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Sums of distinct fifth roots of unity and the regular
dodecahedron

IAN STEWART

Introduction
Integer linear combinations of cube, fourth, or sixth roots of unity form

lattices in the complex plane . In contrast, integer linear combinations of
fifth roots of unity do not form a lattice; in fact, they are dense in .
Nevertheless, the geometry for fifth roots of unity has considerable
structure. Here we consider only sums of distinct fifth roots of unity, and
show that 20 of these sums are orthogonal projections of the vertices of a
regular dodecahedron. Pentagonal symmetry here is only to be expected, but
it is a little surprising to encounter a plane projection of a polyhedron with
much richer dodecahedral symmetry.

�
�

More precisely, let  be a primitive th root of unity. Then the algebraic
number field , consisting of all polynomials in  over the rational
numbers , is a cyclotomic field. Its ring of integers is , consisting of
all polynomials in  over the (positive or negative) integers . See for
example [1], [2], or the short proof in [3]. Integer combinations of the fourth
roots of unity ,  form a square lattice in �, and integer combinations of
cube roots or sixth roots of unity also form lattices. The same cannot be said
of fifth roots of unity, one reason for the crystallographic restriction that
lattices do not possess fivefold rotational symmetry. In fact, it is well known
in algebraic number theory that integer combinations of fifth roots of unity
are dense in �. Indeed, all rings of cyclotomic integers  where

 are dense in the plane. A short proof is given in [4,
Corollary 12].

ζn n
� (ζn) ζn

� � (ζn)
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Sums of distinct powers
The primitive fifth root of unity

ζ = e2πi/5 = cos
2π
5

+ i sin
2π
5

=
5 − 1

4
+ i

5 + 5
8

satisfies the equation

1 + ζ + ζ2 + ζ3 + ζ4 = 0. (1)

There are 32 sums of powers  as  runs through a subset of {0, 1, 2, 3, 4},
but the empty sum and the sum of all five powers are both zero. The relation
(1) generates all integer linear relations between these powers, so 31 of these
sums are distinct. Figure 1 shows their location in �. For reasons of space,
sums of four terms are replaced by minus the fifth, so for example

 is replaced by . (We retain sums of three terms

ζk k

1 + ζ2 + ζ3 + ζ4 −ζ
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because the geometry is clearer that way.) The thin grey lines are
construction lines indicating addition of the corresponding power of . For
example the line from  to  is parallel to the line from the origin to
and they have the same length.
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FIGURE 1: The 31 sums of distinct fifth roots of unity. Thick black lines (solid and
dashed) resemble a projection of a regular dodecahedron. The grey circle is the unit

circle in .�

If we do not distinguish solid and dashed lines, the symmetry group of
Figure 1 is the dihedral group  of order 10, the symmetry group of the
regular decagon formed by the 10 outermost points. This group is generated
by two rigid motions: rotation  by  anticlockwise and reflection  in the
real line. If we distinguish solid and dashed lines, the symmetry group is ,
generated by  and . These symmetries play a crucial role later.

�10

ρ π / 5
�5

ρ2 σ

Figure 1 has additional structure that requires explanation, which is
what motivated this Article. Anyone familiar with the regular solids can
hardly fail to notice that the thick lines (solid and dashed) bear a striking
resemblance to an orthogonal projection of a regular dodecahedron. (This is
easier to see in Figure 2 (left) below, where extraneous points and lines have
been removed.) The main aim of this article is to prove that this resemblance
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is exact. To do this, let  be this set of 20 points in . We will prove:V �

Theorem: The thick lines of Figure 1 are an orthogonal projection of the edges
of a regular dodecahedron, whose vertices project to the set  in Figure 1.V

The remaining 11 points in Figure 1 are the origin and the innermost
ring of 10 points (containing, for example, ).ζ + ζ4

Coxeter [5, Section 3.7] derives Cartesian coordinates for the vertices of
the regular solids (and more). The Theorem leads to a different set of
coordinates derived from fifth roots of unity, which must be equivalent to
Coxeter's up to rotation and dilation. Other interesting geometric figures are
also visible in Figure 1, such as the kites and darts that can be used in a
Penrose tiling (see Gardner [6]). We leave these for further investigation.

There are two ways to approach the Theorem :
(a) Set up an appropriate regular dodecahedron and calculate how it

projects.
(b) Consider ‘lifting’ the projected figure to produce a regular

dodecahedron.
Here we choose method (b).

Rings and Levels
We begin by separating the points of the projection into four rings

 as in Table 1.R1 − R4

R1 1 ζ ζ2 ζ3 ζ4

R2 1 + ζ + ζ4 1 + ζ + ζ2 ζ + ζ2 + ζ3 ζ2 + ζ3 + ζ4 1 + ζ3 + ζ4

R3 1 + ζ ζ + ζ2 ζ2 + ζ3 ζ3 + ζ4 1 + ζ4

R4 −1 −ζ −ζ2 −ζ3 −ζ4

TABLE 1: Coordinates in  of points in the four rings � R1 − R4

Each ring is symmetric under , rotation by ; that is, under
multiplication by . Moreover, taking (1) into account,

ρ2 2π / 5
ζ

R j = −R 5 − j = {−z : z ∈ R j}  1 ≤ j ≤ 5.
We now construct a (usually irregular) dodecahedron  whose vertices

project to the 20 points  by ‘lifting’ each ring  to a new position in 3-
dimensional space, in a direction perpendicular to , while keeping it
horizontal. We call the resulting set of points the corresponding level .
Figure 2 shows the geometry for one choice of levels. On the left is
projection onto , which corresponds to the thick black lines in Figure 1.
(The figure is rotated slightly compared to Figure 1.) On the right is a 3-
dimensional dodecahedron (which at this stage may not be regular) resting
on .

D
V Rj

�
Lj

�

�
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FIGURE 2: Left: Geometry of rings  in . Points in a given ring indicated by
shading of vertices:  (black);  (striped);  (dotted);  (white). Right: A typical

lifted (irregular) dodecahedron showing corresponding levels .

R i �
L1 L2 L3 L4

Li

We displace the four levels at right-angles to  as shown in Figure 3.
Here ,  are two distances, to be calculated below. We assume top/bottom
symmetry in the spacings because the corresponding levels of a regular
dodecahedron are symmetrically located. 

�
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b
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a

a
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1 + ζ + ζ2

FIGURE 3: Cross-section of presumed circumscribing sphere , showing the four
levels. See text for dashed triangle at top right.

S

We now choose  and  to make the lifted dodecahedron  regular. It
turns out that three conditions suffice:

a b D

(a) All 20 vertices of  lie on a sphere  with centre the origin.D S
(b) All edges of  have the same length, which is , where

 is the golden number.
D l = 3 − τ

τ = 1
2 (1 + 5)

(c) The radius of  equals the radius of the circumsphere of a regular
dodecahedron of side .

S
l
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We take these conditions in turn before explaining why they complete the
proof of the Theorem. Observe that condition (a) fails for the levels illustrated
in Figure 2 (right), which is deliberately drawn to illustrate this failure.

Condition (a).
Let  be the sphere with centre at the origin of  and radius .

Displace the rings  to levels  as in Figure 3, which shows the cross-
section of  vertically through the real line. Both 1 and  lie on
the real line, so the points  and  lie in this cross-
section. Therefore they lie on  provided that

S � × � r
Rj Lj

S 1 + ζ + ζ4

(1, −b) (1 + ζ + ζ4, −a)
S

b2 + 1 = r2  a2 + (1 + ζ + ζ4)2
= r2. (2)

Now  and . Therefore1 + ζ + ζ4 = τ τ2 = 1 + τ

b2 + 1 = r2  a2 + (1 + τ) = r2

so

b2 = a2 + τ. (3)
To fix  and  we also want the vertices at  and  to be the
same distance apart as those at  and . Thus (dashed
lines at lower right in Figure 3) we also require

a b (1, −b) (ζ, −b)
(1, −b) (1 + ζ + ζ4, −a)

(a − b)2 + (τ − 1)2 = |1 − ζ|2 = 3 − τ
so

(a − b)2 = 3 − τ − (τ − 1)2 = 3 − τ − τ2 + 2τ − 1 = 2 + τ − τ2 = 1

and . Now (3) implies that , so ,
so . Since , we obtain

b − a = 1 (a + 1)2 = a2 + τ 2a + 1 = τ
a = 1

2 (τ − 1) b = a + 1

a =
τ − 1

2
  b =

τ + 1
2

. (4)

Symmetry by  now implies that, for these choices of  and , all vertices
of the lifted dodecahedron lie on this sphere.

ρ2 a b

Condition (b).
The symmetries  and  in  extend from Figure 1 to any lift

constructed as above. With symmetrically spaced levels as in Figure 2, the
symmetry also extends to , but now rotation by  must be combined
with a top-bottom flip.

ρ2 σ �5 D

D π / 5

Condition (b) is trivial for levels  and . The symmetries just
discussed, together with the conditions already imposed, reduce this
calculation to that of the length of the edge between  and

. If this length is  then

L1 L4

(1 + ζ, −a)
(1 + ζ + ζ4, a) d

d2 = |ζ4|2 + (2a)2 = 1 + 4a2 = 1 + (τ − 1)2 = 3 − τ
so  as required.d = l
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Condition (c)
By (2) the radius  of the sphere  isr S

r = b2 + 1 =
(τ + 1)2

4
+ 1

so

r
l

=
(τ + 1)2

4 + 1
3 − τ

which simplifies to

r
l

=
3

4
(1 + 5) .

This is known to be the radius of the circumsphere of a regular
dodecahedron of side-length 1; see [5, Table 1 p.292] or [7]. (Coxeter uses
edge-length , not .) By similarity,  is the circumradius of a regular
dodecahedron of side .

2l l r
l

This completes the proof that conditions (a), (b) and (c) are satisfied.

We now explain why the Theorem follows from these conditions.
In Figure 1 there are five lines passing through the origin and a vertex in

, namely the real axis and its anticlockwise rotations by , . These
are mirror lines for the corresponding reflections of the figure. They are the
projections of five vertical planes in , which we call . Every
vertex of any lifted dodecahedron lies in one of these planes . Conditions
(a), (b), (c) imply that the vertices of  are the unique points that:

V ρ ρ2, ρ3, ρ4

� × � P0 − P4
Pj

D
(a) lie on  at the appropriate level,S
(b) lie on one of the mirror planes ,Pj

(c) are distance  from their immediate neighbours along the edges of .l D

The points of a regular dodecahedron also satisfy these conditions. By
uniqueness, these two sets of vertices coincide, so the lifted dodecahedron is
is regular and the Theorem is proved.

Cartesian coordinates
We end by listing the Cartesian coordinates of the vertices of the regular

dodecahedron according to this construction. We write the coordinates in the
unorthodox form , where  is a complex coordinate on the horizontal
plane  and  is a real one on the vertical axis . Now levels  and  lie in
planes  and  and  lie in planes , where  are as
in (4). The coordinates of the vertices are therefore:

(z, v) z
� v � L2 L3
v = ±a L1 L4 v = ± (a + b) a, b
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          (1, −τ) (ζ, −τ) (ζ2, −τ) (ζ3, −τ) (ζ4, −τ)
    (1 + ζ + ζ4,1 − τ) (1 + ζ + ζ2,1 − τ) (ζ + ζ2 + ζ3,1 − τ)

           (ζ2 + ζ3 + ζ4,1 − τ) (1 + ζ2 + ζ4,1 − τ)
    (1 + ζ, τ − 1) (ζ + ζ2, τ − 1) (ζ2 + ζ3, τ − 1)

           (ζ3 + ζ4, τ − 1) (1 + ζ4, τ − 1)
        (−1, τ) (−ζ, τ) (−ζ2, τ) (−ζ3, τ) (−ζ4, τ)

Alternative Approaches
Instead of appealing to the known formula for the radius of the

circumsphere of a regular dodecahedron, we can start from the above list of
coordinates and prove by direct calculation that they are the vertices of a
regular dodecahedron. We already know that all edge-lengths are equal, so
all that remains to be proved is that the pentagons corresponding to faces are
planar. This can be done by using three points to find the equation of the
plane in which they lie, and verifying that the other two points also lie on
that plane. Symmetries reduce the number of calculations to just one such
face (other than the top or bottom face).

Another possibility is to use the coordinates above to show that there are
additional symmetries of the dodecahedron . For example, that there is an
orthogonal matrix fixing the points  at level  and sending the points

 at level  to  at level .
(This reflects the  pentagon leaving the edge from 1 to  fixed.)

D
{1, ζ} L1

{ζ2, ζ3, ζ4} L1 {1 + ζ + ζ2,  1 + ζ,  1 + ζ + ζ4} L2
L1 ζ

As presented, our results arise from a series of calculations that just
happen to give the required answer. The same remark applies to the
alternative proofs just sketched. This surely cannot be the full story. In
particular, none of this gives a transparent representation of the full
symmetry group of the dodecahedron. Presumably this is hidden in the
above list of coordinates.

What is really going on?
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