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The tangential drift of the trapped alpha particles in bounce or transit averaged kinetic
treatments of stellarators reverses direction on each flux surface at a particular value of
pitch angle. The vanishing of the tangential drift corresponds to a resonance that allows a
narrow collisional boundary layer to form due to the presence of pitch angle scattering by
the background ions. The alphas in and adjacent to this drift reversal layer are particularly
sensitive to collisions because they are in or very close to resonance. As a result, enhanced
collisional transport occurs due to the existence of this drift reversal resonance in a nearly
quasisymmetric stellarator with a single helicity imperfection. Moreover, the value of the
resonant pitch angle for drift reversal on neighbouring flux surfaces varies continuously,
with the inner flux surfaces having a larger resonant pitch angle than the outer ones. This
pitch angle dependence means phase space ‘tubes’ or ‘pods’ exist that connect the inner
flux surfaces to the outer ones. These pods allow collisional radial transport of the alphas
to extend over the entire radial cross section. When collisions are finite, but weak, and
the single helicity departure from quasisymmetry large enough, the collisionless alpha
particle motion remains constrained by collisions as they complete their drift trajectories
in phase. In particular, the small radial scales introduced by the radial extent or width
of the phase space pods require the retention of the nonlinear radial drift term in the
kinetic equation. The associated collisional radial transport is evaluated and found to be
significant, but is shown to preferentially remove slower speed alphas without substantially
affecting birth alphas.

Key words: fusion plasma, plasma confinement, plasma nonlinear phenomena

1. Introduction

Resonant plateau transport (Park, Boozer & Menard 2009) occurs whenever there is
a resonance in the particle motion or singularity that must be resolved by collisions,
with plateau added since it leads to transport independent of collision frequency. The
presence of a collisional resonance normally implies the singular behaviour is removed by
a boundary layer due to the diffusive nature of collisions (Calvo et al. 2017; Catto 2019;
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Catto & Tolman 2021; Catto, Tolman & Parra 2023). In a nearly quasisymmetric (QS)
stellarator these references consider the resonance that occurs when the transit averaged
tangential drift in the flux surface vanishes because the drift reverses. The tangential drift
in a flux surface ψ traced out by the magnetic field B = ∇α × ∇ψ is in the ∇α direction.
In a small inverse aspect ratio (ε � 1) stellarator the location of this drift resonance
depends on two phase space variables: the poloidal flux ψ ∝ ε and an adiabatic invariant
pitch angle variable λ in velocity space. A resonant plateau treatment collisionally resolves
the resonance by solving a linearized kinetic equation. The resulting solution introduces
small scale radial variation,�ε, associated with the resonant interaction in the presence of
a drive term. As a result, the neglect of the radial derivative of the perturbed distribution
function compared with that of the unperturbed distribution limits the validity of such
resonant plateau treatments once the phase space structure becomes larger than the
collisional boundary layer. This behaviour suggests the existence of a transport regime
in which the small radial scales introduced by pitch angle scattering collisions can give
rise to well defined phase space regions that have an island structure when projected onto
minor radius for a fixed resonant pitch angle and when projected onto pitch angle for a
fixed minor radius. This double island phase space structure in normalized minor radius
(ε) and pitch angle (λ) variables is tubular or pod shaped. Once this nonlinear behaviour
has to be retained the collisional transport is reduced below the predicted resonant plateau
level.

This seldom studied phase space pod, weak collisionality limit is the focus of the
material presented, and is found to lead to radial transport of resonant alpha particles
that is proportional to the collision frequency and the island width associated with a flux
surface at fixed pitch angle. It is distinct from the weak collisional regime investigated by
d’Herbemont et al. (2022) who considered non-resonant background ion transport in the
more complicated magnetic wells associated with larger departures from quasisymmetry.
The improved estimate they arrived at was also linear in the collision frequency, ν̄, as found
by Mynick (1983) at low collisionality for non-resonant background ions in non-optimized
stellarators. Unlike these previous evaluations, the electric field drift plays no role for the
alphas as magnetic drift dominates. Interestingly the diffusivity found here is proportional
to the island width as in Mynick (1983), who used a radial averaging procedure as in the
bumpy torus evaluation of Hazeltine & Catto (1981). This same bumpy torus reference also
introduced the truncated Taylor expansion method used by Shaing (2015) and Shaing &
Hsu (2014) to obtain superbanana results similar to those of Mynick (1983). Unlike these
earlier treatments, the one presented here does not require introducing the second adiabatic
invariant (J = ∮

d�v||, with v|| the parallel velocity and d� the incremental length along
B). Instead, a reduced constant of the motion is employed as in Hamilton et al. (2023)
to avoid the questionable Taylor expansion procedure. To avoid confusion, the imprecise
terminology superbanana transport is avoided.

In the sections that follow, the linear in ν̄ regime is treated in a systematic and
quantitative manner for trapped alpha particle energy transport in an imperfectly
optimized, but nearly QS stellarator. The goal is to determine the behaviour of the radial
energy transport when a single helicity departure from quasisymmetry is large enough
that a quasilinear treatment fails. Before doing so, some background estimates are given in
§ 2. Then, the reduced kinetic equation for trapped alpha particle transport in a nearly QS
stellarator is reduced to its fundamental form in § 3 where the nonlinear radial drift term is
retained to allow the departure from quasisymmetry to form phase space ‘pods’ or ‘tubes’
in minor radius and pitch angle. In § 4 a detailed solution to the nonlinear kinetic equation
is obtained in a limit in which the QS alpha particle motion is altered by the phase space
pods and weakly disrupted by collisions. Then, in § 5 the energy flux is evaluated to
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Collisional alpha particle transport 3

confirm that the diffusivity is proportional to collision frequency and radial island width at
fixed pitch angle, due to the departure of the magnetic field from quasisymmetry. A brief
discussion follows in § 6.

2. Background and estimates for trapped alpha particle transport in a nearly QS field

To illustrate why the new regime arises, consider the model trapped alpha, bounce or
transit averaged drift kinetic equation

ω̄α
∂ f̃
∂ϕ

− V̄ sinϕ
∂(f̄ + f̃ )
∂r

= ν̄ε
∂2 f̃
∂λ2

(2.1)

for a nearly QS, large aspect ratio stellarator. Here, f̄ and f̃ are the unperturbed and
perturbed alpha distribution functions; V̄ sinϕ∂ f̄ /∂r is the drive term associated with the
departure from quasisymmetry with V̄ the radial drift due to ϕ the symmetry breaking,
non-QS angular variation drive; ω̄α is the transit averaged tangential drift of the alphas in
a flux surface that reverses direction at some pitch angle (Galeev & Sagdeev 1979) to be
defined in detail shortly; ν̄ is the pitch angle scattering frequency of the trapped alphas
by the background ions; λ = 2μB0/v

2 is the adiabatic invariant pitch angle variable, with
μ the magnetic moment, v = |v| the speed of the alphas and B0 a normalizing magnetic
field; and r is the minor radius flux surface label. The inverse aspect ratio ε = r/R0 � 1
on the right side of (2.1) accounts for the width in pitch angle, ε1/2, of the trapped region
of velocity space, with R0 the major radius. The pitch angle scattering frequency times the
slowing down time, τs, is small for the alphas with ν̄τs ∼ v3

λ/v
3
0 � 1, where v0 the alpha

birth speed and vλ the speed at which pitch angle scattering enters for a non-resonant birth
alpha (the critical speed vc is where electron and ion drag are comparable and vλ ∼ vc).

At large aspect ratio ω̄α = ω̄α(κ
2) vanishes on a flux surface when κ2

0 = 0.83 (Galeev
& Sagdeev 1979) assuming magnetic shear is negligible, where κ2 = [1 − (1 − ε)λ]/2ελ.
However, while λ is an adiabatic invariant, κ2 is not because of its ε dependence, which
appears because the trapped–passing boundary depends on inverse aspect ratio ε � 1,
with 1/(1 + ε) < λ < 1/(1 − ε) for the trapped alphas. As a result, the resonant pitch
angle λ0 depends on the inverse aspect ratio ε of the flux surface of interest according to
λ0 = 1/[1 + (2κ2

0 − 1)ε] = 1/(1 + 0.66ε). In the vicinity of the resonance

ω̄α = −2(κ2 − κ2
0 )ω̄

′
α, (2.2)

with ω̄′
α ∼ ω̄α ∼ qv2/Ω0R2

0ε. The on axis gyrofrequency of the alphas is denoted by Ω0,
and q is the safety factor. Then, κ2 − κ2

0 depends on ε as well as λ, as is seen from

κ2 − κ2
0 = [1 − (1 − ε)λ− 2κ2

0ελ]
2ελ

≈ −λ− [1 − (2κ2
0 − 1)ε]

2ε
, (2.3)

leading to a more insightful form of the model equation with the nonlinear term retained:

[λ− (1 + ε − 2κ2
0ε)]

ω̄′
α

ε

∂ f̃
∂ϕ

− V̄
R0

sinϕ
∂(f̄ + f̃ )
∂ε

= ν̄ε
∂2 f̃
∂λ2

. (2.4)

Notice that if κ2 − κ2
0 = �κ2 ∼ 1, then λ− [1 − (2κ2

0 − 1)ε] ∼ ε � 1 to account for the
ε factor in the denominator of (2.3). Moreover, each flux surface ε has a slightly different
resonant pitch angle λ0(ε), implying each island structure in normalized minor radius ε
is the cross-section of a tube or pod in phase space since the resonance also involves
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pitch angle ‘islands’. Neighbouring flux surfaces have slightly different resonant pitch
angles so the phase space ‘pods’ extend from the inner (larger λ0) to outer (smaller λ0)
flux surfaces.

For each and every flux surface 0 ≤ ε � 1, there is a resonant pitch angle λ0(ε).
Therefore, the phase space pods extend over the entire minor radius for ε � 1. They are
referred to as pods since they have an island width in the pitch angle variable λ as well
as in the normalized radial or flux surface variable ε in the presence of a departure from
quasisymmetry due to the error field angle dependence denoted by ϕ. Consequently, the
phase space pods considered herein are not quite the usual islands observed in Poincaré
plots of collisionless particle motion (Paul et al. 2022; White 2022).

Defining�ε = ε − (1 − λ)/(2κ2
0 − 1) � 1 at fixed λ and balancing drift and nonlinear

terms gives ω̄′
α�ε/ε ∼ V̄/R0�ε, leading to a narrow radial island width estimate of

�ε ∼ (V̄ε/ω̄αR0)
1/2 ∼ (εδ)1/2 � ε1/2, (2.5)

when the radial drift V̄ ∼ ω̄αR0δ is due to a very small normalized departure from
quasisymmetry, δ = B||/B0 � ε.

Resonant plateau behaviour is found by solving the simpler linearized equation

(λ− λ0)
ω̄′
α

ε

∂ f̃
∂ϕ

− V̄
R0

sinϕ
∂ f̄
∂ε

= ν̄ε
∂2 f̃
∂λ2

, (2.6)

with λ0 = 1 − (2κ2
0 − 1)ε ≈ 1 − 0.66ε. In this limit, the nonlinear term is small because

the fine-scale radial variation of f̃ is removed by the collisional boundary layer so no
phase space pod formation occurs. The solution leads to resonant plateau transport or
what is often referred to as superbanana plateau transport and is expected to be a dominant
collisional loss mechanism for birth alphas (Galeev & Sagdeev 1979; Shaing 2015; Catto
2019). The width of the resonance,�λ = λ− λ0 at fixed ε, is estimated by balancing drift
and collision terms, ω̄′

α�λ/ε ∼ ν̄ε/(�λ)2, thereby giving a resonant plateau boundary
layer width:

�λ ∼ (ε2ν̄/ω̄α)
1/3, (2.7)

and an effective resonant plateau collision frequency:

ν̄eff ∼ ν̄ε/(�λ)2 ∼ ν̄ε(ω̄α/ε
2ν̄)2/3. (2.8)

The resonant plateau (or superbanana plateau) diffusivity that results for birth alphas is
then

Drp ∼ (�λ/ε1/2)(V̄/ν̄eff)
2ν̄eff ∼ ε1/2V̄2/ω̄α ∼ qv2

0δ
2/Ω0ε

1/2, (2.9)

where V̄/ν̄eff is the step size with V̄ ∼ ω̄αR0δ, and�λ/ε1/2 is the effective resonant trapped
fraction of the collisional boundary layer.

Phase space pods do not form in the resonant plateau regime because the departure
from quasisymmetry is so small that ∂ f̃ /∂ε ∼ f̃ /�ε � ∂ f̄ /∂ε ∼ f̄ /ε. In this �λ� �ε
limit, collisions prevent phase space pod formation. Therefore, resonant plateau behaviour
requires

(ε2ν̄/ω̄α)
1/3 � (εδ)1/2, (2.10)

giving the restriction

f̃ /f̄ � �ε/ε ∼ (δ/ε)1/2 � �λ/ε ∼ (ν̄/ω̄αε)
1/3, (2.11)

where for pitch angle scatter, ν̄τs ∼ v3
λ/v

3
0 � 1, with τs the alpha slowing down time due

to electron drag. For larger departures from quasisymmetry the preceding can be difficult
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to satisfy since ν̄/ω̄αε ∼ 10−4 for birth alphas with R0/v0τs ∼ 10−5 and Ω0R0/qv0 ∼ 102.
A less well optimized stellarator might only have 1 � δ/ε >∼ 10−2.

The preceding estimates indicate that the maximal ordering of interest for a well
optimized QS stellarator is to allow �ε ∼ �λ or

(εδ)1/2 ∼ (ε2ν̄/ω̄α)
1/3. (2.12)

Unfortunately, finding a completely general analytic solution in this limit is impractical.
However, by assuming collisions are sufficiently weak and the departure from
quasisymmetry sufficiently large, the nearly collisionless, reasonably well confined motion
of an approximately QS field is perturbed by the phase space pod structure in a way that
can be evaluated using a reduced constant of the motion. In this limit the phase space
pods remain well defined because the very narrow collisional boundary layer is only at
the pod boundary (or separatrix). The bound and barely circulating alphas are aware of
the phase space tube or double island structure in their motion, but the weak collisions
result in small, speed independent spatial steps of R0(εδ)

1/2 due to a local flattening of
the perturbed distribution function.

To avoid confusion, the alpha motion inside a phase space pod or tube is herein referred
to as bound or librating, rather than trapped (since the alphas are already trapped in the
nearly QS magnetic field of the stellarator). Due to collisions, the bound motion results in
a local flattening of the perturbed distribution function in the phase space pod with a radial
tube or pod width of R0(εδ)

1/2. Only a constraint from the lowest order collision operator
need be evaluated to determine this distribution function to lowest order, by matching to
the pitch angle region away from the separatrices of the phase space pod. Alpha motion
outside the phase space tube or pod is referred to as unbound or circulating so passing is
reserved to refer to alpha motion in the nearly QS stellarator field.

In the finite pod width limit, the radial diffusivity is evaluated in detail in the following
sections in the weak collisionality limit. A simple estimate that is consistent with this
evaluation and the presence of a very narrow collisional boundary layer about the
separatrices is obtained by taking the radial step size as R0(εδ)

1/2, and the effective fraction
as the bound and barely circulating fraction of the trapped fraction (εδ/ε)1/2. In addition,
the lowest order alpha motion is essentially collisionless with the alphas slowing to spend
more time in the vicinity of the phase space pods. As a result, these alphas are acted on
by electron drag as well as the strong pitch angle scattering associated with the separatrix
boundary layer. Consequently, in the presence of finite pods, birth alphas are not depleted
immediately. As a result, lower speed alphas as well as birth alphas contribute to the radial
energy transport, thereby resulting in the replacement ν̄∂2/∂λ2 ∼ v3

λ/τsv
2
0vcεδ, giving

ν̄eff ∼ v3
λ/τsv

2
0vcδ for the phase space pod limit considered herein. Not surprisingly, the

bound resonant orbits become fully depleted, flattening the alpha distribution function in
the pod, and resulting in only the barely circulating alphas in the vicinity of the separatrix
contributing to transport. Based on these estimates, the energy diffusivity in the weak
collisionality, large departure from quasisymmetry limit is of order

Dν ∼ δ1/2[R0(εδ)
1/2]2(v3

λ/vcv
2
0τsδ) ∼ δ1/2εR2

0v
3
λ/v

2
0vcτs. (2.13)

The preceding estimate is verified by the detailed calculations performed in the following
sections.

In general, the ratio of these two diffusivities,

Dν

Drp
∼
(ε
δ

)3/2Ω0R2
ov

3
λ

qv4
0vcτs

, (2.14)

https://doi.org/10.1017/S0022377824001557 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001557


6 P.J. Catto

is allowed to be comparable to or less than one. For example, they are comparable
and give large transport (τsD/r2 ∼ 1) for an optimized stellarator with ε ∼ 0.1 and
δ ∼ 10−2, and for birth alphas with R0/v0τs ∼ 10−5 and Ω0R0/qv0 ∼ 102 (for which
(εδ)1/2 ∼ (ε2ν̄/ω̄α)

1/3 is satisfied within a factor of v0/vc ∼ 3). As highly optimized QS
stellarator coil sets will be difficult to fabricate and the diffusivity Dν associated with
the departure from quasisymmetry acts to remove lower speed alphas, the analytically
tractable limit (εδ)1/2 � (ε2ν̄/ω̄α)

1/3 is the focus of the remaining sections.

3. Reduced kinetic equation for trapped alpha particles in a nearly QS field

The trapped alpha particles satisfy the reduced drift kinetic equation in Catto et al.
(2023) (see also Catto 2019) that assumes the QS field depends on the angle variable
η = Mϑ − Nζ , with ϑ and ζ the Boozer (1981) poloidal and toroidal angle variables,
respectively. Normally M = 1 (Cary & Shasharina 1997; Landreman & Paul 2022), since
only the region near the magnetic axis is of interest, and N is an integer (N = 0 for
quasiaxisymmetry). For well defined flux surfaces, the magnetic field is

B = ∇ψt × ∇ϑ + ∇ζ × ∇ψp = K(r)∇ψp + G(ψp)∇ϑ + I(ψp)∇ζ. (3.1)

In the preceding, ψt and ψp are the toroidal and poloidal flux functions, respectively, and
are related by ∂ψt/∂ψp = q, and the flux functions I(ψp) and G(ψp) are related to the
poloidal and toroidal currents (Boozer 1981). Constant QS B contours or curves close on
themselves when the magnetic field line label α = (ζ − qϑ) changes by 2π(M − qN) at
fixed η as ϑ and ζ change by 2πN and 2πM, respectively. Denoting the two forms of B
together gives B2/(qI + G) = ∇ϑ × ∇ζ · ∇ψp = B · ∇η/(M − qN) with (qI + G)/B ≈
qR0 at large aspect ratio.

At large aspect ratio ∂/∂ψp ≈ (2πq/B0a′)∂/∂r, with a(r) the area of the elliptical flux
surfaces nearest the magnetic axis, where the magnetic field is assumed to be of the form

B = B0[1 − ε cos η + δ cos(mϑ − nζ )] = B = B0(1 − ε cos η)+ B||(η, α), (3.2)

with B|| = B0δ cos(mϑ − nζ ) a small departure from quasisymmetry (δ � ε, with m 	= M
and n 	= N), and χ = mϑ − nζ = [(mN − nM)α + η(m − qn)]/(M − qN).

The transit or bounce averaged kinetic equation for the trapped alphas assumes ∂f /∂η =
0 lowest order. Then bounce averaging the nonlinear kinetic equation and using the
periodicity of the trapped alpha motion gives

(

∮
α

dτωα)
∂f
∂α

+
(∫

α

dτvd · ∇ψp

)
∂f
∂ψp

=
∮
α

dτ
[

C{f } + S(ψp)δ(v − v0)

4πv2

]
. (3.3)

The transit average is performed at fixed α using dη/dτ = v||b · ∇η with v|| the parallel
alpha velocity, and dτ > 0 the incremental change in the time along the trapped trajectory.

In the radial magnetic drift,

vd · ∇ψp =
(

MI + NG
M − qN

)
v||b · ∇

(v||
Ω

)
− v||B

∂

∂α

(v||
Ω

)
, (3.4)

the first term is the neoclassical transport drive term (Landreman & Catto 2012). It is
unaffected by a small departure from quasisymmetry as no resonance occurs, and it is
assumed to be unimportant compared with the second drive term due to the departure
from quasisymmetry. The collision operator is denoted by C{f }, Ω = ZαeB/Mαc is the
alpha gyrofrequency (with Zα and Mα the charge number and mass, e the charge on a
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proton and c the speed of light) and S is the isotropic birth rate of alphas born at speed v0
as indicated by the delta function.

Shear is normally weak in optimized stellarators (Landreman & Paul 2022) and is
ignored here. In the absence of magnetic shear, the trapped (λ ≈ 1) alpha drift on a QS
flux surface for a large aspect ratio stellarator is adequately approximated by

vd · ∇α = ωα ≈ v||B
∂

∂ψp

(v||
Ω

)
≈ −πqv2 cos η

Ω0R0a′ , (3.5)

resulting in ∮
α

dτ = 8qR0K(κ)

(M − qN)v
√

2ε
∼ qR0

v
√
ε

(3.6)

and ∮
α

dτωα = 8πq2v[2E(κ)− K(κ)]

(M − qN)Ω0a′√2ε
, (3.7)

where κ2 = [1 − (1 − ε)λ]/2ελ and dτ ≈ qR0dη/(M − qN)v||. Drift reversal occurs at
2E(κ) = K(κ), when κ2

0 = 0.83. The resonant λ depends on ε and satisfies 1/(1 + ε) <
λ0 = 1/[1 + (2κ2

0 − 1)ε] = 1/(1 + 0.66ε) < 1 < 1/(1 − ε).
Next, using v2

|| = ξ 2v2 = v2(1 − λB/B0) and ε � 1 gives

∮
α

dτvd · ∇ψp → −
∮
α

dτv||B
∂

∂α

(v||
Ω

)
= v2

∮
α

dτ
Ω

(
1 − λB

2B0

)
∂B||
∂α

≈ v2

2Ω0

∂

∂α

∮
α

dτB||,

(3.8)

where λB/B0 ≈ 1 is used for the trapped alphas. Defining η = 0 as the bottom of the
magnetic well, and using

∫
α

dτ sin[η(m − qn)/(M − qN)] = 0, only the cosine terms
matter in

B|| = B0δ{cos[η(m − qn)/(M − qN) ]cos[α(mN − nM)/(M − qN)]

− sin[η(m − qn)/(M − qN) ]sin[α(mN − nM)/(M − qN)]}. (3.9)

Therefore, it is convenient to define ϕ = pα with p = |(mN − nM)/(M − qN)| and

Θ =
∮
α

dτ cos[η|(m − qn)/(M − qN)|]/
∮
α

dτ , (3.10)

along with Ω0 = ZαeB0/Mαc, to obtain the radial drift term:

∮
α

dτvd · ∇ψp = −pB0v
2δ

2Ω0
sinϕ

∮
α

dτ cos
(
η

∣∣∣∣ m − qn
M − qN

∣∣∣∣
)

= −pB0v
2Θδ

2Ω0
sinϕ

∮
α

dτ .

(3.11)

https://doi.org/10.1017/S0022377824001557 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001557


8 P.J. Catto

The full transit averaged form of the nonlinear reduced drift kinetic equation for the
trapped alphas is then obtained by defining the transit average

(· · · ) =
∮
α

dτ(· · · )/
∮
α

dτ (3.12)

to obtain the form

ω̄α
∂ f̃
∂ϕ

− V̄
R0

sinϕ
∂(f̄ + f̃ )
∂ε

= C̄{ f̃ }
p
, (3.13)

with

ω̄α = πqv2[2E(κ)− K(κ)]
Ω0Roa′K(κ)

≈ − πqv2(κ2 − κ2
0 )

4κ2
0 (1 − κ2

0 )Ω0Roa′ = πqv2[λ− (1 + ε − 2κ2
0ε)]

8εκ2
0 (1 − κ2

0 )Ω0Roa′
(3.14)

and

V̄ = πqv2Θδ

Ω0a′ . (3.15)

In ω̄α an expansion around the drift reversal pitch angle κ2
0 is performed and λ0 ≈

1 − (2κ2
0 − 1)ε inserted. Only the final form of (3.14) is required here. This resonance

(3.14) depends on λ and ε, and not just flux as assumed in earlier treatments (Hazeltine &
Catto 1981; Shaing & Hsu 2014; Shaing 2015) using truncated Taylor expansions about a
reference flux surface.

The full alpha distribution function is now written as f = f̄ + f̃ , with f̄ � f̃ , and f̄ the
isotropic slowing down tail distribution function (for which ∂ f̄ /∂ϕ = 0 = ∂ f̄ /∂λ):

f̄ = SτsH(v0 − v)

4π(v3 + v3
c )
, (3.16)

where τs = 3MαT3/2
e /4(2πme)

1/2Z2
αe4ne�nΛ is the slowing down time, vc is the critical

speed defined by v3
c = 3π 1/2(2me)

−1/2n−1
e T3/2

e Σi(Z2
i ni/Mi) and H is a step function.

For the narrow boundary layers of interest here only the diffusive terms due to
pitch angle scattering of the alphas by the background ions are required (drag is negligible
since v3

λ/v
3
0 � (�λ)2 ∼ (ε2ν̄/ω̄α)

2/3), giving

C̄{ f̃ } ≈ 2v3
λ

τsv3
∮
α

dτ
∂

∂λ

[
λ

(∮
α

dτ
ξ

B

)
∂ f̃
∂λ

]
= 4εv3

λ

τsv3K(κ)
∂

∂λ

{
[E(κ)− (1 − κ2)K(κ)]

∂ f̃
∂λ

}
= pν̄ε

∂2 f̃
∂λ2 .

(3.17)
Here v3

λ = 3π 1/2T3/2
e ΣiZ2

i ni/(2me)
1/2Mαne ∼ v3

c and

ν̄ = 4v3
λ(κ

2
0 − 1/2)

pτsv3
(3.18)

is defined after approximating the elliptic integrals in the collision operator by their
drift reversal values by using [E(κ)− (1 − κ2)K(κ)]/K(κ) → κ2

0 − 1/2.
The preceding definitions yield the desired nonlinear form of the reduced drift kinetic

equation for the trapped alphas to be

ω̄α
∂ f̃
∂ϕ

− V̄
R0

sinϕ
∂(f̄ + f̃ )
∂ε

= ν̄ε
∂2 f̃
∂λ2

. (3.19)

When ∂ f̃ /∂ε � ∂ f̄ /∂ε the preceding equation has the usual resonant plateau or
superbanana plateau solution (as in quasilinear theory) as noted earlier.
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The problem of interest here is the alternative limit in which ∂ f̃ /∂ε ∼ ∂ f̄ /∂ε = f̄ ′ with
ν̄ very small, but finite, and f̄ ′ effectively a constant since it varies slowly with ε and is
independent of η, ϕ = pα and λ. Before finding a solution with the nonlinearity retained,
it is convenient to cast the equation into a convenient form. Dividing by πqv2/Ω0a′R0
leads to

[λ− (1 + ε − 2κ2
0ε)]

8εκ2
0 (1 − κ2

0 )

∂ f̃
∂ϕ

−Θδ sinϕ
∂(f̄ + f̃ )
∂ε

= ν̄R0εΩ0a′

πqv2

∂2 f̃
∂λ2

. (3.20)

Only the ε dependence of ∂ f̃ /∂ε and the resonance of the coefficient of ∂ f̃ /∂ϕ matter.
All other ε dependence is unimportant. In the next section, the preceding equation will be
solved in a weak collisionality limit that allows the nonlinear kinetic pod structure to be
retained.

4. Nonlinear kinetic equation solution in the presence of a pod

Defining the new radial variable x and pitch angle variable Λ by letting

ε = xL (4.1)

and
(1 − λ)/(2κ2

0 − 1) = ΛL, (4.2)

with f̄ ′ = ∂ f̄ /∂x = L∂ f̄ /∂ε and

L =
[

8εκ2
0 (1 − κ2

0 )Θδ

2κ2
0 − 1

]1/2

, (4.3)

leads to the more compact form

(x −Λ)
∂ f̃
∂ϕ

− sinϕ

(
f̄ ′ + ∂ f̃

∂x

)
= �

∂2 f̃
∂Λ2

, (4.4)

where

Δ = ν̄
√

2εR0Ω0a′

4π [κ2
0 (1 − κ2

0 )]
1/2][(2κ2

0 − 1)Θδ]3/2qv2
. (4.5)

Notice that δ → 0 is not compatible with Δ � 1.
Ignoring a term that is a constant multiplying f̄ ′ for the moment by letting

f̃ = g − (x −Λ)f̄ ′, (4.6)

and recalling ∂ f̄ ′/∂ϕ = 0 = ∂ f̄ ′/∂Λ, then f̄ ′ + ∂ f̃ /∂x = ∂g/∂x gives a convenient form
similar to that considered by Hamilton et al. (2023) in an astrophysical context, namely

(x −Λ)
∂g
∂ϕ

− sinϕ
∂g
∂x

= �
∂2g
∂Λ2

. (4.7)

In this compact form, the steady state, fully phase mixed solution in the presence of
weak collisions (Δ � 1) found by Hamilton et al. (2023) is of interest. The Hamilton
et al. (2023) work was preceded by an incomplete solution by Petviachvili (1999).
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To recover the precise Hamilton et al. (2023) form, it is convenient to introduce the
reduced Hamiltonian or constant of the motion:

h = 1
2(x −Λ)2 − cosϕ, (4.8)

with h = 1 the location of the separatrix between the bound (−1 < h < 1) and unbound
(h > 1) motion. The preceding allows the kinetic equation to be written as

∂h
∂x
∂g
∂φ

− ∂h
∂φ

∂g
∂x

= �
∂2g
∂Λ2

. (4.9)

More interestingly, as x and Λ only enter in the combination x −Λ, it is convenient to
define a mixed kinetic variable j depending on minor radius x and pitch angle Λ that can
also be written in terms of the reduced constant of the motion h and the angular dependent
departure from quasisymmetry ϕ as

j(x,Λ) = x −Λ = σ
√

2(h + cosϕ) = j(h, ϕ), (4.10)

with σ = ±1. This kinetic variable j simplifies the reduced kinetic equation to the
steady state form of Hamilton et al. (2023):

j
∂g
∂ϕ

− sinϕ
∂g
∂j

= �
∂2g
∂j2

. (4.11)

The steady state solution for Δ = 0.001 shown in their figure 2(a) is reproduced here
with their kind permission as figure 1. However, the kinetic variable j used here differs
from that of Hamilton et al. as they are not interested in the distinction between x and
Λ. This distinction is important here because the presence of a resonance requires drift
reversal and thereby leads to pitch angleΛ and radial x variation, with the radial flattening
occurring in g and not f̄ . The distinction also matters when the energy flux is evaluated in
the next section. Pods are defined in j, ϕ space with configuration space x and pitch angle
Λ islands appearing for fixed Λ and x, respectively. Discontinuities are resolved by the
narrow collisional boundary layers about the h = 1 separatrices or pod boundaries.

By keeping a time derivative, Hamilton et al. (2023) numerically solved the preceding
equation for various values of Δ to find skew symmetric steady state solutions satisfying

g( j, ϕ) = −g(−j,− ϕ) (4.12)

that relax to the steady state panels shown in their figure 2. The skew symmetric form of
the solution means the oscillating function Θ can be replaced by |Θ| in L and Δ since the
same solution procedure is valid even if the sign of the sinϕ term changes in (4.11).

Continuing to follow Hamilton et al. (2023) by changing from j, ϕ variables to h, ϕ
variables using

∂g
∂ϕ

∣∣∣∣
j

= ∂g
∂ϕ

∣∣∣∣
h

+ ∂h
∂ϕ

∣∣∣∣
j

∂g
∂h

∣∣∣∣
ϕ

= ∂g
∂ϕ

∣∣∣∣
h

+ sinϕ
∂g
∂h

∣∣∣∣
ϕ

(4.13)

and
∂g
∂j

∣∣∣∣
ϕ

= ∂h
∂j

∣∣∣∣
ϕ

∂g
∂h

∣∣∣∣
ϕ

= j
∂g
∂h

∣∣∣∣
ϕ

, (4.14)
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FIGURE 1. Contours of constant g( j, ϕ), with the flattened bound region inside the separatrix at
h = 1 and the two unbound regions above (in red and yellow) and below (in dark and light blue).
Very narrow collisional boundary layers surround the separatrix. (Reprinted with permission
from Hamilton et al. (2023).)

the kinetic equation simplifies further to become

j
∂g
∂ϕ

∣∣∣∣
h

= �j
∂

∂h

∣∣∣∣
ϕ

(
j
∂g
∂h

∣∣∣∣
ϕ

)
. (4.15)

In the Δ � 1 limit, the lowest order motion is collisionless, but the solution form is
collisionally constrained. The solution can only depend on h for the isotropically born
alphas as they are confined in a nearly QS magnetic field. Furthermore, to cancel the
−(x −Λ)f̄ ′ = −jf̄ ′ term in f̃ in the freely circulating limit (that is, at large pitch angle
for each flux surface) far from the separatrix, a skew symmetric solution is required to
lowest order, as in Hamilton et al. (2023). Moreover, based on the numerical solution of
Hamilton et al. (2023), any fine structure associated with the bound or librating motion is
collisionally phase mixed away to find the flattened solution g = 0 since it cannot depend
on ϕ and must vanish to satisfy skew symmetry. This solution will be verified shortly.
Consequently, a solution of the form

g = g1(h)+ g2(h, ϕ)+ · · · (4.16)

is assumed to satisfy
∂g1

∂ϕ

∣∣∣∣
h

= 0, (4.17)

to lowest order. To next order, the equation is simply

j
∂g2

∂ϕ

∣∣∣∣
h

= �j
∂

∂h

∣∣∣∣
ϕ

(
j
∂g1

∂h

∣∣∣∣
ϕ

)
. (4.18)

Solutions must be found for both the bound (or librating) alpha motion in the pods or
tubes and the unbound (or circulating) alpha particle motion outside them. The outer limit
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of the unbound solution far from the separatrix must smoothly match onto the inner limit
of the solution far from the separatrix defining the pod boundary.

Dividing by j and eliminating g2 by integration over a full bound periodic orbit or from
−π to π for an unbound (at fixed h) orbit, leads to the solubility constraint

∂

∂h

∣∣∣∣
ϕ

[
(

∮
h

dϕj)
∂g1

∂h

∣∣∣∣
ϕ

]
= 0. (4.19)

For the unbound using j = σ
√

2(h + 1)− 4sin2(φ/2) with k = √
2/(h + 1):

∫ π

−π
dϕj = σ4

√
2(h + 1)

∫ π/2

0
dt
√

1 − [2/(h + 1)]sin2(t) = σ8k−1E(k), (4.20)

where k = 0 (or h → ∞) are freely circulating and the separatrix is at k = 1 (or h = 1).
Far from the separatrix (j2 � 2 cosϕ) the alpha distribution function must go to the
slowing down tail result f̄ . Consequently, g1 → (x −Λ)f̄ ′ = jf̄ ′ ≈ σ f̄ ′√2h is required.
Therefore, to match the freely circulating limit requires ∂g1/∂h|ϕ → σ f̄ ′/

√
2h ≈ σkf̄ ′/2,

and gives the unbound or circulating solution

∂g1

∂h

∣∣∣∣
ϕ

= σπkf̄ ′

4E(k)
. (4.21)

This form is equivalent to (A10) of Hamilton et al. (2023). Integrating from the
separatrix, where g1(h = 1) = 0 to be skew symmetric, the piecewise continuous solution
is (Hamilton 2024)

g1 = πσ f̄ ′

4

∫ h

1

dhk
E(k)

= πσ f̄ ′
∫ 1

k

dt
t2E(t)

, (4.22)

with k = √
2/(h + 1). As k → 0,

π

2

∫ 1

k

dt
t2E(t)

=
∫ 1

k

dt
t2

+
∫ 1

k

dt
t2

[
π

2E(t)
− 1

]
≈ 1

k
− 0.6894 − k

4
+ O(k3), (4.23)

giving the desired freely circulating result

g1 → σ f̄ ′(
√

2h − 1.379 + · · · ) ≈ ( j − 1.379σ)f̄ ′. (4.24)

Consequently, the lowest order unbound solution is

f̃ = g1 − ( j − 1.379σ)f̄ ′ = f̄ ′
[
σπ

∫ 1

k

dt
t2E(t)

− j + 1.379σ
]
. (4.25)

To account for the constant from the integral, f̃ = g − (x −Λ− 1.379σ)f̄ ′ generalizes
(4.6) to get the solution for f̃ . The skew symmetric factor 1.379σ f̄ ′ is needed to properly
account for the three phase space regions (two unbound with σ = ±1 and one bound with
σ = 0) separated by collisional boundary layers at the separatrices as in figure 1.
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To demonstrate that the bound solution g1 = 0 is valid, let b sin t = sin(ϕ/2). Then∫
h

dϕj/8(1 + h) =
∫ π/2

0
dt(1 − b2sin2t)

−1/2
cos2t = (1 − b−2)K(b)+ b−2E(b), (4.26)

with b2 = (1 + h)/2. Integrating the bound solubility constraint up to the separatrix gives

[E(b)− (1 − b2)K(b)]
∂g1

∂h

∣∣∣∣
ϕ

= ∂g1

∂h

∣∣∣∣
ϕ,h=1

. (4.27)

As b → 0, E(b)− (1 − b2)K(b) → πb2/4, which would require ∂g1/∂h|ϕ → ∞ to keep
∂g1/∂h|ϕ,h=1 finite. Therefore, g1 = 0 is the only well behaved, skew-symmetric, fully
phase mixed, bound solution in the presence of weak collisions that is consistent with
the solubility constraint from the collision operator as shown numerically by Hamilton
et al. (2023). Consequently, the desired piecewise continuous skew symmetric solution for
the bound is

f̃ = −jf̄ ′. (4.28)

The preceding unbound and bound solutions for g are in agreement with figure 2 of
Hamilton et al. (2023) for Δ = 0.001 in the steady state. The 1.379σ step in the solution
f1 at the separatrix, as seen by comparing (4.25) and (4.28), is smoothed by a narrow
collisional boundary layer at the separatrix that need not be resolved by the solution
procedure here. The behaviour in the boundary layer does not play a role in the results
that follow. The piecewise continuous behaviour is removed in the numerical solution if
boundary layers are resolved. In the next section these analytic solutions are used to form
the alpha energy flux.

5. Energy flux

The radial energy flux at large aspect ratio and fixed x is

Q = πqMα

B0a′

〈∫
d3vf v2vd · ∇ψp

〉
. (5.1)

It must be evaluated to determine the alpha particle loss due to the departure from
quasisymmetry, where the flux surface average is

〈. . .〉 =
∮

dϑ dζ
B · ∇ϑ (. . .)/

∮
dϑ dζ

B · ∇ϑ =
∮

dη dϕ
B · ∇η(. . .)/

∮
dη dϕ
B · ∇η , (5.2)

and d3v = 2πv3 dv dλB/|v|||B0, where both signs of v|| are summed over by
∫
α

dτ in the
numerator as only trapped alphas contribute.

Keeping only the radial drift due to a departure from quasisymmetry, recalling ∂f /∂η =
0, and using the results from § 3 yields

2πq
B0a′

∮
α

dτvd · ∇ψp = −pV̄ sinϕ
∮
α

dτ . (5.3)

As a result. the energy flux becomes

Q = 2π2qMα

∫
dv
∫

dλv5 ∮ dϕ f̃
∮
α

dτvd · ∇ψp

B2
oa′ ∮ dη dϕ/B · ∇η = −πpMα

∫
dvv5 ∫ dλV̄

∮
dϕg sinϕ

∮
α

dτ
B0
∮

dη dϕ/B · ∇η ,

(5.4)

where only g from f̃ = g − (x −Λ− 1.379σ)f̄ ′ contributes because of the ϕ integral.
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The reduced constant of the motion h means that collisionless orbits are confined and no
collisional transport can occur due to g1(h). Recalling dλ = (2κ2

0 − 1)L dh/j, accounting
for both σ signs by multiplying by 2 when integrating over h, and using (4.21)–(4.25),
gives
∫ ∞

−∞
dj
∮

dϕg sinϕ∮
dϕ

= 2
∫ ∞

1
dh
∮

dϕg sinϕ
j
∮

dϕ
= −2

∫ ∞

1
dh
∮

dϕ
g∮
dϕ

∂j
∂ϕ

∣∣∣∣
h

= 2
∫ ∞

1
dh
∮

dϕ
j∮
dϕ

∂g2

∂ϕ

∣∣∣∣
h

= 2�∮
dϕ

∮
dϕ
∫ ∞

1
dhj

∂

∂h

∣∣∣∣
ϕ

(
j
∂g1

∂h

∣∣∣∣
ϕ

)

= 2�

[(∮
dϕj2∮
dϕ

)
∂g1

∂h

∣∣∣∣
h→∞

ϕ,h=1
− g1|h→∞

h=1

]
= 2�f̄ ′

⎡
⎣ π

√
2h

2E(k)
√

h + 1

∣∣∣∣∣
h→∞

ϕ,h=1

− (
√

2h − 1.379)

⎤
⎦

= −(π − 2.758)�f̄ ′ = −0.122π�f̄ ′.
(5.5)

The lower limit on the h integral is a reminder that only the unbound (h ≥ 1) contribute
to the radial transport. The unbound require 1 ≤ h = j2/2 − cosϕ indicating j2 ≥ 2(1 +
cosϕ) > 0, with −π < ϕ < π , so no singularity occurs at j = 0 as the unbound never
make it to j = 0 (the centreline of the phase space pod).

Inserting (5.5) in energy flux and noticing f̄ ′ = L∂ f̄ /∂ε, Q becomes

Q = −0.122π 2p(2κ2
0 − 1)Mα(v

∮
α

dτ)
∫ v0

0 dvv4L2V̄�∂ f̄ /∂ε
B0
∮

dη/B · ∇η , (5.6)

with (v
∮
α

dτ)/B0
∮

dη/B · ∇η ≈ 4K(κ0)/π
√

2ε, L ∼ (εΘδ)1/2 and

(2κ2
0 − 1)L2V̄Δ = [κ2

0 (1 − κ2
0 )]

1/2

(2κ2
0 − 1)3/2

(2ε)3/2ν̄R0(|Θ|δ)1/2

= 2[κ2
0 (1 − κ2

0 )]
1/2

p(2κ2
0 − 1)1/2

(2ε)3/2R0v
3
λ

τsv3
(|Θ|δ)1/2.

(5.7)

Using the slowing down tail form for f̄ and assuming v0/vc � 1 gives a result dominated
by the contributions from the v ∼ vc alphas, namely

∫ v0

0
dvv

∂ f̄
∂r

= 1
4π

∂

∂r

(
Sτs

vc

∫ v0/vc

0

dxx
x3 + 1

)
≈ ∂

∂r

(
Sτs

6
√

3vc

)
. (5.8)

As a result, the energy flux of the alphas is

Q = −0.976K(κ0)[κ2
0 (1 − κ2

0 )]
1/2

3
√

3(2κ2
0 − 1)1/2

∫
R2

0Mαv
3
λ(|Θ|δ)1/2
τs

∂

∂r

(
Sτs

vc

)
= −0.203

∫
R2

0Mαv
3
λ(|Θ|δ)1/2
τs

∂

∂r

(
Sτs

vc

)
,

(5.9)

provided Δ � 1 or δ3/2qv/
√

2εΩ0a′ � ν̄R0/v. The δ1/2 dependence of Q implies the
energy flux is proportional to the radial pod width. In this limit, the normalized pod width
is finite and satisfies (εδ)1/2 � (ν̄R0/v)

2/3(εΩ0a′/qv)2/3 ∼ (R0/vc)
2/3(εΩ0a′/qvλ)2/3 for

speeds as small as vλ ∼ vc. At these speeds, removing a birth energy factor Mαv
2
0/2 and
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assuming Θ ≈ 1 to obtain an upper bound estimate of the transport, the diffusivity is of
order

Dν ∼ εR2
0v

3
λδ

1/2/vcv
2
0τs, (5.10)

as in (2.13), where the alpha density is nα ≈ Sτs/�n(v0/vc) ∼ Sτs. (When |Θ| � 1 such
that Δ � 1, only resonant plateau transport occurs.) As indicated in § 2, this diffusivity
can be comparable to or less than the diffusivity associated with resonant plateau transport.
But unlike resonant plateau transport, the transport in the presence of the phase space pods
acts to remove the alphas with speeds of the order of vλ ∼ vc, rather than those just being
born. Consequently, it might prove useful for ash removal, since the particle diffusivity
will be of the order of v2

0/v
2
c larger than (5.10).

Large diffusive alpha energy loss in a slowing down time is avoided if τsDν/r2 � 1 or
δ/ε � εv4

0v
2
c/v

6
λ ∼ 1–10. Moreover, the normalized radial phase space pod width (εδ)1/2

must be larger than the collisional boundary layer width (ε2ν̄/ω̄α)
1/3 to keep Δ � 1

requiring δ/ε � (ν̄/εω̄α)
2/3 ∼ 10−2 for birth alphas with R0/v0τs ∼ 10−5 andΩ0R0/qv0 ∼

102. Ultimately, a comprehensive investigation will be required. However, it is encouraging
that resonant plateau transport overestimates the transport level when the optimization is
less than perfect as it is (εδ)3/2/(ε2ν̄/ω̄α) larger. Indeed, the resonant plateau estimate of
(2.9) suggests that δ/ε ∼ 10−2 is required for good collisional confinement of birth alphas.

6. Discussion

In an imperfect QS stellarator the departure from quasisymmetry can be large enough
that the usual resonant plateau or superbanana plateau treatment of the collisional transport
of alpha particles fails because the presence of narrow phase space pods introduces small
radial scale lengths that require retaining nonlinear effects. When the normalized error
magnetic field δ is large enough and the alpha collisions weak enough to satisfy Δ � 1
for vλ ∼ vc <∼ v ≤ v0, that is, when

1 � B||
εB0

= δ

ε
�
(

R0�0a′

qv2
cτsε

)2/3

, (6.1)

the transport enters a regime not previously considered for alpha particle transport in
which the pod structure plays a key role. This pod structure is kinetic in nature as the
transport depends on both the minor radius and the pitch angle velocity space variable,
with each flux surface having a slightly different resonant pitch angle defining the location
of its pod centre. In the weakly collisional regime considered here, the lowest order
motion of the alphas is altered by the phase space pods. The transit or bounce averaged
kinetic calculation is performed by ignoring collisions in lowest order to find a next order
constraint that flattens the perturbed alpha distribution function in the pod for the bound
alphas. The barely unbound or circulating alphas are also pod perturbed. The collisional
transport is evaluated by making use of the next order reduced kinetic equation that retains
collisions. Only the unbound contribute to transport.

The single helicity diffusivity suggests that the collisional resonant plateau is of most
concern for birth alphas in imperfect QS stellarators, as pods reduce collisional transport.

The kinetic procedure illustrated here for alphas is also expected to be
relevant in other problems, including large amplitude toroidal Alfvén-eigenmode and
neoclassical tearing mode driven alpha transport, and intense radio frequency heating
and current drive. All that is required for similar physics to hold is the presence of a
wave–particle resonance that is sensitive to diffusive collisions.
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