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SUMMARY

An analysis is made of the free and forced oscillations of a single degree
of freedom system damped by a multi-step friction damper It is shown
that in free oscillation the decay is similar to that obtained with viscous
damping, but in this case the frequency increases as the friction increases

In forced oscillation the exact solution is little different from that
obtained using an equivalent viscous damper if the ratio (natural frequency/
forcing frequency) is less than 1 37 For higher values the mass will remain
at rest during some part of the cycle if the friction is large enough , when
the above ratio is 3, 5, 7, etc, " stops " occur, however small the friction
The variation of phase angle is unusual, under certain conditions the
displacement leads the exciting force

On the basis of the results a criterion for the use of the equivalent
viscous damper in ground resonance calculations is suggested

(1) INTRODUCTION

On some helicopters dampers are fitted to the drag hinges which rely
upon sliding friction, rather than fluid viscosity, to provide for energy
absorption The primary purpose of these dampers is to prevent ground
resonance, but it has not so far been possible to represent their characteristics
exactly in an analytical solution of the ground resonance problem Instead
it is usual to assume that the friction damper can be replaced by an equivalent
viscous damper, t e, a viscous damper which absorbs the same energy per
cycle This assumption does make the analysis tractable, but since the
equivalent damping coefficient is in general a function of the (unknown)
frequency, rotational speed and amplitude, some process of iteration is
necessary and the labour of calculation is long Also, since no exact solution
is available for comparison, it is not possible to be sure that the answers
obtained are correct either in detail or in principle It is, therefore, essential
to know under what conditions the assumption of viscous damping is valid
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As a preliminary approach, a study has been made of the free and forced
oscillations of a mass-spring system restrained by a multi-step friction
damper This is not, of course, a solution to the ground resonance problem,
but it is sufficient to show when and where errors might arise from the use
of the equivalent viscous damper I t also applies directly to the problem
of the blade motion in the drag plane which occurs in forward flight

T h e calculation of the free oscillations of a mass-spring system with
Coulomb damping is well known and is discussed in several text-books on
vibration1'2 T h e calculation of the forced oscillations in that case is possible
under certain conditions, but the method of solution is less well known
This was first given by Den H a r t o g 3 , the results are summarised in his

| book on Mechanical Vibrations* T h e method is to look for those solutions
which, when the steady state oscillation has been reached, have the same
period as the exciting force I t is necessary to introduce a phase difference
between the peaks of the displacement and the exciting force and it is assumed
that a transient oscillation occurs at the instants when the velocity changes
sign T h e solution is valid so long as there are no " stops " , these occur
whenever, at the instant of coming to rest, the friction force exceeds the resul-
tant of the spring and exciting forces

" An alternative approach has been described by Davidson5, bu t this
would seem to be in error This assumption is that the (discontinuous)
variation of friction force with velocity can be represented by a Fourier
series having the same period as the exciting force T h e analysis is then
simple, but it leads to the curious result that friction has no influence on

1 the amplitude of motion unless viscous damping is also present T h e fault
arises from the Fourier representation of the friction , on this basis the
friction is zero when the velocity is zero whereas in fact a t rue discontinuity

i does occur and the friction may he anywhere between zero and the limiting
value Numerical methods can, of course, be used and a very ingenious

1 semi-graphical technique, due to Meissner, has been used This method,
' which is not widely known in this country, has been described by Kamke6

In this paper Den Hartog's method is used In order to obtain an
analytic solution it is necessary to assume that the friction force varies
linearly with amplitude , in other words the damper is assumed to have a
large number of small steps If the number of steps is small, the analytical
approach is not convenient and either a graphical method or some type of

I automatic computer must be used

(2) NOTATION

M mass
K spring stiffness
P exciting force
F friction force
x displacement
x0 displacement at which last velocity sign change

occurred
t time
k slope of friction force/displacement line
con

2 K/M
f k/K
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a
A, B
Xo

a

P
P
n
Be
[A]

(K + k)/M

arbitrary constants
initial displacement
displacement after first half-cycle of free oscillation
Po/K
phase angle
(circular) frequency of exciting force
acon2/(co2 — p2)
co/p
equivalent viscous damping coefficient
amplitude of " equivalent" oscillation

(3) THEORY

General Fig 1 shows a mass M restrained by a spring of stiffness K
and acted upon by an exciting force P and a friction force F The differential
equation of motion is then

Md2x/dt2 -)- K\ = P — F (1)

The variation of F with displacement is shown schematically in Fig 2a and
an approximate representation assuming that the number of steps is large
is shown in Fig 2b This representation was first suggested by C H Jones7

as a simple means of calculating the equivalent viscous damper
At the point A, where the displacement is x0, the velocity changes sign

and the friction drops abruptly to zero at B As the mass M returns towards
its mean position (0) the friction increases linearly until the mass again
comes to rest at C If the velocity changes sign here then the force drops
again to zero (D) and increases once more as the mass moves towards O
The direction of F is always such as to oppose the motion

M

/////// Fig 1

Actual variation of
friction with displacement

Fig 2a

Assumed variation of
friction with displacement

Fig 2b
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At this instant the displacement is

- X 0 ( l - 2 a ) = - X 1 ( s a y ) (8)

Then during the next half-cycle when the velocity is positive the
displacement is given by

X = (1 — a)Xj COS COt — aXj

At the second stopping instant (t = 2T7/CO) the displacement is

Xi(l — 2a) = X0(l — 2a)2

(9)

(10)

Thus at the end of one cycle the amplitude has decreased by a factor
of (1 — 2a)2 But

a = f/1 + f

and therefore at the end of the first cycle the displacement is

( l - f ) 2 X 0 / ( l + f ) 2

From this point the motion follows the same pattern (see Fig 3) At
the end of each half cycle the displacement is reduced by a factor (1 — f)/
(1 + f)j i e, the successive peak displacements on any one side are in a
geometric progression of common ratio (1 — f)2/(l + f)2 The envelope of
the peaks is similar to that obtained with viscous damping, but there the

Mode of free oscillation, < * = O 2

Fig 3

peaks become more and more widely spaced as the damping increases until,
when the critical damping is reached, the oscillation degenerates into a
subsidence On the other hand, with multi-step friction damping, the effec-
tive suffness increases and the peaks move closer together as the friction
increases It will be seen that the mass never actually comes to rest, but
that the amplitude decays until it becomes imperceptible These results
hold good provided that f < 1 0, t e, the " stiffness " of the damper must
be less than the spring stiffness If the two stiffnesses are equal then the
mass is in neutral equilibrium If the damper " stiffness " exceeds the
spring stiffness no free oscillation is possible in one degree of freedom In
the absence of mechanical springing, this state of affairs will always occur
on a helicopter rotor at a sufficiently low rotational speed
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Provided that f < 1, there is some similarity between the above results
and those given by Bishop8 for the case of " hysteretic " damping In fact
it can be shown (see below, Section (4)—The Equivalent Viscous Damper)
that the equivalent viscous damper for a multi-step damper is of the " hyster-
etic " type At one lime it was thought that the type of damping represented
by Fig 2b might in some cases be a useful alternative to " hysteretic "
damping since the analysis is not complicated and there is no difficulty in
denning the frequency of oscillation, but unfortunately any advantage which
there may be does not extend to forced oscillations

Forced Oscillations As in the case of viscous damping there is a phase
difference between the exciting force and the displacement It is convenient
to include this phase difference in the expression for the exciting force
rather than in that for the motion, i e , we put

P = Po cos(pt + </>) = awn
2 cos(pt + <£) (11)

where a = Po/K (12)

and <f> is the (as yet unknown) phase argle

Equation (1) then becomes

= acon
2 cos(pt + <f>)± fcon

2x0, ( + ^ ~ ^ ) (13)

The solution of (13) is

x = A cos cot + B sin cot + p cos(pt + <f>) ± ax0, ( ) (14)

where (3 = aco2/(co2 — p2) co ^ p (15)

and A and B are arbitrary constants
Now when the forced motion first begins there will be a transient (free)

oscillation which will ultimately decay, leaving a steady oscillation The
form of this transient depends only on the initial conditions and it can be
suppressed altogether , but this does not mean that the " free " oscillation
terms in (14) are completely absent In fact they must be present since
each time the veloaty changes sign the friction force is abruptly removed
and there is a discontinuity in the acceleration Therefore we must assume
that the ultimate steady oscillation is made up partly from the free and
partly from the forced oscillation terms in (14)

In addition to the four unknowns A, B, <f>, x0) (14) contains an " un-
certainty," since either the positive or negative sign may be taken To
eliminate this, it is necessary to assume that the period of oscillation is the
same as that of the exciting force, i e, the overall period of (14) is 277/p
So far it has not been possible to prove that this is the only possible period,
in fact when " stops " occur it cannot be so, but for motions without stops
there is no reason to assume that it does not hold
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The instant at which the starting transient may be assumed to have
vanished is not known, but since the oscillation after that time is continuous
and steady, we may measure time from any instant we choose This provides
a means of determining <f> We therefore assume that when t = 0, x = x0,
x = 0, i e , the origin is taken at an instant when the amplitude is a maximum
If the oscillation is steady and of constant amplitude, when t = 7r/p, x = 0
and x = — x0 By imposing these four conditions we are denning a steady
oscillation as one in which the displacements and velocities at the starting
instant are the exact reversals of those at the stopping instant With this
definition we need consider the motion in one half-cycle only, i e, in the
interval 0 < t < 77/p

To obtain A, B, (f> and x0 , when t = 0 put x = x0, x = 0

1 e, x0 = A + p cos <f> + ax0 (16)

0 = coB — p p sin <f> (17)

and when t = 77/p put x = — x0, t = 77/p

te,

where

From

— x° = A cos n77 + B sin n77 —

0 = — coA sin n7r + coB cos nTr

n = co/p

(16)—(19) we get

A = — xoa

B = — xoa tan (n77/2)

x 0 = p cos <j> = p / [ l -f- a2n2 tan

tan J> — — a n tan (n?7/2)

• p cos (/>

+pP sin

2(n77/2)]i

+ axo (18)

(19)

(20)

(21)

(22)

(23)

(24)

These results are best shown in the form of a frequency response
diagram, but before doing this it must first be established that the solution
is in fact valid To obtain (21)—(24) it was necessary to impose certain
conditions and if these should lead to the result that the velocity changes
sign in the interval 0 < t < 7r/p, then the solution is invalid Also (14)
does not hold when the free oscillation and exciting frequencies are equal
(n = 1 0) and this case requires special study

(4) SPECIAL CASES

Applicability of the Method On substituting (21)—(24) in (15) and
differentiating, the expression for the velocity in the interval 0 < t < 77/p
becomes

, fan|"sinnO — sin 0 sin(n7r/2)l ) , , .„_.
x/px0 = A _L 1 Ji — cos 8 , n ^ 1 (25)

( cos (n7r/2) I
where 0 = pt — 77/2 1 e, — TT/2 < 6 < 77/2 (26)
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The first term on the right-hand side of (25) represents the modification
to the velocity due to friction If, for any value of 0 within the prescribed
range, this term is positive and exceeds cos 0 then a " stop " will occur and
the solution no longer applies Evidently when n = 3, 5, 7, etc, this term
is infinite however small the value of a so that the first restriction is that a
steady oscillation without " stops " is not possible if the frequency of free
oscillation is an odd-integral multiple of the forcing frequency For inter-
mediate values of n it can easily be shown that stops will occur if a exceeds
some value which depends on n, e g, when n = 2, a must not exceed 0 35
for the solution to be valid As n decreases the value of a required to cause
stops increases rapidly and, since a cannot exceed unity, it follows that there
must be some value of n below which " stops " do not occur, however large
the friction Calculation shows that this value of n is 1 37 approximately

— equ ol t loin * - <MO
— tq vol nr loin « -O35

(flop boundary

/•top )

\boundarW

Fig 4

In other words the solution given by (21)—(24) applies without restric-
tion provided that the frequency of free oscillation is less than 1 37 times
the exciting frequency For larger values of n the solution given is valid
provided that a lies below the boundary line shown m Fig 4

It is interesting to compare these results with those obtained by Den
Hartog3 for the case of Coulomb friction damping There too it was found
that stops will occur for n = 3, 5, 7, etc, however small the friction, but
it was also found that stops will occur for all n providing that the friction
force is a sufficiently large fraction of the (peak) exciting force In the
present case it will be seen from (25) that the ratio of the instantaneous
velocity to the maximum velocity is independent of (3 so that the occurrence,
or non-occurrence, of stops is independent of the magnitude of the exciting
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force With Coulomb damping, however, since the amplitude is not
proportional to p and the friction is independent of amplitude, it follows
that stops will always occur under some conditions

Resonance In the special case when the free and exciting frequencies
are equal (i e, n = 10) the solution of (13) is —

x = (1 — a)xD cos pt — (awn
2/2p2)sm pt + (acon

2/2p)t cos pt + ax0 (27)

where x0 = — (28)

and the peaks of exciting force and displacement are 90° out of phase

The velocity is

, sin pt (, , 2p t .
x/px0 = — — \ 1 + — f

(1 + f) ( V

Since the term in brackets is never negative it follows that " stops "
do not occur at resonance however large the friction

The result (28) for the amplitude at resonance can also be obtained
from (23) provided that the limit as n tends to unity is taken in the correct
manner

The Equivalent Viscous Damper The " equivalent viscous damper "
is defined as the viscous damper which absorbs the same energy per cycle
as the actual damper—assuming a sinusoidal oscillation

Energy absorbed per cycle by friction damper

= 2x0 2kx0 = 4kx0
2 (30)

Energy absorbed per cycle by equivalent viscous damper

= TrpBeXQ2 (31)

where Be is the equivalent viscous damping coefficient

Then from (30) and (31)

4k
(32)

i e, the equivalent viscous damping coefficient is independent of the amplitude
and inversely proportional to the frequency But this is precisely the form
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of the " hysteretic " damper described by Bishop8 In the present notation
Bishop's results for the amplitude and phase are —

^ = , ^ 2 n 2 V (33)

77 n
(34)

We now have sufficient information to plot a frequency response diagram
for the continuous oscillations with friction damping and to compare these
results with those obtained for the equivalent viscous damper In Fig 4
the " magnification factor " [xo/a] is plotted against n and the variation of
" phase " with n is shown in Fig 5 On both diagrams a has the values
0 1 and 0 25

(5) DISCUSSION OP THE RESULTS

Since n = co/p it follows that resonance occurs when the frequency of
the (damped) free oscillation is equal to the exciting frequency, i e, at a
frequency which is greater than that of the undamped free oscillations in
the ratio (1 + f)* 1 For n < 1 37 the amplitude frequency curves are
of conventional form but for larger n this is no longer the case Consider
first the results for a = 0 10

As n increases beyond 1 37 the magnification factor drops rapidly
towards unity but, from (25), the solution ceases to be valid when n x 2 65
At this value of n the " stop " boundary—shown dotted m Fig 4—intersects
the line a = 0 10 and no continuous solution with the period of the exciting
force is possible until n = 3 35 when the " stop " boundary and a = 0 10
again intersect Continuous solutions are then possible until n x 4 8
where a third intersection occurs Further intersections will occur at higher
n but ultimately a value of n is reached beyond which no continuous solution
can occur at all This is illustrated by the results for a = 0 25 The line
a = 0 25 intersects the " stop " boundary at n x 2 2 and beyond this no
further intersections occur, i e, no continuous oscillations are possible if
n > 2 2

In the vicinity of n = 2, 4, etc, the magnification factor is the same as
for undamped oscillations but as n approaches 3, 5, etc, it decreases rapidly
For smaller values of a it is possible to maintain continuous oscillations at
values of n which are closer to 3, 5, etc, but the accompanying decrease in
amplitude is then much more abrupt It is to be expected from these results
that the amplitude of an oscillation with " stops " will be considerably less
than that of the undamped vibration

Further, and perhaps more important, departures from conventional
behaviour at large n are shown by the phase-frequency curves Instead of
the phase angle remaining approximately constant at some positive value
for all large n it does in fact become zero at n = 2 for all a—provided that
the solution is valid For larger n the phase angle becomes negative, i e, the
peaks of displacement then lead the peaks of the exciting force In the
vicinity of n = 3 the solution is not valid but when n = 4 the lead angle
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is 180°, i e, there is a phase change of 2T7 between n = 0 and n = 4 Beyond
n =- 4 this cycle of phase change is repeated until continuous solution ceases
to be possible

Also shown on Figs 4, 5, are the corresponding results using the equiva-
lent viscous damper* Up to the value of n where " stops " first occur there
is not much difference between the amplitudes of the " equivalent" and
" exact " solutions At resonance they are exactly equal, at other values
of n the exact amplitude is slightly larger, the difference increasing with
increasing a The greatest differences occur when n x 3, 5, etc, when the

Fig 5

equivalent amplitude is about 50% greater than the exact Since the phase-
frequency curve for the equivalent damper is of conventional form there is
a considerable difference between the phase angles given by the two methods

(6) CONCLUSIONS

It has been shown that exact solutions can be obtained for the free
and forced oscillations of a mass-spring system with a (simplified) multi-step
friction damper Unlike Coulomb damping the multi-step damper does not
cause complete stops in the free oscillations, nor do stops occur at all frequen-
cies in forced oscillations Stops will occur in forced oscillations if the
friction and/or the ratio between the free oscillation and exciting frequencies
is large enough

* It is quite legitimate to plot the results for the equivalent viscous damper against
<o/p and not against con/p since the additional stiffness contributed by the friction
damper must still be taken into account
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The equivalent viscous damper gives a very good approximation to the
exact solution provided that the frequency of the (damped) free oscillations
is less than about 1 37 times the exciting frequency At resonance the
amplitude and phase given by the two methods are exactly equal For
larger values of n the phase angles are completely different and errors of
50% or more in amplitude are possible

It is evident from these results that the equivalent viscous damper is
sufficiently accurate for ground resonance calculations only if the true
frequency of the blade oscillations is more than about 0 70 of the natural
frequency Therefore since the important blade oscillation frequency is
the difference between the chassis oscillation frequency and the rotational
speed and as the blade natural frequency is about 1/3 of the rotational speed
it follows that the chassis frequency must be less than about 3/4 of the rota-
tional speed If this condition is not satisfied stops will occur if the friction
is large enough But even if stops are avoided the use of the equivalent
viscous damper may still lead to a large error since the occurrence of coupled
self-excited oscillations depends very much on achieving the correct phase
relationship The model test results described by C H Jones7 show that
the chassis frequency is only close to the rotational speed if the blade and
chassis motion, or the chassis motion alone, is undamped Otherwise the
chassis frequency is about 3/4 of the rotor speed and stops seem unlikely
to occur This cannot be regarded as a final answer however, since a
motion with stops may have very different characteristics (see Chap XI of
Ref 9)

The method of Section(3) on Forced Oscillations, could be extended todeal
with free, coupled, continuous oscillations but the calculation would probably
be very elaborate because of the several frequencies of the undamped free
oscillations There is no doubt that the best way to solve this problem is
by means of an analogue computer (On this type of machine the multi-step
damper is in fact easier to simulate than the equivalent viscous damper)
Some work to this end has already begun, but the problem is complicated
by the fact that the periodic terms in the differential equations of motion
cannot now be eliminated by a transformation of the type used by Coleman10
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