
Bull. Aust. Math. Soc. (First published online 2024), page 1 of 8∗

doi:10.1017/S0004972724000819
∗Provisional—final page numbers to be inserted when paper edition is published

NONMONOGENITY OF NUMBER FIELDS DEFINED BY
TRUNCATED EXPONENTIAL POLYNOMIALS

ANUJ JAKHAR

(Received 9 June 2024; accepted 30 June 2024)

Dedicated to Professor Sudesh K. Khanduja on her 74th birthday

Abstract

Let p be a prime number. Let n ≥ 2 be an integer given by n = pm1 + pm2 + · · · + pmr , where 0 ≤ m1 <
m2 < · · · < mr are integers. Let a0, a1, . . . , an−1 be integers not divisible by p. Let K = Q(θ) be an algebraic
number field with θ ∈ C a root of an irreducible polynomial f (x) =

∑n−1
i=0 aixi/i! + xn/n! over the field Q

of rationals. We prove that p divides the common index divisor of K if and only if r > p. In particular, if
r > p, then K is always nonmonogenic. As an application, we show that if n ≥ 3 is an odd integer such
that n − 1 � 2s for s ∈ Z and K is a number field generated by a root of a truncated exponential Taylor
polynomial of degree n, then K is always nonmonogenic.

2020 Mathematics subject classification: primary 11T24.
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1. Introduction

Let K = Q(θ) be an algebraic number field with θ in the ring ZK of algebraic integers
of K. Let f (x) be the minimal polynomial of θ having degree n over the field Q of
rational numbers. It is well known that ZK is a free abelian group of rank n. A number
field K is said to be monogenic if there exists some β ∈ ZK such that ZK = Z[β]. In
this case, {1, β, . . . , βn−1} is an integral basis of K; such an integral basis of K is
called a power integral basis or briefly a power basis of K. If K does not possess
any power basis, we say that K is nonmonogenic. Quadratic and cyclotomic fields are
monogenic. In algebraic number theory, it is important to know whether a number
field is monogenic or not. The first example of a nonmonogenic number field was
given by Dedekind in 1878; he proved that the cubic field Q(η) is not monogenic when
η is a root of the polynomial x3 − x2 − 2x − 8 (see [15, page 64]). The problems of
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testing the monogenity of number fields and constructing power integral bases have
been intensively studied (see [7] for an overview of the latest developments).

Throughout this paper, ind θ denotes the index of the subgroup Z[θ] in ZK and i(K)
stands for the index of the field K defined by i(K) = gcd{indα | K = Q(α) and α ∈ ZK}.
A prime number p dividing i(K) is called a prime common index divisor of K. Note
that if K is monogenic, then i(K) = 1. Therefore, a number field having a prime
common index divisor is nonmonogenic. However, there exist nonmonogenic number
fields having i(K) = 1, for example, K = Q( 3√175) is not monogenic and has i(K) = 1.
Nakahara [14] studied the index of noncyclic but abelian biquadratic number fields.
Gaál et al. [8] characterised the field indices of biquadratic number fields having Galois
group V4. Ahmad et al. [1, 2] proved that for a square free integer m not congruent to
±1 mod 9, a pure field Q(m1/6) having degree 6 over Q is monogenic when m ≡ 2
or 3 mod 4 and it is nonmonogenic when m ≡ 1 mod 4. Gaál and Remete [9] studied
monogenity of number fields of the type Q(m1/n) where 3 ≤ n ≤ 9 and m is square
free. Gaál [6] and Jakhar and Kaur [10] studied monogenity of number fields defined
by some sextic irreducible trinomials.

Let a0, . . . , an−1 be integers. It is known that the polynomial

f (x) = a0 + a1x + a2
x2

2!
+ · · · + an−1

xn−1

(n − 1)!
+

xn

n!
(1.1)

of degree n is irreducible over Q if one of the following conditions is satisfied:

(1) gcd(a0, n! ) = 1 (see [5, 16]);
(2) gcd(a0a1 · · · an−1, n) = 1 (see [11, Theorem 1.2]).

Let p be a prime number. Let n ≥ 2 be an integer given by n = pm1 + pm2 + · · · +
pmr , where 0 ≤ m1 < m2 < · · · < mr are integers. Let K = Q(θ) with θ a root of an
irreducible polynomial f (x) over Q, where f (x) is given by (1.1) and a0, . . . , an−1 are
integers not divisible by p. We provide necessary and sufficient conditions so that
p | i(K) for n ≥ 2. As an application, we give a family of number fields which are
nonmonogenic. Precisely stated, we prove the following result.

THEOREM 1.1. Let p be a prime number. Let n ≥ 2 be an integer given
by n = pm1 + pm2 + · · · + pmr , where 0 ≤ m1 < m2 < · · · < mr are integers. Let
a0, a1, . . . , an−1 be integers not divisible by p. Let K = Q(θ) be an algebraic number
field with θ a root of an irreducible polynomial f (x) = xn + n!

∑n−1
i=0 aixi/i! over Q.

Then:

(1) pZK = ℘
e1
1 · · ·℘

er
r , where the ℘i are distinct prime ideals lying above the prime p

with index of ramification ei = pmi and residual degree one for each i;
(2) p divides i(K) if and only if r > p.

In particular, if r > p, then K is always nonmonogenic.

The following corollary is an immediate consequence of the theorem.
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COROLLARY 1.2. Let n ≥ 2 be an integer with 2-adic expansion n = 2m1 + 2m2 + · · · +
2mr , where 0 ≤ m1 < m2 < · · · < mr. Let a0, a1, . . . , an−1 be odd integers. Let K = Q(θ)
be an algebraic number field with θ a root of an irreducible polynomial f (x) = xn +

n!
∑n−1

i=0 aixi/i! over Q. If r > 2, then K is nonmonogenic.

As an application of this corollary, we obtain the following result.

COROLLARY 1.3. Let n ≥ 2 be an integer with 2-adic expansion n = 2m1 + 2m2 + · · · +
2mr , where 0 ≤ m1 < m2 < · · · < mr. Let K = Q(θ) be an algebraic number field with θ
a root of a truncated exponential Taylor polynomial f (x) = 1 + x + x2/2!+ · · · + xn/n!.
Assume that r ≥ 3. Then K is always nonmonogenic.

EXAMPLE 1.4. This example provides a family of nonmonogenic algebraic number
fields. Let n ≥ 3 be an odd integer such that n − 1 � 2s for any s ∈ N. If K = Q(θ) is an
algebraic number field with θ ∈ C a root of f (x) =

∑n
i=0 xi/i!, then K is nonmonogenic

by Corollary 1.3.

REMARK 1.5. If we take r < 3, then K can be monogenic. For example, consider n = 3,
r = 2 and f (x) = x3 + 3x2 + 6x + 6 in Corollary 1.3. It can be easily checked that the
discriminant of f (x) is −23 · 33. Let K = Q(θ) with θ a root of f (x). Since f (x) is an
Eisenstein polynomial with respect to 3, in view of a basic result [12, Theorem 2.18],
we see that 3 � [ZK : Z[θ]]. Further note that f (x) ≡ x2(x + 1) (mod 2). Hence, using
Dedekind’s criterion [12, page 78], it is easy to see that 2 � [ZK : Z[θ]]. Therefore,
in view of the formula D f = [ZK : Z[θ]]2dK , where D f denotes the discriminant of
the polynomial f (x) and dK denotes the discriminant of K, it follows that ZK = Z[θ].
Hence, K is monogenic.

2. Preliminary results

Let K = Q(θ) be an algebraic number field with θ a root of a monic irreducible
polynomial f (x) belonging to Z[x]. In what follows, ZK stands for the ring of algebraic
integers of K. For a rational prime p, let Fp be the finite field with p elements and
Zp denote the ring of p-adic integers. Throughout the paper, f (x)→ f (x) stands for
the canonical homomorphism from Zp[x] onto Fp[x]. For a prime p and a nonzero
m belonging to the ring Zp of p-adic integers, vp(m) denotes the highest power of
p dividing m. The following lemma will play an important role in the proof of the
theorem.

LEMMA 2.1 [15, Theorem 4.34]. Let K be an algebraic number field and p be a
rational prime. Then p is a prime common index divisor of K if and only if for some
positive integer h, the number of distinct prime ideals of ZK lying above p having
residual degree h is greater than the number of monic irreducible polynomials of
degree h in Fp[x].

The following simple result will also be used. Its proof is omitted.
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LEMMA 2.2. Let p be a prime number. If n = c0 + c1 p + · · · + cr pr is the representa-
tion of the positive integer n in base p with 0 ≤ ci < p for each i, then

vp(n! ) =
n − (c0 + c1 + · · · + cr)

p − 1
.

3. A short introduction to prime ideal factorisation based on Newton polygons

In 1894, Hensel developed a powerful approach for finding prime ideals of ZK over
a rational prime p. He showed that for every prime p, the prime ideals of ZK lying
above p are in one-to-one correspondence with monic irreducible factors of f (x) in
Qp[x]. Newton polygons are very helpful for finding the factors of f (x) in Qp[x]. This
is a standard method which is rather technical but efficient to apply. Therefore, we first
introduce the notion of Gauss valuation and φ-Newton polygon, where φ(x) belonging
to Zp[x] is a monic polynomial with φ(x) irreducible over Fp.

DEFINITION 3.1. The Gauss valuation of the field Qp(x) of rational functions in an
indeterminate x extends the valuation vp of Qp and is defined on Qp[x] by

vp,x(a0 + a1x + a2x2 + · · · + asxs) = min
1≤i≤s
{vp(ai)}, ai ∈ Qp.

DEFINITION 3.2. Let p be a rational prime. Let φ(x) ∈ Zp[x] be a monic polynomial
which is irreducible modulo p and f (x) ∈ Zp[x] be a monic polynomial not divisible
by φ(x). Let

∑n
i=0 ai(x)φ(x)i, with deg ai(x) < deg φ(x), an(x) � 0, be the φ(x)-expansion

of f (x) obtained by dividing f (x) by the successive powers of φ(x). Let Pi stand for the
point in the plane having coordinates (i, vp,x(an−i(x))) when an−i(x) � 0, 0 ≤ i ≤ n. Let
μij denote the slope of the line joining the point Pi to Pj if an−i(x)an−j(x) � 0. Let i1 be
the largest positive index not exceeding n such that

μ0i1 = min{μ0j | 0 < j ≤ n, an−j(x) � 0}.
If i1 < n, let i2 be the largest index such that i1 < i2 ≤ n with

μi1i2 = min{μi1j | i1 < j ≤ n, an−j(x) � 0},
and so on. The φ-Newton polygon of f (x) with respect to p is the polygonal path
having segments P0Pi1 , Pi1 Pi2 , . . . , Pik−1 Pik with ik = n. These segments are called the
edges of the φ-Newton polygon and their slopes form a strictly increasing sequence;
these slopes are nonnegative as f (x) is a monic polynomial with coefficients in Zp.

DEFINITION 3.3. Let φ(x) ∈ Zp[x] be a monic polynomial which is irreducible modulo
a rational prime p having a root α in the algebraic closure Q̃p of Qp. Let f (x) ∈ Zp[x]
be a monic polynomial not divisible by φ(x) whose φ(x)-expansion is given by φ(x)n +

an−1(x)φ(x)n−1 + · · · + a0(x) and such that f (x) is a power of φ(x). Suppose that the
φ-Newton polygon of f (x) with respect to p consists of a single edge, say S, having
positive slope l/e with l, e coprime, that is,

min
{vp,x(an−i(x))

i

∣∣∣∣∣ 1 ≤ i ≤ n
}
=

vp,x(a0(x))
n

=
l
e

,
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so that n is divisible by e, say n = et, and vp,x(an−ej(x)) ≥ lj with 1 ≤ j ≤ t. Thus, the
polynomial bj(x) := an−ej(x)/plj has coefficients in Zp and bj(α) ∈ Zp[α] for 1 ≤ j ≤ t.
The polynomial T(Y) in the indeterminate Y defined by T(Y) = Yt +

∑t
j=1 bj(α)Yt−j

with coefficients in Fp[α] � Fp[x]/〈φ(x)〉 is called the residual polynomial of f (x) with
respect to (φ, S).

The following weaker version of the theorem of the product, originally due to Ore,
will be used in the proof of main result (see [4, Theorem 1.5], [13, Theorem 1.1]).

THEOREM 3.4. Let φ(x) ∈ Zp[x] be a monic polynomial which is irreducible modulo
a rational prime p having a root α in the algebraic closure Q̃p of Qp. Let g(x) ∈ Zp[x]
be a monic polynomial not divisible by φ(x) whose φ(x)-expansion is given by φ(x)n +

an−1(x)φ(x)n−1 + · · · + a0(x) and such that f (x) is a power of φ(x). Suppose that the
φ-Newton polygon of g(x) with respect to the prime p has k edges S1, . . . , Sk having
slopes λ1 < · · · < λk. Then:

(1) g(x) = g1(x) · · · gk(x), where each gi(x) ∈ Zp[x] is a monic polynomial of degree
	i deg(φ(x)) and whose φ-Newton polygon has a single edge, say S′i , which is a
translate of Si such that 	i is the length of the horizontal projection of Si;

(2) the residual polynomial Ti(Y) ∈ Fp[α][Y] of gi(x) with respect to (φ, S′i ) has
degree 	i/ei, where ei is the smallest positive integer such that eiλi ∈ Z.

The next definition extends the notion of residual polynomial to more general
polynomials f (x).

DEFINITION 3.5. Let p, φ(x),α be as in Definition 3.3. Let g(x) ∈ Zp[x] be a monic
polynomial not divisible by φ(x) such that g(x) is a power of φ(x). Let λ1 < · · · < λk
be the slopes of the edges of the φ-Newton polygon of g(x) and Si denote the edge
with slope λi. In view of Theorem 3.4, we can write g(x) = g1(x) · · · gk(x), where the
φ-Newton polygon of gi(x) ∈ Zp[x] has a single edge, say S′i , which is a translate of Si.
Let Ti(Y) belonging to Fp[α][Y] denote the residual polynomial of gi(x) with respect to
(φ, S′i ) as in Definition 3.3. For convenience, the polynomial Ti(Y) will be referred to
as the residual polynomial of g(x) with respect to (φ, Si). The polynomial g(x) is said
to be p-regular with respect to φ if none of the polynomials Ti(Y) has a repeated root in
the algebraic closure of Fp, 1 ≤ i ≤ k. In general, if f (x) belonging to Zp[x] is a monic
polynomial and f (x) = φ1(x)e1 · · · φr(x)er is its factorisation modulo p into irreducible
polynomials with each φi(x) belonging to Zp[x] monic and ei > 0, then by Hensel’s
lemma [3, Ch. 4, Section 3], there exist monic polynomials f1(x), . . . , fr(x) belonging
to Zp[x] such that f (x) = f1(x) · · · fr(x) and f i(x) = φi(x)ei for each i. The polynomial
f (x) is said to be p-regular (with respect to φ1, . . . , φr) if each fi(x) is p-regular with
respect to φi.

We provide a simple example of a p-regular polynomial with respect to any monic
polynomial φ(x) ∈ Z[x] which is irreducible modulo a prime p.
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EXAMPLE 3.6. If p, φ(x) are as above and g(x) � φ(x) belonging to Zp[x] is a monic
polynomial with g(x) = φ(x), then the φ-Newton polygon of g(x) with respect to p is
a line segment S joining the point (0, 0) with (1, b) for some b > 0. Consequently, the
polynomial associated to g(x) with respect to (φ, S) is linear and g(x) is p-regular with
respect to φ.

To determine the number of distinct prime ideals of ZK lying above a rational prime
p, we will use the following theorem which is a weaker version of [13, Theorem 1.2].

THEOREM 3.7. Let L = Q(ξ) be an algebraic number field with ξ satisfying an
irreducible polynomial g(x) ∈ Z[x] and p be a rational prime. Let φ1(x)e1 · · · φr(x)er

be the factorisation of g(x) modulo p into powers of distinct irreducible polynomials
over Fp with each φi(x) � g(x) belonging to Z[x] monic. Suppose that the φi-Newton
polygon of g(x) has ki edges, say Sij, having slopes λij = lij/eij with gcd(lij, eij) = 1 for
1 ≤ j ≤ ki. If Tij(Y) =

∏sij

s=1 Uijs(Y) is the factorisation of the residual polynomial Tij(Y)
into distinct irreducible factors over Fp with respect to (φi, Sij) for 1 ≤ j ≤ ki, then

pZL =

r∏
i=1

ki∏
j=1

sij∏
s=1

p
eij

ijs,

where pijs are distinct prime ideals of ZL having residual degree deg φi(x) · deg Uijs(Y).

4. Proof of Theorem 1.1

PROOF. Observe that p ≤ n. We first show that x is the only repeated factor of f (x)
modulo p. If p | n, then clearly f (x) ≡ xn (mod p). If p � n, then assume that j, 0 ≤ j ≤
n − 2, is the smallest index such that p divides n − j. Keeping in mind that p � ai, we
see that f (x) is congruent to

xn + nan−1xn−1 + · · · + an−j
n!

(n − j)!
xn−j

≡ xn−j
(
xj + nan−1xj−1 + · · · + an−j

n!
(n − j)!

)
mod p.

Note that p � j. Otherwise, if p | j, then since p | (n − j), we have p | n, which is a
contradiction. Hence, the polynomial xj + nan−1xj−1 + · · · + an−jn!/(n − j)! belonging
to Z/pZ[x] is a separable polynomial. It follows that x is the only repeated factor of
f (x) modulo p.

Now we show that f (x) is p-regular with respect to φ(x) = x. Recall that p � ai.
By the definition of the p-Newton polygon, we see that it will be the polygonal path
formed by the lower edges along the convex hull of the points of the set S defined by

S =
{(

i, vp

( n!
(n − i)!

)) ∣∣∣∣∣ 0 ≤ i ≤ n
}
.
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By hypothesis, n = pm1 + pm2 + · · · + pmr , where 0 ≤ m1 < m2 < · · · < mr. Let 	i
denote the integer

	i = pm1 + · · · + pmi , 1 ≤ i ≤ r.

Set 	0 = 0. As in [5], using Lemma 2.2 and keeping in mind that vp(ai) = 0 for each
i, it can be easily checked that the p-Newton polygon of f (x) consists of r edges,
and the ith edge is the line segment having vertices (	i−1, vp(n! /(n − 	i−1)! )) and
(	i, vp(n! /(n − 	i)! )). So by Lemma 2.2, the slope λi of the ith edge of the p-Newton
polygon of f (x) is

λi =
−vp((n − 	i)! ) + vp((n − 	i−1)! )

	i − 	i−1
=
	i − 	i−1 − 1

(	i − 	i−1)(p − 1)
=

pmi − 1
pmi (p − 1)

.

Observe that f (x) can have an edge with slope zero if and only if m1 = 0. Also, m1
can be zero only when p � n. Therefore, in view of Hensel’s lemma and Theorem 3.4,
we can write f (x) = g1(x) · · · gr(x), where gi(x) ∈ Zp[x] has degree 	i − 	i−1 = pmi and
the p-Newton polygon of gi(x) has a single edge, say Si, with slope λi. When λi > 0,
the polynomial, say Ti(y) ∈ Fp[y], associated to gi(x) with respect to (x, Si) is linear.
Hence, f (x) is p-regular with respect to φ(x) = x. So, by Theorem 3.7,

pZK = ℘
e1
1 · · ·℘

er
r ,

where the ℘i are distinct prime ideals lying above prime p with index of ramification
ei = pmi and residual degree one for each i. Hence, by Lemma 2.1, p | i(K) if and only
if r > p. This completes the proof of the theorem. �
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