
BULL. AUSTRAL. MATH. SOC. 34B15, 4 7 H 1 1

VOL. 48 (1993) [435-440]

ON A RESONANCE PROBLEM WITH NONLINEARITIES
OF ARBITRARY POLYNOMIAL GROWTH

CHUNG-WEI HA AND WEN-BING SONG

We prove some existence theorems for solutions of a semilinear two point bound-
ary value problem at resonance in which the nonlinear terms can have arbitrary
polynomial growth in one of the directions oo or — oo, and are bounded in the
other. The results are based on degree theoretic arguments and the Borsuk odd
mapping theorem.

We consider the boundary value problem

(1) u"+u + g{x, u) = h{x) in (0, ir), u(0) =«(*•) = 0,

where h £ Lx(0, TT) is given and g: (0, TT) X R —» R is a Caratheodory function, that is,
g(x, v.) is measurable in x £ (0, 7r) for all u G R and continuous in u € R for almost
all x £ (0, re). The solvability of the problem (1) has been extensively studied if the
nonlinear term g is assumed to grow at most linearly in u. Let

r+(x) — hmsupg(x, u)/u, T_(a;) = limsup«/(x, u)/u
V—>OO 11—• — OO

be nonnegative functions in L°°(0, 7r), T(x) = max{r.|-(x), F_(a;)}. Existence theo-
rems for a solution to (1) are proved if T(x) ^ 3 for almost all x £ (0, TT) , with the strict
inequahty holding on a subset of (0, n) of positive measure (see Ahmad [1], Iannacci-
Nkashama [4]). A further result along these lines is obtained in Drabek [3] in which the
bound in L°°(0, IT) of one of F+ and F_ can be arbitrary, provided that of the other
is sufficiently small. The purpose of this paper is to give solvability conditions for (1)
when g is allowed to have arbitrary polynomial growth in u in one of the directions oo
or —oo, and is bounded in Z1(0, 7r) in the other. Our results complement those cited
above. For definiteness we assume that

(H) There exist constants a,p > 0 and b G X^O, TT) such that 6 ̂  0 in (0, n) and
for almost all x e (0, ir), u e R

-b{x) ^ g(x, « ) < a \u\p + b(x).
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Our main result is Theorem 1 below which is an existence theorem for a solution
to (1) by assuming a Landesman-Lazer condition (see (3) below) originally obtained
in Landesman and Lazer [5]. In Theorem 2 we give solvability conditions for (1) in
the absence of a Landesman-Lazer condition. For their proofs, we use degree theoretic
arguments (see, for example Deimling [2], Chapter 2) and the Borsuk odd mapping
theorem.

In what follows, we shall make use of the real Banach spaces Lp(0, ir), C[0, ir] and
C f̂O, TT] with the standard norms denoted by ||u||iP , ||w||c and ||u||ci , respectively. By
a solution of (1) we mean a function which has an absolutely continuous derivative and
satisfies the boundary condition and the differential equation in (1) almost everywhere
in (0, TT).

THEOREM 1 . Let g: (0, TT) x R —+ R be a Caratheodory function satisfying the
condition (H). If there exists c G i 1 ( 0 , TT) such <ha< for almost all x £ (0, ir), u ^ 0

(2) g(x, u) ^ c(x),

then for any h £ i 1 (0, 7r) the problem (1) is solvable provided that

(3) / s_(x)sin xdx < / h(x) sin x dx < / g+(x)sin xdx,
Jo Jo Jo

where g+(x) = liminf 5(3;, u), g~(x) = limsup g(x, u).
**— ôo u—»~oo

PROOF: We can sssume without loss of generality that p > 1. Let / : R —• R be
the continuous function defined by

{
u i f | « | ^ 1

1 if w > 1

- 1 i f u < - l .

We consider the boundary value problems

u" + u + (1 - *)/(«) + tg{*, «) = ih(x) in (0, n)
( 4 ) «(0) = U(TT) = 0

for 0 ^ f ^ 1, which becomes the original problem (1) when t = 1.

We assume for the moment that solutions u to (4) for some 0 ^ t ^ 1 have an a
priori bound in C1 [0, n] and use this to finish proving the theorem. Then there exists
a constant R > 0 such that | |« | | c < R for any possible solution u to (4) for some
0 < * < 1. We define a map H: [0, 1] x C[0, TT] -> C[0, n], (t, u) -> Htu, where
w = Htu is the unique solution to the problem

w" + u + (1 - t)/(u) + tg(x, u) = th(x) in (0, w)

t«(0) = w(ir) = 0.
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Then a function w € C[0, n] is a solution to (4) for some 0 ^ t ^ 1 if and only if Htu =
u. It follows from a standard argument that H is a compact map. Moreover, the Leray-
Schauder degree deg ( / — Ht, B, 0) is defined and does not depend on 0 ̂  < ^ 1, where
/ denotes the identity map on C[0, if], B = {u G C[0, IT] : \\u\\c < R}. Obviously the
map J?o is odd on C[0, w] and so by the Borsuk odd mapping theorem (see, for example
Deimling [2], Theorem 8.3) deg ( / - Ho, B, 0) is odd. Hence deg ( / - Hu B, 0) is odd,
which imphes that the original problem (1) has at least a solution in B.

In order to prove the assumption, we need some preliminary results. First we note
that there exist Caratheodory functions gi, g2'- (0, ir) x R - » R such that g = gi + g2
and |si(x, u)\ ^ b(x), 0 ^ g2(x, u) < a |u | p for almost all x G (0, w), u G R. This may
be done by defining

g2(x, u) = min{p(a:, u) + b(x), a |u |p}

and gi = g — g2. We note also the inequality

(5) | tu(x)/sinx| < (TT/2) max \w'{a)\

for x G [0, n] valid for all w £ C1[0, n] with tu(0) — w(ir) — 0. Now we suppose that
u is a solution to (4) for some 0 ^ t < 1. Taking the inner product in L2(Q, TT) of (4)
with sin x, we have

(6) ( l - < ) / /(u)sin xdx+t I [g(x, u) - h(x))sin xdx =0
Jo Jo

and so

t l \g2(x, u)|sin xdx < / [1 + b(x) + \h(x)\] sin xdx = c\.
Jo Jo

It follows from (5) that

(7) / " \tga{x, W ) | ( 1 + p ) / p dx ^ in1'' f \g2(x, u)\ \u\ dx
Jo Jo

^ tal''{ic/2) |M|C, / \g2(x,u)\smxdx
J
/
o

Hence there exists a constant CQ > 0 such that

\92{x, u)\ dx < ^1/<1+") [j \tg,(x, « ) | ( 1 + r t " dx
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for any possible solution u to (4) for some 0 ^ t ^ 1.

It remains to show that solutions u to (4) for some 0 ^ t < 1 have an a priori
bound in C^O, IT]. If this is false, then there exist a sequence {*„} in [0, 1) and a
corresponding sequence {un} of functions such that u n is a solution to (4) when t = tn

and | |«n | | c i ^ n for all n. Let vn = «n/ | |«n| | c i • T l i e n ll»n||ci = 1 and

(9) v!H + vn+mn = 0 in(0,ir), vn{0) = vn(v) = 0,

where

(10) mn(z) = [(1 - <„)/(«„) + tn(9l(x, «„) - h(x))}/ | |u n | | c l

Clearly by (8) lim mn = 0 in Lx(0, ir). Moreover, the right hand side of (10) is the
n—*oo

sum of two terms: the first term is dominated by a function in £1(0, IT) and by (7)
the second term has norm in l/-1+p"p(0, ir) bounded by a constant independent of
n. Since each v'n vanishes somewhere in (0, TT), it follows from (9) that the sequence
{vjj} is equicontinuous and uniformly bounded on [0, TT] . Thus the sequence {»„} is
also equicontinuous and uniformly bounded on [0, TT] . By the Ascoli theorem we may
assume without loss of generality that tn —* to and there exists v £ C1 [0, TT] such that
vn -» v in C^O, TT] . It follows from (9) that for x e [0, n]

f'[
Jo
f[vn(s)-mn(a)]ds

Jo
and so by letting n approach oo

v'(x) = v'{0) - [' v(a)ds.
Jo

Hence v has an absolutely continuous derivative and satisfies

v" + v = 0 in (0, TT), U(0) = v(n) - 0.

Consequently v = a sin x for some a ^ 0. We deduce using (5) that the sequence
{ v n / s i n x } converges to a uniformly on [0, w].

Now there are two alternatives: either a > 0 or o < 0. If the first alternative
holds, then un(x) > 0 for n large enough and lim un(x) = oo for x £ (0, it). We

n—•oo

write (6) with u = un and t = tn as

(11) (1 - tn) [ /(«„) sin xdx+tn f [g(x, un) - h(x)] sin x dx = 0
Jo Jo

and have the following two cases to consider. In the case to = 0, by (H) anc

(1 - tn) I / ( u n ) sin x dx ^ tn I [h(x) + b(x)) sin x dx
Jo Jo
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and so by the Lebesgue theorem we would have Jo sin x dx ^ 0 which is absurd. In

the case to > 0, applying the Fatou Lemma to the left hand side of (11) we would have

(1 — t0) I sin xdx + t0 I [g+(x) — h(x)] sin xdx ^ 0
Jo Jo

which contradicts the second inequality in (3). If the second alternative holds, then
un(x) < 0 for n large enough and lim «n(z) = —oo for x € (0, ir) . Again we have

n—>oo

the following two cases to consider. In the case to = 0, by (2) and (11)

(1 - tn) I f(un)sinxdx >tn I [h(x) - c(x)]sin xdx
Jo Jo

and so by the Lebesgue theorem we would have — Jo sin xdx ^ 0 which is absurd. In
the case to > 0, applying the Fatou Lemma to the left hand side of (11) we would have

—(I-to) sinxdx+to / [g~(x) - h(x)]sin xdx ^ 0
Jo Jo

which contradicts the first inequality in (3). This completes the proof of the theorem. U

As pointed out in Landesman and Lazer [5], if we assume in Theorem 1 furthermore
that g-(x) < g(x, u) < g+{x) for almost all x £ (0, IT) , u £ R, then (3) is also necessary
for the solvability of (1). Thus it follows from Theorem 1 that for p > 2

u2) = h(x) in(0,7r)

u(0) = u(7r) = 0

is solvable if and only if Jo h(x) sin x dx > 0, where u+ = max{u, 0} .

An interesting case in which (3) is not satisfied is when the equality holds in place

of one of the inequalities. By modifying part of the proof of Theorem 1, we obtain

the following Theorem 2 which is an existence theorem for a solution of (1) without

assuming a Landesman-Lazer condition.

THEOREM 2 . Let g: (0, TT) X R -» R be a Camtheodory function satisfying the
condition (H). If

(12) ug{x, u) > 0

for almost all x 6 (0, n), t i f l t , then the problem (1) is solvable for any h 6 X1(0, n)
such that J* h(x)sin xdx = 0.

PROOF: In the proof of Theorem 1, the crucial part is in the second half to obtain
an a priori bound in C1 [0, n] for solutions u to (4) for some 0 ^ t < 1. The condition
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(3) is used only in the final steps of this part to produce contradictions. Thus we can
proceed in exactly the same way as the proof of Theorem 1 up to the point where we
have two alternatives: either a > 0 or a < 0. Now (11) becomes

(13) (1 - tn) I f{un) sin x dx + tn I g(x, un) sin x dx — 0.
Jo Jo

If the first alternative holds, then un > 0 in (0, 7r) for n large enough. Since

Jo f(un) sin xdx > 0, tn ^ 0. Thus 0 < tn < 1 and so by (13) we would have

J"o g(x, un) sin xdx < 0 which contradicts (12). Similarly the second alternative leads

to a contradiction. This completes the proof of the theorem. D

As an example in which (3) is not satisfied, it follows from Theorem 2 that for
p ^ 0, the problem

u" +u + up
+ |sinu| = h(x) in (0, TT), u(0) = U(TT) = 0

is solvable if Jo h(x) sin xdx = 0.

From the proofs of Theorems 1 and 2, we see that the condition (3) is formed by
two inequalities which are used in the proof separately. Likewise the condition (12) is
formed by two inequalities, namely g{x, u) ^ 0 for u ^ 0 and g(x, u) ^ 0 for u ^ 0
for almost all x £ (0, n), which are used separately. Hence one in (3) may be combined
with the other in (12) to produce new solvability conditions. For example, taking into
consideration the remark following the proof of Theorem 1, it follows that for p > 0,
the problem

u" + u + up
+ = h(x) in (0, TT), W(0) = W(TT) = 0

is solvable if and only if / 0 h(x) sin x dx ^ 0.
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