ON A CLASS OF GENERALIZED FUNCTIONS
by K. ROWLANDS
(Received 4 November, 1974)

1. Introduction. Let C3°(J) be the complex linear space of all infinitely differentiable
functions ¢ on the interval J = (a,b) (— 0 £ a <0< b £ + o) such that ¢®(0) = 0 for all
non-negative integers k. Krabbe ([2), [3]) has defined a class of generalized functions on J as
an algebra # of linear operators on C&(J) and has developed an operational calculus for these
operatorst. Shultz ([6), Theorem 2.18) has recently shown that .# is isomorphic to @', x 2°_,
where 2. (resp. 2.) is the set of all distributions on J whose supports are contained in
J+=[0,b) (J_ =(a,0]). In this paper we combine some of the ideas developed in [4] with
results established in an earlier paper by Shultz to give an easier proof of the above result. Our
methods also give a more direct proof of the main result (Theorem 1.22) of [2].

In the sequel, unless there is ambiguity, we shall denote C§’(J) simply by Cg.

2. The algebra of generalized functions. We give CJ the topology of uniform conver-
gence for all derivatives on compact subsets of J; this topology is defined by the semi-norms

I'ma(®) = max ( max I(p("’(u)l) (m=0,1,...;n=12,..),

k=0,..., ansSus
where »
_ . _ _ £
_ a(l1—1/n) 1.fa> o 4 b, = b(1—1/n) 1 b< +w
-n ifa=—o0, if b= +o00.

In this way C$ becomes a Fréchet space. In the sequel, the topology defined by the semi-
norms {r,, ,} will be referred to as the C* topology on Cg’.
In ([2), [3]), Krabbe has defined the product of ¢, € Cg’ to be the function ¢ Ay given by

(@A) = [;«»(t—u)w(u)du (ted). 0

For each ¢ in Cg, define ¢, (resp. ¢_) to be the function which coincides with ¢ on J,. (J_)
and vanishes on J_ (J,), and let (C3), ((CS)-) be the set of all such functions. Then
Cs =(CP)+ B(CY)-. Also, it is easy to see that

PAY =@ ¥ —p_*p_, @

where = denotes the convolution product, so that properties of the multiplicative operation A
may be deduced from the corresponding properties of the convolution product. Thus, in view
of the relationship between the operations A and = given by (2), there seems to be no advantage
in using both symbols, and so in the sequel we shall denote the product @ A Y by @ * .

t It should be mentioned that Krabbe’s theory of generalized functions has some resemblances to an earher
algebraic theory of generalized functions due to Weston [9].
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It is straightforward to prove that, for any non-negative integer k,
(px) U1y = (@ ™)) (teJ). ©)

With multiplication of functions defined according to (1), Cg° becomes a linear, associative and
commutative algebra; in fact, C$ is an ideal in the algebra L of all complex-valued functions
on J which are Lebesgue-integrable over every compact subinterval of J. Multiplication is
jointly continuous in C§’; this follows immediately from the inequality

R RS CRS LR Y (TR (1))

We define a sequence {¢,} of odd functions in CQ(— 0, co) by the formula

! —=1/4nt
(pn(t) = l’\/‘(‘lﬂnts)e ! '(t > 0),
Lo (t=0),

and note the following properties of {¢,}:

) rgo,,(:)dt=1 (h=12..);
|, 2O |

n—ow])d

(ii) for any o >,0,_1im‘[ o,(t)dt =0,
Let {n,} denote the restriction of ¢, to J. Then we have the following
LemMa 1. T, he sequence {n,} is an approximate identity for Cg.

Proof. We have to show that, for any ¢ in Cg,
Y = limy»n, “@

n—+ao

By (2), to prove (4) it is sufficient to show that

b =limy s, | )
and
b_=limy_s(n,)-. ®)

We shall prove only (6); (5) may be proved using a similar method.

Let ¢>0, p be any positive integer, and m any non-negative integer. Since
Yy®(0) =0(k =0,1,...), there exists a positive number J; such that | y®(v)| < & whenever
~0, Sv<0. Letd =min(dg,...,d,). By uniform continuity, there exists a positive number
8y such that

[y B —v)~yB ) | <e

whenever a, S u <0 and ~0y £v£0. Let$” = min(dg,..-, 0p), and let § = min (6’,5”).
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)

Now, since (11,)-(t) =¢,(t) for ¢ in J_, we have

Fo oW -%(n,) - +Y ) =  max ( max

..... m\apsus0

rw‘f’(u—v)%@)de@(u)

If -6 Su <0, then

0
j YO (u —v)(p,,(v)dv+¢(f)(u)‘ <2
fork=0,...,m. Ifa,susx —J,then

j WO — b))y + ¥ O(w)

0 0
j ¢<_“(u—v)<pn(v)du—j YO (0)do
0 -4
< j 10O —0)— PO || 0,0)| d"*L 4B u—0) || 00 ()] do

-3
+ wowllew| %)
-0
From (ii), it follows that there exists a positive integer n, such that, forn = n,,

-5
| __lodoas <eim )

Therefore, for n 2 ny andk =0, ..., m, the right-hand side of (7) is less than 3e. Hence, for
n 2 n,,
Pm ¥ -+ Y -%(n,) ) < 3e,

and so, since ¢ is arbitrary,

Yo =limy_»(n,)_,

n=w
as required.
We note that, since C§® has an approximate identity, C$ has no non-zero annihilators.
In (2], [3]), Krabbe has defined a generalized function on J to be a multiplier on Cy’t;
that is, a mapping 4 of Cg’ into itself such that

Alpwy) = Aowy

forall @,y in C. Let # denote the set of multipliers on Cg°. It is well-known that the multi-
pliers on a commutative algebra with no non-zero annihilators are linear, and that, if linear
combinations and products of multipliers are defined in the usual way, then . is a commuta-
tive algebra ([8], §4). Also, every element of .# is C*® continuous (1], Theorem 1).

It follows from (3) that the differential operator De.#. Also, each fin L'® determines an
element F in .# according to the equation

Fo = fxo. ()

+ Krabbe did not use the term multiplier, but this seems now to be the standard terminology for this class
of operators (see, for example, ({4], p. 51)).
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Krabbe ([2], (1.12)-(1.13)) has defined the operator of the function f to be the operator {f(#)}
given by the equation

{f(D}o = f*o".

In our notation {f(¢)} is DF, and so, in particular, {(fi*f,)(1)} is DF, F,. 1f f,geL{ and
F = G, then it follows from a theorem of Titchmarsh ([7], p. 327, Theorem 152) that f =g a.e.
By the same argument we can show that DF = DG implies thatf =g a.e.

We have now proved the following theorem, which is the main result of [2].

THEOREM 1 ([2], Theorem 1.22). The algebra 4 is commutative and each element of M is
C*= continuous. The operator De M, and each f in L' determines an element F of # according
to (8). Also, forf,g in LY, the following properties hold.:

(a) D{(f+g)(t)} = {f(HHg (D} ;
() if {fO} ={g()}, then f=ga.e.
For any u > 0, the shift operator I, is the mapping of Cg into itself defined by the equation
o(t—u) (ust<b),
I"(P(t)= 0 (_u<t<u),
o(t+u) (a<t= —u).
Then I,e.# for all u > 0.
Suppose A€.#, and let ¢, be any element of (C5),. By Lemma 1,

@, =lime, ¥,

A~ w
and so, since A4 is C® continuous,
Ao, =limp, *An,.

n<aw

It follows that A maps (Cg). into itself. Similarly, A maps (Cg’)- into itself. Thus every
element of .# is linear, C® continuous, commutes with /, (u > 0), and leaves invariant (Cy) .
and (C{)-. Conversely, we have the following result.

THEOREM 2. Let T be a C* continuous linear mapping of C§ into itself with the following
properties:

(a) TI, = I,T for all u> 0;
(b) T leaves invariant (C$), and (C3)-.T

Then Te f.

Proof. Let @, €Cy. Then
oY =@ 2, —@_*f_.

+ There are C° continuous linear mappings of C? into itself which have property (a) but not (b); for
example, the mapping B given by
Bo(t)=g(~t)  (p€C3, 1))
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Now ¢, » |y, may be approximated, in C* sense, by a function of the form

jgl ajlujw > (9)

where a;(j = 1, ..., n) are complex-numbers (see the proof of ([4], Theorem 4)). Similarly, the
function ¢ _ = _ may be approximated, in the same sense, by a function of the form

.Zl Bilw - (10)
=
Hence @ + { may be approximated by ) a;l, ¢+ ~ Y. B, ¥ . Since Tis linear,

=1 S

Ty = Ty, +To,
and, since 7T has property (b), it follows that T, = (Ty), and Ty = (Ty)_. Consequently
OxTY = @ »Th, —p_»Tiy_.
The function in (9) (resp. (10)) may be chosen in such a way that while ¢, * (¢ *_) can
be approximated by (9) ((10)), ¢, +*Ty . (p_+Ty_) can be approximated by ila i, T 4
J=

m
(Z ﬁ;IW,T!ﬂ—)- Hence ¢ « T\ may be approximated by the function
j=1

Zl"'jlzuT'/’+ - .ZlﬁjIwJT'//—' (11)
j= i=

Since T'is linear and commutes with the shift operators, (11) is the same as

T( 3 a3 Bilui-)
j= j=
Finally, since T is C* continuous, we have
T(p*y) = @+TY,

as required.

With convolution as multiplication, 2, (resp. 2_) is alinear, associative, and commutative
algebra. Let . (#_) denote the algebra of multipliers on (Cy)Z ((CF)-). Shultz ([5],
Theorem 4.3) has proved that .# . is algebraically isomorphic to 2’,. Moreover, his proof

may be easily modified to show that .# _ is isomorphic to 2. We may state Shultz’s result as
follows.

THEOREM A ([5], Theorem 4.3). Let Ae A, (resp. Be # ). Then there exists a unique
O, (YeD.) such that
Ap =0rp  (BYy =¥+))

for all 9e(Cy), (We(Cq)-). Conversely, each ®e D', (¥ € D") determines an element A of
M . (Bof A ) according to the above equation. The correspondence A« ® (B — V) is an iso-
morphism of #  onto @', (M _ onto D).

D
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(In this connexion it is of interest to note that the above result of Shultz enables us to
answer a question raised in ([4], p. 53), as follows. With the notation and terminology of [4],
we have shown that the C* continuous V-operators on Cg’[0, o0) are precisely the multipliers
on C$[0, o), and so, if T is a C* continuous V-operator on Cg [0, o), then, by Theorem A,
there exists a ®e 2’, such that

Tp = ®+¢ (9 e CF[0, ).

It follows that T satisfies (P,), and so there are no C* continuous V-operators on Cg’[0, c0)
which do not have property (P,).)

We note that, if linear combinations of elements of @', x 2’ are defined in the usual way
and multiplication is defined according to the equation

(@, ¥)Q(D,, ;) = (03D,, ¥ »¥,),

then @', x @' becomes a linear, associative, and commutative algebra.
Finally, we give an easier proof of ([6], Theorem 2.18).

THEOREM 3. The correspondence T (Q, W) (TeH,(®,¥)e D', x D), where
Tp = ©x¢, +¥x9_(9eCP),

is an isomorphism of M onto D', x D'_.

Proof. Suppose that Te.#, and let T, (resp. T_) denote the restriction of T to (C7)..
((C)-). Then,since T, (T.)leaves invariant(Cg), ((C3)-), T.e M . (T_e A _)and

To=T,p,.,+T_o_.
By Theorem A, there exists a unique (@, W) in 2', x 2" such that
To = Oxp, +¥xe_. (12)

Conversely, each (@, ¥) in @', x 2" determines an element T of .# according to (12). Itis
straightforward to show that the correspondence T« (@, ¥) is an isomorphism of the algebra
A onto the algebra 2, x 2.
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