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Influence of small inertia on Jeffery orbits

Davide Di Giusto1,2,†, Laurence Bergougnoux1, Cristian Marchioli2 and
Élisabeth Guazzelli3

1Aix Marseille Université, CNRS, IUSTI, 13453 Marseille, France
2Dipartimento Politecnico di Ingegneria e Architettura, University of Udine, 33100 Udine, Italy
3Université Paris Cité, CNRS, Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France

(Received 5 May 2023; revised 7 September 2023; accepted 10 November 2023)

We experimentally investigate the rotational dynamics of neutrally buoyant axisymmetric
particles in a simple shear flow. A custom-built shearing cell and a multi-view
shape-reconstruction method are used to obtain direct measurements of the orientation
and period of rotation of particles having oblate and prolate shapes (such as spheroids
and cylinders) of varying aspect ratios. By systematically changing the viscosity of the
fluid, we examine the effect of inertia (which may be originated from either phase) on
the dynamical behaviour of these suspended particles up to a particle Reynolds number
of approximately one. While no significant effect on the period of rotation is found
in this small-inertia regime, a systematic drift among several rotations toward limiting
stable orbits is observed. Prolate particles are seen to drift towards the tumbling orbit in
the plane of shear, whereas oblate particles are driven either to the tumbling or to the
vorticity-aligned spinning orbits, depending on their initial orientation. These results are
compared with recent small-inertia asymptotic theories, assessing their range of validity,
as well as to numerical simulations in the small-inertia regime for both prolate and oblate
particles.

Key words: particle/fluid flow, suspensions, slender-body theory

1. Introduction

Suspensions of axisymmetric (or quasi-axisymmetric) particles are ubiquitous in natural
and industrial applications, including plankton dynamics in the ocean (Guasto, Rusconi
& Stocker 2012; Marchioli et al. 2019), micro-plastic sea-water contamination (Ross et al.
2021), red-blood cell dynamics (Goldsmith 1996), paper production processes (Lundell,
Söderberg & Alfredsson 2011), drag reduction in pipelines and naval applications
(Hoyt 1972) and particle-reinforced composites (Bao, Hutchinson & McMeeking 1991).
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Figure 1. Representation of five different Jeffery orbits for a spheroid of aspect ratio r = 10. The azimuthal
and polar angles, φ and θ , are displayed as yellow dashed lines. The trajectories followed by one of the spheroid
extremities are obtained by integrating equation (1.1) in time and displayed as dotted lines on the surface of a
sphere of radius equal to the particle half-length �. The orbit constant C increases across the represented orbits
following the dashed arrow, from C = 0 in the z axis-aligned log-rolling orbit to C = ∞ in the tumbling orbit
in the (x, y) plane. See Figure1.avi in folder Figure_1 in supplementary materials available at https://doi.org/
10.1017/jfm.2023.1007 for animations.

A description of these systems is particularly challenging, as their rheology strongly
depends on the relative orientation of the particles within the flow. Nevertheless, as long
as these particles are shorter than the smallest relevant flow scale, the theory of Jeffery
(1922) represents the most common approach to their modelling (Paschkewitz et al. 2004;
Gustavsson et al. 2017; Voth & Soldati 2017).

In the absence of inertial and Brownian forces, Jeffery (1922) found that the axis of
revolution of an axisymmetric rigid particle suspended in a simple shear flow rotates along
one of an infinite one-parameter family of closed periodic orbits, known as Jeffery orbits,
depicted in figure 1. The time change in orientation is given by the equation for the unit
vector n parallel to the axis of revolution

ṅ = Ω · n + r2 − 1
r2 + 1

[E · n − n(n · E · n)], (1.1)

where r = �/a is the particle aspect ratio with � the particle half-length and a its radius.
The orientation changes fully with the rate of rotation of the flow, Ω , and only by a
fraction (r2 − 1)/(r2 + 1) of the rate of strain of the flow, E. Note that the second term
within square parentheses on the right-hand side of (1.1) is just meant to keep |n| = 1.
Considering the uniform shearing motion defined by (γ̇ y, 0, 0), where γ̇ is the flow shear
rate, the orientation of the particle axis of revolution is described by the azimuthal and
polar angles, φ and θ , shown in figure 1. The Jeffery orbits are of the form (with t = 0
when φ = 0)

tan φ = 1
r

tan
[

γ̇ t
r + (1/r)

]
, (1.2)

tan θ = Cr

(cos2 φ + r2 sin2 φ)1/2
, (1.3)

where the constant of integration C is known as the orbit constant. The period of rotation is
TJ = 2π(r + 1/r)/γ̇ . The rotational motions consist of infinitely many possible spherical
ellipses, limited by a tumbling orbit in the (x, y) plane on the equator of the sphere
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Influence of small inertia on Jeffery orbits

(C = ∞) and a spinning orbit aligned with the vorticity z-axis on the pole of the sphere
(C = 0).

Since their formulation, many experimental studies have reported Jeffery orbits for
spheroids as well as for other axisymmetric particles such as fibres having r � 1
and disks having r � 1 (see e.g. Taylor 1923; Binder 1939; Forgacs & Mason 1959;
Goldsmith & Mason 1962a; Karnis, Goldsmith & Mason 1966; Moses, Advani &
Reinhardt 2001; Einarsson et al. 2016). Interestingly, fibres were observed to rotate with
a period comparable to that of spheroids with a lower particle aspect ratio (Trevelyan
& Mason 1951). Subsequent experiments with disks (Goldsmith & Mason 1962b) and
high-aspect-ratio fibres (Anczurowski & Mason 1968) highlighted the shape equivalence
existing between spheroidal and cylindrical particles, which could be estimated precisely,
moving from a simple linear proportionality (Burgers 1938; Trevelyan & Mason 1951)
to a semi-empirical asymptotic theory (Cox 1971) and finally to a data-driven formula
(Harris & Pittman 1975). Note that also fore–aft symmetrical particles that possess a
discrete rotation symmetry and certain mirror symmetries but do not have a continuous
rotation symmetry obey Jeffery’s theory, just with different shape parameters, as shown in
the seminal paper by Bretherton (1962) and more recently by Fries, Einarsson & Mehlig
(2017).

In contrast to the case of a suspension of spheres (Einstein 1906, 1911), the first
modification to the viscosity of a suspension of spheroids is indeterminate in the limit
of the derivation of Jeffery (1922), as the particles exist in a dynamical state depending
only on their initial orientation and without steady-state preferential orientation. To solve
this indeterminacy, Jeffery himself was the first to suggest that spheroids would eventually
align with the local vorticity, driven by the terms neglected in his calculations, namely
flow and particle inertia. Taylor (1923) experimentally confirmed this conjecture, whereas
different conclusions were later reached by Saffman (1956), who concluded that small
particle inertia breaks the Jeffery orbits for nearly spherical particles, showing that log
rolling is stable for nearly spherical prolate particles and unstable for nearly spherical
oblate particles. In the following years, few experiments explored the influence of inertia
on Jeffery orbits. Preliminary efforts characterised the phenomenon in terms of a slow
variation of orbit constant C among consecutive rotations for negligible particle Reynolds
number (Goldsmith & Mason 1962b; Stover & Cohen 1990). Karnis, Goldsmith & Mason
(1963) found that fibres and disks suspended in circular tubes at particle Reynolds numbers
Rep ∼ 10−4 would eventually rotate in the tumbling (C = ∞) and spinning (C = 0) orbits,
respectively. Yet, to the best of our knowledge, no experimental study has produced a
rigorous characterisation of the influence of inertia on the Jeffery orbits.

Instead, weak inertial effects have been thoroughly addressed in a number of theoretical
works, from Subramanian & Koch (2005, 2006) and Einarsson et al. (2015a,b) to Dabade,
Marath & Subramanian (2016) and Marath & Subramanian (2017, 2018). In particular,
Subramanian & Koch (2005) examined the inertial effects on fibre motion in simple
shear flow, focusing on the slender-body limit (infinite aspect ratio). In this limit, they
were able to derive the fibre orbit equations up to O(Rep), where Rep is the Reynolds
number based on the fibre length. Their findings were later reproduced both by Einarsson
et al. (2015a,b), who exploited asymptotic perturbation theory to extend to small shear
Reynolds numbers the range of validity of the equation originally proposed by Saffman
for spheroidal particles with arbitrary aspect ratio, and later by Dabade et al. (2016),
who also analysed inertial effects in terms of modifications to the Jeffery orbit constant.
A common conclusion reached by these independent studies is that the most striking
effect of fluid and/or particle inertia is to lift the degeneracy of the infinitely many stable
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Jeffery orbits. This leads to a drift in the trajectory followed by the particles, which are
driven towards a limiting stable orbit through consecutive rotations. Prolate spheroids are
only pushed towards the tumbling orbit (C = ∞), whereas the situation is more complex
for oblate spheroids which are attracted to either the sole spinning orbit (C = 0) or both the
vorticity-aligned (C = 0) and the tumbling (C = ∞) orbits, depending on whether their
aspect ratio is larger or smaller than a critical value of approximately 0.14 (Einarsson et al.
2015b; Dabade et al. 2016). Interestingly, Marath & Subramanian (2017) also suggested a
second-order effect of inertia on the period of rotation, while Rosén et al. (2015) discussed
the influence of flow confinement over the stability of the tumbling and spinning orbits.

The problem has been also tackled numerically. Several studies based on the
lattice-Boltzmann method have considered prolate and oblate spheroids in the near-sphere
limit (Qi & Luo 2003; Huang et al. 2012; Mao & Alexeev 2014). Simulations offer
the advantage of easily separating between fluid and particle inertia, characterised by
the particle Reynolds number Rep = ρf �

2γ̇ /μ and the Stokes number St = ρp�
2γ̇ /μ =

Repρp/ρf , respectively, where ρp is the density of the particle, ρf that of the fluid and
μ the dynamic viscosity. By exploring a wide parameter space (0 < Rep < 300 and
0 < St < 1200) for spheroids with moderate aspect ratio 2 ≤ r ≤ 6, these authors found
a good agreement with the theoretical findings of Dabade et al. (2016) and Einarsson
et al. (2015a) at Rep ∼ 10, but also the emergence of other stable rotation states (spinning,
inclined spinning, inclined tumbling or kayaking) for different combinations of increasing
particle and flow inertia (Rosén et al. 2015). Interestingly, these simulations and previous
experiments by Zettner & Yoda (2001) reported an increase of the period of rotation with
flow inertia, proportional to (Rep,cr − Rep)

−0.5, where Rep,cr is a critical particle Reynolds
number above which the considered particles were observed to stop rotating.

In this manuscript, we present the results of an experimental investigation on the
rotational dynamics of neutrally buoyant spheroidal and cylindrical particles (both prolate
and oblate) subjected to simple shearing flows in the small-inertia regime (Rep = St � 1).
Since particles and fluid have the same density, we cannot distinguish between specific
particle inertia effects and fluid-inertia effects. As we will show, however, our findings
are valid regardless of the specific phase that is responsible for the observed inertial
bias. The experimental methods are described in § 2. The particles and fluids used
are described in § 2.1. The custom-built shearing cell is presented in § 2.2. The
multi-view shape-reconstruction method used to obtain direct measurements of the
particle orientation is introduced in § 2.3 with details of the data processing in § 2.4 and
analysis in § 2.5. The experimental results are presented in § 3. Typical evolutions of the
orbits for both oblate and prolate particles are shown in § 3.1. The period of rotation
is examined in § 3.2, where a thorough analysis of the equivalence in shape between
spheroids and cylinders is proposed. The drift through successive orbits owing to the effect
of inertia is analysed in § 3.3 and compared with the asymptotic theories: first in terms of
the time variation of the particle orientation vector, n, (Einarsson et al. 2015b) and then
as the discrete variation of orbit constant, �C, against C (Dabade et al. 2016). Concluding
remarks are drawn in § 4.

2. Experimental methods

2.1. Particles and fluids
Some typical cylindrical and spheroidal particles considered in this study are displayed
in figure 2. Their shape is determined by taking multiple pictures with a Hirox RH-2000
digital microscope with a resolution of 221 pixels per mm. Then, 10 measurements are
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(a)

(c)

(d )

2�

2a

(b)

Figure 2. Some typical particles used in the experiments: (a) top view of the disk ‘CYL005’ cut by laser
cutter; (b) side view of the spheroidal particle ‘ELL3’; (c) side view of the spheroidal particle ‘ELL06’;
(d) side view of the fibre ‘CYL20’ manually cut from fishing line. The yellow dashed curves in panels (a),
(b) and (c) represents the circularity of the given ideal shapes.

manually made using the software ImageJ to produce a statistical characterisation of
their length, 2�, and diameter, 2a, and consequently of their aspect ratio, r, as reported
in table 1, where the characteristics of all the particles used are listed. Particles are
separated into three different batches according to their production method. The first
batch (batch I) comprises two low-aspect-ratio fibres (CYL2, CYL10) and all the (oblate
and prolate) spheroids. These particles are produced out of UV-sensitive resin using a
stereolithography-3D printer with a resolution of 25 μm and have an estimated density
of 1200 kg m−3. The second batch (batch II) includes two fibres cut from a fishing
line and having an estimated density of 1160 kg m−3. Finally, the last batch (batch III)
contains all the disks obtained by laser cutting of rigid Plexiglas sheets having a density of
1180 kg m−3. Cylinders and spheroids coming from batches I and III are further polished
using sandpaper after production: for the former, this is done manually to preserve their
sharp edges; for the latter, this is undertaken inside a custom sand-paper box shaken
at 1000 rpm by a (Hauschild DAC 150.1 FVZ) speed mixer. Since the typical values
of the Young’s modulus E of the three materials is of the order of a few gigaPascals,
the ratio between viscous and elastic forces B = 8πμγ̇ �4/(Ea4π/4) is vanishingly small
(B ∼ 10−5) and the particles do not deform within the flow (Du Roure et al. 2019).

The fluids used in the experiments are prepared by mixing pure water and citric acid
until the solution meets the estimated density of the selected particle. The density of
the fluid ρf is sampled by means of a highly accurate (Anton Paar) densimeter with an
estimated uncertainty of 4 kg m−3. Experiments are performed at imposed shear rate γ̇ and
the fluid density is constrained to match that of the particle (ρp = ρf ), yielding Rep = St,
with Rep and St defined in § 1. This implies that inertia is mainly controlled by tuning
the fluid viscosity μ. This is achieved by adding a certain percentage of Ucon oilTM to the

979 A42-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1007


D. Di Giusto and others

Name Shape r � (mm) a (mm) κ Batch

ELL02 Oblate spheroid 0.20 ± 0.01 0.58 ± 0.02 2.91 ± 0.01 0.22 ± 0.01 I
ELL06 Oblate spheroid 0.56 ± 0.01 1.27 ± 0.01 2.28 ± 0.01 0.17 ± 0.01 I
ELL2 Prolate spheroid 1.72 ± 0.02 1.78 ± 0.01 1.04 ± 0.01 0.13 ± 0.01 I
ELL3 Prolate spheroid 2.67 ± 0.06 2.53 ± 0.01 0.95 ± 0.02 0.19 ± 0.01 I
ELL5 Prolate spheroid 5.1 ± 0.1 2.64 ± 0.01 0.52 ± 0.01 0.20 ± 0.01 I
ELL9 Prolate spheroid 9.0 ± 0.1 2.62 ± 0.01 0.29 ± 0.01 0.19 ± 0.01 I
ELL13 Prolate spheroid 13 ± 1 4.7 ± 0.2 0.36 ± 0.02 0.35 ± 0.02 I
CYL005 Disk 0.05 ± 0.01 0.14 ± 0.01 2.58 ± 0.06 0.19 ± 0.09 III
CYL009 Disk 0.10 ± 0.01 0.15 ± 0.02 1.51 ± 0.01 0.11 ± 0.01 III
CYL01 Disk 0.11 ± 0.01 0.31 ± 0.01 2.90 ± 0.04 0.21 ± 0.03 III
CYL02 Disk 0.20 ± 0.01 0.31 ± 0.01 1.56 ± 0.02 0.12 ± 0.01 III
CYL06 Disk 0.56 ± 0.01 1.03 ± 0.01 1.85 ± 0.02 0.14 ± 0.01 III
CYL2 Fibre 1.33 ± 0.02 1.78 ± 0.02 1.34 ± 0.01 0.13 ± 0.01 I
CYL10 Fibre 9.0 ± 0.2 2.59 ± 0.01 0.29 ± 0.01 0.19 ± 0.01 I
CYL15 Fibre 15.4 ± 0.2 3.48 ± 0.01 0.23 ± 0.01 0.26 ± 0.01 II
CYL20 Fibre 20.5 ± 0.7 4.54 ± 0.01 0.22 ± 0.01 0.34 ± 0.01 II

Table 1. Characteristics of all the particles used in the experiments. Columns from left to right: code name,
shape, mean aspect ratio r, half-length �, radius a, confinement ratio κ and identification of the production
method.

solution, which increases its viscosity from that of pure water up to ∼1 Pa s proportionally
to its concentration in our experiments, while also slightly decreasing its density.

2.2. Shearing cell
The shearing cell apparatus is displayed in panel (a) of figure 3. It is located in a room at
a controlled temperature of 23 ± 1 ◦C and consists of a small tank (500 mm long, 40 mm
wide and 90 mm deep) with 10 mm thick transparent walls on the long sides which have
been adapted from the previous work of Metzger & Butler (2012). Two metallic cylinders
of diameter 20 mm hang from the lid of the tank and are equipped with polylactic acid
cylindrical supports that increase their diameter to Ly = 27 mm. One is free to rotate and
the other is coupled to a transmission shaft through a rolling bearing. A transparent belt
is kept under tension between the two cylinders, similarly to the photographic roll used
in film cameras. It is cut into a rectangular sheet from a 0.1 mm thick flexible MylarTM

film and has its extremities kept together by metal staplers. Laser-cut holes in its upper
edge enable a gear wheel glued to the rotating cylinder to grip the belt. A rotating motor
powered by a DC power supply is connected to the transmission shaft through a drive belt
to rotate the gear wheel and drive the transparent belt inside the cell in an infinite loop at
constant velocity. The belt is 70 mm tall, extending from nearly the bottom of the shear
cell to approximately 15 mm above the free surface.

The fluid within the two parallel sides of the belt is submitted to a confined linear
shear where the neutral zero-velocity line lies between the two moving walls. The absolute
system of reference is defined as x being the flow direction, y the gradient direction and
z the vorticity direction, parallel to gravity. In our experiments, the origin is always set
at the initial position of the particle placed by hand at the centre of the shear flow. The
confinement ratio of the particles is defined as the ratio between the particle length and the
distance between the two sides of the transparent belt as κ = 2�/Ly (Zettner & Yoda 2001).
Mean values of the confinement ratio are reported in table 1. These values are similar to
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Figure 3. (a) Picture of the experimental set-up, where the tank filled with fluid between the two sides of
the transparent plastic belt is visible (1), together with the rotating motor and the motion transmission system
(2) and the two cameras, looking at the (x, y) flow-gradient plane (3) and at the (x, z) flow-vorticity plane (4).
(b) Sketch of the output given by the dual-camera video-recording system. The reference frame is defined at the
centre of the particle. The azimuthal and polar angles, φ and θ , as well as the projected angle, λ, and the three
components of the axis-aligned bounding box, B, are also represented. The two recorded frames are displayed
on the corresponding flow-gradient and flow-vorticity planes, to appreciate the contrast between the particle
projections and the background as well as the detected particle contours and axis-aligned bounding boxes.

that considered in the simulations by Rosén et al. (2015), namely κ = 0.2. Based on the
results of these simulations, a limited confinement effect on some statistical observables
may be expected. This is discussed in more detail in §§ 3.3 and 4.

The shearing flow is examined by shedding light onto three different (x, y) planes at
different depths and using particle image velocimetry (PIV). These sections are chosen at
least 10 mm below the free surface and above the small unconfined fluid layer laying at the
bottom of the cell to characterise a confined region of ∼30 mm depth where to operate
the experiments. The viscosity of the fluid μ is characterised by accurate rheological
measurements with an error of 0.001 Pa s on the measurements fully taking into account
the real uncertainties. The PIV measurements of the shear rate are performed only for
two low and high values of viscosity, as reported in table 2. Then, the effective shear rate
for each experiment is estimated by linear interpolation between these two measurements,
once the fluid properties have been fixed and its density matched to that of the given
particle. Secondary circulations are naturally present in such confined flow and can be
characterised by finely tuning the parameters of the PIV. They appear to be insignificant
when compared with the mean shear. Also, no significant variation of the shear rate is
observed across the depth of the region of interest in the shear cell. To summarise, we
observe a linear shear rate in a three-dimensional region the sizes of which are determined
by the width of the camera field in the flow direction (Lx = 140 mm), by the distance
between the two inner sides of the transparent plastic belt in the gradient direction (Ly =
27 mm) and by the depth of the different PIV measurements in the vorticity direction
(Lz = 30 mm).
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μ (Pa s) γ̇ (s−1)

0.054 ± 0.001 3.16 ± 0.03
0.400 ± 0.001 3.64 ± 0.05

Table 2. Shear rate measurements for two low and high values of viscosity. Mean values and uncertainties
are calculated over 500 velocity fields obtained by particle image velocimetry. The effective shear rates for
the other fluids used are obtained by linear interpolation once the fluid characteristics have been finely tuned
to match the density of the particles. It is possible to appreciate the small increase of the shear rate γ̇ with
increasing viscosity μ.

2.3. Measurements
A multi-view video recording system is deployed in the experiments, as shown in panel (b)
of figure 3. Jeffery orbits are three-dimensional, but given the axisymmetric nature of the
particles, the number of variables that specify the orientation reduces to two. Therefore,
measurements of the particle spin were not performed. The objective of this multi-view
system is to provide a three-dimensional reconstruction of the orientation of each particle
given by its direction vector n. Whereas three or more particle projections would permit
a direct resolution (Eberly 1999), we are limited to two complementary images of the
axisymmetric particle which are post-processed to reconstruct the orientation as explained
in § 2.4.

The cameras are two Allied Prosilica GX1910 cameras, with a resolution of 1920 ×
1080 pixels. Both cameras are equipped with a Nikon Micro-Nikkor 55 mm f2.8 objective,
imaging the shear cell from a distance of approximately half a metre with a resolution
of 20 pixels per mm. As they have their axes perpendicular, these cameras provide two
complementary images: one of the flow-vorticity plane and the other of the flow-gradient
plane, as seen in figure 3(a). Considering that the depth of field is enhanced to an estimated
value of 3 cm, we verified that distortion and diffraction phenomena are negligible by
measuring a checker-board patterned object in the flow volume of interest inside the shear
cell. The two cameras are controlled by an in-house developed Matlab script.

Experiments are performed as follows. After having filled the cell with the density
matched fluid and started shearing, a single particle is manually positioned at the centre
of the camera fields, as close as possible to the neutral plane in the middle of the shearing
flow. The particle is pre-sheared for a short time to avoid any influence of the positioning
operation on its dynamics. Note that, when repeated, this positioning method results in
randomly varying initial orientations despite all the care that can be taken. Then, the
recording of the two videos is started and the cameras are synchronised by a manually
activated light signal. The recording is stopped before the particle leaves the camera fields.
Experiments are typically repeated between 5 and 10 times for a given particle at each
particle Reynolds number, as reported in table 3. Typically, at least two complete periods
of rotation must be observed in order to validate the run. This requirement happened to be
rather challenging for the most slender particles.

2.4. Image processing
Each recorded video is processed by an in-house developed Python script based on the
Canny method (Canny 1986), implemented using the OpenCV library (Bradski 2000). The
script performs a simple detection routine based on the contrast between the background
and the object to be detected. After having reduced the camera field to a small square
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section of size 4 max(�, a) × 4 max(�, a) around the particle, Gaussian blur and manual
threshold filters are applied to reduce the noise and improve the contrast by smoothing out
possible defects of the transparent plastic belt. At this point, there is a strong intensity
gradient between the particle and the background. Identifying this gradient using the
Canny edge filter provides the closed contour of the given particle. A least-squared
optimisation method yields the orientation angle (fitEllipse function of the OpenCv
library), while the extent of the contour in the aligned directions leads to the estimation
of its minimum two-dimensional axis-aligned bounding box (boundingRect function of
the OpenCv library). By axis-aligned bounding box (AABB hereinafter), we mean the
smallest rectangle (parallelepiped when generalising to three dimensions) that is tangent
to the particle projection (particle in three dimensions). The three measurements are stored
and the script analyses the videos frame by frame. The accuracy of the proposed particle
detection method has been evaluated against 8100 virtual images of randomly oriented
disks and fibres, with a resolution of 7 pixels over the smallest particle dimension. We
found that the Euclidean norm error between theoretical and measured AABBs is below
4 pixels, while the absolute error on the measured angle rarely reached a value above 2◦.

Two lists of positions, orientations and AABB components of the particle projections
onto the flow-gradient and in the flow-vorticity planes in time are the result of the
post-processing of each experiment made by the Python script. Then, by a suitable
re-scaling, it is possible to combine the information collected by the two cameras
and produce three-dimensional measurements of the translation and rotation of the
particles. The procedure is non-trivial for the estimation of the orientation of each
particle because, as displayed in figure 3, while the particle projection in the (x, y)
plane provides the azimuthal angle φ, the projection in the (x, z) plane determines the
angle λ, which only corresponds to θ in the flow-aligned positions. Therefore, given the
possibility of producing long lists of three-dimensional AABBs by knowing the particle
orientation vector, we choose a data-driven method to regress the orientation of the
particle by a two-camera view system. As detailed in Appendix A, we deploy a simple
deep learning model, implemented using Tensorflow and trained over synthetic data, to
perform a three-variable regression and estimate the particle orientation vector n from the
experimentally measured three-dimensional AABBs.

2.5. Data analysis
The data processing of § 2.4 provides the orientation of the axisymmetric particle. This is
the key information needed when constructing the Jeffery orbits, discussed in § 3.1, and
obtaining the time evolution of the three components of n, discussed in § 3.3. There are
two other important quantities: the period of rotation and the orbit constant, described
below and used in §§ 3.2 and 3.3, respectively.

Since experimental runs can last up to several particle rotations, the measured projected
angles, φ and λ, can be interpreted as time series and characterised by Fourier analysis.
The Fourier transform of the angular signals can be computed. As a typical example,
the power spectra of ten experimental runs are plotted against the frequency in figure 4
for the fibre CYL10. This figure shows that the signal power is coherently resonating
around a characteristic frequency, calculated as the frequency fmax of the peak of each
power spectrum. The period of rotation of the given particle, T , is then estimated as the
inverse of this frequency. Measurements are then collected over several runs for a sound
statistical characterisation, choosing between the angles φ and λ according to a minimum
squared error criterion. Averages are computed and uncertainties are estimated as standard
deviations over all the experimental runs at a given Rep.
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Figure 4. Power spectra of the two projected angles (a) φ and (b) λ, for 10 different experimental runs for the
fibre CYL10 of aspect ratio r = 9 at Rep = 0.08. The insets in each panel show the maximum peak frequency
vs the considered runs.

The components of the reconstructed particle orientation vector n can provide the
azimuthal and polar angles, defined as

n1 = sin(φ) sin(θ), (2.1)

n2 = cos(φ) sin(θ), (2.2)

n3 = cos(θ). (2.3)

Equation (1.3) can then be fitted over the reconstructed values of φ and θ to estimate
the orbit constant C of the given Jeffery orbits, as displayed in figure 5. This is done
by a nonlinear least squares minimisation (curvefit function of the Scipy Python library)
over an observation window manually centred around each flow-aligned position and
with total width comparable to half the period of rotation, producing two separate orbit
constant measurements for each Jeffery orbit. Orbit constant variations �C are then
calculated as discrete differences over one period of rotation. This choice is motivated
by a classical approach to the analysis of periodic dynamical systems (Glendinning 1994),
according to which the flow of the orbit constant C is obtained by its discrete variations
between flow-aligned positions over one period T . Recalling the orbit coordinates τ and C
introduced by Leal & Hinch (1971), this is equivalent to dropping the temporal dependency
of the system (τ ) and focusing only on the evolution of its phase (C), similarly to what
done in Dabade et al. (2016). Therefore, the intensity of the orbit variation �C has a
sign indicating the direction of the orbit constant motion, i.e. positive when towards the
tumbling orbit (C = ∞) and negative when towards the spinning orbit (C = 0), and a
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Figure 5. Time evolution of the reconstructed angle θ = arccos n3 (black circles). The fitted forms of (1.3)
are also plotted as solid lines. The different colours correspond to the estimated values of the orbit constant
C reported in the legend. The quantity �C represents the variation of the orbit constant in each of the
measurements.

value the magnitude of which quantifies the stability of a given Jeffery orbit (more unstable
orbits will experience stronger variations).

3. Experimental results

3.1. Jeffery orbits
Typical experimental Jeffery orbits for a fibre of aspect ratio r = 9, for an oblate spheroid
of aspect ratio r = 0.6 and for the disk of aspect ratio r = 0.1 are shown in figure 6(a,b),
(c,d) and (e, f ), respectively. The coloured dots represent the intersection of the axis given
by the orientation vector n with the half-sphere of radius � for the prolate particles and a
for the oblate particles, respectively. The location of the intersection was captured during
three different experimental runs for each panel and reconstructed as detailed in § 2.4.
The corresponding Jeffery orbits at zero inertia are also displayed as solid black lines.
They were obtained by integration of (1.1) using the first flow-aligned orientation of each
experimental run as initial condition.

At low inertia, i.e. for the fibre of panel (a) at Rep = 0.08, the spheroid of panel (c)
at Rep = 0.02 and the disk of panel (e) at Rep = 0.05, there is no significant change
between the successive rotations for runs with different initial conditions, i.e. different
orbit constants. The experimental orbits are in good agreement with the theoretical Jeffery
orbits, represented by the black spherical ellipses.

As inertia becomes finite, i.e. for the fibre of panel (b) at Rep = 1, the spheroid of panel
(d) at Rep = 0.43 and the disk of panel ( f ) at Rep = 1.32, the picture slightly changes.
The experimental orbits are still spherical ellipses, but they depart from the zero-inertia
orbits as their shapes evolve between successive rotations.

For the fibre of panel (b), the orbits are expanding towards the tumbling orbit (C = ∞)
on the equator of the sphere, i.e. in the (x, y) flow-gradient plane. It is worth mentioning
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Figure 6. Experimental Jeffery orbits at two Reynolds numbers for the fibre CYL10 (top-row panels), the
spheroid ELL06 (middle-row panels) and the disk CYL01 (bottom-row panels): (a) fibre, r = 9.0, Rep = 0.08;
(b) fibre, r = 9.0, Rep = 1.0; (c) spheroid, r = 0.6, Rep = 0.02; (d) spheroid, r = 0.6, Rep = 0.43; (e) disk,
r = 0.1, Rep = 0.05; ( f ) disk, r = 0.1, Rep = 1.32. The particles considered in this figure are shown in the
vorticity-aligned position with their orientation vector n highlighted in cyan. The coloured dots represent the
intersections of the axis given by the orientation vector n with the half-sphere of radius � for the prolate particles
and a for the oblate particles, respectively. The corresponding Jeffery orbits are also displayed as solid black
lines and were obtained by integrating (1.1) from an initial condition given by the first flow-aligned orientation
of each experiment. See movies in folder Figure_6_Jeffery_Orbits_animations in supplementary materials for
animations. 979 A42-13
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that the orbits are not equally unstable as the fibre experiences a stronger drift when
describing intermediate orbits (run 13) than when close to the rolling (run 14) and tumbling
(run 3) cycles.

The oblate particles are also drifting through consecutive orbits, but their behaviour is
more complex as two limiting stable orbits exist. As shown in panel (d), the spheroid can
either drift to a tumbling orbit (C = ∞) in the plane of shear (run 10) or to a spinning orbit
(C = 0), i.e. aligning its orientation vector with the direction of vorticity, z (runs 5 and 8).
It is interesting to note that the two orbits closer to the pole of the half-sphere (runs 5 and
8) are attracted toward the spinning orbit (C = 0) while the other orbit, which is starting
with a much larger orbit constant (run 10), is drawn toward the tumbling orbit (C = ∞) on
the equator of the half-sphere. A similar description holds for the disk of panel (f ), which
exhibits both consecutive rotations in the tumbling orbit (C = ∞, run 2) and a systematic
drift towards the spinning orbit (C = 0, runs 1 and 9).

A comment is in order regarding the separation between consecutive rotations, which
appears larger for the more slender particles, i.e. the fibre with r = 9 of panel (b) and the
disk with r = 0.1 of panel ( f ), than in the case of the spheroid with r = 0.6 of panel (d).

3.2. Period of rotation
The dimensionless period of rotation, T γ̇ /2π, of the axisymmetric particles is displayed
against particle aspect ratio, r, in figure 7. The main panel (a) shows all the results obtained
for both prolate and oblate particles, while the two smaller panels distinguish between (b)
prolate and (c) oblate shapes and focus on the asymptotic limits. The data are obtained by
averaging over all the available experiments for all particle Reynolds number (Rep � 1),
meaning that we choose in these plots not to take into account any possible influence of
inertia on the period of rotation. Such influence will be addressed later at the end of this
section. The data are displayed as empty rectangles for cylindrical particles and circles for
spheroidal particles and explore a moderate range of aspect ratios (0.05 � r � 21). They
complement the previous experimental results of Anczurowski & Mason (1968) for disks
and fibres (empty grey diamonds) as well as one prolate spheroid (solid grey ×), and those
of Harris & Pittman (1975) for fibres with higher aspect ratio (empty brown pluses), also
reported in the figure.

The present measurements for the period of spheroidal particles span over two decades
of r around r = 1, extending over the experimental dataset of Anczurowski & Mason
(1968). Their agreement with the theory of Jeffery (1922), TJ γ̇ = 2π(r + 1/r), displayed
as a solid black curve, is excellent. We remark here that the expression just given can
be written as 2π/TJ = (γ̇ /2)

√
1 − Λ2 if the Bretherton constant, or shape parameter,

Λ = (r2 − 1)/(r2 + 1) is used. In contrast, the measured period of cylindrical particles
systematically lies below the Jeffery curve, meaning that the period of a cylinder is always
smaller than that of the corresponding spheroid at the same r. This difference is minimal
around r = 1 and increases with increasing slenderness or flatness but not in the same
manner. Interestingly, a shorter period of rotation is measured for the disks than for the
fibres, as is clearly evidenced by comparing the prolate CYL20 (r = 20.5) and the oblate
CYL005 (r = 0.05). These data are in good agreement with those available in the literature
(Anczurowski & Mason 1968; Harris & Pittman 1975).

Since the pioneering work of Trevelyan & Mason (1951), it has been suggested that
an equivalent aspect ratio, req, can be found for cylindrical particles to recover the
Jeffery period. In particular, req can be computed from T γ̇ = 2π(req + 1/req) using the
measured period of rotation for T . Different expressions have been proposed for req.
In an earlier work for the case of fibres, Burgers (1938) showed that the disturbance
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Figure 7. Period of rotation, T , of the axisymmetric particles against the particle aspect ratio r. The period
is made dimensionless using the shear rate γ̇ and normalised by a factor 2π. (a) Both prolate and oblate,
(b) prolate and (c) oblate particles. The experimental values are displayed as coloured rectangles (cylindrical
particles) and circles (spheroidal particles). Each point is the average over all the available experiments for all
particle Reynolds numbers (Rep � 1). The theories of Jeffery (1922) and Burgers (1938), the semi-empirical
correlation of Cox (1971) and the empirical expression of Harris & Pittman (1975) are displayed as a solid
black line, a dotted cyan line, a dashed blue line and a dash-dotted pink line, respectively. The experiments of
Anczurowski & Mason (1968) are displayed as empty grey diamonds (cylinders) and one solid × (spheroid),
while the data of Harris & Pittman (1975) correspond to empty brown plus symbols. See supplementary
materials for the directory of the figure including the data and the Jupyter notebook, https://www.cambridge.
org/S0022112023010078/JFM-Notebooks/files/fig7/fig7.ipynb.

caused by a cylinder of axis ratio r will be reproduced by a spheroid of req = 0.74 r,
an expression which would eventually diverge at high r as well as underestimate the
period of rotation in the near-sphere limit. Our measurements for 10 � r � 20 show good
agreement with this proposed equivalence. Later on, by fitting his asymptotic theory to
the measurements of Anczurowski & Mason (1968), Cox (1971) provided an expression
for slender cylinders as req = 1.24 r/

√
log r. Our data are in good agreement with this

formula for r > 5. Then, Harris & Pittman (1975) proposed an unweighted least square
log–log fit over their measurements for slender rods leading to req = 1.14 r/r0.156. They
found that Cox’s semi-empirical prediction was an overestimate in the asymptotic limit
and their power-law function of r showed an excellent agreement with all the considered
experimental measurements available at that time. This empirical correlation provides an
excellent match with our present data for both prolate and oblate cylinders. It is even
accurately predicting the additional measurements with the thinnest disk (CYL005, red
rectangle in figure 7).

To conclude this section, we move to the influence of inertia on the period of rotation.
Figure 8 shows the period of rotation, T , normalised by the Jeffery period, 2π(req +
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Figure 8. Period of rotation, T , of the axisymmetric particles against the particle Reynolds number, Rep
for: (a) fibres and prolate spheroids and (b) disks and oblate spheroids. The period is now normalised by
the Jeffery period, 2π(req + 1/req)/γ̇ . The dotted black line corresponds thus to the Jeffery period within
this normalisation. The experiments are displayed as coloured rectangles (cylindrical particles) and circles
(spheroidal particles) with the same colour code for the aspect ratios as in figure 7. See supplementary
materials for the directory of the figure including the data and the Jupyter notebook, https://www.cambridge.
org/S0022112023010078/JFM-Notebooks/files/fig8/fig8.ipynb.

1/req)/γ̇ , against the particle Reynolds number, Rep. The data are now averaged over
experimental runs at the same Rep for each particle. While req is equal to the aspect
ratio r for the spheroidal particles, its value for the cylindrical particles is determined
by solving T γ̇ = 2π(req + 1/req) using their measured period of rotation, T , at each Rep.
For both prolate and oblate particles, there is a good collapse of the data around unity,
corresponding to the Jeffery period. The data are scattered within ±20 % but do not
indicate any systematic trend with increasing inertia. We can conclude that inertia does not
affect significantly the period of rotation, T , for Rep � 1, at least within the range of aspect
ratios considered in our study. For much longer (very slender) fibres, some alignment
might be observed in the presence of small inertia, as the findings of Subramanian &
Koch (2005) seem to suggest, the same being possible for very thin disks, as suggested by
the results of Rosén et al. (2015).

3.3. Drift
Having previously looked at the general behaviours of the Jeffery orbits in figure 6, we
now examine in detail the influence of inertia on the time evolution of each component of
the orientation vector n. Figures 9–11 display the three components of n in the flow (n1),
gradient (n2) and vorticity (n3) directions against the dimensionless time, tγ̇ . For clarity
of presentation, we have chosen to focus the discussion on a subset of three runs for a
typical fibre and a disk at a small but finite Rep and at a larger Rep as well as for an oblate
spheroid at a sole moderate Rep. We also compare our results with the asymptotic theory of
Einarsson et al. (2015a) as detailed in § B.1. It is important to stress that, while the theory
considers an unbounded system, there is some degree of confinement in the experiments
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Figure 9. Evolution of the components of the orientation vector n, displayed as vertically aligned panels for
3 typical runs against the dimensionless time tγ̇ , for the fibre CYL10 with aspect ratio r = 9 and confinement
ratio κ = 0.19: (a) Rep = 0.15; (b) Rep = 1.0. Comparison with the theory of Einarsson et al. (2015a),
presented in § B.1 is also given as black dashed lines. See supplementary materials for the directory of the
figure including the data and the Jupyter notebook, https://www.cambridge.org/S0022112023010078/JFM-
Notebooks/files/fig9/fig9.ipynb.
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Disk, r = 0.05, req = 0.1, Req = 0.24, κ = 0.2

Disk, r = 0.05, req = 0.1, Req = 0.8 κ = 0.2

(a)

(b)

1

0n1

–1

1

0n2

–1

1.0

0.5n3

0

1

0

–1

1

0

–1

1.0

0.5

0

1

0

–1

1

0

–1

1.0

0.5

0

1

0n1

–1

1

0n2

–1

1.0

0.5n3

0

1

0

–1

1

0

–1

1.0

0.5

0

1

0

–1

1

0

–1

1.0

0.5

0

50 100 150 50 100 150 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

50 100 150

tγ.
50 100 150

tγ.
50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

tγ.

Run 1 Run 2 Run 5

Run 2 Run 4 Run 9

Figure 10. Evolution of the components of the orientation vector n, displayed as vertically aligned panels
for 3 typical runs against the dimensionless time tγ̇ , for the disk CYL005 with aspect ratio r = 0.05 and
confinement ratio κ = 0.19: (a) Rep = 0.24; (b) Rep = 0.8. Comparison with the theory of Einarsson et al.
(2015a), presented in § B.1 is also given as black dashed lines. See supplementary materials for the directory of
the figure including the data and the Jupyter notebook, https://www.cambridge.org/S0022112023010078/JFM-
Notebooks/files/fig10/fig10.ipynb.
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Spheroid, r = 0.6, Rep = 0.43, κ = 0.17
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Figure 11. Evolution of the components of the orientation vector n, displayed as vertically aligned panels for
3 typical runs against the dimensionless time tγ̇ , for the oblate spheroid ELL06 with aspect ratio r = 0.6
and confinement ratio κ = 0.17 at particle Reynolds number Rep = 0.43. Comparison with the theory of
Einarsson et al. (2015a), presented in § B.1 is also given as black dashed lines. See supplementary materials
for the directory of the figure including the data and the Jupyter notebook, https://www.cambridge.org/
S0022112023010078/JFM-Notebooks/files/fig11/fig11.ipynb.

(κ ≈ 0.2) which may affect the stability of the orbits (Rosén et al. 2015). Confinement
effects are further discussed in § 4.

Let us first examine the influence of inertia on the dynamics of the fibre with aspect
ratio r = 9 in figure 9. The general tendency is that the fibre drifts out of the vorticity
axis towards the tumbling orbit in the plane of shear, as evidenced by the systematic
decrease of n3 with successive oscillations. This effect is stronger for intermediate particle
orientations, see runs 5 and 8 of panel (a) and runs 13 of panel (b), whereas it may
appear somehow irregular for vorticity-aligned orbits, see run 2 of panel (a) and run 14
of panel (b). At small Rep = 0.15, there is a good agreement between the theory and the
experiments, see figure 9(a), suggesting that the range of application of the asymptotic
theory of Einarsson et al. (2015a) can be extended to finite values of Rep ∼ O(10−1) in
the case of the fibres. The agreement is inevitably lost at larger values, e.g. Rep ∼ O(1). At
such Rep, a faster drift toward the tumbling orbit is systematically obtained as compared
with the experiments, as can be seen from figure 9(b), in particular for the case of run 13.

The discussion is now repeated for the disk with aspect ratio r = 0.05 in figure 10.
Most of the runs show a tendency for the disk to drift towards the vorticity axis, i.e. to
move towards the spinning orbit where the particle lays flat in the flow-gradient plane.
However, a few runs (with carefully tuned initial conditions) show disks that are just
tumbling with their axis in the plane of shear. This confirms that, unlike prolate particles
(which are always driven towards the sole limiting tumbling orbit), oblate particles can
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drift towards two different orbits, the spinning or the tumbling orbits, depending upon their
initial orientations. Whereas the theory of Einarsson et al. (2015a) successfully predicts
the existence of two limiting orbits, it gives a much stronger overestimation of the drift
through consecutive orbits for disks than for fibres, even for the smallest values of Rep
studied. This seems to imply that the range of application of the asymptotic theory is
more limited in the oblate case than in the prolate case. This is clear in figure 10(a) for
Rep = 0.24, but becomes even more evident in figure 10(b) for Rep = 0.80. At this larger
Rep, the theory predicts a rapid shift towards aligned positions while the experiments still
show rotational behaviours.

Finally, we consider the oblate spheroid ELL06 with r = 0.6 at moderate Rep = 0.43
in figure 11. At first glance, no remarkable difference emerges with regards to the slender
disk CYL005, displayed in figure 10. This spheroid either tumbles in the plane of shear
(run 10) or slowly drifts to the spinning orbit (runs 8 and 5). However, in addition to the
already discussed discrepancy of the drift, there is a notable difference between the theory
of Einarsson et al. (2015a) and the experiments regarding the dynamics of this nearly
spherical oblate spheroid. For this type of particle, the asymptotic theory only predicts the
drift to an attracting spinning orbit at Rep � 1. This is further discussed in connection to
confinement effects in § 4.

As previously mentioned in § 1, the separation between the two limiting orbits for the
oblate particles is predicted to depend on their initial orientations but also on their aspect
ratio (Einarsson et al. 2015b; Dabade et al. 2016). To examine this difference in drift more
closely and avoid the ambiguity of an arbitrary initial condition, we calculate the change
in the orbit constant in a single Jeffery period as done in Dabade et al. (2016). As detailed
in § 2.5, this implies the fitting of our experimental measurements to estimate the local
values of the orbit constant C before taking discrete differences �C over each period of
rotation. The results are shown in figure 12, where the normalised change in the orbit
constant in a single period, Re−1

p �C/(C2 + 1), is plotted against the normalised orbit
constant C/(C + 1) for all the experiments. Measurements referring to different values
of Rep are identified by different colours. The values C/(C + 1) = 0 and C/(C + 1) = 1
correspond to the spinning and tumbling modes, respectively. Following Dabade et al.
(2016), to keep the drift finite in the near-sphere limit, the normalisation for �C also
uses a factor depending on the particle eccentricity: ξ0 =

√
1/(1 − 1/r2) for the prolate

particles and ξ0 =
√

1/(1 − r2) for the oblate particles.
Figure 12 displays results for the following cases: the thinnest disk with r = 0.05 in

panel (a), two disks having similar r but two different confinement ratios in panels (b)
(r = 0.1, κ = 0.1) and (c) (r = 0.11, κ = 0.2) and a thicker oblate spheroid with r = 0.56
in panel (d). Also included are the results for two prolate particles: a prolate spheroid with
r = 2.7 in panel (e) and a slender fibre with r = 9 in panel ( f ). These data are compared
with the theoretical prediction of Dabade et al. (2016) considering both particle and fluid
inertia (St = Rep in the present neutrally buoyant case) as detailed in § B.2.

Despite the rather large scatter of the data, there are some clear trends and qualitative
agreements with theoretical predictions. Prolate particles experience positive increments
of the orbit constant, which drive them towards tumbling motion (C = ∞, namely
C/(C + 1) = 1), while oblate particles experience negative variations as they are mostly
attracted to the vorticity-aligned orbit (C = 0, namely C/(C + 1) = 0). Moreover, as
revealed from the scales of the ordinate axes, the drift intensity �C increases with the
aspect ratio r, as more slender objects experience more unstable Jeffery orbits.

The oblate particles not only drift towards the spinning orbit but also to the tumbling
orbit, as evidenced by the clustering of points around zero and slightly above for orbit
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Figure 12. Discrete variation of the orbit constant over one period, �C, against the orbit constant C. Results
refer to the following particle types (characterised by different colours for the varying Rep): (a) disk CYL005
(r = 0.05 and κ = 0.19); (b) disk CYL009 (r = 0.1 and κ = 0.11); (c) disk CYL01, (r = 0.11 and κ = 0.21);
(d) spheroid ELL06, r = 0.56 and κ = 0.17); (e) spheroid ELL3, (r = 2.67 and κ = 0.19); ( f ) fibre CYL10,
(r = 9.01 and κ = 0.19). The drift is normalised to keep its value finite in the near-sphere limit as in Dabade
et al. (2016), thus yielding a better comparison with their theory (black dashed line and black solid line in the
slender limit). The predicted critical orbit constant C∗ = √

35, i.e. C∗/(C∗ + 1) � 0.86, separating the basins
of attraction in the slender disk limit is also displayed as a dash-dotted grey line (Dabade et al. 2016). Data are
collected over all the available experiments at a given Rep (up to 10 runs), measuring the orbit constant and its
variation as described in § 2.5. See supplementary materials for the directory of the figure including the data
and the Jupyter notebook, https://www.cambridge.org/S0022112023010078/JFM-Notebooks/files/fig12/fig12.
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constants C �
√

35, namely C/(C + 1) � 0.86, as computed by Dabade et al. (2016), see
panels (a) to (c). This is in stark contrast with the strong incline taken by the fibre of
aspect ratio r = 9 in panel ( f ) when leaving the spinning orbit (C/(C + 1) = 0) which is
unstable for this prolate particle.

An interesting behaviour is observed in panel (d) for the oblate spheroid with r = 0.6,
a value well above the predicted critical aspect ratio of approximately 0.14 for which only
drift toward the spinning motion is anticipated. As evidenced in figure 11, this particle is
still experiencing tumbling and spinning orbits, in contradiction to theoretical predictions.
The critical orbit constant seems also to have moved as positive increments of orbit
constant are observed at C �

√
35, i.e. C/(C + 1) � 0.86, in particular for the higher

Rep. Similar behaviour is observed for the disk with req = 0.18 in panels (b) and (c),
which correspond to different confinements. This may suggest a wider region of attraction
for the tumbling mode.

The influence of confinement is clearly visible between panels (b) and (c), where are
shown two disks at a comparable r ≈ 0.1 but differing confinement ratios, κ = 0.11 and
κ = 0.21. The smaller disk is in better agreement with the theory than the large disk,
having a twofold increase of confinement ratio, where the drift is less intense than that
predicted by Dabade et al. (2016) for an unconfined viscous shear flow.

Finally, we address the scaling of the drift intensity with the particle Reynolds number.
Clearly, experiments at higher particle Reynolds number (Rep ≈ 1) do not collapse with
those at smaller Rep. Despite the large scatters, this is particularly evidenced in panels
(a,c,d) for oblate objects, where the intensity of the drift is weaker for the larger Rep. This
suggests a saturation effect above a certain inertial threshold.

4. Concluding remarks

We have examined the rotation of axisymmetric particles suspended in a simple shear
flow when inertia is progressively increased up to particle Reynolds number Rep � 1.
A custom-built shearing cell and a multi-view reconstruction method have been used to
obtain direct measurements of the orientation and period of rotation of ideal bodies such
as spheroids but also bodies of practical interest such as cylinders with different aspect
ratios. This system is rather flexible and is amenable to studying the alignment of small
bodies with different shapes in simple shearing flows.

The first important result is that the axisymmetric particles still rotate with the Jeffery
period in this small-inertia regime. Our results also complement the data available in the
literature (Anczurowski & Mason 1968; Harris & Pittman 1975) and provide a connection
with those of Zettner & Yoda (2001) at higher Rep, showing that the period of rotation
of a cylinder is smaller than that of a spheroid with the same aspect ratio. An equivalent
spheroidal aspect ratio can be inferred to recover the Jeffery period in the case of cylinders.
Our results show that the empirical expression of Harris & Pittman (1975) remains the best
prediction for this equivalent aspect ratio, which we were able to validate over one further
decade of slender oblate particles compared with available literature results.

The second major output is that we observe an irreversible drift across Jeffery orbits
towards attracting limiting cycles. This drift is due to weak inertial effects, and its
occurrence confirms, at least qualitatively, the asymptotic theories of Einarsson et al.
(2015b) and Dabade et al. (2016). It is important to stress before proceeding to any
comparison below that these theories are meant to be valid for Rep � 1 as well as
at infinite distance from walls. Clearly, some deviations between their predictions and
experimental results begin to appear as one moves away from their range of validity as
discussed below.
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Our measurements indicate that prolate particles are uniquely driven towards a tumbling
motion in the flow-gradient plane regardless of their initial orientation and aspect ratio.
For small but finite Rep, i.e. typically up to O(10−1) in our experiments, there is a good
quantitative agreement with the theories. For larger Rep, i.e. of O(1) in our experiments,
a saturation of the phenomenon is observed and the asymptotic theories predict a faster
drift toward the tumbling orbit. This is expected since these theories are strictly valid only
for Rep � 1 and cannot be expected to describe the dynamics at an Rep of order unity or
larger, as also discussed in Rosén et al. (2015).

In stark contrast to prolate particles, which only possess a single attracting orbit, oblate
particles are observed to drift towards two different orbits, the spinning orbit or the
tumbling orbit, depending upon their initial orientation. Whereas the theories of Einarsson
et al. (2015b) and Dabade et al. (2016) do predict the existence of two limiting orbits,
their overestimation of the drift through consecutive orbits is more severe and even seen
for small Rep of O(10−1), as also discussed in Rosén et al. (2015) when the theory is
compared with direct numerical simulations (DNS) results. This may suggest that the
predictive capabilities of the theories in the small-inertia regime are more limited for
oblate particles and that their range of application at finite Rep is narrower than for prolate
particles. We remark here that part of the observed overestimation may be ascribed to
unavoidable confinement effects (Rosén et al. 2015), which tend to lower the drift intensity
and thus introduce a small bias in the experimental measurements. Again, it seems that
these effects do affect more the oblate particles.

There is a notable discrepancy between the experiments and the predictions of Einarsson
et al. (2015b) and Dabade et al. (2016) regarding the stability of the tumbling orbit
for oblate particles. A bifurcation toward a single stable spinning orbit above a critical
aspect ratio of approximately 0.14 is not observed, suggesting a wider basin of attraction
for the tumbling mode in the experiments for small Rep of O(10−1) up to O(1). The
time-resolved simulations of Rosén et al. (2015) having a confinement of κ = 0.2 have
shown a bifurcation between stable and unstable tumbling for a critical aspect ratio
of approximately 0.13 at Rep = 1, in fair agreement with the prediction 0.14 of the
asymptotic theories. Rosén et al. (2015) even tracked the bifurcation for larger Rep,
showing that it can survive up to Rep = 5, see the bifurcation diagram of their figure 4.
Our experimental results for similar confinement (κ = 0.2) and even those with smaller
confinement (κ = 0.1) still exhibit stable tumbling modes. While this finding is intriguing,
it seems reasonable to assume that it cannot be attributed to confinement.

Overall, our results indicate that inertia plays a significant role in breaking the
indeterminacy of the Jeffery orbits for the prolate particles, while we still observe the
existence of two limiting orbits for the oblate particles. This finding has deep consequences
for the steady-state rheology of suspensions of axisymmetric particles in a viscous dilute
regime, i.e. when particle–particle interactions are negligible. Indeed, prolate particles
will eventually drift toward the tumbling orbit, aligning asymptotically with the mean
flow direction. Conversely, the effective viscosity of a suspension of oblate particles will
always depend on their initial orientation and regardless of their aspect ratio, i.e. not only
in the lower near-sphere limit (0.14 < r < 1) as predicted by Dabade et al. (2016). Of
course, hydrodynamic and direct particle–particle interactions come into play and change
the picture as soon as semi-dilute and concentrated suspensions are considered (Butler &
Snook 2018).

A final comment is in order about the importance of including the effect of both the fluid
and particle inertia in the numerical calculation of the rotational dynamics of axisymmetric
particles suspended in complex flows, e.g. turbulent flows. In a turbulent flow, the modified

979 A42-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1007


D. Di Giusto and others

rotation rate (see (B1)) might affect the distribution of particle orientations (Sheikh et al.
2020). In homogeneous isotropic turbulence, axisymmetric prolate (respectively oblate)
particles were seen to align with (respectively perpendicular to) the local vorticity vector,
following the local flow stretching in a mostly spinning (respectively tumbling) rotational
state (Byron et al. 2015; Ni et al. 2015). Accounting for the inertial torques would
strengthen the influence of the local stretching, even if one might argue under which
conditions the inertial contribution becomes relevant given the intermittent nature of the
flow. One may indeed need to compare the drift time (of the typical order of a few periods
of rotation) with the typical time of the flow velocity fluctuations. The picture is even more
complex in bounded turbulence, where the strong near-wall shear causes axisymmetric
particles to follow the local flow stretching but aligns the vorticity vector in the spanwise
direction (Zhao & Andersson 2016). In this case, inertial torques could especially modify
the orientation statistics of oblate particles, which tend to align normal to the wall, with
possible consequences for drag reduction (Wang, Xu & Zhao 2021).

Supplementary material and movies. Supplementary material, movies and Computational Notebook files
are available at https://doi.org/10.1017/jfm.2023.1007. Computational Notebooks can also be found online at
https://www.cambridge.org/S0022112023010078/JFM-Notebooks.
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Appendix A. Three-dimensional particle orientation estimation

A.1. Three-dimensional AABB calculation for cylinders and spheroids
In this section we briefly describe the geometrical relations that provide the AABB B
for cylindrical and spheroidal particles, having imposed their orientation vector n. The
relation is straightforward for cylinders, whose projection corresponds to the sum of a line
and two capping circles (Quilez 2016). The eccentricity e of these two circles is defined as

e = a · √
1 − n · n. (A1)

Given the centre points of the capping circles, pa and pb, B is obtained by maximising the
only possible orientation extension

B = max((pa + e), (pb + e)) − min((pa − e), (pb − e)). (A2)

Performing the same calculation for spheroidal particles is slightly more complex, in view
of the lack of sharp edges. A generic spheroid that can only rotate but not translate may
be represented as a diagonal matrix. If the spheroid is initially aligned with the z axis such
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that its orientation vector is n = (0, 0, 1), then the matrix reads as follows:

Ō =
⎡
⎣a−2 0 0

0 a−2 0
0 0 (a · r)−2

⎤
⎦ . (A3)

Neglecting the spin, any generic orientation attained by the spheroid can be determined by
a combination of the two polar angles φ and θ

n = (sin φ sin θ, cos φ sin θ, cos θ). (A4)

It is straightforward to build a rotation matrix that correlates the initial orientation of
the spheroid to the new one through equation (A4). Therefore, the quadratic form of the
spheroid will also be rotated according to the new orientation as follows:

Q̄ = R̄ · Ō · R̄T . (A5)

Given the matrix Q̄, in Appendix A.3 we demonstrate that taking the square root of the
diagonal components of its inverse yields the halved sides of the AABB

Bi = 2 ·
√

Q̄i,i
−1

. (A6)

The procedure just described is repeated over 360 × 360 = 129 600 possible combinations
of values of φ and θ , in order to discretise any possible orientation in the first quadrant
of the three-dimensional Cartesian system. This results in a resolution of 0.25◦ for each
angle. Calculations are scripted in Python to generate extended data sets of AABBs and
their corresponding orientation vectors. The corresponding scripts are provided in the
supplementary materials.

A.2. Orientation reconstruction by multi-variable regression
The relation between the AABB B and the particle orientation vector n is nonlinear and
known in a closed form only for the inverse transformation. Therefore, to solve the direct
transformation, we choose a data-driven approach.

A deep learning model is trained using synthetic data generated geometrically, as
described in the previous section. The model is implemented as a neural network in
TensorFlow (Abadi 2015), and performs a multi-variable regression, where the input is
an experimentally measured AABB and the output is the corresponding orientation vector
n. Hidden dense layers are made of 256 fully connected weights, introducing nonlinearity
through the relu activation function. Typically, one hidden layer would be sufficient for
the regression of the most slender shapes, however, three layers seem preferable to be able
to deal also with the nearly spherical objects, e.g. the spheroid ELL06. Normalisation of
the Euclidean norm of the output orientation vector n is finally ensured by a dedicated
lambda layer. The model is compiled and normally trained over at least 20 epochs by
minimising a custom loss function (CLF), which calculates the Euclidean norm of the
difference between the true and predicted values of the orientation vector n

CLF =
√√√√ 3∑

i=1

(ntrue,i − npred,i)2. (A7)

In addition, the CLF strongly penalises any prediction yielding non-physical,
lower-than-zero values for the orientation vector components. The chosen optimisation
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Figure 13. Predicted values against true values of the orientation vector n obtained applying the deep learning
model described in Appendix A.2 to a fibre with aspect ratio r = 9.01 (CYL10): (a) n1 along x, (b) n2 along y,
(c) n3 along z.

method is Adam, which is a randomised batched gradient descent method. A random 20 %
splitting of the data set between training and testing samples is selected for the training.
As displayed in figure 13, the regression for a fibre of aspect ratio r = 9.01 (CYL10) is
highly reliable and yields precise estimations of the three components of the orientation
vector n. It is important to stress that the lack of availability of previously measured
similar experiments prevents us from further testing the model. The Python script used to
estimate the particle orientation vector n from its AABBs is provided in the supplementary
materials.

A.3. Relation between the AABB of a spheroid and the principal diagonal terms of its
matrix of coefficients

Given a generic n-dimensional hyper-spheroid E
E = {x ∈ R

n | (x − c)TQ−1(x − c) ≤ 1}, (A8)

where c ∈ R
n is the vector defining the centre of the spheroid and Q is a positive definite

matrix of coefficients, and writing g(x) = (x − c)TQ−1(x − c), the vector field orthogonal
to the shell of the spheroid is

∇g(x) = 2Q−1(x − c). (A9)

Considering the ith axis and the corresponding projection matrix Pi = eieT
i , the orthogonal

vector field ∇g(x) and its projection Pi∇g(x) will satisfy the condition

∇g(x) = Pi∇g(x), (A10)

at the two points where the spheroid E touches the (smallest) bounding box, namely the
smallest AABB. The above condition is equivalent to

(In − Pi) Q−1(x − c)︸ ︷︷ ︸
≡y

= 0n, (A11)

where the entry yi will be the only non-zero value, i.e. y = tei, or x = c + tQei. Intersecting
this line with the boundaries of the spheroid, t can be obtained as follows:

t2 = (eT
i Qei)

−1 = q−1
ii , (A12)
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Figure 14. The βi coefficients of (B1) as given in figure 2 of Einarsson et al. (2015b). As an example, for the
fibre CYL10, the coefficients βi are chosen at the intersection between the dotted vertical line at req = 7.4 with
the respective curves.

where qii is the ith entry of the inverse of the matrix Q. Therefore, the shell of the ith
projection of the spheroid will touch the smallest AABB at the following two points:

xi = ci ± 1√
qii

eT
i Qei = ci ± qii√

qii
= ci ± √

qii. (A13)

Appendix B. Comparison with small-inertia theories

B.1. Model of Einarsson et al. (2015a)
Einarsson et al. (2015a) characterised the influence of inertia on Jeffery orbits as additional
terms to (1.1), which then reads as

ṅ = Ω · n + r2 − 1
r2 + 1

[E · n − n(n · E · n)] + β1(n · E · n)P(E · n)

+ β2(n · E · n)Ω · n + β3P(Ω · E · n) + β4P(E · E · n), (B1)

where P(x) = x − (n · x) n is an operator that projects components in the n-direction. The
first two terms on the right-hand side of (B1) correspond to the original Jeffery equation
while the last four terms, each containing a scalar coefficient βi, are the inertia-related
terms. The coefficients βi are functions of the particle aspect ratio, provided graphically
in figure 2 of Einarsson et al. (2015b) for Rep = St and reported here in figure 14 for the
CYL10 case, using the equivalent aspect ratio for cylinders. Equation (B1) is integrated
in time using the odeint function of the Scipy Python library. The initial conditions are
provided by the first flow-aligned orientation measured in the CYL10 experimental run.
The Python script used to solve for (B1) is provided in the supplementary materials.
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B.2. Model of Dabade et al. (2016)
Dabade et al. (2016) characterise the inertia-driven drift from the Jeffery orbits through
consecutive rotations by means of discrete variations of the orbit constant �C in a single
Jeffery period. For particle inertia, this is given in their (5.19) in terms of the eccentricity:
ξ0 =

√
1/(1 − 1/r2) for the prolate and ξ0 =

√
1/(1 − r2) for the oblate particles. The

eccentricity parameter ξ0 is calculated using the physical particle aspect ratio, r, for
the spheroids and the equivalent particle aspect ratio, req, for the cylinders, obtained
by averaging over all the available experiments. Then, the integrals Ii, Ji are provided
in Appendix C, while the prolate Fp

i , Gp
i coefficients come from their (5.7)–(5.12).

Following Dabade et al. (2016) to obtain the oblate coefficients, one needs first to multiply
the prolate coefficients by the squared length-scale to obtain their dimensional form.
Then the transformation prolate-to-oblate must be applied (ξ0 < − > i(ξ2

0 − 1)0.5), before
returning to dimensionless variables by dividing by the squared length scale, as described
below (5.12) of Dabade et al. (2016). The fluid-inertia drift is still obtained from (5.19),
where St is replaced by Rep and the F f

i , G f
i coefficients are given in (6.1)–(6.8). The

Python script used to calculate the discrete orbit variation �C as in Dabade et al. (2016)
is provided in the supplementary materials.
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