetic energy also follows a power
law. The power-law exponents of the particle kinetic energy decay are roughly equal to the
corresponding exponents for fluid TKE in each case.
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The presence of particles can either increase or decrease the exponent of power-law
decay compared with the unladen case. Despite the uncertainty in the numerical results,
we generally find that heavy particles with greater volume fraction tend to slow down
the decay rate due to larger overall system inertia and disturbance flows, whereas
lighter particles tend to result in faster decay due to enhanced viscous dissipation. This
observation is opposite to the modulation of the TKE decay at the initial stage, as reported
in the literature. This is likely because particles play double roles in affecting the decay
rate. On the one hand, the kinetic energy of heavy particles with large inertia decays slower
than the fluid phase, so at the late time, particles can serve as the source of TKE and slow
down the decay of fluid TKE. On the other hand, due to the finite inertia and finite size
of particles, they do not follow the ambient fluid motion and result in highly dissipative
regions around their surfaces, which accelerates the TKE decay. The second effect is more
overwhelming at the initial stage, but its relative contribution reduces as the turbulence
decays. We do not observe a clear dependency of the change of decay exponent on the
particle size. A possible reason for this observation could be the limited range of particle
diameter investigated in the present study. We focused on the particle size around the
Taylor microscale. Whether the particle size would still have an ambiguous effect on the
modulation of the decay exponent in more expanded parameter space is up to further
investigation.

We also develop a model to predict the modulation of the power-law exponent. This
model is derived from the budget equations of the fluid and particle TKE with assumptions
and approximations based on the results reported in the literature and the present study.
The model predicts that an enlarged exponent, i.e. npl/nsp > 1, can be expected when the
density ratio ρ � 1.17 and vice versa. Although the precise threshold may not be accurate,
the model correctly reflects the competition between the two mechanisms of turbulence
modulation, the increased system inertia and the enhanced dissipation rate. The model
predictions are also in reasonable agreement with the simulation results. However, due
to the large uncertainty in the data points, very precise comparisons between the model
predictions and the numerical results remain difficult to conduct at this stage.

Although the present work made some efforts to model the turbulence modulation
in particle-laden DHIT, much more work is still needed to bridge the gap between
PR-DNS data and subgrid models for two-phase systems. For this purpose, we publish
our simulation data in the Supplementary Materials for potential utilization in developing
reliable two-phase models for engineering applications. Efforts to extend this work
could include covering a broader parameter space, such as flow Reynolds numbers and
particle sizes, and stretching over all turbulence scales, etc. Furthermore, the effects of
particle settling due to gravity on the decay rate of HIT should be studied, and this
will introduce a new governing parameter. More realistic scenarios, such as anisotropic
and self-sustainable turbulence, and the associated coarse-grain modelling should be
continuously pursued in the future.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.698.
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