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Abstract

Let p be a prime number. Let n > 2 be an integer given by n = p™ + p™ + ...+ p"™, where 0 <m; <
my < --- < m, are integers. Let ap, ay, . .., a,-; be integers not divisible by p. Let K = Q(6) be an algebraic
number field with 6 € C a root of an irreducible polynomial f(x) = er‘l:_ol ax'[/i! + x" /n! over the field Q
of rationals. We prove that p divides the common index divisor of K if and only if » > p. In particular, if
r > p, then K is always nonmonogenic. As an application, we show that if n > 3 is an odd integer such
that n — 1 # 2* for s € Z and K is a number field generated by a root of a truncated exponential Taylor
polynomial of degree n, then K is always nonmonogenic.
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1. Introduction

Let K = Q(6) be an algebraic number field with 6 in the ring Zg of algebraic integers
of K. Let f(x) be the minimal polynomial of 6 having degree n over the field Q of
rational numbers. It is well known that Zy is a free abelian group of rank n. A number
field K is said to be monogenic if there exists some 8 € Zg such that Zx = Z[S]. In
this case, {1,5,..., ﬁ"‘l} is an integral basis of K; such an integral basis of K is
called a power integral basis or briefly a power basis of K. If K does not possess
any power basis, we say that K is nonmonogenic. Quadratic and cyclotomic fields are
monogenic. In algebraic number theory, it is important to know whether a number
field is monogenic or not. The first example of a nonmonogenic number field was
given by Dedekind in 1878; he proved that the cubic field Q(7) is not monogenic when
1 is a root of the polynomial x> — x> — 2x — 8 (see [15, page 64]). The problems of
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testing the monogenity of number fields and constructing power integral bases have
been intensively studied (see [7] for an overview of the latest developments).

Throughout this paper, ind 8 denotes the index of the subgroup Z[6] in Zg and i(K)
stands for the index of the field K defined by i(K) = gcd{ind @ | K = Q(«@) and « € Zg}.
A prime number p dividing i(K) is called a prime common index divisor of K. Note
that if K is monogenic, then i(K) = 1. Therefore, a number field having a prime
common index divisor is nonmonogenic. However, there exist nonmonogenic number
fields having i(K) = 1, for example, K = Q( m) is not monogenic and has i(K) = 1.
Nakahara [14] studied the index of noncyclic but abelian biquadratic number fields.
Gadl et al. [8] characterised the field indices of biquadratic number fields having Galois
group V4. Ahmad et al. [1, 2] proved that for a square free integer m not congruent to
+1 mod 9, a pure field Q(m'/®) having degree 6 over Q is monogenic when m = 2
or 3 mod 4 and it is nonmonogenic when m = 1 mod 4. Gaal and Remete [9] studied
monogenity of number fields of the type Q(m'/") where 3 <n <9 and m is square
free. Gadl [6] and Jakhar and Kaur [10] studied monogenity of number fields defined
by some sextic irreducible trinomials.

Let ag, . ..,a,-1 be integers. It is known that the polynomial
2 -1
X X" X"
f(x)=a0+a1x+a22—!+-~+an_1m+n—! (11)

of degree n is irreducible over Q if one of the following conditions is satisfied:

(1) gecd(ag,n!) =1 (see [5, 16]);
(2) ged(apay -+ - ap—1,n) = 1 (see [11, Theorem 1.2]).

Let p be a prime number. Let n > 2 be an integer given by n = p™ + p™ +-.- +
p™, where 0 <m; <my < --- <m, are integers. Let K = Q(6) with 8 a root of an
irreducible polynomial f(x) over Q, where f(x) is given by (1.1) and ay, ..., a,-; are
integers not divisible by p. We provide necessary and sufficient conditions so that
p | i(K) for n > 2. As an application, we give a family of number fields which are
nonmonogenic. Precisely stated, we prove the following result.

THEOREM 1.1. Let p be a prime number. Let n>?2 be an integer given
by n=p™+p™4+.--+p™, where 0<my <my<---<m, are integers. Let

ap,ai,...,a,—1 be integers not divisible by p. Let K = Q(0) be an algebraic number
field with 6 a root of an irreducible polynomial f(x) = x" + n! Z?;OI ax'/i! over Q.
Then:

(1) pZg = 9 -~ 9y, where the p; are distinct prime ideals lying above the prime p
with index of ramification e; = p™ and residual degree one for each i;
(2) pdivides i(K) if and only if r > p.

In particular, if r > p, then K is always nonmonogenic.

The following corollary is an immediate consequence of the theorem.
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COROLLARY 1.2. Let n > 2 be an integer with 2-adic expansionn = 2™ + 2™ + ... +
2™ where 0 <my <my < --- <m,. Let ag,ay,...,a,—1 be odd integers. Let K = Q(6)
be an algebraic number field with 6 a root of an irreducible polynomial f(x) = x" +
n! 2?:_01 aix'[i! over Q. If r > 2, then K is nonmonogenic.

As an application of this corollary, we obtain the following result.

COROLLARY 1.3. Let n > 2 be an integer with 2-adic expansionn = 2™ + 2™ 4 ... +
2™ where 0 <m; <my < --- <m,. Let K = Q(6) be an algebraic number field with 0
a root of a truncated exponential Taylor polynomial f(x) = 1 +x + x*/2! + -+ + x"/n!.
Assume that r > 3. Then K is always nonmonogenic.

EXAMPLE 1.4. This example provides a family of nonmonogenic algebraic number
fields. Let n > 3 be an odd integer such thatn — 1 # 2° forany s € N. If K = Q(0) is an
algebraic number field with 6 € C aroot of f(x) = 37, x'/i!, then K is nonmonogenic
by Corollary 1.3.

REMARK 1.5. If we take r < 3, then K can be monogenic. For example, consider n = 3,
r=2and f(x) = x> + 3x? + 6x + 6 in Corollary 1.3. It can be easily checked that the
discriminant of f(x) is =23 - 33. Let K = Q(6) with 6 a root of f(x). Since f(x) is an
Eisenstein polynomial with respect to 3, in view of a basic result [12, Theorem 2.18],
we see that 3 t [Zg : Z[6]]. Further note that f(x) = x>(x + 1) (mod 2). Hence, using
Dedekind’s criterion [12, page 78], it is easy to see that 2 { [Zg : Z[6]]. Therefore,
in view of the formula Dy = [Z : Z[611%dk, where Dy denotes the discriminant of
the polynomial f(x) and dg denotes the discriminant of K, it follows that Zg = Z[6].
Hence, K is monogenic.

2. Preliminary results

Let K = Q(A) be an algebraic number field with 6 a root of a monic irreducible
polynomial f(x) belonging to Z[x]. In what follows, Zg stands for the ring of algebraic
integers of K. For a rational prime p, let IF, be the finite field with p elements and
Z,, denote the ring of p-adic integers. Throughout the paper, f(x) — f(x) stands for
the canonical homomorphism from Z,[x] onto FF,[x]. For a prime p and a nonzero
m belonging to the ring Z, of p-adic integers, v,(m) denotes the highest power of
p dividing m. The following lemma will play an important role in the proof of the
theorem.

LEMMA 2.1 [15, Theorem 4.34]. Let K be an algebraic number field and p be a
rational prime. Then p is a prime common index divisor of K if and only if for some
positive integer h, the number of distinct prime ideals of Zx lying above p having
residual degree h is greater than the number of monic irreducible polynomials of
degree h in Fp[x].

The following simple result will also be used. Its proof is omitted.
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LEMMA 2.2. Let p be a prime number. If n = cy + c1p + -+ + ¢,p" is the representa-
tion of the positive integer n in base p with 0 < ¢; < p for each i, then
n—(co+ci+---+c¢)

p-1 '

vp(n!) =

3. A short introduction to prime ideal factorisation based on Newton polygons

In 1894, Hensel developed a powerful approach for finding prime ideals of Zg over
a rational prime p. He showed that for every prime p, the prime ideals of Zg lying
above p are in one-to-one correspondence with monic irreducible factors of f(x) in
Qplx]. Newton polygons are very helpful for finding the factors of f(x) in Q,[x]. This
is a standard method which is rather technical but efficient to apply. Therefore, we first
introduce the notion of Gauss valuation and ¢-Newton polygon, where ¢(x) belonging
to Z,[x] is a monic polynomial with i(x) irreducible over F,,.

DEFINITION 3.1. The Gauss valuation of the field Q,(x) of rational functions in an
indeterminate x extends the valuation v, of Q, and is defined on Q,[x] by

2 ¢ .
Vpul@o + arx + axx” + - +ax’) = min{v,(a)},  a; € Q.

DEFINITION 3.2. Let p be a rational prime. Let ¢(x) € Z,[x] be a monic polynomial
which is irreducible modulo p and f(x) € Z,[x] be a monic polynomial not divisible
by ¢(x). Let 377 a;(x)p(x), with deg a;(x) < deg ¢(x), a,(x) # 0, be the (x)-expansion
of f(x) obtained by dividing f(x) by the successive powers of ¢(x). Let P; stand for the
point in the plane having coordinates (i, v, x(a,-i(x))) when a,_;(x) # 0,0 < i < n. Let
1 denote the slope of the line joining the point P; to P; if a,-;(x)a,—j(x) # 0. Let i be
the largest positive index not exceeding n such that

Hoi, = minfug; | 0 < j < n, ay_(x) # 0}.
If iy < n, let i be the largest index such that i; < i, < n with
Miyi, = minfu;j | iy <j < n, a,_i(x) # 0},

and so on. The ¢-Newton polygon of f(x) with respect to p is the polygonal path
having segments PyP;, P; P, ..., P,  P; with iy = n. These segments are called the
edges of the ¢-Newton polygon and their slopes form a strictly increasing sequence;
these slopes are nonnegative as f(x) is a monic polynomial with coefficients in Z,,.

DEFINITION 3.3. Let ¢(x) € Z,[x] be a monic polynomial which is irreducible modulo
a rational prime p having a root « in the algebraic closure Qp of Qp Let f(x) € Zp[x]
be a monic polynomlal not divisible by ¢(x) whose ¢(x)-expansion is given by ¢(x)”
A1 (X)P(X)"" + -+ + ag(x) and such that f(x) is a power of ¢(x) Suppose that the
¢-Newton polygon of f(x) with respect to p consists of a single edge, say S, having
positive slope /e with [, e coprime, that is,

min {2220 | ) e L

n e
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so that n is divisible by e, say n = et, and v, ,(a,—.j(x)) > [j with 1 < j <. Thus, the
polynomial b;(x) := a,—(x)/ pY has coefficients in Zp, and bj(a) € Zp[a] for 1 <j <t
The polynomial 7(Y) in the indeterminate Y defined by T(Y) = Y’ + 25:1 b_j(ﬁ)Yt‘f
with coefficients in F,[a] = F,[x]/{(#(x)) is called the residual polynomial of f(x) with
respect to (¢, S).

The following weaker version of the theorem of the product, originally due to Ore,
will be used in the proof of main result (see [4, Theorem 1.5], [13, Theorem 1.1]).

THEOREM 3.4. Let ¢(x) € Z,[x] be a monic polynomial which is irreducible modulo

a rational prime p having a root « in the algebraic closure @,, of Qp. Let g(x) € Z,[x]
be a monic polynomial not divisible by ¢(x) whose ¢(x)-expansion is given by $(x)" +
An_1(X)px)" " + - + ay(x) and such that ?(x) is a power of ¢(x). Suppose that the
¢-Newton polygon of g(x) with respect to the prime p has k edges S, ...,Sy having
slopes A1 < - < A. Then:

(1) gx) = gi(x)- - gr(x), where each g;(x) € Z,[x] is a monic polynomial of degree
i deg(¢(x)) and whose ¢-Newton polygon has a single edge, say S’, which is a
translate of S; such that {; is the length of the horizontal projection of S;;

(2) the residual polynomial T(Y) € Fyla][Y] of gi(x) with respect to (¢, S!) has
degree {;]e;, where e; is the smallest positive integer such that e;A; € Z.

The next definition extends the notion of residual polynomial to more general
polynomials f(x).

DEFINITION 3.5. Let p, ¢(x), @ be as in Definition 3.3. Let g(x) € Z,[x] be a monic
polynomial not divisible by ¢(x) such that g(x) is a power of g_b(x). Let A, <--- < A
be the slopes of the edges of the ¢-Newton polygon of g(x) and S; denote the edge
with slope A;. In view of Theorem 3.4, we can write g(x) = g;(x) - - - gx(x), where the
¢-Newton polygon of g;(x) € Z,[x] has a single edge, say S7, which is a translate of ;.
Let T;(Y) belonging to F,[@][Y] denote the residual polynomial of g;(x) with respect to
(¢, S7) as in Definition 3.3. For convenience, the polynomial T;(Y) will be referred to
as the residual polynomial of g(x) with respect to (¢, S;). The polynomial g(x) is said
to be p-regular with respect to ¢ if none of the polynomials 7;(Y) has a repeated root in
the algebraic closure of F,,, 1 <7 < k. In general, if f(x) belonging to Z,[x] is a monic
polynomial and fx) = & ()" -+ $,(x) is its factorisation modulo p into irreducible
polynomials with each ¢;(x) belonging to Z,[x] monic and ¢; > 0, then by Hensel’s
lemma [3, Ch. 4, Section 3], there exist monic polynomials fi(x),..., f,(x) belonging
to Z,[x] such that f(x) = fi(x)--- f,(x) and ?i(x) = 5i(x)e" for each i. The polynomial
f(x) is said to be p-regular (with respect to ¢y, ..., ¢,) if each f;(x) is p-regular with
respect to ¢;.

We provide a simple example of a p-regular polynomial with respect to any monic
polynomial ¢(x) € Z[x] which is irreducible modulo a prime p.
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EXAMPLE 3.6. If p, ¢(x) are as above and g(x) # ¢(x) belonging to Z,[x] is a monic
polynomial with g(x) = ¢(x), then the ¢-Newton polygon of g(x) with respect to p is
a line segment S joining the point (0, 0) with (1, ») for some b > 0. Consequently, the
polynomial associated to g(x) with respect to (¢, S) is linear and g(x) is p-regular with
respect to ¢.

To determine the number of distinct prime ideals of Zg lying above a rational prime
p, we will use the following theorem which is a weaker version of [13, Theorem 1.2].

THEOREM 3.7. Let L = Q(¢) be an algebraic number field with & satisfying an
irreducible polynomial g(x) € Z[x] and p be a rational prime. Let ¢,(x)' - - - $,(x)*
be the factorisation of g(x) modulo p into powers of distinct irreducible polynomials
over F,, with each ¢;(x) # g(x) belonging to Z|x] monic. Suppose that the ¢;-Newton
polygon of g(x) has k; edges, say S, having slopes A; = l;j/e; with gcd(l;, e;) = 1 for
1<j< k. IfTy(Y) = HY” Ujjs(Y) is the factorisation of the residual polynomial T;(Y)
into distinct irreducible factors over F, with respect to (¢;, Sy) for 1 <j < k;, then

ki Sij

r = l_ll—[ﬂvf;‘;’

i=l j=1 s=

where pjj; are distinct prime ideals of Z;, having residual degree deg ¢;(x) - deg U;s(Y).

4. Proof of Theorem 1.1

PROOF. Observe that p < n. We first show that x is the only repeated factor of f(x)
modulo p. If p | n, then clearly f(x) = x" (mod p). If p { n, then assume thatj,0 < j <
n — 2, is the smallest index such that p divides n — j. Keeping in mind that p { a;, we
see that f(x) is congruent to

1 n!

g
+ +a"_’(n—j)!xn

= x”_’(x’ +na, X+ +a,

X"+ na,_1x"

n!

ST )‘) mod p.
Note that p 1 j. Otherwise, if p | j, then since p | (n —j), we have p | n, which is a
contradiction. Hence, the polynomial ¥ + n@,_1¥ ' + --- +@,_n!/(n — j)! belonging
to Z/pZ|x] is a separable polynomial. It follows that x is the only repeated factor of
f(x) modulo p.

Now we show that f(x) is p-regular with respect to ¢(x) = x. Recall that p 1 a;.
By the definition of the p-Newton polygon, we see that it will be the polygonal path
formed by the lower edges along the convex hull of the points of the set S defined by

S = {(z vp(#)) ‘ 0<is n}.
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By hypothesis, n = p™ + p™ + .-+ p™, where 0 <m; <my < --- <m,. Let ¢
denote the integer

fi:pml+...+pmi, ISZSV

Set £op = 0. As in [5], using Lemma 2.2 and keeping in mind that v,(a;) = 0 for each
i, it can be easily checked that the p-Newton polygon of f(x) consists of r edges,
and the ith edge is the line segment having vertices ({;_i,v,(n!/(n—€;_1)!)) and
(&, vp(n! /(n—€)!)). So by Lemma 2.2, the slope 4; of the ith edge of the p-Newton
polygon of f(x) is
V(=€) +v((n—C)!) G- -1 pri—1

ti— iy Ci=t)p-1) pri(p-1)

Observe that f(x) can have an edge with slope zero if and only if m; = 0. Also, m;
can be zero only when p 1 n. Therefore, in view of Hensel’s lemma and Theorem 3.4,
we can write f(x) = gi1(x) - - - g-(x), where gi(x) € Z,[x] has degree {; — {;_; = p™ and
the p-Newton polygon of g;(x) has a single edge, say S;, with slope A;. When 4; > 0,
the polynomial, say T;(y) € F,[y], associated to g;(x) with respect to (x,S;) is linear.
Hence, f(x) is p-regular with respect to ¢(x) = x. So, by Theorem 3.7,

ﬂ,'=

PLg = 9} -9y,
where the p; are distinct prime ideals lying above prime p with index of ramification

e; = p™ and residual degree one for each i. Hence, by Lemma 2.1, p | i(K) if and only
if » > p. This completes the proof of the theorem. ]
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