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Abstract
We present an agent-based model to study how the network structure of a scientific community
could impact the public uptake of science, and how this impact is influenced by scientific uncer-
tainty and affinity bias. For unbiased agents, a highly connected scientific network decreases
the probability that the public favors the correct theory. For biased agents, however, a moder-
ately connected scientific network causes the public to favor the correct theory more often. This
results from the competition between the scarcity of information (for poorly connected agents)
and the spread of misleading information (for highly connected agents). Adding more scientists
strengthens both effects.

1. Introduction
In contemporary society, science plays an important role in many aspects of life, such
as healthcare, energy, and education. However, it can be challenging for individuals to
determine the most credible scientific theory when making personal or policy decisions.
Factors such as literacy level, ideological orientation, and the manner of science com-
munication can influence their judgments (Miller, 1998; Rekker, 2021; Knight, 2006;
Harker, 2015).

This article focuses on topics lacking scientific consensus, a common stage in the
scientific process (Shwed and Bearman, 2010). Even perfectly rational scientists may
endorse differing theories due to inherent variability in research findings. Hence, con-
sensus is more likely when all research results are shared, but the speed of sharing and
processing such information by peers has limits. Internal communication channels are
thus vital for scientific progress. Moreover, scientists—like all humans—are susceptible
to affinity bias, where information uptake is influenced by the source’s affinity. This bias
can affect consensus formation and sometimes even increase polarization.

Previous agent-based studies have shown that the structure of scientific net-
works affects scientists’ beliefs, influencing the formation of consensus or polariza-
tion(Zollman, 2007; O’Connor and Weatherall, 2018). Empirical research also indicates
that citizens react differently to scientific results when they perceive a lack of consensus
among scientists. In particular, a lack of perceived consensus among scientists has been
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2 Structure of scientific communities & public uptake of uncertain science

shown to have a slightly negative effect on citizens’ belief in findings reported in science
communication (Chinn et al., 2018; Gustafson and Rice, 2019; van Stekelenburg et al.,
2022). So, there is a complex interplay of individual and network-level factors in the
formation of scientific consensus and the effects on citizens’ beliefs. So far, we know
of little research simulating the effects of this interplay on citizens’ uptake of scientific
findings.

The core innovation of this article is that we investigate how network features of the
scientific community affect citizens’ uptake of scientific findings. We do so with com-
putational simulations, extending the model of Zollman (2007). Our extended model
includes two groups of actors: scientists and other citizens. We study the effect on citi-
zens’ belief of the different types of networks that scientists may form. We also include
two additional variables: the uncertainty of the evidence and the affinity bias of scien-
tists and citizens. In the next subsection, we discuss what we know about the four main
variables.

1.1. Four main variables
First, the main dependent variable is the citizens’ uptake of scientific theories: it is
through this success rate among citizens that we can assess if the public gets a good
understanding of science. In this article, we quantify the public uptake of science by
with a single number: the success rate of a correct theory in the citizen community. This
success rate is given by the proportion of the number of citizens favoring the correct the-
ory over the total number of citizens (see below). For the sake of simplicity, we adopt
what one calls in public communication of science and technology (PCST) the deficit
model of science communication, which focuses on unilateral knowledge transfer from
scientists to other citizens (Wynne, 1991; Burns et al., 2003). In this model, citizens are
relatively passive receivers of evidence. We are aware of the limitations of this model
(Trench, 2008; Seethaler et al., 2019), but we consider this minimal model here as a first
step toward a more comprehensive understanding of the impact of scientific uncertainty
on the public uptake of science (Schmid-Petri and Bürger, 2020). One limitation of our
model is that while the scientists search for evidence is influenced by their prior beliefs
(as explained below), the citizens are modeled as receiving the same evidence, to which
they may respond differently depending on their prior beliefs.

Second, the main independent variable of our model is the structure of scientific net-
works. Here, we understand the term ‘structure’ as the shape of the network of epistemic
relations that exist between scientists. In particular, two scientists share an epistemic
connection in the network when they exchange their empirical results. Bibliometric
analysis has shown that many scientists are just a few links away from each other
(Newman, 2001a). Authors’ positions in networks affect the uptake of their results
(Uddin et al., 2013; Kumar, 2015). Thus, network structures directly affect the dissemi-
nation of newly produced scientific knowledge among scientists and potentially among
citizens as well. Next, we consider two moderating variables.

Third, the acceptance of a scientific theory by citizens can depend on how uncertain
this theory is. Uncertainty is inherent to scientific inquiry (Kampourakis and McCain,
2019; Pellizzoni, 2003) and can be due to the limited accuracy of the experimental setup
(e.g., a PCR test with aleatory false positive results or a telescope with a low-resolution
lens), the nature of the studied object itself (e.g., a complex social phenomenon or a
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stochastic quantum effect), or both. The communication of scientific uncertainty to a
public audience has received ample attention (Giles, 2002; Fischhoff and Davis, 2014;
Broomell and Kane, 2017; Van Der Bles et al., 2019). Indeed, making explicit the sci-
entific uncertainties can impact the acceptance of a scientific hypothesis or theory by
citizens (Gustafson and Rice, 2019). To contribute to the existing literature, we aim to
assess this impact in a more systematic and quantitative way.

Fourth, scientists and citizens alike are susceptible to psychological biases. One such
bias is affinity bias, where individuals give more weight to evidence coming from people
with whom they share similar beliefs, regardless of whether the new evidence confirms
their own beliefs. So, affinity bias is a form of ‘homophily’, understood here as a pref-
erence for interacting with like-minded people (see Dandekar et al., 2013); it pertains
to the source rather than the content. As such, it differs from biased assimilation or
confirmation bias (whereby people selectively accept evidence that confirms their prior
beliefs while rejecting disconfirming findings; see, e.g., Lord et al., 1979).1 Affinity bias
seems especially relevant for modeling scientists who revise their beliefs in response to
evidence and who make decisions on whether or not further experiments are required.
Moreover, the bias of individual scientists may impact the whole scientific community
through peer interaction, as well as the rest of society through public communication.
The impact of biases has been studied in scientific communities, both in psychology and
in the philosophy of science (Peters, 2021; Mahoney, 1977; Wilholt, 2009; Schumm,
2021; Peters, 2022; Kelly, 2008; Dorst, 2023).

Biases have also been implemented in numerical models. For instance, Baumgaertner
and Justwan (2022) modeled how people’s beliefs are influenced by homophily. As men-
tioned, this bias is similar to what we call ‘affinity bias’ in the current article. However,
Baumgaertner and Justwan (2022) only considered a single group of agents (modeled
after online groups) with full beliefs, whereas we investigate two groups of agents
with graded degrees of belief. An earlier example of a computational study focused
on homophily is Dandekar et al. (2013), who started from DeGroot’s (1974) model.
Individuals update their subjective probability assignments by taking a weighted aver-
age over the opinions of others. This can be understood as an agent-based model on a
total graph with weighted edges that can be chosen to represent homophily. Dandekar
et al. (2013) pointed out that homophily alone does not lead to polarization in such a
model (while biased assimilation does).

Our work aims to contribute to this debate by evaluating the role of affinity bias
in shaping beliefs of scientists and citizens, especially under scientific uncertainty.
Key questions include: How does affinity bias influence scientists’ beliefs when results
are uncertain? Is affinity bias overcome with more certain evidence? Additionally, our
model tests whether individually problematic dispositions (e.g., affinity bias) are equally
problematic at the group level. Some cognitive biases can be problematic at the individ-
ual level but turn out to be beneficial on group level (Peters, 2021); this is known as
‘Mandevillian Intelligence’ (Smart, 2018).

Methodologically, we chose the public uptake of science as our dependent variable,
since this is the effect on which PCST focuses generally. The structure of the scien-
tific community, the scientific uncertainty, and the affinity bias could in principle all be

1The simultaneous effect of social informational sharing and confirmation bias on polarization versus
consensus has been studied by Del Vicario et al. (2017).
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4 Structure of scientific communities & public uptake of uncertain science

considered as independent variables. We selected the structure of the scientific commu-
nity as our main independent variable, though, because our goal is to understand, for
a specific structure of the scientific interactions, how changes in individual behaviors
(i.e., affinity bias) and the accuracy of experiments (i.e., scientific uncertainty) affect the
dependent variable.

1.2. Interaction of the four variables
Previous models have studied these variables in isolation or have focused on the inter-
action of some of them. In practice, however, these factors operate simultaneously and
likely interact in complex ways, so their net effect seems impossible to determine a pri-
ori. We are not aware of any model or theory that has incorporated all these variables
together. Therefore, we opted for a comprehensive simulation model to study dynamic
interactions between these variables. This approach helps us to develop a more nuanced
understanding of the effects of these factors on public science communication.

Complex interplays of parameters on individual and network levels can be simulated
with agent-based modeling (Hedström and Ylikoski, 2010; Bruch and Atwell, 2015).
Agent-based modeling is used in the social sciences to understand the dynamics of
social phenomena (S̆es̆elja, 2023). Such models consider social entities (individuals,
institutions, etc.) like agents forming a network. Each of these agents can share infor-
mation or influence others in other ways through the agent community. In particular,
the network epistemology framework of Bala and Goyal (1998) has been adapted in the
context of science by Zollman (2007), and has been further developed in several pub-
lications to describe the dynamics of scientific communities (Weatherall et al., 2020;
O’Connor and Weatherall, 2018). Our article aims to adapt this model in a new direc-
tion, to simulate how a scientific community exchanges knowledge with a non-scientific
audience.

Our model represents an undecided scientific community hesitating between two the-
ories, A and B. We assume that one theory is, in fact, correct, but the scientists only
have fallible means for determining this empirically. Some scientists perform experi-
ments; they make their outcomes public to inform other scientists as well as citizens.
In response, the members of both groups progressively change their degrees of belief
concerning theory A and B. As far as we know, our extension of Zollman’s model is the
first one to consider two distinct epistemic communities: scientists and other citizens.

As we will see in the next section, our four variables can be implemented numeri-
cally, so their influence can be quantified. The outcomes of our model can be read both
descriptively and normatively. On the one hand, we describe how agents react to vari-
ous combinations of the aforementioned variables and parameters. On the other hand,
we can use this knowledge to assert how a scientific network should be organized in
order to maximize public uptake of the correct scientific theory. Our article can also
be considered as a first step toward a comprehensive computational study of the deficit
model in science communication. Our methodology can be extended to more complex
science communication paradigms, such as the dialogue approach in PCST, but doing
so falls outside the scope of our present work.
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Our paper is structured as follows. In section 2, we introduce Zollman’s model and
present our modifications to it. In section 3 we run the model with varying input val-
ues for the main parameters. In section 4, we summarize our key findings and suggest
directions for follow-up studies.

2. The model
In this section, we introduce the model of Zollman (2007) and our extension of it. We
explain how we implemented the adapted model numerically to address our research
question.

2.1. Zollman’s model and our application of it
There are several agent-based models that aim to describe how individuals create, share,
and update their knowledge (also known as opinion dynamics; for a review, see e.g.,
Fischbach et al., 2021). In recent years, Zollman’s model and its improvements raised
specific attention. In his influential article, Zollman (2007) applied the economic model
of Bala and Goyal (1998) to epistemic communities in order to understand their com-
munication structures. Such a model only considers one type of agents, which represent
scientists. Each scientist is a node of a communication network: a scientist can interact
with other scientists (if some communication channel links them directly) or can stay
isolated from other scientists (if no direct channel exists between them).

Zollman (2007) described quantitatively how this network of interactions influences
each scientist in their beliefs in given theories. Agents can have degrees of beliefs about
which of two options, A and B, is best. From round 1 onwards, agents have to decide
between two statements: ‘Treatment A is better than treatment B’ or ‘Treatment B is bet-
ter than treatment A’. In our article, we apply the model to two scientific theories (rather
than treatments, although this interpretation remains admissible, too). We consider a
scientific community in which two competing theories, A and B, have been proposed to
explain a given phenomenon. The first theory, A, is a well-known theory that has been
confirmed by a large number of experiments. The second theory, B, is either a theory
that has so far been ignored—for instance, because its predicted effects were too small
compared to available measurement resolution—or an improved version of theory A.
We consider the phase in which a new empirical method has just become available that
might give more strength to theory B (relative to theory A).2 Note that, in reality, two
scientific theories are rarely each other’s negation.3 Our model merely compares the
relative merits of two theories, in a context where those are the main or only contenders.

To model such situations, in which dissensus about two rival theories has started
to emerge within the scientific community, we assume that each scientist has a per-
sonal degree of belief in which theory is better. We assume that these degrees of
belief are rational in the sense that they adhere to the axioms of probability. Hence,

2As a historical example, theory A may represent geocentrism and theory B may be heliocentrism. The
latter theory had been suggested in Antiquity, but had been ignored because there were no measurable
effects. Early telescopic observations in the seventeenth century showed evidence of moons that revolve
around planets other than the Earth, which provided direct empirical confirmation of heliocentrism relative
to geocentrism.

3In the previous example, a hybrid theory was indeed proposed: geo-heliocentrism (see, e.g., Blair, 1990).
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6 Structure of scientific communities & public uptake of uncertain science

we also call the degrees ‘credences’. For a given agent at a given time, we denote
these degrees of belief respectively by P(A)≡ P(‘Theory A is better than theory B’) and
P(B)≡ P(‘Theory B is better than theory A’). They are both real numbers between 0
and 1, with P(A) = 0 denoting the agent’s subjective certainty that the theory B is bet-
ter than theory A and P(A) = 1 denoting their certainty that theory A is better than B;
mutatis mutandis for P(B). Rational coherence requires that these credences obey the
normality requirement: P(A) + P(B) = 1. So, for instance, if a scientist has a credence
of 80% that theory B is better than A (P(B) = 0.8), their credence that theory A is better
must be 20% (P(A) = 1 − 0.8 = 0.2). If an agent has a credence above 50% that either
theory is better than the other (at a given time), we say the agent favors that theory.

As mentioned earlier, in our model, theory A is initially far more established than the-
ory B. Scientists are unlikely to challenge theory A without significant belief in theory
B. However, some dissident scientists may doubt the established theory A and con-
duct new experiments to confirm their belief. Meanwhile, their conservative colleagues
strongly favor theory A and will not perform additional experiments. Stated differently,
we assume that only dissident scientists who have a prior degree of belief in the superi-
ority of theory B greater than 50% (P(B)> 0.5, or equivalently P(A)< 0.5) will deem it
relevant to run further experiments in order to further confirm theory B and to convince
their colleagues that theory B warrants more support than theory A. Conservative scien-
tists who favor the established theory A (i.e., having P(A)> 0.5 and thus P(B)< 0.5)
lack incentive to run extra experiments due to A’s established empirical adequacy and
their low belief in B. However, a conservative scientist may update their beliefs based on
dissidents’ results, and if they come to favor B (P(A)< 0.5), they may run experiments
to confirm their new belief, becoming dissidents themselves.

Zollman’s model assumes that the second treatment is better than the first one.
Analogously, we assume that theory B has better predictive success than theory A.
However, the experimental device is not perfect and leaves room for uncertainty. That
is, the device does not lead to a positive result in favor of B 100% of the time. Although
not perfect, we expect it to have an accuracy of more than 50%. A lower value would
imply, given our assumption that B is indeed better than A, that the device is not a suit-
able one. A 50% accuracy would be equivalent to assessing the truth of theory B by
flipping a coin. We define the accuracy of the experimental device, p, as the sensitivity
of the device: the probability of producing a true positive experimental result (given that
B is the correct theory).4 For example, in a counterfactual case where the geocentrism
versus heliocentrism debate took place with nineteenth-century telescope technology, p
could represent the probability of measuring stellar parallax (which is a true positive,
given that heliocentrism is correct). Formally, we use the notation

p = 0.5 + ε, (1)

with ε a real number between 0 and 0.5. If ε = 0.5, then the device is 100% accurate
and its results leave no room for uncertainty.

Since p is a probability, its (Bayesian) interpretation can be extended from the exper-
imental accuracy to encompass other forms of uncertainty. Indeed, dispersion in the
experimental outcomes is not necessarily caused by the measurement device alone, but

4Like Zollman (2007), we assume that the device never produces false negative results (100% specificity).
Hence, we use the terms accuracy and sensitivity interchangeably.
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can also result from the intrinsic stochasticity of the system under study itself. Having
that in mind, one can apply our model to many other fields dealing with inherent uncer-
tainty, such as the social sciences, medicine, statistical physics, and quantum mechanics.
For instance, one can cite sampling error in a population survey (in that case, one of
the theories could be ‘The majority of the population is smaller than 1m70.’), chaos in
weather simulation (‘It will rain tomorrow at 2:34 pm.’), the detection of an electron
outside an electron trap (‘The electron stays at least 30 min in the trap.’), etc.

In Zollman’s model, in order to reduce statistical error, each dissident scientist
chooses to run the experiment n times (always with a probability of success of 0.5 + ε

for each run). E denotes the event of k positive results out of n runs. The probability of
this event given that theory B is true is given by the binomial distribution:

P(E|B) = P(k, n, p) =
n!

(n − k)!k!
pk(1 − p)n−k, (2)

with p = 0.5 + ε .
When faced with the evidence E of such a run of n experiments, each agent updates

their prior credences according to Bayes’ rule:

Pnew(B) = P(B|E) = P(E|B)P(B)
P(E)

, (3)

with P(B) the agent’s prior credence in the superiority of theory B, P(E|B) the probabil-
ity of the evidence E given that the theory B is true, and P(E) the absolute probability
of E. By the law of total probability, the latter probability can be rewritten as

P(E) = P(E|B)P(B) + P(E|A)P(A), (4)

which says that the probability that E occurs (without knowing whether proposition A
is true or B) is proportional to the probability that it occurs on theory A or on theory B,
weighted by the probability that the given theory is correct. Assuming E corresponds
with k successes out of n experiments, we obtain by combining eqs. 2–4:

Pnew(B) =
pk(1 − p)n−kP(B)

pk(1 − p)n−kP(B) + (1 − p)k pn−k(1 − P(B))

=
1

1 + 1−P(B)
P(B)

( 0.5−ε

0.5+ε

)2k−n .
(5)

Each dissident scientist will perform an experimental run and update their prior belief
according to eq. 5. If ε is very small (meaning that an unreliable experimental device is
used), the outcome of the run has a non-negligible probability of disconfirming theory
B. Then, after updating their belief, the dissident scientist can end up with a degree of
belief in B below 0.5. The agent will then disfavor their former favorite theory B and
become a conservative scientist, who favors theory A. This scientist will not perform
any new experiments because, as mentioned, scientists are reluctant to perform a costly
experiment in favor of a new theory in which they have low credence, while there are
already a lot of old experiments in favor of A.

But all the scientists, both conservatives and dissidents, aim to improve their knowl-
edge and are open to listening to neighbor scientists located in their direct network.
Thus, even if conservative scientists will not perform an experiment themselves, they
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8 Structure of scientific communities & public uptake of uncertain science

will consider the experimental results of dissident colleagues who are direct neigh-
bors and update their prior belief according to eq. 5. In Zollman’s model, all pieces
of evidence have the same weight, regardless of whether it comes from the scientist
themselves or from dissident colleagues.

2.2. Extending the model
Some extensions of Zollman’s original (2007) model have been proposed in the lit-
erature. O’Connor and Weatherall (2018) added a social bias (similar to affinity bias),
related to the source of the evidence: in their model, scientists treat the evidence of peers
as more uncertain when their credences are further apart. The authors found that this pro-
motes polarization, but their model only concerns the scientific community and does not
include citizens. Wu (2023) set up a variant of the model including two groups of agents,
in which members of one group ignored the testimony of members of the other group.
Zollman’s later (2010) model represents scientists who have a choice again between two
methods, but now, instead of one having a known success rate and the other unknown
compared to it, both methods have unknown success rates (modeled by binomial dis-
tributions). Gabriel and O’Connor (2024) added confirmation bias to this model and
found that it may improve group learning. After each experimental round, agents have
some probability to accept or reject these outcomes. This probability is driven by a beta-
binomial distribution which depends on the history of success and failure of each theory
and the new outcomes. In another version of the model, Weatherall et al. (2020) con-
sidered an epistemic community made of scientists, policy makers, and a propagandist.
The propagandist aims to shift public opinion in one direction by cherry-picking among
the experimental results confirming their prior beliefs and massively sharing them. Even
though both communities (i.e., scientists and citizens) are considered, Weatherall et al.
(2020) did not give a systematic study of the impact of the scientific network. They only
considered two types of networks among the thousands possible: the cycle graph and the
complete graph. In the next section, we will discuss the interpretation of these graphs in
more detail.

In our model, affinity bias influences how agents (both scientists and citizens) adapt
their degrees of belief in response to the testimony of (other) scientists. Specifically, if
the agent is prone to affinity bias, their trust in the scientist’s testimony will be high if
their prior credence on a particular topic (in this case, whether they favour theory B) is
very similar. The closer the agent’s prior degree of belief is to that of the scientist, the
more the agent will trust the reported evidence.

To represent this type of belief revision, we must deviate from Bayes’ rule (eq. 5)
that was part of Zollman’s base model, because it assumes that all evidence is learned
with certainty. Instead, we start from Jeffrey’s (1990) generalization of Bayes’ rule, as
did O’Connor and Weatherall (2018). In addition, we modify the way agents respond
to testimony under the influence of affinity bias. To achieve this, we essentially use the
same equation as O’Connor and Weatherall (2018), but with one component fewer.

Formally, we consider a scientist j who report their evidence E to another agent
i, who does not fully believe this testimony. By ‘testimony’, we consider an observa-
tion report (i.e., a scientist’s testimony on their experimental evidence), rather than an
expert’s posterior degree of belief, which has been studied, e.g., by Steele (2012) and
Roussos (2021). According to Jeffrey’s (1990) conditioning, the posterior of agent i is
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as follows:

P′
i (B) = Pi(B|E)P′

i (E) + Pi(B| − E)P′
i (−E), (6)

where P′
i (B) is agent i’s posterior credence that theory B is better than theory A, Pi(B|E)

and Pi(B| − E) are the conditional probabilities of theory B being better than theory
A given that E or −E occurred, respectively (see eq. 5), and P′

i (E) and P′
i (−E) are

agent i’s posterior credence that E or −E occurred, respectively, after accounting for
the testimony of scientist j. These final two factors are influenced by the affinity bias,
as defined in eq. 7 below.

In our model, when scientist j claims that they received evidence E, the posterior
credence of agent i depends on the affinity bias, as follows:

P′
i (E) = 1 − min(1, max(0, α |Pi(B)− Pj(B)|)), (7)

where P′
i (E) is agent i’s posterior credence in E, |Pi(B)− Pj(B)| is the distance between

the prior credences of agent i and scientist j in theory B being better than A, and α is
a positive real parameter that represents the degree of affinity bias of agent i. P′

i (−E) is
obtained as 1 − P′

i (E).
If α is 0, the agent is not prone to affinity bias and P′

i (E) will be 1, so the agent
will trust another scientist regardless of how different their beliefs are. As α increases,
the agent is more prone to affinity bias, so the agent will distrust experimental results
coming from other scientists, except those for which |Pi(B)− Pj(B)| is smaller than
1/α . We notice as well that when the credences of scientists i and j in the theories get
closer, the subjective probability P′

i (E) approaches 1: scientist i approaches full belief in
the occurrence of E as reported by scientist j. So, there are two ways in which an agent
i may fully trust the testimony of scientist j: if α is 0 or if agent i happens to have the
same prior credence in B as scientist j. In both cases, P′

i (E) = 1 and Jeffrey’s formula
reduces to Bayes’ rule.

Our eq. 7 is structurally similar to the expression introduced by O’Connor and
Weatherall (2018), except that we left out the additional factor of (1–Pi(E))—a use-
ful simplifying assumption.5 So, our approach assumes that the uptake of the testimony
only depends on the difference of degree of belief between i and j and the intensity of
the affinity bias, regardless of how probable this piece of evidence is.

We have described how each scientist updates their degree of believe according their
own experiment’s outcomes and those of their epistemic neighbors. These pieces of evi-
dence are communicated to the citizens via a communication channel, called a mediator.
In our article, we only consider a rapporteur in the role of a mediator, who publishes all
the scientific outcomes.6 Unlike the dialogue model in PCST (Trench, 2008), there is
no scientist–citizen knowledge co-production. The citizens merely receive information
from the mediator, a one-way communication channel from scientists to citizens. Once
new evidence has been produced by any scientist, it reaches every citizen. Like the sci-
entists, each citizen will use eq. 6 to update their degree of belief. We assume that,
realistically, citizens, like scientists, are prone to affinity bias.

5We also compared our results with those obtained by using O’Connor and Weatherall (2018)’s expression
for affinity bias. The results differ only slightly quantitatively and the qualitative conclusions remain the
same.

6In general, there are other options, such as a journalist who publishes the most interesting research
results, a science educator, or an opinion maker (Burns et al., 2003).
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2.3. From the theoretical model to its numerical implementation
As stated in the introduction, our aim is to understand how the structure of scientific
communities, scientific uncertainty, and affinity bias impact the public uptake of science.
The agent-based model we just reviewed gives us a useful tool to approach this question.
We implemented our model in a Python algorithm (publicly available: Ferrari, 2025).

For each simulation, several parameters are fixed: the structure of the scientific com-
munity, the sensitivity of the experimental device, the affinity bias, the number Nsc of
scientists in the scientific community, the number Ncit of citizens in the public, and the
number of experiments n done by each dissident scientist in each run.

The Ncit citizens, like the Nsc scientists, all start with a prior degree of belief P(B)
at time t = 0. These degrees of belief (between 0 and 1) are randomly generated by
the computer. Each dissident scientist (with P(B)> 0.5) will run n experiments with a
probability of success of 0.5 + ε for each trial. At the next time increment (t = 1), each
of these dissident scientists will update their personal degrees of belief according to
the outcomes of their own experiment by using Bayes’ rule. In addition, they will share
their results with scientists located in their neighborhood. Remember that the network of
scientists is a graph, where each scientist is represented by a vertex and each connection
by an edge. Each of the scientists (conservative or dissident) of the neighborhood will
update on each of the upcoming pieces of evidence coming from their neighborhood
according to Jeffrey’s rule (eq. 6). Then, each of the citizens will update their degree of
believe with all the piece of evidence produced by the scientific community according
to Jeffrey’s rule as well.

We reiterate this process for t = 2, t = 3, etc. until all agents (both scientists and
citizens) stabilize their beliefs: not changing them for subsequent time t. The time after
which beliefs stabilize is called the stabilization time τ . Once all beliefs are stabilized,
the simulation stops. This is the halt condition of our algorithm. We can now count
how many scientists and citizens favor theories A and B. From these numbers, we can
conclude what is the public uptake of science for this specific community.

So far, we described a single simulation for a specific values of the independent vari-
ables and a random degree of belief assignation. In order to have a general picture of the
impact of a given choice of parameters (our independent variables), we would like to
make this result independent of the prior beliefs of the agents (i.e., the P(B) at t = 0). To
do so, we randomized the initial distribution of beliefs of agents and simulate the same
epistemic network with the same parameters a large number of times. More specifically,
we start with a random distribution of scientists with degrees of belief between 0 and 1
and a distribution of citizens with degrees of belief between 0 and 0.5 (so, no citizens
favor B at t = 0 because we assume that the conservative scientists had enough time in
the past to convince all the citizens to favor theory A). Then, we average the propor-
tion of agents favoring the correct theory (i.e., theory B) at the end of the interaction
process (i.e., once all scientists’ beliefs have stabilized). This average ratio is called the
success rate. We use this success rate among the citizens to assess if the public gets a
good understanding of science (assuming the deficit approach of PCST). This is why we
quantify the dependent variable of this article (i.e., the public uptake of science) with
the the success rate of theory B (i.e., the correct theory) in the citizen community.

We summarised the independent and dependent variables in Table 1. The main four
variables of this article are written in bold.
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Table 1. Independent and dependent variables of the model; main variables of interest indicated in bold.

Independent variable name Symbol Range of value
Number of scientists Nsc Natural number
Number of citizens⋆ Ncit Natural number
Number of experiments at each run n Natural number

Network structure None
All possible graphs representing
connections between Nsc agents

Sensitivity of the experimental device 0.5 + ε ε ∈ [0, 0.5]
Affinity bias of agents⋆ α Positive real number
Dependent variable name Symbol Range of value
Success rate of scientists None [0, 1]
Success rate of citizens None [0, 1]
Stabilization time τ Natural number
⋆ = added to Zollman’s model

Our model is now complete. In the next section, we will investigate how the choice
of the scientific network affects both the scientists and the public in their beliefs: we
study the success rate in these two communities.

3. Network structure
The structure of a scientific community can be represented by a graph in which each
vertex represents an agent and each edge represents the connection existing between
two agents. For instance, the graph of all members of the same university department is
usually a complete graph: each agent stands in a direct epistemic connection with any
other one. In other cases, the graphs might not be connected sets, such as when there
is an accidental or forced segregation of two (or more) scientific communities (e.g.,
due to language barriers). In this case, the graph of the whole scientific community
consists of at least two disconnected subgraphs. Such a setup does not imply that the
subcommunities cannot reach the right conclusion independently. A more extreme case
consists of a society of isolated agents with no communication between any of them.
One can think of independent scholars non-affiliated to any university and lacking some
covering for their research, or scholars during Antiquity when manuscripts were often
unaffordable and communication means were very slow or nonexistent. Some authors
also consider two other kinds of networks: the cycle and the wheel (Zollman, 2007;
O’Connor and Weatherall, 2018). In a cycle network, each agent is connected to two
other agents. The resulting connected graph is a loop. Such a network is one of the
most economical one to link all agents together. However, the path between one agent
to another can be long and has to transit through a lot of peers who could modify the
message. The wheel is an improved version of the cycle with an agent at the cycle’s
center and connected to all other agents. This agent is like a postman providing shortcuts
for communication between any pair of agents. An illustration of these four networks is
presented in Figure 1.

In this section, our object of investigation is the effect of the network structure of
the scientific community on the success rates within the communities of both scientists
and citizens. As mentioned before, we assume here that the communication channel is
a rapporteur, such that all experimental outcomes produced by the scientists are made
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12 Structure of scientific communities & public uptake of uncertain science

Figure 1. The complete, isolated, cycle, and wheel networks.

public to the citizens (which may be viewed as the ideal of open science) and that the
latter take this information into account (an even less realistic modeling assumption).
Stated differently, at each round, each citizen will update (in a Bayesian way) their
degree of belief based on all the experiment outcomes produced during this round.

3.1. Complete, isolated, cycle, and wheel graphs
We begin by examining the four common network graphs—complete, isolated, cycle,
and wheel—to understand their impact on the public uptake of science. We model a
society of 20 scientists and 20 citizens, considering both societies of agents without
affinity bias (α = 0) and with agents prone to affinity bias (α > 0). Initially, scientists’
prior degrees of belief are randomly distributed between 0 and 1, and citizens’ between
0 and 0.5.

3.1.1. Unbiased case: α = 0
The result of the unbiased case is depicted in Figure 3.1.1. We notice that the wheel
network is the most successful graph for making scientists favor the correct theory,
followed by the complete network and the cycle network. For the isolated network even
if half of the scientists start by favoring the correct theory on average, less than half of
them end up with the right conclusion. We can explain this by noticing that a small value
of ε implies a high probability of failure (k < n/2). In the case of an update with false
negative results, a scientist starting with a prior degree of belief above 0.5 can have a
posterior degree of belief below 0.5 at the next time increment. As a consequence, this
scientist will then stop running experiments. Because the agent is isolated, they will not
have any new experimental outcomes for updating their erroneous belief. Such an agent
will stay stuck below 0.5 forever.

Concerning the impact of these four structures on citizens, we notice quite similar
behaviors in each case. No citizen will be convinced to favor the correct theory if the
accuracy of the experimental device is 0.5 (ε = 0). But the number of citizens that favors
the correct theory grows rapidly and reaches the maximal value even for a poor accuracy
of the device. It is surprising to see that the isolated network now performs as good as
the other networks.

In order to study the robustness of our results, we varied the number of scientists and
the number of citizens. We discovered that varying the number of citizens does not affect
their success rate. However, as depicted in Figure 3.1.1, a larger scientific community
leads to a better success rate both for itself and for the citizens. Although we exemplified
it for a complete graph, this statement is valid for all the four graphs considered here.
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Figure 2. Fraction of scientists and citizens that reached the correct conclusion in a society without affinity
bias in function of the increasing experimental accuracy (or sensitivity) 0.5 + ε and the graph geometry. In
these simulations: Nsc = Ncit = 20, α = 0, n = 10 and number of runs = 500.
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Figure 3. Fraction of scientists and citizens that reached the correct conclusion in a society without affinity
bias in function of the increasing experimental accuracy (or sensitivity) 0.5 + ε and the number of scientists
in the case of a complete graph. In these simulations: Ncit = 20, α = 0, n = 10 and number of runs = 1000.
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Figure 4. Fraction of scientists and citizens that reached the correct conclusion in a society with affin-
ity bias in function of the experimental accuracy 0.5 + ε and the graph geometry. In these simulations:
Nsc = Ncit = 20, α = 2, n = 10 and number of runs = 200.

3.1.2. Biased case: α > 0
We run the same algorithm, now considering a society with affinity bias (α = 2). In
Figure 3.1.2, we notice that the success rate of the four networks is lowered and none of
them achieve convincing either the scientists or the citizens to favor the correct theory.
This effect is even more prominent in the case of citizens; only the complete graph
reaches slightly more than 50%. If we add more scientists to the network, the success
rate for the scientists rises but never surpasses 75%, and the citizens’ success rate never
rises above 50%. For readability, we omitted these plots.

The geometry with the lowest success rates is once again the isolated network. We
notice here that the more connected a graph is, the higher its success rates are. The next
subsection investigates whether that statement can be true in general.
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3.2. General graphs
Even though the complete, isolated, cycle, and wheel graphs are often implemented in
Zollman’s model (Zollman, 2007; Weatherall et al., 2020; O’Connor and Weatherall,
2018), there are few systematic studies covering all the possible graphs. Zollman (2007)
investigated all the possible graphs for Nsc = 3, 4, 5, 6. (We will discuss his conclusions
later on.) Zollman’s approach aims to be analytical: for a fixed number of scientists
(i.e., vertices), he computed all the ways of linking them. He ended up with 2, 6, 21, and
112 possible graphs, respectively. This number grows exponentially with the number of
scientists (Sloane, 2024): 853 for 7 scientists, 11,117 for 8, 261,080 for 9, 11,716,571
for 10, etc. Hence, an intrinsic limitation for this type of research is the exponential
increase of computation time needed for exploring larger graphs. However, it is worth
investigating beyond graphs of 6 vertices, since a scientific society is rarely limited to
6 individuals and important differences are to be expected for larger networks. Like in
the previous example, we would like to simulate all possible graphs for a community
of 20 scientists. For this case, there are roughly 1037 possible graphs (Sloane, 2024).
Since our script takes 0.1 seconds for simulating 10 graphs in one CPU, it will take
around 1035 seconds or 1027 years (i.e., more than one billion times the current age of
the Universe) to go through all possible graphs. Clearly, this is far beyond the capacity
of current computers. Instead, we modestly simulated 10,000 random graphs. We will
show later that this tiny sample seems to suffice for studying the trend of the results.

Like Zollman (2007) and earlier authors (see, e.g., Newman, 2001a,b), we synthe-
size the graph identity with one unique number: the clustering coefficient (also called
transitivity).7 This coefficient aims to describe how vertices tend to be clustered. For
each agent, the local clustering coefficient is proportional to the number of connections
the agent’s neighbors form. The more the neighbors are connected, the higher the local
clustering coefficient. These local coefficients are computed for each vertex (i.e., for
each agent) and are averaged. This final number (between 0 and 1) is called the global
clustering coefficient or simply the clustering coefficient of the graph. For example, a
completely isolated community has a graph with a null coefficient, and a fully connected
community has a coefficient of 1. The cycle structure has a coefficient of 0.5. The higher
the coefficient, the denser and more connected the community.

In Figure 3.2.2, we simulated 10,000 random graphs and computed their clustering
coefficient, their stabilization time, and their ratio of scientists that reached the cor-
rect conclusion. The upper plots pertain to an unbiased society (α = 0) and the lower
ones to a more biased one (α = 2). The complete, isolated, cycle, and wheel graphs are
represented by specific symbols as well.

Our results for scientists agree with earlier work in this area. In addition, we consider
the effect of the network in one community (the scientists) on the credences of another
group (the citizens), for which no such studies exist. Moreover, we study the interaction
with affinity bias, as discussed below.

7One could also describe the network with average path length: the average number of steps to con-
nect two nodes by the shortest path. Real-world communities tend to have a small-world network: a high
clustering coefficient and a low average path length.
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3.2.1. Unbiased society
In the case of an unbiased society, the more clustered the graph is (i.e., the higher the
clustering coefficient), the more likely the scientists will reach the correct conclusion.
Concerning the citizens, however, it is the exact opposite: the more disconnected a graph
is, the more likely the citizens will favor theory B. We notice, out of the four common
graphs, that the complete one can not lead all the citizens to favor theory B. However,
it is the quickest one: the community stabilizes after only a few iterations. The iso-
lated graph lies in the bottom left and scores a success rate below 0.5 for the scientists
although scoring at 1 for the citizens. We can explain this by noticing that once a dis-
sident scientist runs an experiment whose outcomes lower their degree of belief below
0.5, they will never do an experiment again, nor update their belief based on another sci-
entist’s experiment. At the same time, each isolated scientist will share their knowledge
with the audience and the latter will reach the correct conclusion. In general, we notice
that increasing the clustering of a graph improves its stabilization time and the ratio of
dissident scientists but lowers the chance of getting all the citizens unequivocally favor-
ing theory B (i.e., being in one of the horizontal strips of the second graph). We can
see it as a trade-off between a successful scientific community and a successful citizen
community. The link between connectivity and stabilization time is consistent with the
results of Zollman (2007).

3.2.2. Biased society
We ran the simulation again with a non-null level of affinity bias (α = 2). We first notice
that the three dotted clouds in the three lower charts are, on average, convex. This time,
no graph achieves a success rate of 1 for the scientists, and, in a few graphs only, the
success rate for the citizens is above 0.5 The most successful graphs are located around
a clustering coefficient of 0.6. The success rate of the isolated graph is one of the worst
ones even though its stabilization time is very low. The three other classical graphs have
low success rates, especially the cycle and the wheel which lie below the majority of
points. This specific convex shape of the curve can be understood as the result of two
competing phenomena: epistemic isolation of the agents due to high affinity bias and
the fast dissemination of false pieces of evidence in highly connected graphs. The first
phenomenon that takes place is poorly connected graphs. Agents are isolated due to the
lack of connection with other agents and have fewer opportunities to receive informa-
tion from other agents. This effect is even more stringent with the affinity bias: even
though an agent receives an experiment outcome from one of their rare peers, they are
more easily prone to discard it. That explains the low success rate for poorly connected
networks. This rate increases when the connectedness increases. However, a second phe-
nomenon will counteract this increase. In a highly connected graph, information spreads
very fast and very easily to all the agents. This may sound as beneficial to the success
rate. However, even though true positive results (i.e., in favor of theory B) spread fast,
false positive results (i.e., in favor of theory A) do as well. Such false positive results
are difficult to correct once they have been communicated to a large number of agents.
This effect has already been pointed out by Zollman (2007) and is known as the Zollman
effect (S̆es̆elja, 2023). This effect diminishes for poorly connected networks. The convex
shape is thus understood as the result of these two competing phenomena.

We notice here a trade-off between accuracy and speed. On average, adding or
removing some vertices to change the clustering coefficient of the graph in order to
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Figure 5. Fraction of scientists and citizens that reached the correct conclusion and the stabilization time
in function of the clustering coefficient. α = 0 for the two upper graphs and α = 2 for the three lower ones.
We fixed ε = 0.05, n = 5, number of generations = 20, and number of graphs = 1000. The blue stars denote
the complete graph, the green diamonds the cycle, the yellow squares the wheel, and the black tripods the
isolated graph.

reach the value of 0.6 (i.e., to maximize the success rate of scientists and citizens) will
increase the stabilization time. Stated differently, slower graphs will perform better.

To assess the model’s sensitivity to affinity bias, we also run the script for α = 4. In
this case, the curve of the two first graphs is shifted downwards: fewer scientists and
citizens reach the correct conclusion. One could have expected this result: due to their
strong affinity bias, all the agents will rarely update their degrees of belief and will stay
stuck not far from their prior beliefs. The top of the curve lies around 0.5 on average
for scientists and around 0.25 on average for citizens. The first value can be understood
as follows. Because scientists who initially believe in theory B will never change their
minds, their proportion stays the same throughout the interaction process (i.e., 50%).
So half of the scientists of the initial and final community favors theory A whereas the
other half favors theory B.

In this section, we studied the impact of the scientific network on both the scientists’
and citizens’ beliefs. We stressed that a society prone to affinity bias (i.e., a biased soci-
ety) performs poorly and never achieves to make more than half the citizen population
favor theory B. Even if these limitations are unavoidable, a poor result can be improved
either by hiring more scientists (raising Nsc), or by reorganizing the scientific network
in such a way that its clustering coefficient is near to 0.6 (i.e., moderately connected).
In the case of unbiased societies, we saw that there is a trade-off between making either
scientists or citizens favoring the correct theory. These results are especially interesting
since they illustrate how the network of one community (i.e., the scientists) impacts the
uptake by another (i.e., the citizens). This suggest that citizens’ uptake is not only driven
by the content of scientific information (i.e., the experimental outcomes) but also by the
temporal variations of the flow of information. These variations are caused by the con-
version of conservative scientists into dissident scientists and vice versa during all the
simulation. In addition, the network’s structure directly impacts the likelihood of such
conversions.
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4. Conclusion and outlook
In this article, we investigated how the structure of the scientific community impacts
citizens’ uptake of science. We proposed an adapted version of the Zollman agent-based
model including not only the structure of the scientific community and citizen uptake
of scientific findings but also scientific uncertainty and the agents’ propensity to affinity
bias. The latter, as defined in eq. 7, is one of the major contributions of this article.

By doing an extensive study of the influence of the structure of the scientific network,
we found that in unbiased societies, on average, most of the scientists and citizens arrive
at believing the correct theory. We also noticed a trade-off between successfully making
either scientists or citizens favoring theory B over theory A. Highly connected scientific
communities will lead more scientists than citizens to believe in theory B. Less con-
nected scientific communities will lead more citizens than scientists to believe in theory
B. In contrast, we found that a society prone to affinity bias (i.e., biased society) per-
forms poorly and never ends up with more than half of the citizen population favoring
the true theory (i.e., theory B). Two interventions are possible if one wants to improve
this ratio: (1) hiring more scientists or (2) reorganizing the scientific network in such a
way that it is just moderately connected (clustering coefficient around 0.6). Our findings
suggest that maximal connectivity is not always the best way to produce better science,
which is in line with the findings of Zollman (2007).

The previous results give us more insight into how the choice of parameters influ-
ences the public uptake of science in the deficit model. By carefully adjusting these
parameters, one can improve not only the success rate of the scientific community but
also the public uptake of science. Some changes in the model are suggestive of interven-
tions that can be tested experimentally and that can be influenced through policies for the
organization of science and for science communication. For instance, one can change
the number of connections per scientist in the model as well as in reality (e.g., by incen-
tives that either promote or discourage team science). The effect of these choices will
depend on other parameters as well (modifiable or not) such as the degree of affinity
bias in society, the number of agents, or the experimental accuracy.

This article is a first contribution toward a comprehensive understanding of the inter-
action between scientists and the public in science communication. This model can also
serve as a starting point for studying the limitations of the deficit model. For instance,
we only considered a one-way interaction from the scientists to the other citizens and
no interaction between the citizens. A possible improvement would be to move from
a deficit model to a dialogue model, which allows two-way communication between
the two types of agents as well as communication between the citizens. Other possible
improvements would be to consider other psychological biases or to test our model with
a more realistic network structure, for instance, based on citation patterns reported in
empirical bibliometric studies. Different communication channels between the scien-
tists and the citizen can also be implemented, as was done by Weatherall et al. (2020).
Lastly, we assumed that once a dissident becomes conservative after running experi-
ments favoring theory A, they will not perform any new experiment (by our definition
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of a conservative scientist). In the real world, however, one may expect that scientists do
not give up so easily and keep experimenting for several iterations.8

We have used an expression for the posterior degree of belief in evidence reported by
a scientist that depends on the agent’s affinity bias and the difference between their prior
credences on which theory to favour, but—unlike O’Connor and Weatherall (2018)—
not on the prior probability of the evidence (eq. 7). Qualitatively, this simplification did
not seem to affect our results, but we flag a systematic robustness study of different
implementations of this bias as well as empirical validation as potential avenues for
future research.

Our results suggest that the structure and size of the scientific community affect the
uptake of correct theories by citizens but also that the direction of this effect depends
on the degree of affinity bias. Without this bias, the probability that the public ends
up favoring the correct theory decreases as the connectivity of the scientific network
increases. When affinity bias is present, however, the probability that the public favors
the correct theory is highest for a moderately connected scientific network. Both effects
are more pronounced when the number of scientists increases.
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