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We investigate turbulent flow between two concentric cylinders, oriented either axially or
azimuthally. The axial configuration corresponds to a concentric annulus, where curvature
is transverse to the flow, while the azimuthal configuration represents a curved channel
with longitudinal curvature. Using direct numerical simulations, we examine the effects
of both types of curvature on turbulence, varying the inner radius from ri = 0.025δ to
ri = 95.5δ, where δ is the gap width. The bulk Reynolds number, based on bulk velocity
and δ, is set at Rb ≈ 5000, ensuring fully turbulent conditions. Our results show that
transverse curvature, although breaking the symmetry of axial flows, induces limited
changes in the flow structure, leading to an increase in friction at the inner wall. In
contrast, longitudinal curvature has a significant impact on the structure and statistics of
azimuthal flows. For mild to moderate longitudinal curvatures (ri > 1.5δ), the convex wall
stabilises the flow, reducing turbulence intensity, wall friction and turbulent kinetic energy
(TKE) production. For extreme longitudinal curvatures (ri � 0.25δ), spanwise-coherent
flow structures develop near the inner wall, leading to a complete redistribution of the
TKE budget: production becomes negligible near the inner wall, while pressure–velocity
correlations increase substantially. As a result, the mean TKE peaks near the inner wall,
thereby weakening the stabilising effect of convex curvature.

Key words: turbulence simulation

1. Introduction
The study of fluid dynamics in cylindrical geometries is fundamental to a wide range
of engineering and scientific applications. In systems where fluid is confined between two
concentric cylinders, the flow can occur in either the axial or the azimuthal direction. In the
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former configuration, known as a concentric annulus, the wall curvature is transverse to the
main flow; in the latter, known as a curved channel, the curvature is longitudinal. A clear
understanding of how curvature influences axial and azimuthal flows differently is critical
for optimising designs across industries, from oil and gas to biomedical engineering.

The former configuration, commonly referred to as Taylor–Poiseuille flow, has
significant practical applications, particularly in the context of heat transfer, and has
been studied extensively through theoretical, experimental and numerical approaches.
In the pioneering work of Rehme (1974), experiments were conducted at small values
of the parameter α = ri/ro, where ri and ro are the inner and outer radii of the
annulus, respectively. Specifically, he examined the flow cases where α = 0.02, 0.04, 0.1.
Streamwise velocity profiles were reported for various Reynolds numbers, defined as
Re = Dhub/ν, where Dh = 2(ro − ri ) is the hydraulic diameter, ub is the bulk velocity,
and ν is the kinematic viscosity. Rehme (1974) highlighted three critical aspects in his
study: (i) the accurate determination of the position of zero shear stress; (ii) the deviations
in the location of maximum velocity for radius ratios α < 0.1 due to the inherent flow
asymmetry in these cases; and (iii) the necessity of obtaining sufficient and reliable
experimental data for α < 0.1. The range of Reynolds numbers explored in that study
is now within the reach of modern direct numerical simulations (DNS). Thus one of
the primary objectives of the present study is to revisit and corroborate the experimental
findings at low α values, which have not been re-examined since the work of Rehme (1974).

Quadrio & Luchini (2002) performed the first DNS of turbulent flow in a pipe with
annular cross-section. Two cases of mild curvature were considered, namely α = 1/2
and α = 1/3, showing that even a low curvature affects first-order turbulence statistics.
Ghaemi et al. (2015) investigated turbulent flows in a concentric annular pipe with α = 0.4
using particle tracking velocimetry and planar particle image velocimetry. They compared
friction velocity values at the inner and outer cylinder walls over a Reynolds number range
Re = 59 200 to 90 800. Their findings revealed that even at these large values of Re
and α, similar to the observations of Rehme (1974) at lower Re and α, the maxima of
the streamwise velocity and the location of zero Reynolds shear stress do not coincide.
Ghaemi et al. (2015) emphasised that this mismatch indicates the presence of a region
with negative turbulent kinetic energy (TKE) production. To elucidate the causes of
this negative production, they presented budgets of the normal stresses, noting that such
behaviour is absent in planar turbulent wall flows. Numerical simulations of turbulent
annular flow have also yielded contradictory results on this issue. The DNS conducted by
Chung, Rhee & Sung (2002) under conditions similar to those of the experiment by Nouri,
Umur & Whitelaw (1993) at Re = 8900, demonstrated a non-coincidence between the
points where turbulent and viscous shear stresses vanish. However, Boersma & Breugem
(2001) reported more recently the coincidence of these two positions in their DNS of
fully developed turbulent annular flow with α = 0.1 over a Reynolds number range Re =
8900−13 940. They argued that the non-coincidence observed by Chung et al. (2002) was
likely due to insufficient resolution, and that the discrepancy noted by Rehme (1974) could
be attributed to issues with hot-wire calibration. Consistently with the conclusions drawn
by Boersma & Breugem (2001), the DNS conducted by Bagheri, Wang & Yang (2020)
demonstrated that the zero crossings of the turbulent and viscous stresses coincide. The
present study seeks to further clarify this controversy by performing DNS over a broader
range of α. Consistent with the findings of Boersma & Breugem (2001), the results show
that across all values of α, including the very small α = 0.025, there is no region exhibiting
negative TKE production.

The occurrence of negative TKE production has never been observed in wall-bounded
flows over flat surfaces, but it has been identified by Soldati, Orlandi & Pirozzoli (2025) in
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curved channels, a flow configuration similar to concentric annuli, where the main flow is
driven in the azimuthal rather than axial direction. Negative production in curved channel
flows was first investigated by Eskinazi & Erian (1969), who attributed it to a local ‘energy
reversal’ mechanism, where energy is transferred from turbulent fluctuations back to the
mean flow. This reversal in energy production is associated with the formation of large-
scale coherent structures near the convex wall of the curved channel (Soldati et al. 2025).
In the present work, an extensive simulation campaign has been conducted to investigate
whether these structures align with the main flow direction or are oriented transversely,
depending on the geometry of the configuration. Patel & Head (1969) drew an analogy
between the effects of convex curvature and adverse pressure gradients on boundary
layers, noting that in the latter configuration, spanwise rollers may appear downstream of
the reattachment point. This phenomenon is akin to the enhanced inflectional instability
compared to wake instability, demonstrating that two-dimensional tripping devices are
more effective in promoting the transition from laminar to turbulent flow in boundary
layers, as documented by the experiments of Erm & Joubert (1991).

Some of the most relevant studies on flows between a convex and a concave wall are
reported in Soldati et al. (2025). Their work documents peculiar features of the flow near
the convex wall, in terms of both flow structure and the behaviour of the friction coefficient
C f as a function of the bulk Reynolds number Rb = ubδ/ν, where δ = ro − ri = Dh/2.
In that study, DNS were conducted over a wide range of Rb, covering mild to strong
channel curvatures, which had not been explored previously. The mildly curved channel
with curvature radius rc = 39.5δ, where rc = (ro + ri )/2, was first investigated via DNS by
Moser & Moin (1987) at Rb = 5200. Subsequent DNS studies of turbulent flow in mildly
curved channels followed, including the work of Nagata & Kasagi (2004) at Rb = 4600,
and of Brethouwer (2022) at Rb = 40 000. In these studies, moderate channel curvatures
were also considered: Nagata & Kasagi (2004) explored curvature ratio rc = 2.5δ, while
Brethouwer (2022) reached rc = 3δ. Figure 1 in the study by Soldati et al. (2025) presents
the values of Rb and rc/δ considered in previous experiments and DNS, showing that
very strong curvatures, specifically rc < δ, comparable to those studied in annular pipe
flows, had never been explored in curved channel flows. From the plots of C f versus Rb
reported in Soldati et al. (2025), it can be inferred that a Reynolds number Rb ≈ 5000 is
sufficiently large to capture interesting turbulent behaviours associated with variations in
curvature radius, while still being small enough to permit the use of a limited number of
grid points, thus minimising computational costs.

The paper is organised as follows. First, the flow physics at very small values of inner
radius ri , which has not been investigated deeply, is highlighted through profiles of total
and normal stresses. Focusing on azimuthal flows, the TKE budgets are evaluated, showing
that near the convex wall, production decreases as ri decreases, and total dissipation
balances the strong positive contribution of the pressure work term. This suggests that
the fluctuating pressure plays an increasingly important role as the inner radius decreases,
as confirmed by the instantaneous visualisations, which are shown to clarify how the
flow is organised as the curvature changes. Finally, the correlations between fluctuating
pressure and radial velocity are analysed, elucidating the role of radial velocity and
the transverse structures formed in azimuthal flow for small values of the inner radius.
This paper is closely linked to the work by Soldati et al. (2025), specifically targeting
Reynolds number effects in curved channel flow, which revealed intriguing behaviour
at intermediate values of Rb, for given rc = δ. The present study delves into additional
flow complexity arising at even lower values of ri . We acknowledge that replicating
this flow configuration in laboratory experiments involving azimuthal pressure-driven
flows is nearly impossible. Therefore, the observations reported herein may be regarded
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Figure 1. Computational set-up for (a) axial flows and (b) azimuthal flows.

as of mainly academic or speculative interest. However, the study can still serve as
a useful database for scholars employing different numerical methods. In fact, some
researchers have encountered difficulties with numerical methods similar to ours when
considering curved channels with small internal radii (personal communication). For
practical implementation and verification of our findings, we believe that it is worthwhile
to perform numerical experiments on Taylor–Couette flows with internal radii as small
as 0.02δ to assess whether turbulence exhibits behaviour similar to that observed for
pressure-driven azimuthal flows. Taylor–Couette flow might be a more suitable candidate
for laboratory studies, although challenges remain in achieving accurate measurements of
friction factors, velocity profiles and flow visualisations.

2. Methodology
The computational domain is bounded by sectors of concentric cylinders, as shown in
figure 1(a) for the concentric annulus (axial flows) and in figure 1(b) for the curved
channel (azimuthal flows). The velocity components along the azimuthal (θ ), radial (r )
and axial (z) directions are denoted by vθ , vr and vz , respectively. The axial flow in the
annulus is driven by a mean pressure gradient (∂ P/∂z), imposed as a volumetric forcing
to maintain a constant mass flow rate over time. Similarly, for the azimuthal flow a mean
pressure gradient (∂ P/∂θ ) is required to achieve a constant mass flow rate in the azimuthal
direction. In both types of flow, no-slip boundary conditions are applied on the internal
and external cylindrical walls, and periodicity is assumed in the θ - and z-directions.
The statistical steady state is reached when the mean pressure gradient, which balances
the wall friction, oscillates around a mean value.
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The incompressible Navier–Stokes equations in cylindrical coordinates are solved using
a second-order finite-difference scheme developed by Verzicco & Orlandi (1996). This
scheme employs qr = rvr as a computational variable, which simplifies the treatment of
the axis in the computational domain. Although this assumption is not necessary for the
present set-up, it is retained as the code employed here is the same as that used for DNS
of pipe flow by Orlandi & Fatica (1997). The governing equations are advanced in time
using a hybrid third-order low-storage Runge–Kutta algorithm, where the diffusive terms
are treated implicitly, and the convective terms are treated explicitly.

Throughout the following discussion, it is implied that all lengths are scaled by
δ = ro − ri , and velocities by ub. For small values of inner radius, specifically ri < 2.5,
the continuity and momentum equations are solved for the variable qθ = rvθ . For ri >

2.5, instead, the vθ equation is discretised. When the azimuthal flow is considered, the
mean pressure gradient is expressed as ∂ P/∂θ in the qθ -formulation, whereas in the
vθ -formulation it is expressed as (∂ P/∂θ)/r , where ∂ P/∂θ is constant. Consequently, the
volumetric forcing varies along the radial direction when the variable vθ is considered. A
second version of the code, written in the vθ -formulation, has been used for the flow cases
with ri < 2.5 to validate the results obtained with the qθ -formulation. This version has
been adapted to run on clusters of graphic accelerators (GPUs), utilising a combination of
CUDA Fortran and OpenACC directives, and relying on the CUFFT libraries for efficient
execution of fast Fourier transforms. The balance equations written in the qθ -formulation
read as follows.

Continuity equation:

∂qr

∂r
+ 1

r

∂qθ

∂θ
+ r

∂qz

∂z
= 0. (2.1)

Transport equation for qθ :

∂qθ

∂t
+ ∂qθ /rqr

∂r
+ 1

r2

∂q2
θ

∂θ
+ ∂qθqz

∂z
+ qθ

r

qr

r

= −∂p

∂θ
− ∂ P

∂θ
δiθ + 1

Re

[
∇2qθ − 2

r

∂qθ

∂r
+ 2

r2
∂qr

∂θ

]
. (2.2)

Transport equation for qr :

∂qr

∂t
+ ∂

∂r

q2
r

r
+ ∂

∂θ

qθqr

r2 + ∂qr qz

∂z
− q2

θ

r2

= −r
∂p

∂r
+ 1

Re

[
∇2qr − 2

r

∂qr

∂r
− 2

r2
∂qθ

∂θ

]
. (2.3)

Transport equation for qz :

∂qz

∂t
+ 1

r

∂qr qz

∂r
+ 1

r2
∂qθqz

∂θ
+ ∂q2

z

∂z

= −∂p

∂z
− ∂ P

∂z
δi z + 1

Re

[
∇2qz

]
. (2.4)

In these equations, the Laplacian is expressed as

∇2q = ∂2q

∂z2 + 1
r

∂

∂r

(
r
∂q

∂r

)
+ 1

r2
∂2q

∂θ2 . (2.5)
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Axial flows
ri α Nθ Nr Nz Lθ Lz Rb × 10−4 C f,i × 102 C f,o × 102 �PN

0.0250 0.0244 384 256 384 6.28 8.0 0.538 2.05 0.690 0.0
0.0500 0.0476 384 256 384 6.28 8.0 0.526 1.52 0.708 0.0
0.0750 0.0698 384 256 384 6.28 8.0 0.522 1.32 0.720 0.0
0.125 0.111 384 256 384 6.28 8.0 0.515 1.12 0.733 0.0
0.250 0.200 256 256 384 6.28 8.0 0.509 0.988 0.755 0.0
0.500 0.333 512 256 512 6.28 8.0 0.504 0.916 0.770 0.0
0.750 0.429 512 256 512 6.28 8.0 0.502 0.892 0.788 0.0
1.00 0.500 512 256 512 3.14 8.0 0.501 0.875 0.788 0.0
2.50 0.714 512 256 512 3.14 8.0 0.499 0.846 0.810 0.0
5.50 0.846 512 256 512 2.09 8.0 0.499 0.837 0.822 0.0
14.5 0.935 512 256 512 0.785 8.0 0.499 0.835 0.828 0.0
24.5 0.961 512 256 512 0.449 8.0 0.499 0.831 0.828 0.0
40.0 0.976 256 128 512 0.157 8.0 0.499 0.833 0.829 0.0
59.5 0.983 512 128 512 0.209 8.0 0.499 0.830 0.829 0.0
79.5 0.988 512 128 512 0.157 8.0 0.499 0.832 0.829 0.0
95.5 0.990 512 128 512 0.126 8.0 0.499 0.830 0.829 0.0

Azimuthal flows
ri α Nθ Nr Nz Lθ Lz Rb × 10−4 C f,i × 102 C f,o × 102 10 �PN

0.0250 0.0244 384 128 512 6.28 8.0 0.743 1.14 0.549 0.432
0.0500 0.0476 384 128 512 6.28 8.0 0.709 1.06 0.601 0.584
0.0750 0.0698 384 128 512 6.28 8.0 0.678 1.01 0.658 0.659
0.125 0.111 384 128 384 6.28 8.0 0.569 0.932 0.847 0.808
0.250 0.200 512 256 512 6.28 8.0 0.550 0.802 0.998 1.09
0.500 0.333 512 256 512 6.28 8.0 0.516 0.713 1.18 1.06
0.750 0.429 512 256 512 6.28 8.0 0.507 0.654 1.24 1.02
1.00 0.500 512 256 512 3.14 8.0 0.502 0.616 1.25 0.815
1.50 0.600 512 256 512 3.14 8.0 0.497 0.572 1.26 0.559
2.50 0.714 512 256 512 3.14 8.0 0.498 0.534 1.22 0.257
5.50 0.846 384 128 384 2.09 8.0 0.496 0.489 1.15 0.264
9.50 0.905 384 128 384 1.05 8.0 0.497 0.485 1.07 0.598
14.5 0.935 512 256 512 0.785 8.0 0.497 0.476 1.04 1.00
24.5 0.961 384 128 384 0.449 4.0 0.498 0.542 1.00 1.40
40.0 0.976 256 128 256 0.157 4.0 0.498 0.637 0.932 0.639
59.5 0.983 512 128 256 0.209 4.0 0.498 0.718 0.912 0.251
79.5 0.988 512 128 256 0.157 4.0 0.498 0.760 0.887 0.0612
95.5 0.990 512 128 256 0.126 4.0 0.499 0.767 0.877 0.0482

Table 1. Flow parameters: inner radius (ri ), inner to outer radii ratio (α), number of grid points in the azimuthal
(Nθ ), radial (Nr ) and axial (Nz) directions, domain sizes in the azimuthal (Lθ , expressed in radians) and axial
(Lz) directions, bulk Reynolds number (Rb), friction coefficient at the inner (C f,i ) and outer (C f,o) walls, radial
extent of the layer with negative TKE production (�PN ).

Two sets of simulations have been performed, one with the flow along the axial direction
(i = z and δzz = 1), and the other along the azimuthal direction (i = θ and δθθ = 1).
The flow parameters of all simulations are listed in table 1. As shown, the inner radius
ranges from the very small value ri = 0.025 (strong curvature) up to the rather large value
ri = 95.5 (mild curvature), which are respectively smaller and greater than the values
considered in previous simulations. Variations in curvature lead to different behaviours
near the inner (convex) and outer (concave) wall. Domain sizes and numbers of grid points,
as well as the resulting bulk Reynolds number, are listed in table 1 for each simulation. A
distinction between the inner and outer wall is necessary because the friction velocity
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Figure 2. Friction coefficient at the inner wall (C f,i , green) and at the outer wall (C f,o, red) versus the inner
radius for (a) axial flows and (b) azimuthal flows.

varies depending on the wall at which it is computed, due to the asymmetry of the mean
velocity profile. The non-dimensional friction velocities at the inner and outer wall are
defined as

uτ,i =
√

1
Rb

|∂U

∂r
|ri

= τ
1/2
w,i , uτ,o =

√
1
Rb

|∂U

∂r
|ro

= τ
1/2
w,o. (2.6)

In these equations, the mean velocity is U = vz for flows along the axial direction, and
U = vθ for flows along the azimuthal direction, where the overline indicate that the
variable is averaged in the homogeneous spatial directions and in time.

3. Results

3.1. Friction coefficient
The friction coefficient is a key parameter for characterising the influence of the curvature
radius on flows in concentric annuli and curved channels. Based on the friction velocities
(2.6), we define friction coefficients at the inner and outer wall as

C f,i = 2
(

uτ,i

ub

)2

, C f,o = 2
(

uτ,o

ub

)2

, (3.1)

which are listed in table 1 and shown in figure 2, as a function of the inner radius. For axial
flows (figure 2a), there is a significant decrease in friction at the inner wall (green dots) as
ri increases, accompanied with moderate increase at the outer wall (red dots). This can be
explained by looking at the mean axial velocity profiles (not shown here), whose maxima
shift towards the inner wall as ri decreases. The friction difference between two walls
decreases as the inner radius increases, vanishing for ri > 2.5. Quadrio & Luchini (2002)
evaluated the overall resistance of the two walls by weighting their friction coefficients
with the corresponding wetted areas, and noticed that the overall friction is essentially
unchanged from its planar value, for ri � 1. The data in table 1 do confirm this behaviour,
at least for ri � 1. However, the overall drag increases for smaller ri . This suggests that
when wall curvature is transverse to the mean flow, the effects of concave and convex
walls are significant only when the inner radius of the annulus is small compared to the
distance between the two walls.
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For azimuthal flows (figure 2b), the friction trend at the two walls is more complex. In
particular, C f,i has a minimum at ri ≈ 14.5, C f,o has a maximum at ri ≈ 1.5, and there is a
crossover of friction at the two walls at ri ≈ 0.25. At very large values of ri , C f,i is slightly
less than C f,o, with a difference of approximately 10 %. This behaviour allows us to
identify four flow regimes, namely: (i) mild curvature for ri > 14.5; (ii) moderate curvature
for 1.5 < ri � 14.5; (iii) strong curvature for 0.25 < ri � 1.5; (iv) extreme curvature for
ri � 0.25.

In these simulations, the bulk Reynolds number is set to Rb = 5000, which is sufficiently
high to result in fully turbulent flow conditions. Soldati et al. (2025) found that for mildly
curved channels (ri = 40), the friction at the inner wall is permanently lower than at the
outer wall as the Reynolds number increases. In contrast, for strongly curved channels
(ri = 0.5), the friction at the inner wall exceeds that at the outer wall for Rb < 1000, and
becomes lower for higher Rb. Figure 2(b) displays a similar behaviour, with crossing point
at ri ≈ 0.25. The maximum difference between the friction at the two walls is obtained for
ri = 2.5, at which C f,o is more than twice C f,i .

This complex behaviour arises in azimuthal flows because of two competing effects.
First, as the curvature radius is reduced, destabilisation at the outer wall and stabilisation
at the inner wall yield, respectively, increase and decrease of the friction coefficient. By
further reducing the inner radius, the wetted area of the inner wall becomes very small,
such that the maximum velocity (not shown here) approaches it, with consequent tendency
for the friction coefficient to increase at the inner wall. The inversion of friction at the two
walls occurring in azimuthal flows will be further characterised through the analysis of the
TKE transport equation, which reveals the dominance of the pressure–velocity correlation
term and a reduction in production.

3.2. Total stress and turbulent energy production
The expressions for the total stress in the concentric annulus and curved channel
configurations are given by

τT,z = 1
Re

∂vz

∂r
− v′

zv
′
r , τT,θ = 1

Re

r ∂(vθ/r)

∂r
− v′

θv
′
r , (3.2)

respectively, where the fluctuating velocities are defined as v′
i = vi − vi . Given the large

number of configurations investigated, only a selection of flow cases is displayed in
figure 3, specifically those with ri = 0.025, 0.125, 1, 5.5, 14.5 and 79.5, for both axial
(figure 3a) and azimuthal (figure 3b) flows. The achievement of smooth profiles indicates
that a good statistical steady state has been reached. For azimuthal flows, Brethouwer
(2022) derived the following analytical expression for the total stress profile:

τT,θ (r) = r2
i τw,i (r2

o − r2) + r2
oτw,o(r2

i − r2)

2r2rcδ
. (3.3)

The azimuthal flow cases with extreme value of curvature, namely ri = 0.025 (red) and
ri = 0.125 (green), exhibit a total stress profile that deviates more significantly from a
linear trend. In figure 3(b), we report the analytical profile (3.3) for these two cases
(open circles), which shows excellent agreement with the computed profiles (dots), further
indicating well-converged statistics.

In wall-bounded flows, TKE production typically scales well with wall friction,
especially as the Reynolds number increases. For smooth, flat walls, this production
reaches a maximum value of approximately 0.25 in wall units, located at a fixed distance
from the wall (Pope 2000). However, the stabilising effect of the convex wall leads to a
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Figure 3. Total stress profiles scaled by bulk velocity versus distance from inner wall for (a) axial flows and
(b) azimuthal flows. The values of ri are reported in the legend. The open circles denote the analytical profiles
of τT,θ (r)/u2

b from (3.2) for the azimuthal flow cases with ri = 0.025 and ri = 0.125.
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Figure 4. (a) Minimum of negative production (−Pθ |min) versus the inner radius; in the inset, the thickness
�PN of the layer with Pθ < 0 is plotted versus ri . Red dots denote results obtained with the rvθ -formulation,
red circles with the vθ -formulation, and green triangles with the GPU-version of the vθ -formulation. (b) Profiles
of TKE production scaled by bulk velocity versus distance from the inner wall; the inset shows a close-up view
of the production profiles for flow cases with ri > 1. The values of ri are reported in the legend. Both plots
refer to azimuthal flows.

reduction in TKE production, which may even become negative, implying a transfer of
energy from turbulent fluctuations to the mean flow. As mentioned in the Introduction,
there has been a debate regarding the existence of a layer with negative TKE production
in concentric annulus flows. The last column of table 1 reports the mean extent in the
radial direction of the flow region where production is negative, which we define as �PN .
For axial flows, �PN is zero for all values of the inner radius, confirming the conclusions
drawn by Boersma & Breugem (2001). In contrast, a completely different behaviour is
observed for azimuthal flows, for which a negative production layer exists at each value
of ri .

This point is further investigated in figure 4(a), which focuses on azimuthal flows and
illustrates the minimum of Pθ = −v′

θv
′
r r ∂(Uθ /r)/∂r in absolute value as a function of

the inner radius. The figure highlights the large values of negative production for small
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ri , and its sharp reduction as ri increases. A local maximum is observed for ri = 24.5;
however, the semi-logarithmic scale amplifies values that are actually extremely lower
than those obtained for small ri . The inset of figure 4(a) shows the extent of the layer with
negative production �PN , also listed in table 1. Notably, �PN increases for large values
of the inner radius, specifically between ri = 9.5 and ri = 40. However, these relatively
high values of �PN are not as significant as those observed for small ri . This can be
inferred from figure 4(b), where the profiles of Pθ are shown for the same flow cases as in
figure 3(b): the broad layer with negative production observed for large ri corresponds to
negative values of Pθ that are nearly zero.

The profiles of Pθ in figure 4(b) further characterise the occurrence of negative TKE
production in azimuthal flows. Near the outer wall, Pθ is always positive, though the
amplitude of its peak varies in a complex manner. For ri = 1, at which the peak amplitude
is maximum, the high turbulence activity near the outer wall influences the channel core,
but does not affect significantly the layer near the inner wall, where the stabilising effect
of convex curvature tends to suppress Pθ . For flow cases with ri > 1, the peak production
near the outer wall decreases in amplitude with ri , whereas it increases near the inner wall,
without reaching the value near the outer wall. For values ri < 1, production increases in
the channel core, and decreases to large negative values near the inner wall. Since the
production is inherently related to the flow structures, the complex profiles of Pθ indicate
a modification of the flow structures for the azimuthal flow cases with ri < 1, which will
be stressed in the following through a detailed analysis of the budget terms in the TKE
transport equation.

3.3. Velocity and pressure correlations
As can be inferred from the results presented so far, identifying a suitable scaling for both
the mean velocity and the normal stresses with respect to the friction velocities at the two
walls is quite challenging. Thus we consider the normalised anisotropy tensor bi j , which
is typically defined as bi j = v′

iv
′
j/K − 1/3δi j , where K = 2K ′ is twice the mean TKE.

Here, we adopt an alternative definition, normalising each component of the anisotropy
tensor by its maximum value, namely bi j = v′

iv
′
j/v

′
iv

′
j |max , in such a way that quantities

range between 0 and 1. This definition allows for the fluctuating pressure correlations,
which we define as bpp = p′ p′/p′ p′|max consistently with bi j , to be visualised on the same
plot.

Examining the profiles of the diagonal components bii in the present configurations
can reveal whether wall curvature enhances or diminishes flow anisotropy with respect to
flat walls, for which bii exhibit strong inhomogeneity near the wall, and a fair isotropy
farther from the wall. To facilitate comparison between flow over curved and flat walls,
we provide in figure 5 the profiles of bii obtained from the data by Lee & Moser
(2015) for plane channel flow at various friction Reynolds numbers (Rτ ), specifically
Rτ = 180, 550, 1000, 2000, 5200. These data reveal that in the buffer region, the
streamwise (red dots) and spanwise (orange dots) components exhibit a maximum, whose
location is independent of the friction Reynolds number for Rτ > 500. In fact, the only
profiles that do not collapse on the others in the viscous wall region are those at Rτ =
180 (solid lines). Regarding the pressure fluctuations, the values of bpp (black) show a
Reynolds number dependence, but the peak location remains invariant.

For curved wall configurations, we report in figure 6 the profiles of bii and bpp for
axial flows (left-hand panels) and azimuthal flows (right-hand panels) with ri = 0.125
(figures 6a,b), ri = 1 (figures 6c,d), and ri = 79.5 (figures 6e,f ). To facilitate a quick
comparison between the two flow configurations, the components along the flow direction
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Figure 5. Diagonal components of the anisotropy tensor (streamwise in red, wall-normal in green, and
spanwise in orange) and fluctuating pressure correlations (in black) scaled by their maximum values. Profiles
obtained by Lee & Moser (2015) for plane channel flow at friction Reynolds numbers Rτ = 180 (lines), and
Rτ = 550, 1000, 2000, 5200 (dots).

are plotted in red, namely bθθ for flow in the θ -direction, and bzz for flow along the
z-direction. The three panels on the left-hand side for axial flows show similar trends
with minor differences. For ri = 79.5 (figure 6e), a fairly good symmetry is observed
for all quantities. Comparing figure 6(e) and figure 5, some differences in amplitude are
observed. These differences are due to the Reynolds number, which is Rτ ≈ 160 in the
present simulations for ri = 79.5. For ri = 1 (figure 6c), the symmetry of the flow breaks
down, as is visible from the minimum of bzz, bpp and the maximum of brr , bθθ in the
central region shifting slightly towards the inner wall. This trend is even more pronounced
for ri = 0.125 (figure 6a). For axial flows, the maximum of bpp remains fixed near the outer
wall, whereas its peak near the inner wall diminishes in amplitude with ri , decreasing to
half the absolute maximum for ri = 0.125 (figure 6a). The minimum of bpp is located at
the same position where brr is maximum.

For the azimuthal flow case with ri = 79.5, the profiles of bii in figure 6(f ) do not differ
significantly from those in figure 6(e) for the axial flow in the same geometry. However,
a slight asymmetry is present, which is particularly evident in the profile of bpp. This
suggests that even a small curvature in the longitudinal direction influences the normal
stresses and especially the fluctuating pressure. As for axial flows, the maximum of bpp
is located near the outer wall for large values of the inner radius. All the profiles change
drastically for azimuthal flows with small values of the inner radius. At ri = 1 (figure 6d),
a significant increase in brr is observed with respect to the corresponding axial flow case
in figure 6(c). This increase in radial velocity fluctuations, more pronounced towards the
outer wall, is explained by the presence of large ejections that influence the flow structures
near the outer wall, as will be shown in the following through flow visualisations. These
large-scale ejections are also responsible for the large values near the outer wall of total
stress and TKE production, both reaching their peak for ri = 1 (cyan dots in figures 3b
and 4b). In a small layer around r − ri ≈ 0.9, the flow tends to be isotropic due to a strong
reduction in bθθ . This small layer of isotropic flow near the outer wall is also characterised
by the absence of a distinct peak in bpp. The reduction of bθθ is even stronger near the inner
wall, explaining the sharp reduction of Pθ in that region (cyan dots in figure 4b). Together
with the formation of a prominent peak in bpp near the inner wall, this suggests a complete
rearrangement of the budgets in the TKE transport equation. For the azimuthal flow case
with ri = 0.125, what emerges from figure 6(b) is a large peak of brr near the inner wall,
in correspondence with the maximum of bpp. The presence of this peak in radial velocity
fluctuations suggests that the rearrangement of the TKE budgets is even more marked for
this flow case with extreme curvature, as discussed in the next subsection.

The results obtained so far indicate that transverse curvature does not alter substantially
the structure of axial flows with respect to canonical wall-bounded flows, whereas
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Figure 6. Diagonal components of the anisotropy tensor (streamwise in red, wall-normal in green, and
spanwise in orange) and fluctuating pressure correlations (in black) scaled by their maximum value versus
distance from the inner radius. Left-hand panels correspond to axial flows, and right-hand panels to azimuthal
flows, with (a,b) ri = 0.125, (c,d) ri = 1 and (e,f ) ri = 79.5.

longitudinal curvature induces major modifications in azimuthal flows. Therefore, the
remainder of this paper will focus on azimuthal flows only.

3.4. Budgets of TKE
In the previous discussion, greater emphasis was placed on azimuthal flows, with a
special focus on how flow statistics change near the inner wall as the curvature increases.
Important insights into these flow modifications can be gained through the analysis of the
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TKE budgets. For azimuthal flows, the transport equation for the TKE is

0 = −Cθ − v′
rv

′
z

r

d(vzr)

dr
− v′

rv
′
θ

r

d(vθr)

dr︸ ︷︷ ︸
Pθ S

− v′
θv

′
r

r
vθ + v′

θv
′
θ

r
vr︸ ︷︷ ︸

PθC

− 1
r

dv′
r K ′r
dr︸ ︷︷ ︸

Tθ

− 1
r

dv′
r p′r
dr︸ ︷︷ ︸

Πθ

+ 1
Re

[
v′

z ∇2v′
z + v′

θ ∇2v′
θ + v′

r ∇2v′
r

]
+ 1

Re

[
1
r2

(
−v′

θv
′
θ − v′

rv
′
r + 2

(
v′
θ

∂v′
r

∂θ
− v′

r
∂v′

θ

∂θ

))]
︸ ︷︷ ︸

Dθ

,

(3.4)

where Cθ , the convective contribution, is zero as vr = 0, Pθ is the production, Dθ is the
total dissipation, Tθ is the transfer due to triple velocity correlations, and Πθ is the transfer
due to pressure–velocity correlations. The production term Pθ can be decomposed into
two components: Pθ S , which is the product of the Reynolds stress and the shear strain
rate, and PθC , the curvature-related term. Generally, PθC provides a positive contribution
to the total production. As shown by Liu et al. (2022), PθC may be the critical factor
driving relaminarisation in turbulent pipe flow with streamwise-varying wall rotation, as
this term facilitates the transfer of energy from turbulence to the circumferential mean flow.
In axial flows, PθC is relatively large at very small values of ri , but becomes negligible
when ri � 1. The inset of figure 7(a) illustrates that PθC exceeds Pθ near the wall, and it
is insufficient to offset the negative values of Pθ S . This imbalance leads to a negative Pθ ,
as shown in figure 4(b), although this effect diminishes for larger ri . The profiles of each
term are depicted in figure 7 for the azimuthal flow cases with ri = 0.025, 0.125, 1 and
79.5. To elucidate the budgets of K in the region near the inner wall, a logarithmic scale
for r − ri is employed.

For ri = 79.5 (figure 7d), the TKE budgets exhibit a distribution typical of plane
channels, featuring a balance between production Pθ (red dots), and total dissipation
Dθ (green dots). The peak of total dissipation is located slightly closer to the inner wall
compared to the production peak. The triple velocity transfer term Tθ (black dots) indicates
an energy transfer from the near-wall region, dominated by ribbon-like structures, towards
the adjacent layer, dominated by rod-like structures (Orlandi 2019).

For ri = 1 (figure 7c), the contribution of the pressure–velocity correlation Πθ (purple
dots) is still relatively small, albeit greater than for ri = 79.5, and comparable in magnitude
to the other terms. Although the semi-logarithmic scale does not illustrate clearly the
budgets close to the outer wall, it is evident that the amplitude of each term near the inner
wall is markedly lower than at the outer wall. This substantial reduction of all budgets
near the inner wall is reflected in the profiles of K , shown in figure 8 as a function of the
distance from the inner wall. For ri = 1 (cyan dots), a near-wall bump is absent near the
inner wall, in contrast to the peak observed near the outer wall.

For ri = 0.125 and 0.025 (respectively figures 7b,a), the budgets of TKE change
dramatically. The pressure–velocity correlation term increases to an order of magnitude
higher than the production term observed for ri = 79.5. (Note that the vertical axis ranges
are different.) This increase is likely associated with the negative production, which draws
fluctuations from small to large scales of motion. The large-scale fluctuating pressure
interacts with large ejections of radial velocity from the inner wall, leading to a significant
gain of TKE. This strong energy gain is subsequently dissipated and partially transferred
away from the inner wall region via the triple velocity transfer term. This increase in
energy gained and lost results in higher peaks of K near the inner wall compared to the
outer wall, as is clearly visible in figure 8(a) for ri = 0.125 (green dots) and even more
markedly for ri = 0.025 (red dots).
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Figure 7. Profiles of each term of the TKE transport equation (3.5) versus the distance from inner radius for
azimuthal flow cases with (a) ri = 0.025, (b) ri = 0.125, (c) ri = 1, and (d) ri = 79.5. The symbols used for
each term are reported in the legend. In the inset of (a) are plotted Pθ (red symbols), Pθ S (green lines) and PθC
(orange lines).

The non-monotonic trend of K with ri is analogous to the C f trend shown in
figure 2(b). A comparison of the TKE profiles for azimuthal flows in figure 8(a) and for
axial flows in figure 8(b) reveals that for axial flows, the two peaks of K have similar
magnitudes; however, the minimum shifts from the centreline towards the inner wall as
ri decreases. The relatively minor changes in the TKE profiles for axial flows near both
walls are replicated in the budget profiles, which are not shown here as they do not differ
significantly from those observed in canonical wall-bounded flows.

3.5. Flow visualisations
As mentioned previously, major changes in the statistics of azimuthal flows, which
are particularly pronounced for small values of the inner radius, indicate the presence
of distinctive flow structures developing near the inner wall. These structures can
be characterised by inspecting flow visualisations after a careful selection of the
relevant quantities, essential for obtaining meaningful insights into the flow organisation.
According to Orlandi (2013), the wall-normal velocity stress is a crucial quantity in
flows over both smooth and rough walls, making the correlation between v′

r and
any pertinent quantity a preferred subject of scrutiny. The atypical distribution of the
pressure–velocity correlation term in the TKE transport equation, which deviates from
the canonical behaviour observed in wall-bounded flows, points to the significant role of
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Figure 8. Profiles of mean TKE versus the distance from the inner wall for (a) azimuthal flows and (b) axial
flows. The values of the inner radius are reported in the legend.

pressure fluctuations in azimuthal flows. Therefore, special attention should be paid to the
correlations between p′ and v′

r .
Due to the complexity of three-dimensional surface contours, the flow structures from

a single realisation are visualised via planar contours. As for the transverse (r–z) and
longitudinal (θ–r ) planes, flow contours are obtained through space averages. Specifically,
the three-dimensional field of a generic quantity qi jk is averaged along the θ -direction, q̃ =∑

i qi jk/Nθ , and along the z-direction, q̂ = ∑
k qi jk/Nz , to obtain visualisations in the r–z

plane and in the θ–r plane, respectively. Contours of q̃ and q̂ are scaled by their respective
maximum values to emphasise the shape of flow structures. As for the wall-parallel (θ–
z) planes, flow contours are displayed both at the centreline and at the radius where Πθ

attains its maximum near the inner wall (see figure 7). In this case, the three-dimensional
quantities v′

r and p′ are normalised by K
1/2

and p′ p′1/2
, respectively. The comparison

between the θ–z planes at these two locations provides insights into the increase in the
pressure–velocity correlation Πθ (see (3.5)) as the inner radius decreases. Since wall-
parallel planes have a different extent in the θ -direction depending on ri , the streamwise
coordinate has been scaled so that it ranges between 0 and 2π .

For ri = 0.025, the shape of the contours in figure 9(a) indicates that ṽ′
r is concentrated

towards the outer top wall (solid black line) and tends to vanish near the inner bottom
wall (solid green line). However, when scaled by K

1/2
(figure 10a), contours of vr reveal

that alternating positive and negative structures with spanwise coherence are present near
the inner wall. For pressure, an almost opposite behaviour is observed. Flow structures
with large values of p̃′ form near the inner wall (figure 9c), while they are absent in the
outer half of the channel. This difference is quantified in figure 9(e), which shows that
for ri = 0.025, pressure oscillations at the inner wall (red line) have significantly higher
amplitude than at the outer wall (black line). Conversely, for ri = 1, figure 9(f ) shows
that pressure oscillations at the two walls are similar, although their overall magnitude is
smaller than for ri = 0.025.
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Figure 9. Contours in transverse (r–z) planes of azimuthal flow cases with (a,c) ri = 0.025 and (b,d) ri = 1.
Fluctuating radial velocity ṽ′

r scaled with the maxima (a) ṽ′
r max = −0.25 and (b) ṽ′

r max = −0.128. Pressure
p̃′ scaled with the maxima (c) p̃′

max = 0.26 and (d) p̃′
max = −0.0137. The outer wall is at the top, and the

inner wall is at the bottom of each plot. Blue, green, cyan represent negative values, and yellow, red, magenta
represent positive values, with increments Δ = 0.1. Profiles of p̃′ on the inner wall (red) and outer wall (black)
of (e) ri = 0.025 and (f ) ri = 1.
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(a) Δ = 0.005, (c) Δ = 0.025, (b,d) Δ = 0.06, (e,g) Δ = 0.04, (f ,h) Δ = 0.08. Mean flow is from left to right.
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(a) (b) (c) (d )

Figure 11. Contours in longitudinal (θ–r ) planes of azimuthal flow cases with (a,c) ri = 0.025 and (b,d) ri = 1,
and fluctuating (a,b) radial velocity v̂′

r and (c,d) pressure p̂′, both averaged along the z-direction, scaled by their
maximum values: (a) v̂′

r max = 0.053, (b) v̂′
r max = 0.026, (c) p̂′

max = 0.092, (d) p̂′
max = 0.006. Blue, green,

cyan represents negative values, and yellow, red, magenta represent positive values, with increments Δ = 0.05.
Mean flow is clockwise.

The spanwise coherence of p′ in figure 10(e) is less evident than that of vr in
figure 10(a). Nonetheless, high positive/negative values of p′ tend to align with high
negative/positive values of vr , suggesting that a negative correlation exists between the
two quantities. Streamwise-coherent structures with alternating positive and negative
amplitudes of radial velocity are visible in the wall-parallel plane at the centreline
(figure 10b), where the spanwise coherence is reduced. Accordingly, numerous weak
patches of v̂′

r appear in the θ–r plane of figure 11(a) far away from the inner wall, where
instead two strong structures are present. A spanwise coherence of p′ is undetectable in the
θ–z plane at the centreline (figure 10f ). In fact, contour lines of p̂′ disappear completely
in the outer part of the θ–r plane (figure 11c). Two distinct patches of p̂′ are present near
the inner wall, shifted by approximately π/2 with respect to the two v̂′

r patches.
For the flow case with ri = 1, a similarity in the ṽ′

r contours (figure 9b) is observed, with
those of the case with ri = 0.025 (figure 9a) near the inner wall. Farther from the wall, the
radial velocity is organised in streamwise-coherent structures, which are pushed towards
the outer wall and are larger than those at ri = 0.025. These structures are also visible
in the wall-parallel plane at the centreline (figure 10d), and are caused by longitudinal
vortices that originate from centrifugal instabilities (Soldati et al. 2025). Both spanwise
and streamwise coherence of vr are reduced near the inner wall, as is visible in figure 10(c).
This suggests a tendency of the flow towards more isotropic conditions near the inner wall,
which we already noticed from the profiles of the anisotropy tensor diagonal components
and from the reduction of all terms in the TKE budgets equation; see figures 6(d) and 7(c).
From the contours in the θ–z plane (figure 11b), numerous weak patches of v̂′

r appear,
increasing from a single pair at ri = 0.025 (figure 11a) to a higher number, which is
challenging to evaluate exactly due to the azimuthal convection of these flow patterns.
From the pressure contours in the transverse and wall-parallel planes of figures 9(d) and
10(g), it appears that pressure is characterised by a strong spanwise coherence near the
inner wall, which reduces at the centreline (figure 10h). This behaviour is reflected in the
longitudinal plane (figure 11d), where large flow patterns are visible near the inner wall,
and tend to break up towards the outer wall.

3.6. Correlation between radial velocity and pressure
The increase in the pressure–velocity correlation Πθ (see (3.5)), identified as a key feature
of azimuthal flows with small inner radius, can be explained by analysing the correlations
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Figure 12. Correlation between fluctuating radial velocity and pressure versus distance from the inner wall for
azimuthal flows. The values of ri are reported in the legend.

between the fluctuating radial velocity and pressure. Additionally, these correlations can
provide valuable insights for quantifying the number of spanwise-coherent flow patterns.

Figure 12 illustrates the trend of v′
r p′ as a function of the distance from the inner wall,

using a semi-logarithmic scale to magnify the region near the inner wall. In the case of
smallest inner radius ri = 0.025 (red circles), the prominent peak of v′

r p′ indicates a strong
negative correlation between fluctuating pressure and radial velocity near the inner wall,
consistent with flow visualisations. As ri increases, the peak amplitude decreases sharply,
and the peak location shifts further from the inner wall.

This trend can be visualised in figure 13, where the contours of the z-averaged
correlations between fluctuating pressure and radial velocity, v̂′

r p′ (scaled by their
maximum value), are shown in longitudinal planes. Consistent with the profiles of v′

r p′,
negative (blue) contour lines of v̂′

r p′ are predominant near the inner wall for ri = 0.025
(figure 13a), as well as for ri = 0.075 and ri = 0.125 (figures 13b,c). Further from the inner
wall, alternating regions of positive and negative contour lines appear, which are due to the
phase shift between the patches of radial velocity (figure 11a) and pressure (figure 11c).
These patches are the footprints of spanwise-coherent flow structures, which are organised
in two pairs for ri = 0.025 (figure 13a), and three pairs for ri = 0.075 and 0.125 (figures
13b,c).

For ri = 0.5 and ri = 1 (figures 13d,e), there is still some negative correlation between
v̂′

r and p̂′ near the inner wall, which tends to become positive towards the outer
wall. Qualitatively, the number of flow patches increases with ri , though their precise
quantification from an instantaneous flow field is quite challenging due to the reduced
spanwise coherence of these structures for larger values of inner radius. In addition, these
patches are convected by the mean flow, and rotate in time around the inner wall, making
it tricky to use time averages. A detailed analysis of the spanwise structures can be found
in Soldati et al. (2025), who provided a more accurate evaluation of their number using
velocity spectra and phase averages.

4. Conclusions
In a previous study by our group, direct numerical simulations (DNS) were reported in
Soldati et al. (2025) for fully developed azimuthal flow in curved channels with mild and
strong curvature, namely ri = 40 and ri = 0.5. The study focused on examining variations
in flow structures and statistical properties as a function of the Reynolds number, revealing
significant changes in the fluid dynamics between the two curvature regimes. One of the
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(a)

(c) (e)(d )

(b)

Figure 13. Contours in longitudinal (θ–r ) planes of azimuthal flow cases with ri values (a) 0.025, (b) 0.075,
(c) 0.125, (d) 0.5, and (e) 1; z-averaged correlation between fluctuating radial velocity and pressure (v̂′

r p′).
Blue, green, cyan represent negative values, and yellow, red, magenta represent positive values, with increments
(a) Δ = 0.0001, (b,c,d,e) Δ = 0.00002.

key findings was the distinctive flow behaviour near the inner wall of the strongly curved
channel, which was shown to be influenced by large-scale spanwise structures.

Those results motivated us to further investigate curved channel flow, an archetypal
configuration for studying the effects of longitudinal curvature on turbulence. To develop
a more comprehensive understanding of flow over three-dimensional surfaces, we also
considered wall curvature transverse to the flow, which in its simplest configuration is flow
in a concentric annulus. The geometry of both configurations consists of two concentric
cylinders, with the distinction being that the curved channel flow occurs in the azimuthal
direction, whereas the annular flow occurs in the axial direction. Through an extensive
DNS campaign, we investigated the effects of both longitudinal and transverse curvature
on turbulence by varying the inner radius from the large value ri = 95.5 – comparable
to that used in the experimental work of Hunt & Joubert (1979) for azimuthal flow –
to the extremely small value ri = 0.025, which matches the conditions used by Boersma
& Breugem (2001) in axial flow simulations. The bulk Reynolds number was set to
Rb ≈ 5000, based on the bulk velocity and gap width, a value sufficient to ensure fully
turbulent conditions (Soldati et al. 2025).

The first quantity analysed was the friction coefficient. In axial flows, frictions at the
inner wall and at the outer wall monotonically increase and decrease, when curvature
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is reduced. Azimuthal flows show a more complex dependence on curvature. For mild
curvature, friction at the inner wall is lower than that at the outer wall, as expected due to
the stabilising effect of convex curvature. However, the difference between friction at the
two walls decreases as the curvature increases, to the point that for strong curvatures,
the friction at the inner wall exceeds that at the outer wall. This behaviour allows us
to identify four flow regimes, namely: (i) mild curvature for ri > 14.5; (ii) moderate
curvature for 1.5 < ri � 14.5; (iii) strong curvature for 0.25 < ri � 1.5; (iv) extreme
curvature for ri � 0.25. The analysis of normal stresses and pressure correlations revealed
that the statistics of axial flow in a concentric annulus responds predictably to changes
in curvature. In contrast, longitudinal curvature induces significant changes in azimuthal
flows, particularly in pressure correlations. For mild curvature, pressure correlations
decrease near the inner wall, whereas they increase drastically for strong curvature.

Our findings align with those of Boersma & Breugem (2001) and Bagheri et al. (2020),
confirming that no regions of negative turbulent kinetic energy (TKE) production are
generated in axial flows. In azimuthal flows, however, negative production regions arise
due to the displacement between the locations of zero shear and turbulent stress, a
phenomenon observed for all values of curvature considered. While the peak of negative
production is negligible for mild curvatures, it becomes increasingly pronounced as
curvature intensifies, with the peak shifting closer to the inner wall. Negative TKE
production is associated with an energy transfer from the small scales of turbulence to the
largest scales of motion. In turbulent flows, the pressure field tends to be more coherent
at larger scales compared to the velocity field. As a result, pressure fluctuations are
expected to exhibit greater coherence near the inner wall, particularly for strong curvature.
Indeed, flow visualisations of azimuthal flows revealed spanwise coherence in fluctuating
pressure, which interacts with the fluctuating radial velocity. A misalignment between
these spanwise structures leads to a strong negative correlation between pressure and radial
velocity fluctuations.

The increased correlation between radial velocity and pressure results in a completely
different distribution of terms in the TKE transport equation, which has never been
observed in wall-bounded turbulent flows. In the region near the inner wall of strongly
curved channels, the production term becomes negligible, and TKE is gained instead
through pressure–velocity correlations. This significant energy gain is partially transferred
away from the inner wall by triple velocity correlations, and is locally dissipated by
total dissipation. Notably, the total dissipation is not split into viscous and isotropic
contributions, which are in perfect balance at the wall. It is important to note that
this complete redistribution of TKE budgets occurs only under conditions of extreme
curvature, where the mean TKE is higher near the inner wall than near the outer wall.
This is not the case for an inner radius of half the channel height (ri = 0.5), which can
be considered as the boundary between strong and extreme curvature. For mild to strong
curvature (ri > 0.5), a stabilising effect of convex curvature – leading to reductions in total
stress, TKE production, and mean TKE near the inner wall – is observed. However, under
extreme curvature conditions (ri < 0.5), the flow structures near the inner wall undergo
dramatic changes, resulting in a sudden increase in total stress and mean TKE, and the
emergence of a pronounced negative production peak.

While our study is mainly of academic interest, being almost impossible to reproduce
in practice, Taylor–Couette flow could be a better candidate for laboratory studies.
Specifically, we believe that it could be worthwhile to conduct numerical experiments
of Taylor–Couette flow with internal radii as small as 0.02δ, to assess whether the same
behaviour of turbulence is herein observed in azimuthal flow. Still, challenges in obtaining
accurate measurements of friction factors, velocity profiles and flow visualisations remain
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significant. A DNS campaign of Taylor–Couette flow is underway, and the results will be
presented in subsequent publications.

Acknowledgements. The results reported in this paper have been achieved using the PRACE Research
Infrastructure resource LUMI-C.

Funding. This research received financial support from ICSC-Centro Nazionale di Ricerca in ‘High
Performance Computing, Big Data and Quantum Computing’, funded by European Union-NextGenerationEU.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. All data that support the findings of study are available from the corresponding
author upon request.

REFERENCES

BAGHERI, E., WANG, B.-C. & YANG, Z. 2020 Influence of domain size on direct numerical simulation of
turbulent flow in a moderately curved concentric annular pipe. Phys. Fluids 32 (6), 065105.

BOERSMA, B.J. & BREUGEM, W.P. 2001 Numerical simulation of turbulent flow in concentric annuli. Flow
Turbul. Combust. 86 (1), 113–127.

BRETHOUWER, G. 2022 Turbulent flow in curved channels. J. Fluid Mech. 931, A21.
CHUNG, S.Y., RHEE, G.H. & SUNG, H.J. 2002 Direct numerical simulation of turbulent concentric annular

pipe flow, part 1: flow field. Intl J. Heat Fluid Flow 23 (4), 426–440.
ERM, L.P. & JOUBERT, P.N. 1991 Low-Reynolds-number turbulent boundary layers. J. Fluid Mech. 230,

1–44.
ESKINAZI, S. & ERIAN, F.F. 1969 Energy reversal in turbulent flows. Phys. Fluids 12 (10), 1988–1998.
GHAEMI, S., RAFATI, S., BIZHANI, M. & KURU, E. 2015 Turbulent structure at the midsection of an annular

flow. Phys. Fluids 27 (10), 105102.
HUNT, I.A. & JOUBERT, P.N. 1979 Effects of small streamline curvature on turbulent duct flow. J. Fluid

Mech. 91 (4), 633–659.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to. J. Fluid Mech.

774, 395–415.
LIU, X., ZHU, H., BAO, Y., ZHOU, D. & HAN, Z. 2022 Turbulence suppression by streamwise-varying wall

rotation in pipe flow. J. Fluid Mech. 951, A35.
MOSER, R.D. & MOIN, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175,

479–510.
NAGATA, M. & KASAGI, N. 2004 Spatio-temporal evolution of coherent vortices in wall turbulence with

streamwise curvature. J. Turbul. 5 (1), 017.
NOURI, J.M., UMUR, H. & WHITELAW, J.H. 1993 Flow of Newtonian and non-Newtonian fluids in concentric

and eccentric annuli. J. Fluid Mech. 253, 617–641.
ORLANDI, P. 2013 The importance of wall-normal Reynolds stress in turbulent rough channel flows. Phys.

Fluids 25 (11), 110813.
ORLANDI, P. 2019 Turbulent kinetic energy production and flow structures in flows past smooth and rough

walls. J. Fluid Mech. 866, 897–928.
ORLANDI, P. & FATICA, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid

Mech. 343, 43–72.
PATEL, V.C. & HEAD, M.R. 1969 Some observations on skin friction and velocity profiles in fully developed

pipe and channel flows. J. Fluid Mech. 38 (1), 181–201.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
QUADRIO, M. & LUCHINI, P. 2002 Direct numerical simulation of the turbulent flow in a pipe with annular

cross section. Eur. J. Mech. B Fluids 21 (4), 413–427.
REHME, K. 1974 Turbulent flow in smooth concentric annuli with small radius ratios. J. Fluid Mech. 64 (2),

263–287.
SOLDATI, G., ORLANDI, P. & PIROZZOLI, S. 2025 Reynolds number effects on turbulent flow in curved

channels. J. Fluid Mech. 1007, A28.
VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible flows

in cylindrical coordinates. J. Comput. Phys. 123 (2), 402–414.

1009 A29-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.238

	1. Introduction
	2. Methodology
	3. Results
	3.1. Friction coefficient
	3.2. Total stress and turbulent energy production
	3.3. Velocity and pressure correlations
	3.4. Budgets of TKE
	3.5. Flow visualisations
	3.6. Correlation between radial velocity and pressure

	4. Conclusions
	References

