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In the generalized quasilinear approximation (GQLA) (Marston et al., Phys. Rev. Lett.,
vol. 116, 2016, 214501), a threshold wavenumber (k0) in the direction of translational
symmetry segregates the total into large- (l) and small-scale (h) fields. While the
governing equation for the large-scale field is fully nonlinear, that for the small scales
is linearized with respect to the large-scale field. In addition, some nonlinear triad
interactions are omitted in the GQLA. Herein, the GQLA is applied to two-dimensional
planar Rayleigh–Bénard convection (RBC). A scale separation between the large-scale
convection rolls and small-scale turbulent fluctuations is typical in RBC. The present work
explores the efficacy of GQLA in capturing the scale-by-scale energy transfer processes in
RBC. The initial condition for the GQLA simulations was either the statistically stationary
state obtained in direct numerical simulation (DNS) or random fluctuations superimposed
on the linear conductive temperature profile and u = 0. The GQLA simulations can
capture the convection rolls for k0 larger than or equal to the dominant wavenumber
for thermal driving of the flow (k0 ≥ kQ̂). Additionally, the GQLA emulates the fully
nonlinear dynamics for k0 larger than or equal to the first harmonic of the convection-roll
wavenumber (k0 ≥ 2kroll). In the intermediate regime with 2kroll > k0 ≥ kQ̂, the dynamics
captured in GQLA simulations is different from the DNS. In DNS, two primary energy
transfer processes dominate: (i) the energy transfer to/from the convection rolls and (ii)
the scale-by-scale inverse kinetic energy and forward thermal energy cascades mediated
by the convection rolls. The fully nonlinear dynamics is emulated by GQLA when these
energy transfer processes are faithfully reproduced. Utilizing the framework of altering
the triad interactions in GQLA, an additional intrusive calculation, including target triad
interactions, is performed here to study their influence. This intrusive calculation shows
that the convection rolls are not captured in GQLA for k0 < kQ̂ because of the exclusion
of the h → l → l and l → h → h triad interactions in GQLA. The inclusion of these triad
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interactions in the intrusive calculation yields the convection rolls, and the reproduced
dynamics is similar to that of the intermediate GQLA regime with 2kroll > k0 ≥ kQ̂.

Key words: Bénard convection, turbulence theory, turbulence modelling

1. Introduction

Over many decades, scientists and engineers have devised analytical/numerical methods
to study turbulence, which is omnipresent in nature. Prior to recent advancements in
computationally intensive high-fidelity simulation methods resolving most of the scales
in a problem, various linearization techniques were utilized to simplify the problem and
target a specific solution regime. Some of these methods have been invented primarily to
tackle practical flow problems that are otherwise intractable for fully resolved simulations,
even on modern supercomputers. Therefore, these simplification frameworks are still
relevant, either as an augment to computer simulations or, in some cases, as a stand-alone
framework. In the present work, we utilize one such technique, the recently proposed
generalized quasilinear approximation (GQLA) (Marston, Chini & Tobias 2016; Tobias
& Marston 2017; Marston & Tobias 2023), to study a highly complex nonlinear turbulent
fluid flow problem, the Rayleigh–Bénard convection (RBC).

Various forms of quasilinear-type approximation were first used to study convection-
dominated flows (Malkus 1954; Ledoux, Schwarzschild & Spiegel 1961; Spiegel 1962;
Herring 1963). The systematic approach is to first decompose a flow field into a
base/mean/large-scale (l) component and a fluctuating/eddy/small-scale (h) component.
Then, separate equations are derived for these two components of the flow. The physical
consequence of this approach, a significant breakthrough, is the segregation of the
nonlinear interactions between scales into three interactions (without considering the
direction of energy propagation), namely the self-interaction among large-scale flow and
small-scale eddies (l–l and h–h interactions), and interaction between the large- and
small-scale flows (l–h interaction). Typically, the h-component equation is linearized with
respect to the l-component. Physically, this represents the exclusion of the eddy–eddy
(h–h) interactions from the equation governing the eddies.

In addition to the omission of the h–h interaction, in a typical linearization exercise,
the l–h interaction is one-way only, i.e. the eddy (h) → base/mean (l) energy transfer
is also removed. Quasilinear approximation (QLA), on the other hand, allows for the
h → l energy transfer. In many flows, the eddy → base/mean energy transfer is necessary
to describe sustained turbulence where the base state is linearly stable. For flow in
a channel, the mean flow is often stable. The quasilinear (QL) model captures the
sustained turbulence in such situations. The success of the QLA may be attributed to
the retained h → l energy transfer route in its dynamics. The QL models vary based
on how the eddy–eddy self-interaction is modelled, such as stochastic structural stability
theory (Farrell & Ioannou 2003, 2012), direct statistical simulation (Marston, Conover
& Schneider 2008; Tobias & Marston 2013), self-consistent approximation for linearly
unstable flows (Mantič-Lugo, Arratia & Gallaire 2014) and restricted nonlinear model
(Thomas et al. 2014, 2015; Gayme & Minnick 2019; Pausch et al. 2019). Recently, the
GQLA has been proposed (Marston et al. 2016; Tobias & Marston 2017; Marston &
Tobias 2023), which also includes the eddy–eddy interaction in a systematic manner.
Instead of modelling the h–h interaction, these researchers eliminated some nonlinear triad
interactions from the fully nonlinear equation, yielding an approximation that preserves
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Triad interactions in Rayleigh–Bénard convection

linear and quadratic conservation laws (Marston et al. 2016). The GQLA is an intermediate
approximation between the QLA and the fully nonlinear direct numerical simulation
(DNS).

The aforementioned approximations are generally intended to exploit the separation of
energetic scales in a flow. In general, the eddy component of the flow has two contributions.
First is the l–h interactions to modify the large-scale flow. The second contribution of these
scales is to participate in a forward/inverse cascade via interaction with adjacent scales
and eventually dissipate energy. In QLA, the emphasis is on modelling the former. The
h–h interaction is entirely omitted. The GQLA allows the latter by allowing a spectrally
non-local energy transfer route, the h → l → h triad interactions. Therefore, the success
of QLA and GQLA for any system depends on the split in the total energy between these
two interaction routes. The comparisons of the performance of the QLA and the GQLA
have been tested in several flows where the l–h interactions dominate: plane channel flow
(Kellam 2019; Hernández, Yang & Hwang 2022a,b), rotating Couette flow (Tobias &
Marston 2017), jets on a spherical surface and β-plane (Marston et al. 2016), rotating
thermal annulus (Tobias, Oishi & Marston 2018), turbulence in homogeneous shear (Luo,
Hernández & Hwang 2023), etc. Because of the background shear in all these works, the
non-modal growth is significant due to the large-scale–eddy (specifically l → h energy
transfer) interactions. In these flows, the h–h interactions are of lesser importance. In such
scenarios, the GQLA has been shown to perform well, always providing improved results
compared with the QLA.

In the present work, we obtain the GQLA of the RBC problem, which has
been extensively studied because of its relevance to geophysical/astrophysical flows
(Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009; Chillà &
Schumacher 2012; Schumacher & Sreenivasan 2020; Xia et al. 2023). In RBC, the fluid
entrapped between two walls, one heated from the bottom and the other cooled at the top,
is driven by buoyancy. The RBC flow is characterized by large superstructures (Pandey,
Scheel & Schumacher 2018; Stevens et al. 2018; Green et al. 2020; Krug, Lohse &
Stevens 2020) and small-scale turbulent fluctuations (Lohse & Xia 2010). Despite this
apparent scale separation, a range of scales are involved and interact to sustain this highly
nonlinear flow. In RBC, as the large-scale flow is intermittent, whose scale is set by
the flow configuration and not by any mechanism inherent in the governing equations,
the aforementioned scale-by-scale interaction mechanism, i.e. the forward or the inverse
energy cascade, is the dominant functional role for the small scales in their interaction
with the large scales. In this work, we explore the efficacy of the GQLA in approximating
this scale-by-scale interaction route that is otherwise dominated by turbulent flows in the
presence of background shear. The GQLA is expected to yield significant improvement
over the QLA of RBC flow because of its capacity to capture the scale-by-scale forward
and inverse cascade processes for intermediate and small scales by enabling the eddy–eddy
interactions in a systematic manner. Here, we demonstrate that this is indeed the case.

1.1. Contributions
Although RBC flow is three-dimensional, it has been shown that the flow structures and
the global transport properties, such as the Nusselt number and Reynolds number, of the
two-dimensional RBC are very similar to their three-dimensional counterparts, at least
in the high-Prandtl-number regime (Schmalzl, Breuer & Hansen 2004; Van Der Poel,
Stevens & Lohse 2013). In recent years, two-dimensional RBC has been widely studied
in the literature (Van Der Poel et al. 2014; Zhu et al. 2017, 2018; Krug et al. 2018;
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Zhu et al. 2019; Wang, Goluskin & Lohse 2023; Samuel & Verma 2024). Because the
computational requirement of the GQLA calculations is the same, if not more than that of
DNSs and because of the aforementioned similarity of RBC flow in the high-Pr regime,
we restrict our analyses to two-dimensional RBC at a high Prandtl number, Pr = 10. The
Rayleigh number is fixed at Ra = 108. For this RBC flow, the GQLA provides different
levels of approximation based on the threshold wavenumber (k0) segregating the small-
and large-scale flows – three approximation regimes are identified in the present work.

(i) In the first regime, hereafter called R1, closer to the QLA for low k0, convection rolls
are not captured by GQLA. This regime is demarcated by the condition k0 < kQ̂, i.e.
kQ̂, the dominant wavenumber for thermal driving, must belong to the fully nonlinear
l-flow.

(ii) In the intermediate regime, henceforth called R2, also for low k0 ≥ kQ̂, convection
rolls are captured by GQLA, but the captured dynamics of the rolls is different from
that of the fully nonlinear DNS.

(iii) In the third GQLA regime, R3, GQLA can capture the fully nonlinear dynamics
when k0 ≥ 2kroll, where kroll is the wavenumber associated with the convection rolls.

Furthermore, in the present work, we utilize the general framework of QLA/GQLA
to perform intrusive nonlinear interaction studies by including additional target triad
interactions with respect to the baseline GQLA. This calculation is performed to reason
GQLA’s inability to capture convection rolls for k0 < kQ̂. We demonstrate that this
is due to exclusion of the h → l → l and l → l → h interactions in GQLA; these
interactions become especially important in approximating RBC flow by GQLA with low
threshold wavenumbers as the flow is sensitive to biased initial conditions as demonstrated
previously by Wang et al. (2020).

2. Problem formulation

We consider a homogeneous single-phase fluid entrapped between two walls, one heated
and the other cooled, with the gravity vector pointing towards the heated wall. The
temperature difference between the walls is considered small enough so that density
fluctuations are small and can be assumed to vary linearly with temperature (Sengupta,
Bhaumik & Bose 2013). The flow is governed by the Oberbeck–Boussinesq equations
(OBEs), which, in their non-dimensionalized form, are defined by the following set of
equations for velocity, u, and temperature, θ :

∇ · u = 0, (2.1)

∂tu + u · ∇u = −∇p +
√

Pr
Ra

∇2u + θ ẑ, (2.2)

∂tθ + u · ∇θ = 1√
RaPr

∇2θ. (2.3)

The distance between the two walls, H, is the length scale associated with the thermal
energy input to the system. The time scale of the problem is the free-fall time scale denoted
by tf = √

H/αg�θ , where g denotes the magnitude of acceleration due to gravity, α is the
thermal expansion coefficient and �θ = θb − θt is the temperature difference between the
two plates. Consequently, the velocity scale uf = H/tf is used for non-dimensionalizing
the velocity. In (2.2), the kinematic pressure p also includes the gravitational force.
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Triad interactions in Rayleigh–Bénard convection

Additionally, the temperature term in this equation arises from the temperature differential
of the local fluid parcel with respect to a reference temperature. The non-dimensional
parameters associated with the system are the Prandtl number, Pr = ν/κ , defined as
the ratio of the kinematic viscosity (ν) and thermal diffusivity (κ), and the Rayleigh
number, Ra = gα�θH3/νκ , denoting the relative strength of thermal driving with respect
to viscous dissipation.

We consider the two-dimensional RBC problem, where the horizontal and wall-normal
components of coordinates and velocity are denoted by x = (x, z) and u = (u, w),
respectively. The two walls located at z = 0 and z = H are impermeable where Dirichlet
boundary conditions are applied for both θ and u. We consider only the no-slip boundaries,
u = 0. The boundary conditions are u = 0 and θ = 1 at z = 0, and u = θ = 0 at z = 1.
In the horizontal directions, the size of our computational domain is Lx, where periodic
boundary condition is applied for both θ and u.

At a statistically stationary state, the thermal energy input to the system is balanced
by the viscous dissipation and the heat transport by the thermal dissipation. The kinetic
and thermal energy dissipation rates may be derived from the kinetic energy and thermal
variance budget equations (Shraiman & Siggia 1990; Ahlers et al. 2009):

〈wθ〉 = 1√
RaPr

(Nu − 1) = 〈ε〉 =
〈

1
2

√
Pr
Ra

(∇u + ∇uT)2

〉
, (2.4)

〈εθ 〉 =
〈

1√
RaPr

(∇θ)2
〉

= 1√
RaPr

Nu. (2.5)

In the above expressions, 〈·〉 indicates time and volume averaging and ε and εθ

represent viscous and thermal dissipation, respectively. The Nusselt number, Nu, is the
dimensionless heat transport, which is an output of the system. For the RBC system,
comparing Nu predicted by the GQLA simulations with the DNS represents a simple
performance measure for the approximation.

2.1. Generalized quasilinear approximation
In the GQLA, any variable v is first decomposed into large- (l) and small-scale (h)
components in spatial directions of translational symmetry. In the two-dimensional RBC
problem, this decomposition may be applied in the periodic horizontal direction:

v = vl + vh, (2.6)

vl =
k0∑

n=−k0

v̂n exp
(

i
(

n
2π

Lx
x
))

, (2.7)

vh = v − vl. (2.8)

Here, v̂n is the discrete Fourier mode for the integer wavenumber n. Parameter Lx is the
extent of the domain in the horizontal direction. The decomposition between the large- and
small-scale components is performed with respect to the threshold integer wavenumber,
|k0|. With this decomposition in mind, for easy implementation, two projection operators
may be defined which project any flow variable into the l or h subspace variables as follows
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(Hernández et al. 2022a,b):

Ql[v] = vl, Qh[v] = vh = v − vl. (2.9a,b)

These operators satisfy the following properties:

Ql[·] + Qh[·] = I[·], (2.10)

Ql[Ql[·]] = Ql[·], Qh[Qh[·]] = Qh[·], (2.11a,b)

Ql[Qh[·]] = Qh[Ql[·]] = 0. (2.12)

Here, because the decomposition is based on Fourier modes, for the nonlinear
terms, using this decomposition is unlike Reynolds decomposition, Ql[Ql[v]v] =
Ql[vlv] /=Ql[v]Ql[v]. Because of the linearity of the projection operators, the
decomposition only directly impacts the nonlinear terms of the governing equations.
For example, applying the decomposition and retaining the full nonlinearity, the l- and
h-components of the nonlinear term in (2.2) are expressed as

Ql[(u · ∇)u] = Ql[(ul · ∇)ul]︸ ︷︷ ︸
l→l→l

+Ql[(uh · ∇)uh]︸ ︷︷ ︸
h→h→l

+ Ql[(ul · ∇)uh]︸ ︷︷ ︸
h→l→l

+Ql[(uh · ∇)ul]︸ ︷︷ ︸
l→h→l

, (2.13)

Qh[(u · ∇)u] = Qh[(ul · ∇)uh]︸ ︷︷ ︸
h→l→h

+Qh[(uh · ∇)ul]︸ ︷︷ ︸
l→h→h

+ Qh[(ul · ∇)ul]︸ ︷︷ ︸
l→l→h

+Qh[(uh · ∇)uh]︸ ︷︷ ︸
h→h→h

. (2.14)

In the above expressions, the terms on the right-hand side are indicative of different
energy transfer routes between the Fourier modes in the l- and h-subspaces through triadic
wave interactions (Verma 2019) (see the schematic in figure 1). For example, the last term
on the right-hand side of (2.13) indicates nonlinear energy transfer between two Fourier
modes belonging to the l-subspace (giver and receiver modes) via a mode in the h-subspace
(mediator mode). The GQLA proceeds by dropping the two nonlinear terms in the bottom
rows on the right-hand side of (2.13) and (2.14). Dropping the last term on the right-hand
side of (2.14) results in the linearization of the small-scale (h-subspace) flow with respect
to the large-scale (l-subspace) flow. The other three terms are dropped to allow for an exact
closure for the l-subspace flow known as the generalized cumulant expansion (Marston
& Tobias 2023). The linearized h-subspace flow provides the subgrid effect through the
Ql[(uh · ∇)uh] term in (2.13). In a recent work (Maia & Cavalieri 2024), the Qh[(ul ·
∇)ul] term was retained in the equation for the h-subspace flow. The h-subspace flow is
then ‘driven’ by contributions from the l-subspace flow via this term. It was shown that the
‘driven GQLA’ model performs better than the standard GQLA in capturing the nonlinear
dynamics.

After its application, the following GQLA of the OBEs is obtained for the governing
equations for momentum and temperature stated in (2.2) and (2.3) for RBC:

∂tu + Ql[(ul · ∇)ul] + Ql[(uh · ∇)uh] + Qh[(ul · ∇)uh] + Qh[(uh · ∇)ul]

= −∇p +
√

Pr
Ra

∇2u + θ ẑ, (2.15)
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Mediation by
wavenumber m

g → m → r
g, r ∈ h
m ∈ l

ug

ur

ur · (um · ∇ug)

um

r = m + g

Figure 1. A schematic depicting the h → l → h triad interaction between wavenumbers. Here, the giver (g),
mediator (m) and receiver (r) wavenumbers are assumed to belong to the h-, l- and h-subspaces, respectively.
The mediator mediates energy between the receiver and giver wavenumbers without any energy contribution
(see Verma (2019) for detailed analysis).

∂tθ + Ql[ul · ∇θl] + Ql[uh · ∇θh] + Qh[ul · ∇θh] + Qh[uh · ∇θl] = 1√
RaPr

∇2θ.

(2.16)

Instead of writing down separate equations for the l- and h-subspace wavenumbers,
we prefer to use (2.15) and (2.16). This is because it is easier to implement the Dirichlet
boundary conditions for temperature and velocity at the top walls if we choose to solve for
the total flow fields and applying the GQLA by retaining only certain triadic interactions
for the nonlinear terms. However, there are other ways to implement the GQLA (see
e.g. Tobias & Marston 2017). Additionally, we note that, numerically, the GQLA is
as expensive as if all nonlinear triadic interactions were retained. As is evident from
the aforementioned discussion, only l → l → l, h → h → l, h → l → h and l → h → h
interactions are retained while all other nonlinear interactions are discarded (see (2.13) and
(2.14)).

The GQLA falls back to the QLA if all except the 0 wavenumber is retained in the
h-subspace (Thomas et al. 2014; Farrell, Gayme & Ioannou 2017; Pausch et al. 2019;
Hernández & Hwang 2020). Consequently, unlike QLA, GQLA retains possible triad
interactions that support energy transfer between small scales via scattering through the
large scales (the h → l → h triad interaction). On the other hand, if all wavenumbers are
included in the l-subspace retaining the full nonlinearity, uh = ph = θh = 0, and DNS is
regained. Therefore, the GQLA is an intermediate approximation between the DNS and
the QLA. However, note that the quasilinearization is performed only in the horizontal
direction in the present work, while the wall-normal direction remains fully nonlinear.

2.2. Energy budget
To gauge the performance of the GQLA, we utilize the kinetic and thermal energy
equations in the spectral space. For this purpose, we follow the methodology suggested
by Hernández et al. (2022a,b). The one-dimensional continuous Fourier transform is
first applied to (2.15) and (2.16), v(t, x, z) = ∫ ∞

−∞ v̂(t, kx, z) dkx. Then a dot product is
taken between the variables in the corresponding equations and their complex conjugate,
v̂

∗
(t, kx, z). This is followed by averaging in time and in the direction of statistical

homogeneity if the Fourier transform is not performed in that direction (in the case of
three-dimensional flow). The following kinetic energy balance equation is obtained in the
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spectral space:〈
∂ ê(kx, z)

∂t

〉
= T̂t(kx, z) + T̂v(kx, z) + T̂p(kx, z) − ε̂(kx, z) + Q̂(kx, z), (2.17)

T̂t(kx, z) =
〈
Re

{
−û∗

i (kx, z)
(

∂

∂xj
(Ql[ûl,iul,j(kx, z)] + Ql[ûh,iuh,j(kx, z)]

+ Qh[ûh,iul,j(kx, z)] + Qh[ûl,iuh,j(kx, z)])
)}〉

, (2.18)

T̂v(kx, z) =
√

Pr
Ra

[
∂2ê(kx, z)

∂z2

]
, (2.19)

T̂p(kx, z) =
〈
Re

{
−ikxû∗(kx, z)p̂(kx, z) − ŵ∗(kx, z)

∂ p̂(kx, z)
∂z

}〉
, (2.20)

ε̂(kx, z) =
√

Pr
Ra

〈[
k2

x û∗
i (kx, z)ûi(kx, z) + ∂ ûi(kx, z)

∂z
∂ û∗

i (kx, z)
∂z

]〉
, (2.21)

Q̂(kx, z) = 〈Re{ûz
∗(kx, z)θ̂(kx, z)}〉. (2.22)

In the above expressions, ê(kx, z) = 1
2 ûi(kx, z)û∗

i (kx, z) is the kinetic energy of the flow.
The terms on the right-hand side of (2.17) represent, respectively, the turbulent transport
(T̂t), viscous transport (T̂v), pressure transport (T̂p), viscous dissipation (ε̂) and thermal
driving (Q̂). The first three terms on the right-hand side only redistribute kinetic energy,
while Q̂ is the source and ε̂ the sink of kinetic energy. The GQLA only affects the term T̂t,
the source of this being the nonlinear advection term in (2.2). Note that, for DNS,

T̂t(kx, z) =
〈
Re

{
−û∗

i (kx, z)
∂

∂xj
(ûiuj(kx, z))

}〉
. (2.23)

The thermal energy budget in the spectral space may be similarly written by taking the
Fourier transform of (2.16) and then multiplying the transformed equation by θ̂∗(kx, z):〈

∂ êθ (kx, z)
∂t

〉
= T̂θ,t(kx, z) + T̂θ,v(kx, z) − ε̂θ (kx, z), (2.24)

T̂θ,t(kx, z) =
〈
Re

{
−θ̂∗(kx, z)

(
∂

∂xj
(Ql[θ̂lul,j(kx, z)] + Ql[ ̂θhuh,j(kx, z)]

+ Qh[̂θhul,j(kx, z)] + Qh[̂θluh,j(kx, z)])
)}〉

, (2.25)

T̂θ,v(kx, z) = 1√
RaPr

[
∂2êθ (kx, z)

∂z2

]
, (2.26)

ε̂θ (kx, z) = 1√
RaPr

〈[
k2

x θ̂
∗(kx, z)θ̂(kx, z) + ∂θ̂(kx, z)

∂z
∂θ̂∗(kx, z)

∂z

]〉
. (2.27)

Here, êθ (kx, z) = 1
2 θ̂ (kx, z)θ̂∗(kx, z) is the thermal energy. In a statistically stationary

state, the thermal energy redistribution due to viscous transport (T̂θ,v) and turbulent
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transport (T̂θ,t) is balanced by thermal dissipation (ε̂θ ). Note that, for DNS,

T̂θ,t(kx, z) =
〈
Re

{
−θ̂∗(kx, z)

∂

∂xj
(θ̂uj(kx, z))

}〉
. (2.28)

The source of thermal energy is the temperature difference between the top and bottom
plates, i.e. through the boundary condition; the sink is the dissipation term, ε̂θ in (2.27).

2.3. Scale-to-scale energy transfer
The GQLA only suppresses some of the nonlinear interactions in the OBEs. It is therefore
pertinent to investigate the effect of these manipulations on the overall nonlinear processes
that are essential for sustenance of the system retaining full nonlinearity. For this purpose,
we quantify the scale-to-scale energy transfer (Verma 2019; Böning et al. 2023) by
considering the nonlinear interaction terms in the OBEs with/without applying the GQLA.
Both kinetic energy and thermal energy transfer are considered.

The process for obtaining the transfer functions quantifying the scale-to-scale energy
transfer is as follows (Favier, Silvers & Proctor 2014). First, the Fourier transform is
performed for the components of the velocity and temperature fields. Then, corresponding
to each physical length scale/wavenumber ±k, inverse transform is performed, equating to
zero the Fourier coefficients corresponding to all other wavenumbers:

uk(x, t) = û(k, t) exp(ik · x), (2.29)

θk(x, t) = θ̂ (k, t) exp(ik · x). (2.30)

In this way, a flow field in physical space is obtained corresponding to each physical
length scale. Then the transfer functions T(k, q) quantifying the scale-to-scale kinetic
energy transfer and Tθ (k, q) quantifying the scale-to-scale thermal energy transfer are
computed by averaging the following expressions in both time and volume. The integrands
on the right-hand side of (2.31) and (2.32) are essentially the turbulent transport terms in
the kinetic and thermal energy budget equations, respectively, arising from the nonlinear
advection terms of the OBEs after applying the GQLA:

T(k, q) = −
∫

V
uk · (u · ∇uq − Ql[ul · ∇uh,q] − Ql[uh · ∇ul,q]

− Qh[ul · ∇ul,q] − Qh[uh · ∇uh,q]) dV, (2.31)

Tθ (k, q) = −
∫

V
θk(u · ∇θq − Ql[ul · ∇θh,q] − Ql[uh · ∇θl,q]

− Qh[ul · ∇θl,q] − Qh[uh · ∇θh,q]) dV. (2.32)

In the above expressions, the mediator wavenumber p = k − q, and therefore is not
included. For the DNS, only the first terms on the right-hand side of (2.31) and (2.32)
are required to be computed. The transfer functions are anti-symmetric with respect to
k = q, i.e. T(k, q) = −T(q, k) and Tθ (k, q) = −Tθ (q, k). Additionally, for T(k, q) > 0
and Tθ (k, q) > 0, then a positive amount of energy is transferred from wavenumber q
to k.
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2.4. Numerical simulations
We chose to perform the calculations for [Ra, Pr] = [108, 10]. The grid resolution
requirements are moderate for this flow (Wang et al. 2020). The computational domain
and grid resolution of the present simulations are the same as those used by Wang et al.
(2020) for this [Ra, Pr] combination. The aspect ratio of the computational domain is
Γ = Lx/H = 8, with H = 1 between the two walls resolved by 2048 × 256 grid points in
the horizontal and vertical directions, respectively. The simulations were performed with
different initial conditions from those prescribed by Wang et al. (2020).

In their direct simulations, Wang et al. (2020) found that the statistically stationary
state of the RBC flow for [Ra, Pr] = [108, 10] converged to either an eight- or a
six-convection-roll state based on the initial roll state. In the DNS performed herein
yielding the eight-roll state, a temperature field consisting of random perturbations
superimposed on the linear conductive profile was prescribed along with u = 0 as the
initial condition. The initial condition for the GQLA simulations reported in the main
text is the statistically stationary eight-convection-roll state from the DNS; hereafter this
initial condition is called DNS-8. In addition, because of the flow’s sensitivity to initial
conditions, GQLA simulations are also reported in the Appendix with the same initial
condition as the DNS. In the rest of the paper, this initial condition is referred to as
‘random’. In some GQLA cases, specifically in the low-k0 regime, results heavily depend
on the initial condition used. However, based on earlier study of multiple states by Wang
et al. (2020), this is not surprising. Here, our motivation is to study the efficacy of GQLA
in approximating the RBC flow, and, therefore, the flow’s dependence on initial conditions
is only superficially discussed as needed. It turns out that the GQLA regimes remain
consistent for the two initial conditions.

The OBEs/GQLA of the OBEs as in (2.15) and (2.16) were solved using a
pseudo-spectral code that uses the Dedalus partial differential equation solving framework
(Burns et al. 2020). A Fourier expansion in the horizontal x direction and the Chebychev
expansion in the vertical z direction were used for spatial discretization. For dealiasing, we
utilize the ‘3/2’ rule. The equations were integrated in time by the third-order four-stage
combination of a diagonally implicit Runge–Kutta scheme and an explicit Runge–Kutta
scheme (RK443 timestepper). Because we only performed two-dimensional simulations,
it was possible to store time snapshots at a time interval of one free-fall time unit over a
period of about 600 free-fall time units for post-processing once a statistically stationary
state was reached in the simulations.

The specifics of all the simulations initiated with the DNS-8 condition are tabulated in
table 1 (for a similar table for the simulations with the random condition, see table 4 in the
Appendix). For a GQLA simulation, the threshold integer wavenumber k0 segregating the
l- and h-subspace flows is listed. We have named the simulations, especially the GQLA
simulations based on this parameter indicating the level of approximation.

The thermal boundary-layer thickness, δθ , Nusselt number, Nu, and time- and
volume-averaged momentum dissipation, 〈ε〉, are also reported for these simulations in
table 1. The value of Nu reported by Wang et al. (2020) for the eight-roll-state DNS is
27.69. This is in good agreement with the DNS reported herein. The thermal boundary
layer thickness, δθ/H ≈ 0.018, is obtained from the DNS calculation using the slope
method. For all the cases listed in table 1 for the DNS-8 initial condition, the steepest
profile for 〈θ〉 is obtained for the GQLA-0 case, i.e. for the QLA, for which δθ/H ≈
0.0093.

The Nu and 〈ε〉 predictions of the GQLA simulations are larger than those of the
DNS. The highest values are predicted for the GQLA-0 case, i.e. the QLA simulation.
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Case Threshold integer wavenumber (k0) δθ /H Nu 〈ε〉 rf GQLA regime

DNS — 0.018 27.55 0.00084 8 —
GQLA-128 128 0.0165 30.11 0.00092 8 R3
GQLA-64 64 0.0161 31.24 0.00095 8 R3
GQLA-24 24 0.017 29.91 0.00091 8 R3
GQLA-8 8 0.0163 32.23 0.00098 8 R3
GQLA-6 6 0.0157 31.50 0.00096 6 R3
GQLA-4 4 0.0163 30.72 0.00094 6 R2
GQLA-3 3 0.0128 40.33 0.00125 — R1
GQLA-0 0 0.0089 55.60 0.00170 — R1

Table 1. Details of direct and GQLA simulations. The initial condition for the GQLA simulations is the
statistically stationary state obtained in the eight-roll-state DNS (hereafter called DNS-8 condition). Parameter
δθ represents the thermal boundary-layer thickness obtained using the slope method and rf indicates the number
of convection rolls yielded in a statistically stationary state in each simulation.

This supports the hypothesis that the QLAs provide an upper bound for the heat
transfer in convection-dominated flows (Marston & Tobias 2023). Additionally, it becomes
apparent from the tabulated results that the convergence of the GQLA with the DNS is
non-monotonic.

The number of convection rolls yielded in the simulations once a statistically stationary
state was reached is listed as rf in table 1. The k0 regime is also indicated for the GQLA
simulations. For k0 ≥ 8, rf yielded in GQLA simulations is the same as the initial roll
state from DNS, i.e. 8. The GQLA yields rf = 6 for 8 > k0 ≥ 4, different from the initial
eight-roll state. No convection rolls are yielded for GQLA-3 and QLA cases, i.e. for GQLA
with k0 < 4 (R1 GQLA regime).

3. Results

In the following subsections, we compare the GQLA simulation results with those of the
DNSs. At first, flow visualizations are presented, followed by turbulent statistics. Then,
relevant terms in the kinetic and thermal energy balance equations in the spectral space as
in (2.17) and (2.24) are discussed. This is followed by quantifying the effect of omitting
some of the nonlinear scale interactions in the GQLA. To this end, we use the transfer
functions quantifying the scale-to-scale kinetic and momentum energy transfer as in (2.31)
and (2.32).

3.1. Flow visualizations, spectra and statistics
The flow structures are shown in figure 2 by plotting the contours of θ at an instant when
the flow is statistically stationary. Evidently, no convection rolls are obtained for k0 < 4.
Starting from an eight-roll initial state, the GQLA-4 case converges to the six-roll state.
Six convection rolls are also obtained for the GQLA-6 case. However, the flow structures
are not as explicit as in the GQLA-4 case, and the dynamics of the rolls in GQLA-6
appears to be different from that obtained for GQLA-4. For k0 ≥ 8, eight convection rolls
are obtained; for these cases, the converged state is the same as the initial roll state.
Contours from the GQLA-128 and DNS cases are qualitatively identical. Among these
cases, GQLA-3 belongs to the GQLA regime R1, while the GQLA cases with k0 ≥ 6
belong to the GQLA regime R3. The GQLA case with k0 = 4 belong to the intermediate
GQLA regime, R2.
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Figure 2. Contours of instantaneous 0 ≤ θ ≤ 1 from the simulations: (a) GQLA-3; (b) GQLA-4; (c) GQLA-6;
(d) GQLA-8; (e) GQLA-24; ( f ) GQLA-64; (g) GQLA-128; (h) DNS. The initial condition for the GQLA
simulations is the statistically stationary state in the eight-roll DNS as in (h).
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Figure 3. Amplitude spectra of θ in dB (20 log10(Aθ /Aθ,ref )) with Aθ,ref = 0.01 unit plotted in the (kx, z/H)
plane from chosen simulations. The vertical dashed lines show the threshold wavenumber k0 for the GQLA.
The horizontal dashed line in (a) marks the thickness of the thermal boundary layer, δθ . Corresponding k0
regimes are also indicated for the GQLA simulations.

Figure 3 shows the amplitude spectra of θ in decibel (dB) units for some chosen cases
listed in table 1. The spectra are shown in the (kx, z/H) plane, where kx is the integer
wavenumber in the horizontal direction; the spectra are plotted up to half-height between
the two walls. A logarithmic scale is used for the ordinate to show the spectra clearly both
inside the boundary layer and in the bulk. For a reference, δθ is marked for the DNS. The
k0 is indicated for the GQLA simulations by the vertical dashed lines. Highest amplitude is
obtained at kx = 4 for the DNS at all heights; a second peak is also obtained at kx = 8. For
the GQLA-3 case, deep inside the thermal boundary layer, the peak amplitude is obtained
at kx = 3 which shifts to kx = 4 close to the edge of the thermal boundary layer. The
second peak is obtained at kx = 4 and at kx = 7 inside the thermal boundary layer and at
the edge of it, respectively, and at kx = 8 in the bulk for case GQLA-3. For the GQLA-4
case, the highest peaks are obtained at kx = 3 and 7, inside the thermal boundary layer, and
at kx = 7 and 3 in the bulk, respectively. Wavenumbers associated with the convection rolls
kroll = kx = 3 and 4 correspond to the wavelengths of rolls for the six- and eight-roll states,
respectively. As is discussed later, the peak at kx = 4 corresponds to the peak thermal
driving wavelength for most of the cases, except for the GQLA-4 case for which kx = 3
is the peak thermal driving wavelength. On the other hand, for the GQLA-6 case, the
dominant and second most dominant peaks are obtained at kx = 6 and 3 inside the thermal
boundary layer, and at kx = 3 and 6 in the bulk, respectively. A sudden drop in amplitude
of the spectra between the l- and h-subspace wavenumbers across kx = k0 and kx = k0 + 1
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is evident for k0 ≥ 24 at all wall-normal locations. Interestingly, the h-subspace becomes
redundant for case GQLA-64.

While performing the GQLA of turbulent channel flow based on the streamwise
wavenumber, Hernández et al. (2022a) found that for high k0, h-subspace wavenumbers
yield the 0 solution. They attributed this property to the convergence of the solution
of the linearized h-subspace equations to the Lyapunov vector associated with the
leading Lyapunov exponent of the linear operator. For QLA/GQLA, the leading Lyapunov
exponent from the linearized h-subspace equations must be zero (Farrell & Ioannou 2012).
It could be possible that in the current GQLA of the two-dimensional RBC problem for
high k0 = 64, the trivial solution is obtained for the h-subspace wavenumbers because of
the convergence of the solution of the linearized h-subspace wavenumbers to the Lyapunov
vector associated with the Lyapunov exponent of the linear operator that approaches 0 with
increasing k0.

Overall, the amplitudes of the l-subspace wavenumbers from the GQLA simulations
clearly overshoot the DNS. The most dominant wavenumbers in the spectra are: the
integer wavenumber corresponding to the size of the convection rolls (kroll), the dominant
wavenumber for thermal driving (kQ̂ which in most cases = kroll except the GQLA-3 case)
and the wavenumber completing the triad with the these two wavenumbers.

In figure 3, for GQLA cases with low k0 ≤ 24, a second wavenumber range with
non-negligible energy at high wavenumbers for kx ≥ 30 can be noticed. Figure 4 shows
the premultiplied amplitude spectra of θ , i.e. (2πkx/Lx)|θ̂ (kx, z/H)| (here, θ̂ (kx, z/H) is
the amplitude of the Fourier mode kx at a distance z/H from the lower wall) for the same
cases shown in figure 3 in the (kx, z/H) plane. A range of scales having non-negligible
energy at the edge of the thermal boundary layer and extending up to the bulk region of
the flow is evident for the DNS. The result obtained for the current [Ra, Pr] combination
is in agreement with the DNS results reported by Blass et al. (2021) and Berghout, Baars
& Krug (2021). This range of energetic scales shrinks for the GQLA. As the thermal
boundary layer is thinner for the GQLA simulations, the wall-normal location for this
patch shifts closer to the wall for the GQLA. However, the peak for this energetic range is
correctly captured by the GQLA at kx ∼ 100. As this range is also obtained by the GQLA
with low k0 ≤ 8 for which this range belongs to the linearized h-subspace flow, the energy
accumulation at these scales may be attributed to the linear instability (the flow is linearly
unstable for all scales up to kx ∼ 200). Additionally, the accumulated energy in GQLA
is larger compared to DNS possibly due to the suppressed energy cascade routes due
to the omitted triad interactions in GQLA resulting in accumulation of energy extracted
by the linear instability for h-subspace wavenumbers. As is evident from the plot for the
GQLA-64 case, the linear instability mechanism by itself is insufficient for sustaining the
small scales belonging the h-subspace for this case.

The wall-normal profiles of the mean and turbulent statistics for some chosen eight-roll
initial state simulations are shown in figure 5. The profiles for the mean temperature, 〈θ〉,
are shown in figure 5(a); to clearly show the thermal boundary layer, a zoomed-in view
of the profiles close to the lower wall is shown. Profiles for all the GQLA cases are in
reasonably good agreement with the profile from the DNS. For the cases shown in the
figure, the steepest profile is obtained for the GQLA-3 case supporting the maximum heat
transport between the plates.

The Reynolds stresses due to the horizontal velocity (〈u′u′〉), wall-normal velocity
(〈w′w′〉) and temperature (〈θ ′θ ′〉) fields are presented in figure 5(b–d), respectively. To
clearly show the comparison among the considered cases close to the near-wall peak,
in figure 5(d), a zoomed-in view is shown close to the lower plate. Clearly, GQLA
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Figure 4. Premultiplied amplitude spectra of θ plotted in the (kx, z/H) plane from the GQLA simulations
initiated with the statistically stationary solution from DNS. The vertical dashed lines show the threshold
wavenumber k0 for the GQLA. The horizontal dashed line in (a) marks the thickness of the thermal boundary
layer, δθ . Corresponding k0 regimes are also indicated for the GQLA simulations.

overpredicts the Reynolds stresses, specifically for low k0. Overpredictions by the GQLA-3
case for 〈w′w′〉 and 〈θ ′θ ′〉 are largest with respect to the DNS. However, GQLA-4
significantly overpredicts 〈u′u′〉 relative to the GQLA-3 case. From both flow structures
shown in figure 2 and the statistics presented in figure 5, addition of the important
integer wavenumber kx = 4 in the l-subspace for GQLA-4 compared with GQLA-3
significantly improves the prediction capability of the GQLA. This is discussed later in
more detail. Statistics predicted by the GQLA are remarkably good even for low threshold
wavenumbers (k0 ≥ 6). The plots for the Reynolds stresses also show that the convergence
of the GQLA to the DNS is non-monotonic.

3.2. Kinetic energy budget
In this section, we discuss the capability of the GQLA in approximating the different terms
in the kinetic energy budget equation in (2.17). The calculations for the budget equations
in this section and the next are performed once a statistically stationary state is reached in
each simulation.

The kinetic energy input to the system is via the thermal driving term, Q̂(kx, z), in
(2.22). The contours of this quantity are plotted in the (kx, z/H) plane in figure 6 for some
chosen cases. Except for the GQLA-3 case, for all other cases, the dominant horizontal
wavenumber for the thermal driving (kQ̂) is the same as the wavenumber associated with
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Figure 5. Wall-normal profiles of mean flow and Reynolds stresses from the GQLA simulations: (a) 〈θ〉;
(b) 〈u′u′〉; (c) 〈w′w′〉; (d) 〈θ ′θ ′〉. Corresponding k0 regimes are also indicated for the GQLA simulations.

the convection-roll wavelength (kroll) in each simulation; for GQLA-3, no convection
roll was obtained (see figure 2). A broad range of wavenumbers contribute towards the
thermal driving. For the DNS, for a small range of wavenumbers just outside the thermal
boundary layer Q̂ < 0 indicating persistent negative correlation between θ ′ and w′ there.
Interestingly, for the GQLA-3 case, the dominant wavenumber kQ̂ = 4 belongs to the

h-subspace. Inside the thermal boundary layer, Q̂ < 0 for kx = 3 for this case. On the
other hand, for the GQLA-4 case, the dominant wavenumber is kQ̂ = 3 = kroll, and not
kx = 4 which belongs to the fully nonlinear l-subspace. Inside the thermal boundary layer,
Q̂ < 0 for very large horizontal structures with kx = 2, 3, and 4 for this case. This also
indicates a different underlying dynamics for GQLA-4 compared with DNS. Additionally,
in the region between the thermal boundary layer and the bulk, a bulge is obtained in
Q̂ for the energetic high-wavenumber range depicted in figure 4 (200 ≥ kx ≥ 30); this
bulge is more significant for GQLA with low k0 ≤ 8. Term Q̂ suddenly drops off across
kx = k0 for the GQLA-24 case; for GQLA-64, Q̂ ≈ 0 for the h-subspace wavenumbers.
Despite this sudden dropping off across k0, contours for the GQLA cases with k0 ≥ 24
show good agreement with contours from DNS, including the aforementioned energetic
high-wavenumber range with kx ≥ 30, and also the wavenumber patches where Q̂ < 0.

Contours of the turbulent transport, T̂t, are plotted in the (kx, z/H) plane and shown in
figure 7 for the same cases as in figure 6. As previously mentioned, GQLA only directly
affects this nonlinear transport term. Clearly, for both the DNS and GQLA, this term is
dominant in the bulk, specifically, outside the thermal boundary layer. Also for this term,
the dominant wavenumber is kroll, except for the GQLA-3 case. Parameter T̂t ≥ 0 for kroll
for the DNS, except close to the mid-plane between the plates. Nonlinear transport is
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Figure 6. Thermal driving, Q̂, as expressed in (2.22) plotted in the (kx, z/H) plane for some chosen cases
listed in table 1. The vertical dashed lines show the threshold wavenumber k0 for the GQLA simulations. The
horizontal dashed line in (a) marks the thickness of the thermal boundary layer, δθ , from DNS. Corresponding
k0 regimes are also indicated for the GQLA simulations.

negative outside the thermal boundary layer for high wavenumbers in figure 7(a) for the
DNS, i.e. kinetic energy is transported by small scales away from the bulk; this property is
emulated by the GQLA, even for low k0. This demonstrates the efficacy of the GQLA in
incorporating the scattering mechanism among the h-subspace wavenumbers. For GQLA
cases with k0 ≤ 8, for most of the low wavenumbers kx ≤ k0, T̂t < 0 specifically outside
the thermal boundary layer. This indicates, for low k0, that large-scale velocity fluctuations
also transport kinetic energy away from the bulk, which is in contrast to the results from
the DNS and GQLA simulations with k0 ≥ 24. This also indicates that although the
GQLA could capture the convection rolls for k0 ≥ 4, the dynamics underlying the GQLA
simulations with low k0 is not the same as that of the DNS. As shown in figure 2, the
GQLA simulations with k0 < 8 yielded six convection rolls irrespective of the applied
initial condition with eight convection rolls and the GQLA with k0 ≥ 8 in this RBC flow
regime.

In the results for the kinetic energy budget in this section, both the amplitudes of thermal
driving, Q̂, and dissipation, ε̂ (not shown here), are higher for the GQLA simulations
compared with the DNS. This is mainly because the GQLA dynamics inhibits the cascade
of energy by removing some of the triadic interactions entrapping more energy at small
wavenumbers, specifically belonging to the l-subspace. Consequently, Q̂ is larger at these
wavenumbers. In a statistically stationary state, energy input to the system must also be
dissipated. As a result, dissipation is also enhanced at low wavenumbers. At increasing
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Figure 7. Turbulent transport, T̂t, as expressed in (2.18) plotted in the (kx, z/H) plane for some chosen cases
listed in table 1. The vertical dashed lines show the threshold wavenumber, k0, for the GQLA simulations. The
horizontal dashed line in (a) marks the thickness of the thermal boundary layer, δθ , from DNS. Corresponding
k0 regimes are also indicated for the GQLA simulations.

levels of the approximation, i.e. for lower k0, this effect is more and more pronounced
(this can be verified from table 1). Average dissipation, 〈ε〉, is maximum for k0 = 0, i.e.
for the QLA. As a consequence, transport is also enhanced.

Based on Aθ plotted in figure 3, and the contours of Q̂ and T̂t plotted in figures 6 and 7,
respectively, the most important wavenumber is kQ̂ (which is equal to kroll for most cases
except GQLA-3) which must belong to the l-subspace wavenumbers for the GQLA to be
able to capture the convection rolls. This criterion demarcates the first GQLA regime,
R1. In DNS, the convection rolls both extract and dissipate the most energy, as well as
transporting the most amount of energy through nonlinear advection. Energy extraction
and nonlinear transport are predominantly in the bulk, while the dissipation is highest
at the wall where it is concentrated in the low wavenumbers. All these quantities are
reasonably predicted by GQLA with k0 ≥ 6, i.e. in R3. In this GQLA regime, k0 ≥ 2kroll,
and the fully nonlinear dynamics captured in DNS may be emulated by the restricted
nonlinear interactions in GQLA for the kroll state under consideration.

3.3. Thermal energy budget

The nonlinear turbulent transport, T̂θ,t, is the only term in the governing equation for êθ

that is directly affected by the GQLA. The contours of T̂θ,t are plotted in the (kx, z/H)
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Figure 8. Nonlinear turbulent transport, T̂θ,t, as expressed in (2.25) plotted in the (kx, z/H) plane for some
chosen cases listed in table 1. The vertical dashed lines show the threshold wavenumber, k0, for the GQLA
simulations. The horizontal dashed line in (a) marks the thickness of the thermal boundary layer, δθ , from
DNS. Corresponding k0 regimes are also indicated for the GQLA simulations.

plane in figure 8 for the same cases as in figures 6 and 7. In contrast to the similar term, T̂t
in the kinetic energy budget equation (2.17) which was dominant at the edge of the thermal
boundary layer and in the bulk, T̂θ,t > 0 throughout the wavenumber range shown, at the
edge and inside the thermal boundary layer for all the cases shown. In the bulk, the sign
of T̂t is arbitrary. Clearly, turbulent transport of thermal energy is most pronounced at
the edge of the thermal boundary layer, and reduces significantly close to the wall and
in the bulk, and also at high wavenumbers. The dominant wavenumber in all the cases
is the wavenumber kroll corresponding to the convection-roll wavelength, except for the
GQLA-3 case, for which wavenumbers in the triad kx = [3, 4, 7] are the most active in
transporting thermal energy via turbulent fluctuations. For all these cases with kroll as
the dominant wavenumber, T̂t(kx = kroll, z/H) < 0 for a patch just outside the thermal
boundary layer; the convection rolls transport thermal energy away from the bulk and
inside the thermal boundary layer. Along with kroll, high transport is also obtained for the
wavenumber corresponding to its harmonic, 2kroll, for the DNS and GQLA cases with k0 ≥
24. For the GQLA-4 and GQLA-6 cases, a range of wavenumbers alongside kroll is active
throughout the thermal boundary layer for kx ≤ k0. The GQLA cases with k0 ≥ 6 show a
significant drop in |T̂θ,t| across k0; for the GQLA-64 case, the h-subspace wavenumbers
are inactive. For all GQLA simulations, the high-wavenumber energetic range at the edge
of the thermal boundary layer depicted in figure 4 are also active in transporting thermal
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energy via turbulent fluctuations. In contrast to the DNS, a wider range of wavenumbers
are highly active for all the GQLA simulations.

The inferences drawn for the thermal energy balance are also similar to the thermal
driving and dissipation of kinetic energy. The GQLA overpredicts the thermal transport
and dissipation (not shown here) compared with the DNS. The overshoot is larger for
lower k0, and largest for k0 = 0, i.e. QLA. Suppression of select nonlinear interactions
inhibits cascades that eventually result in dissipation at smaller scales. In contrast, for
low k0, thermal transport T̂θ,t and dissipation ε̂θ are enhanced at low wavenumbers. As a
consequence, heat transport between the two plates is also enhanced; Nu increases with a
decrease in k0 (see table 1).

For both momentum and thermal energy balance, the dominant wavenumber for thermal
driving (kQ̂, which in most cases equals kroll except for case GQLA-3) dominates transport
and dissipation. In addition, for all the GQLA cases except for GQLA-64, a second
range of wavenumbers in the h-subspace (kx ≥ 30) show enhanced thermal transport and
dissipation. A large range of wavenumbers are linearly unstable (kx < 200) gaining energy
irrespective of the restrictions imposed on nonlinear interactions in the approximation.
This is possibly due to the suppression of possible dissipation routes in GQLA, as only the
h → l → h and l → h → h interactions allow transport of thermal energy to/from higher
wavenumbers for dissipation; so, linearly unstable wavenumbers are forced to dissipate
more energy rather than cascading the energy down to higher wavenumbers.

3.4. Scale-to-scale energy transfer
To quantify the efficacy of the GQLA in emulating the processes resolved by the fully
nonlinear direct simulation, we utilize the scale-to-scale energy transfer functions in (2.31)
and (2.32), respectively, for kinetic and thermal energy transfers in all possible triads
formed with the horizontal wavenumber, kx. For any integer threshold wavenumber, k0,
a phase diagram showing different regions of the plots for T(kx,r, kx,g) or Tθ (kx,r, kx,g)
contributed by various triad interactions due to wavenumbers chosen from either the
l- or h-subspace is shown in figure 9. As in expressions (2.13) and (2.14), there are 23 = 8
possible triad interactions among arbitrarily chosen wavenumbers from the two subspaces.
The abscissa and ordinate show the receiver wavenumber, kx,r, and the giver wavenumber,
kx,g, respectively. Note that a linear scale is assumed for the axes. The contour plot should
be antisymmetric with respect to kx,r = kx,g. On either side of this line, the eight possible
interactions are marked. The triad interactions dropped in the GQLA are coloured red.
Once a spectral decomposition of the flow fields is assumed with respect to a threshold
wavenumber, k0, this phase diagram will help identify the different triad interactions
contributing towards the contours for the transfer functions irrespective of the restrictions
imposed on the nonlinear interactions.

3.4.1. Kinetic energy transfer
Contours of the transfer function for kinetic energy, T(kx,r, kx,g), are shown in figure 10 for
the DNS and some chosen GQLA simulations initiated with the DNS-8 condition. For the
GQLA simulations, along both axes, kx,r = kx,g = k0 are marked by dashed lines to clearly
show the demarcation between the l- and h-subspace wavenumbers. For the DNS, on either
side of kx,r = kx,g, contours of T indicate two distinct regions of activity in the phase
diagram. One of those is along the convection-roll wavenumber, kroll = kx,r = kx,g = 4,
indicating kinetic energy transfer from/to this wavenumber, from all other wavenumbers.
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Figure 9. Phase diagram of the transfer functions T(kx,r, kx,g) and Tθ (kx,r, kx,g) showing different triad
interactions involved in scale-to-scale energy transfer. Note that the axes are shown for a linear scale. The
triad interactions shown in red are dropped in GQLA.

Wavenumber kx = 4 receives energy from kx < 8, and provides energy to kx ≥ 8, with
maximum energy transfer from kx = 4 → 8. The other is due to the curved patches on
either side of kx,r = kx,g (due to logarithmic scales being used for the axes) starting at
kx,r = kx,g = 5 and extending up to very high wavenumbers over more than a decade. This
patch clearly identifies a scale-by-scale inverse energy cascade. The triads contributing
to this inverse cascade process include the wavenumbers kx = [kx,r, kx,g, kroll = 4]; the
convection rolls act as the mediator (Verma 2019) in a given triad.

With the results from the DNS for comparison, and keeping in mind figure 9 (note
that the axes in the current plots use a logarithmic scale), we analyse the results obtained
from the GQLA simulations. As the GQLA-3 case does not yield convection rolls, the
first energy transfer process to/from kroll is absent for this case; possibly because of
the omission of the h → l → l and l → l → h interactions in GQLA, the dominant
wavenumber associated with thermal driving, kx = 4, is unable to directly transfer kinetic
energy to potential roll-forming wavenumbers for this case – more on this later. For the
same reason, the other process, i.e. the inverse energy cascade obtained in the DNS, is
damaged for this case. On the other hand, the GQLA-4 case includes the dominant thermal
driving wavenumbers kx = 3 and 4 within the fully nonlinear l-subspace, facilitating easy
energy transfer from these wavenumbers. The wavenumber kx = 3 = kroll for this case
gains energy from similar wavenumbers, i.e. from kx < 9, and provides energy to kx ≥ 10.
The inverse cascade mechanism is also very clear from figure 10(c); the triads involved
in the inverse cascade process include kx = [kx,r, kx,g, kroll = 3] – the convection rolls
acting as the mediator. This energy transfer process is captured by the GQLA even for a
low k0 = 4 as in the DNS. Possibly the efficient capturing of this process results in the
GQLA-4 case being able to capture the convection rolls. Note, however, that the dominant
energy transfer from kx = kroll → 2kroll is blocked for this case due to the omission of the
l → l → h (and also h → l → l) triad interaction in GQLA.

The GQLA-6 case on the other hand includes the dominant wavenumber for thermal
driving in the fully nonlinear l-subspace. However, it allows for the dominant kx = kroll →
2kroll energy transfer route from the rolls. The inverse kinetic energy cascade, although
captured, is weak for this case. Similar observations can be made for the GQLA case with

998 A52-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.823


R. Bose, V. Kannan and X. Zhu

100

101

102

k x
,g

DNS GQLA-3 (R1) GQLA-4 (R2)

100 101 102

kx,r

100

101

102

100

101

102

100

101

102

100

101

102

100

101

102

k x
,g

GQLA-6 (R3)

100 101 102

kx,r

GQLA-24 (R3)

100 101 102

100 101 102 100 101 102 100 101 102

kx,r

GQLA-64 (R3)

–10–3 –10–4 –10–5 0 10–5 10–4 10–3

(a) (b) (c)

(d) (e) ( f )

Figure 10. Transfer function T(kx,r, kx,g) showing the scale-to-scale kinetic energy transfer from some chosen
cases listed in table 1. Function T(kx,r, kx,g) ≥ 0 for kinetic energy transfer from integer wavenumber kx,g →
kx,r and vice versa. The horizontal and vertical dashed lines correspond to the threshold integer wavenumber,
k0, for the GQLA simulations. Corresponding k0 regimes are also indicated.

k0 = 24: the l-subspace wavenumbers successfully capture both energy transfer processes
and sustain the convection rolls. The l-subspace wavenumbers by themselves are able to
emulate the DNS results for the GQLA-64 case. As is also the case for DNS and GQLA-4,
for all of these three GQLA simulations (k0 ≥ 6), the dominant inverse cascade is mediated
by the convection rolls. As can be found from figure 9, the inverse cascade process is
maintained by the h → l → h triad interaction especially for low k0.

3.4.2. Thermal energy transfer
The transfer function, Tθ , quantifying the thermal scale-to-scale energy transfer is
presented by plotting the contours in the (kx,r, kx,g) plane in figure 11 for the same cases
shown in figure 10. For the DNS, a clear forward cascade process is identifiable by
noting the dominant patches either side of and hugging the line kx,r = kx,g. As was the
case for the kinetic energy transfer, the mediator for this process is also kroll = 4 for the
DNS. Extraction of Tθ (kx,g; kx,r = kroll = 4) shows that the maximum thermal energy is
transferred from kx = 0 → 4 (not included due to the use of logarithmic scale for the
axes). Furthermore, 3 ≤ Tθ (kx,g ≤ 5; kx,r = 4) ≥ 0; however, a large amount of thermal
energy is transferred from kroll = 4 → 2kroll = 8. Except for the dominant thermal energy
transfer from kx,g = 0 → kx,r = 4, none of these important processes can be identified
for the GQLA-3 case. For the GQLA-4 case, however, the dominant thermal energy
transfer is from kx,g = 3 → kx,r = 0, i.e. from the convection rolls to the horizontally
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Figure 11. Transfer function Tθ (kx,r, kx,g) showing the scale-to-scale thermal energy transfer from some
chosen cases listed in table 1. Function Tθ (kx,r, kx,g) ≥ 0 for thermal energy transfer from integer wavenumber
kx,g → kx,r and vice versa. The horizontal and vertical dashed lines correspond to the threshold integer
wavenumber, k0, for the GQLA simulations. Corresponding k0 regimes are also indicated.

invariant length scale. Importantly, instead of the forward cascade, an inverse thermal
energy cascade due to the h → l → h triad interaction, and mediated by kx = 3, the
convection-roll wavenumber for this case, is evident in contrast to the DNS.

The results for the GQLA simulations in the R3 regime with k0 ≥ 6 are more akin to
the DNS. The wavenumbers associated with the convection rolls for the GQLA cases and
the DNS are the same, kx = 4, in this GQLA regime except for k0 = 6 for which kroll = 3.
For all these three cases, the maximum scale-to-scale thermal energy transfer takes place
between kx = 0 → kroll. Also for these cases, the forward thermal energy cascade is clearly
identifiable, which is mediated by the wavenumber kx = 4. A milder inverse cascade
process alongside the patch indicating the forward cascade is also evident for the GQLA-6
case. In the low-wavenumber end, the cascade process is maintained by the l → l → l
self-interacting triad for the l-subspace for the GQLA-24 case. For the GQLA-64 case,
the whole flow is sustained by the fully nonlinear l-subspace triad interactions. All GQLA
simulations, especially with low k0, clearly demonstrate the utility of the inclusion of the
h → l → h triad interaction in capturing the forward thermal energy cascade process.
For all three cases, |Tθ | is larger for the GQLA simulations, especially for the l-subspace
wavenumbers, compared with the DNS; the overprediction reduces with increasing k0.
The correct capture of the energy transfer processes, the cascade processes and dominant
energy transfer kroll → 2kroll demarcate the R3 GQLA regime; this is obtained for k0 ≥ 6
for the DNS-8 initial condition.
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3.5. Discussion
The transfer functions (figures 10 and 11) from the direct simulation reveal the involved
energy transfer processes. One of the important energy transfer processes is the direct
kinetic energy transfer to/from the convection rolls. The maximum amount of thermal
energy is first transferred from kx = 0 → kQ̂, the dominant wavenumber for thermal
driving of momentum. For all GQLA cases except GQLA-3 (for which no convection
rolls are obtained), kroll = kQ̂ (see figures 2 and 6–8); the thermal energy in convection

rolls then directly drives the momentum field through Q̂ in (2.17).
The energy transfers to/from kroll (including thermal energy transfer from wall to kroll)

must be correctly captured for the success of the GQLA, especially at low k0. This
is because, for low k0, as kx = 0 always belongs to the fully nonlinear l-subspace in
QLA/GQLA, potential convection-roll-forming wavenumbers should also belong to this
subspace (in which case, kroll = kQ̂ condition is satisfied) for efficient transfer of energy
to/from the convection rolls via the l → l → l triad interaction. For this reason, while
GQLA-4 yielded convection rolls, GQLA-3 did not. While for GQLA-4, kQ̂ = 3 = kroll <

k0, for GQLA-3, kQ̂ = 4 > k0 in figure 6. This condition demarcates the boundary between
the R1 and R2 GQLA regimes: GQLA can capture convection rolls for k0 ≥ kQ̂. In
addition, h → l → l and l → l → h triad interactions are excluded in GQLA hindering
transfer of energy to/from the wavenumbers that can potentially yield convection rolls
especially for low k0 – this is further elaborated in § 4.

The second process is the scale-by-scale energy transfer, an inverse kinetic energy
cascade and a forward thermal energy cascade in DNS. This process is also mediated
by the convection rolls. In GQLA, these processes are captured by the h → l → h triad
interactions by the h-subspace wavenumbers. The involved triads include the donor and
receiver wavenumbers separated by kroll. This process was found to be very important for
GQLA simulations with low k0 < 6, i.e. in the R1 and R2 regimes of GQLA. For example,
this process is strong and contributes significantly towards sustenance of the convection
rolls in case GQLA-4. Inverse thermal and kinetic energy cascades are obtained for both
GQLA-3 (in the R1 regime) and GQLA-4 (in the R2 regime).

Based on the transfer functions calculated for the DNS, the largest amount of energy is
always transferred from kroll → 2kroll. In the case k0 ≥ 2kroll, such as for k0 ≥ 6, captured
GQLA dynamics is similar to the fully nonlinear dynamics. This condition demarcates
the third and final R3 GQLA regime. In this regime, dominant energy transfer processes,
namely the energy transfer to/from the convection rolls, and the inverse kinetic energy
cascade process and the forward thermal energy cascade process are faithfully captured by
GQLA, and as a consequence is able to replicate the fully nonlinear dynamics. Specifically,
the cascade processes are captured by the h → l → h triad interaction for the h-subspace
wavenumbers, especially for low k0.

In the intermediate GQLA regime, i.e. R2, for 2kroll > k0 ≥ kQ̂, kroll = 3 always belongs
to the l-subspace for GQLA simulations with k0 < 6. For GQLA-4, the wavenumber kx =
8 > k0 (corresponding to 2kroll for the eight-roll state) which cannot receive any energy
because of the omission of the h → l → l and l → l → h triad interactions in GQLA.
However, 2kroll = 6 (for the six-roll state) can receive energy for GQLA simulations with
6 > k0 ≥ 4; in this regime, 2kroll > k0 ≥ kQ̂ is thus satisfied and the eight-roll state cannot
be yielded. The nonlinear dynamics captured in this GQLA regime is different from that
of the fully nonlinear DNS. For example, plots both for T(kx, z/H) in figure 10(c) and
for Tθ (kx, z/H) in figure 11(c) show inverse cascade processes for kinetic and thermal
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energies for the h-subspace wavenumbers for the GQLA-4 case. However, for DNS, only
the scale-to-scale kinetic energy transfer process involves an inverse cascade process,
while for the thermal energy, a forward cascade process is obtained. Although we note
that the transfer functions are volume-averaged results as in (2.31) and (2.32), in figure 6,
the thermal driving of momentum inside the thermal boundary layer for the GQLA-4 case
at the convection-roll wavenumber Q̂(kx = kroll = 3) < 0 in contrast to the DNS. From
the contour plots of θ ′ and w′, these correspond to regions of plume ejection at the two
walls.

The results presented herein, especially the kinetic and thermal energy balance
presented in figures 6–8, and the scale-to-scale energy transfer functions in figures 10
and 11 provide some reasoning behind GQLA’s non-monotonic convergence with DNS
for RBC: based on the choice of k0, certain processes may be hindered or facilitated that
dictate the formation and sustenance of the convection rolls, cascading (and consequently
dissipation), etc. For example, the dominant thermal energy transfer to/from kx = kroll may
be hindered based on the choice of k0, or dominant energy transfer from kroll → 2kroll as
in DNS may be hindered or entirely removed in GQLA for low k0 < 6.

4. Nonlinear scale interaction studies

With the decomposition of a flow field into l- and h-subspace components, the GQLA
framework may be utilized as an intrusive tool to study the influence of different nonlinear
triad interactions arising in the fully nonlinear equations. Instead of dropping the terms
as in GQLA, target interaction terms may be included/dropped to study the influence
of the chosen interactions on the approximated nonlinear dynamics. In this section, we
use this methodology to study the influence of some of the nonlinear triad interactions
in (2.13) and (2.14). One should be careful, however, in choosing the interactions to be
suppressed. For example, in our work, we retain/drop interactions such that for a given
triad, both the receiver and giver wavenumbers are able to exchange energy with each
other, i.e. for a triad kx = [α, β, γ ], energy transfer routes α → β → γ and γ → β → α

are both included/omitted in the experiment.
The intrusive simulation performed herein is intended to understand the influence of

the omitted triad interactions in GQLA-3 (in general, for k0 < kQ̂) that are responsible
for its inability to capture the convection rolls for the DNS-8 initial condition. For the
GQLA-3 case initiated with the DNS-8 condition, kQ̂ = kx = 4 > 3 = k0. Here, we study
if the inclusion of the h → l → l and l → l → h interactions yields the convection rolls
in a trial simulation with k0 = 3 (convection rolls were only obtained for k0 ≥ 4). We also
consider an additional GQLA-3 calculation for which the initial condition is the same as
DNS (see the Appendix for all GQLA simulations initiated with this initial condition).
Comparison of results from this simulation with T-3 and GQLA-3 cases initiated with
the DNS-8 condition illustrates the influence of the initial condition. We note that the
conclusions drawn are dependent on the choice of k0; however, we also emphasize that the
inferences are valid below the chosen limit of k0.

Table 2 tabulates triad interactions included/discarded in the intrusive calculation and
compared with the GQLA simulation. A direct simulation includes all the eight triad
interactions listed. In case T-3, in addition to the four triadic interactions included in the
standard GQLA, we also include the hll (h → l → l) and llh (l → l → h) interactions for
the l- and h-subspace wavenumbers, respectively. The different initial conditions for these
simulations are also listed.
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Case k0 Initial condition lll lhl hll hhl llh lhh hlh hhh

GQLA-3 3 Random � × × � × � � ×
T-3 3 DNS-8 � × � � � � � ×

Table 2. Triad interactions included/discarded in the additional simulations. Here, αβγ indicates the
α → β → γ triad interaction.

1.0

0.5

0
z/H

x/H
2 4 6 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12. Contours of instantaneous 0 ≤ θ ≤ 1 from the intrusive calculation listed in table 2: case T-3
initiated with the DNS-8 condition.

4.1. Flow visualizations, statistics and spectra
Contours of θ showing the flow structures are shown in figure 12 for the intrusive
calculation. The flow structures from the T-3 simulation are somewhat similar to those
of the GQLA-4 case shown in figure 2(c) – six large-scale convection rolls are obtained
along with other large-scale fluctuations. The inclusion of the two additional interactions
indeed results in the formation of rolls for low k0 = 3, and the resultant approximation
is akin to GQLA with k0 = 4. The obtained state is different from the initial roll state,
and is akin to the R2 GQLA regime (2kroll > k0 ≥ kQ̂). On the other hand, the GQLA-3
calculation with the random initial condition also yields six convection rolls in figure 18(b)
(see the Appendix), and the dynamics of the convections rolls is similar to that obtained
for GQLA-4 with the DNS-8 initial condition.

Table 3 tabulates δθ , Nu, 〈ε〉 and rf – the number of convection rolls yielded at a
statistically stationary state for these additional calculations. Parameter δθ obtained for
the trial approximation T-3 is larger than for the baseline GQLA-3 case. Additionally,
inclusion of the two additional interactions significantly alters Nu and 〈ε〉; both these
quantities reduce compared with the baseline GQLA-3 simulation with the DNS-8 initial
condition and are closer to the results obtained from DNS (see table 1). It must be noted
that, because of k0 = 3 being low, only a handful of additional triads (six additional
triads for each of the two interactions) are included in the approximation for the T-3 case.
Interestingly, in spite of using the same GQLA with the same k0, GQLA-3 with the random
initial condition yields Nu and 〈ε〉 closer to the DNS compared with both the T-3 case and
the baseline GQLA-3 initiated with the DNS-8 condition highlighting the influence of the
initial condition of the simulations in this RBC regime (Wang et al. 2020).

Wall-normal profiles of 〈θ〉, and the Reynolds stresses corresponding to u- and
w-components and θ are shown for case T-3 along with the baseline GQLA-3 case both
initiated with the DNS-8 condition, and compared with GQLA-3 initiated with the random
condition in figure 13. Zoomed-in views are presented for 〈θ〉 and 〈θ ′θ ′〉 profiles only
close to the lower wall in figures 13(a) and 13(d), respectively. The 〈θ〉 profile is steeper
for the baseline GQLA-3 case. Both T-3 and GQLA-3 with random initial condition
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Case Initial condition δθ /H Nu 〈ε〉 rf

T-3 DNS-8 0.0145 34.26 0.00105 6
GQLA-3 Random 0.0148 33.43 0.00102 6

Table 3. Details of the additional calculations.
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Figure 13. Wall-normal profiles of mean flow and Reynolds stresses from the additional calculations compared
with the corresponding baseline GQLA simulations with different initial conditions: (a) 〈θ〉; (b) 〈u′u′〉;
(c) 〈w′w′〉; (d) 〈θ ′θ ′〉.

cases overshoot and undershoot 〈θ〉 = 0.5 in the bulk, respectively, for z/H ≤ 0.5 and
z/H ≥ 0.5. Both these cases yield much better predictions for the u- and w-components
of the Reynolds stress compared with its baseline GQLA-3 in figures 13(b) and 13(c).
Also, the Reynolds stress due to θ ′ close to the lower wall in figure 13(d) shows that both
these cases provide much better predictions compared with the baseline GQLA-3 initiated
with the DNS-8 condition. The overall predictions are slightly better for the T-3 case
compared with GQLA-3 with random initial condition possibly because of the inclusion
of the additional triads for the T-3 case.

Despite the use of a biased initial condition, additional triadic interactions included for
the T-3 case enables it to transition from the initial eight-roll state dominated by kx = 4
to the six-roll state dominated by kx = 3. This is probably possible due to the included
h → l → l triad interactions which allows it to drain energy from the kx = 4 → 3 which is
not included for the baseline GQLA-3 case also initiated with the biased DNS-8 condition.
The GQLA-3 case initiated with the random condition is not influenced by this bias.
Because the statistically stationary states yielded for the T-3 case and the GQLA-3 case
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Figure 14. Spectra of θ : (a) Aθ in dB (20 log10(Aθ /Aθ,ref )) unit with Aθ,ref = 0.01; (b) premultiplied spectra
plotted in the (kx, z/H) plane from the T-3 case. The vertical dashed lines mark the threshold wavenumber, k0.

initiated with the random condition are very similar, in the rest of our discussion in this
section we use T-3 as the representative case for comparison between the GQLA and trial
approximation.

The amplitude spectra of θ and Aθ and the premultiplied spectra are shown in figure 14
for the T-3 case in the (kx, z/H) plane. The T-3 case yields a peak corresponding to the
six-roll state obtained for this case, i.e. for kroll = kx = 3 at all z/H locations shown; a
second peak is also obtained for kx = 6 close to the wall, which becomes the primary
peak at the outer edge of the thermal boundary layer. A second range of wavenumbers
accumulating high energy is also obtained in the premultiplied spectra for kx ≥ 30 which
peaks close to kx ∼ 150.

4.2. Kinetic and thermal energy budget

The thermal driving of the momentum due to the θ field, Q̂, is plotted in the (kx, z/H) plane
for the T-3 case in figure 15(a). The dominant wavenumber for Q̂, kQ̂ = kx = 3 for case

T-3 – the wavenumber associated with the convection rolls. Driving Q̂ < 0 at the dominant
wavenumber, kx = 3 for z/H ≤ 0.03, within the thermal boundary layer. This property is
consistent with the GQLA simulations with 6 > k0 ≥ 4 for the DNS-8 condition, i.e. in
the R2 regime, for which six convection rolls were also obtained (e.g. plot for Q̂ for the
GQLA-4 case in figure 6c). The second dominant wavenumber corresponds to kx = 6. At
this wavenumber Q̂ ≥ 0 within the thermal boundary layer, and Q̂ < 0 outside the thermal
boundary layer, in a considerable region in the bulk, 0.35 ≥ z/H ≥ 0.08.

Momentum/heat transported by the flow, denoted by T̂t and T̂θ,t in the kinetic/thermal
energy budget equations in (2.17) and (2.24), respectively, is directly affected by the
case-specific approximation. The contours for these quantities are shown in figures 15(b)
and 16 for the T-3 case in the (kx, z/H) plane. Momentum transport is mainly in the
bulk, while the thermal transport mainly takes place at the edge of the thermal boundary
layer. The results are significantly improved compared with the baseline GQLA-3 case.
Compared with the GQLA-3 case with DNS-8 condition in figures 7(b) and 8(b), the main
noticeable difference is that the transport is dominated by the wavenumber corresponding
to the convection rolls in this case, i.e. kroll = 3. Similar to the GQLA-3 case,
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Figure 15. (a) Thermal driving, Q̂, and (b) nonlinear turbulent transport of momentum, T̂t, as expressed
in (2.22) plotted in the (kx, z/H) plane for the T-3 case. The vertical dashed lines show the threshold
wavenumber, k0.
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Figure 16. Nonlinear turbulent transport of thermal energy, T̂θ,t, plotted in the (kx, z/H) plane for the T-3
case. The vertical dashed line marks the threshold wavenumber, k0.

the amplitudes of these quantities are overpredicted for this case compared with DNS
at low wavenumbers.

Although not shown herein, the spectral distributions of kinetic energy dissipation, ε̂,
and thermal energy dissipation, ε̂θ , also show similar properties. Both ε̂ and ε̂θ are largest
at the wall for the wavenumber corresponding to the convection roll (kx = 3) for the T-3
case followed by the second peak at kx = 6. Both ε̂ and ε̂θ slowly drop up to kx ∼ 30; ε̂

plateaus up to kx ∼ 100 followed by sharp drop-off. On the other hand, ε̂θ sharply rises
again for kx > 30 inside the thermal boundary layer; a secondary peak is obtained at kx ∼
110 followed by drop-off.
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Figure 17. Transfer functions: (a) T(kx,r, kx,g) showing the scale-to-scale kinetic energy transfer and
(b) Tθ (kx,r, kx,g) showing the scale-to-scale thermal energy transfer from the T-3 simulation. The horizontal
and vertical dashed lines correspond to the threshold wavenumber, k0.

4.3. Scale-to-scale energy transfer
The scale-to-scale kinetic energy transfer is presented in figure 17(a) by plotting the
transfer function, T(kx,r, kx,g), for the T-3 case. Function T(8 ≤ kx,r ≤ 14, kx,g = 3, ) > 0,
implying that kinetic energy is transferred from the convection rolls with kx,g = 3 → 8 ≤
kx,r ≤ 14; the largest amount of energy is transferred to kx,r = 9 = 3kroll which belongs to
the h-subspace. Scales similar to the convection rolls, i.e. kx,g < 5, provide energy to the
convection rolls kx,r = kroll = 3. Part of these direct kinetic energy transfers to/from the
convection rolls (among 3 ≤ kx ≤ 6) is facilitated by the inclusion of the two additional
triad interactions (hll and llh) for this case. These interactions are therefore paramount for
allowing the transition from the initial eight-roll state to the statistically stationary six-roll
state for this case. The small scales also transfer energy to the rolls. The scale-by-scale
inverse energy cascade at high wavenumbers obtained for the DNS case in figure 10(a)
is captured for this case by the h-subspace wavenumbers up to kx ∼ 10, beyond which
a forward cascade is obtained. The amplitude of the transfer function is also in good
agreement with the DNS. Clearly, the results for this case are much improved compared
with the baseline GQLA-3 case.

The transfer function for the thermal scale-to-scale energy transfer, Tθ (kx,r, kx,g), for the
T-3 case is shown in figure 17(b). Inclusion of the hll and llh triad interactions facilitates
the transfer of thermal energy to/from kroll = 3, which gains most of its energy directly via
thermal driving; the highest thermal energy transfer takes place from kx,g = 3 → kx,r =
6 = 2kroll. This route is absent for the baseline GQLA-3 in figure 11(b). The forward
thermal energy cascade for the h-subspace wavenumbers is captured in the T-3 case,
unlike in GQLA-3. This emphasizes the importance of resolving both the energy transfer
processes in approximations for successful capturing of the convection rolls.

Finally, it should be noted that the motivation behind this section is to explore whether
the GQLA model can be improved by testing specific nonlinear interactions. While energy
conservation is certainly an important aspect, our primary aim here was to identify
potential improvements in the model’s performance. By isolating specific interactions, we
sought to determine whether such refinements could lead to a more accurate representation
of the system. However, we recognize the importance of energy conservation and plan to
investigate this aspect more thoroughly in future studies. A detailed examination of energy
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dynamics will be critical for further validating and refining the GQLA model, and we are
committed to addressing this in our ongoing research.

5. Conclusions

In this work, the GQLA is applied to the two-dimensional planar RBC problem.
Application of a spectral decomposition with respect to a threshold wavenumber, k0, to
quadratic nonlinear terms such as in the OBEs results in eight terms representing all the
nonlinear triad interactions between the large-scale (l) and small-scale (h) flows, as in
(2.13) and (2.14). In GQLA, some triad interactions are dropped; however, it retains the
h → l → h scattering that allows for the small-scale flow to interact among itself mediated
by the large-scale flow (Marston et al. 2016), which improves its prediction capability
compared with the QLA. The current work explores the GQLA’s ability to capture the
scale-by-scale energy transfer processes in a RBC flow using its restricted nonlinearity.

For the flow considered herein, [Ra, Pr] = [108, 10], in a computational domain with
an aspect ratio of 8, at least two decades of wavenumbers (up to integer wavenumber,
kx ∼ 200) are linearly unstable, and these scales extract energy irrespective of the GQLA,
as shown in the spectra (figures 3 and 4). Two initial conditions are tested as the flow is
sensitive to initial conditions (Wang et al. 2020). In one, the statistically stationary state
with eight convection rolls from the direct simulation was used as the initial condition
(DNS-8) for the GQLA simulations. In the other, random perturbations are superimposed
on a linear conductive temperature profile with u = 0 (Appendix). Irrespective of the
initial conditions, three approximation regimes are identified for the GQLA based on
the threshold integer wavenumber (k0) segregating the large- (l) and small-scale (h) flow
(see figures 2 and 18). In the first low-k0 regime, R1, the GQLA is unable to capture the
convection rolls for k0 < kQ̂, where kQ̂ is the dominant wavenumber for thermal driving of
the flow (see figure 6). The limit demarcating this regime for the present flow is k0 < 4 for
the DNS-8 initial condition (see table 1). In the third k0 regime for k0 ≥ 2kroll, called R3
herein, the GQLA can replicate the fully nonlinear dynamics (see figures 10 and 11) and
can capture the flow’s dependence on the initial roll state. The R3 GQLA regime for the
present flow is obtained for k0 ≥ 2kroll = 6 for both initial conditions. In the intermediate
GQLA regime, called R2 herein, for 2kroll > k0 ≥ kQ̂, although the GQLA can capture
the convection rolls, the nonlinear dynamics captured is different from that of the fully
nonlinear flow. In this limit with 6 > k0 ≥ 4, GQLA always yielded six convection rolls
as the statistically stationary state for the current flow. This RBC flow yields multiple
convection-roll states based on initial conditions of the simulations. Both eight-roll and
six-roll states have been reported by Wang et al. (2020). Whether the different GQLA
dynamics in the R2 and R3 regimes can explain the existence of the multiple states remains
an open question.

The R1 regime with k0 < kQ̂ is characterized by large Nu – heat transport is maximum
for QLA, i.e. GQLA with k0 = 0. In the R2 regime, as the convection rolls are captured,
kroll = kQ̂, and Nu drops and tends towards Nu obtained from DNS. Additionally, the
GQLA can capture the energy cascade processes mediated by the convection rolls with
some success. These processes are maintained by the h-subspace wavenumbers in this
GQLA regime and may be attributed to the h → l → h triad interaction (compare
figures 9, 10 and 11). However, in this low-k0 regime, due to the exclusion of the
h → l → l and l → l → h triad interactions in GQLA, the dominant energy transfer from
kroll → 2kroll is blocked. In the final GQLA regime (R3) with k0 ≥ 2kroll, the energy
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transfers to/from the convection rolls are also effectively captured. Based on the choice of
k0 in this regime, the energy cascade processes may be entirely captured by the l-subspace
wavenumbers via the l → l → l interaction (for high k0) or captured in portions by both the
l- and h-subspace wavenumbers (low to moderate k0) via the l → l → l and h → l → h
interactions, respectively.

Turbulent statistics shown in figure 5 significantly improve even for low k0 in the R3
GQLA regime. However, in all three GQLA regimes, the spectra and terms contributing to
balancing the kinetic and thermal energy budgets in (2.17) and (2.24) are overpredicted for
the l-subspace wavenumbers (e.g. figures 3 and 6–8). In these figures, a high-wavenumber
range (200 > kx ≥ 30) gains energy via linear instability of these scales in all GQLA
simulations and is appreciably active. Overshoot in both the l-subspace wavenumbers
and the energetic high-wavenumber range may be attributed to the suppression of select
nonlinear interactions, which inhibits cascades that eventually results in dissipation.
For the present flow, h-subspace wavenumbers cannot sustain themselves and become
redundant for GQLA with high k0 ≥ 64.

Additional calculation was performed utilizing the framework underlying the GQLA of
decomposing a flow field into large- and small-scale motions and altering select nonlinear
triad interactions. The inclusion of the h → l → l and l → l → h triad interactions with
respect to the baseline GQLA with k0 = 3 in this intrusive calculation was intended to
understand the GQLA’s inability to capture the convection rolls in the first k0 regime
for the current flow. The initial condition was the statistically stationary eight-roll state
obtained in DNS. In this experimental case T-3, six convection rolls were obtained once
a statistically stationary state was reached akin to the R2 GQLA regime, establishing
the argument that the exclusion of the h → l → l and l → l → h triad interactions in
GQLA hinders nonlinear transitions in state in the R1 regime. Obtained flow statistics
significantly improved for this case compared with the baseline GQLA-3 with the DNS-8
initial condition. Apart from kroll = 3, high energy was also obtained at 2kroll due to the
additional interactions. The transfer functions plotted in figure 17 show that this case
effectively capture both energy transfer processes: the dominant energy transfer to/from
the convection rolls, and the scale-by-scale inverse kinetic energy cascade, and forward
thermal energy cascade.
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Appendix. Initial condition dependence

Wang et al. (2020) demonstrated that the RBC flow for [Ra, Pr] = [108, 10] used in the
current study exhibits multiple convection roll states depending on the initial condition of
the simulations. They obtained eight or six convection rolls for aspect ratio Γ = 8. In the
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Case k0 δθ /H Nu 〈ε〉 rf GQLA regime

GQLA-24 24 0.0164 30.10 0.00091 8 R3
GQLA-16 16 0.01659 29.84 0.000909 6 R3
GQLA-12 12 0.0166 29.71 0.000905 8 R3
GQLA-8 8 0.0157 31.46 0.00096 6 R3
GQLA-6 6 0.0157 31.40 0.00096 6 R3
GQLA-4 4 0.016 30.81 0.00094 6 R2
GQLA-3 3 0.0148 33.43 0.00102 6 R2
GQLA-0 0 0.0088 55.71 0.00173 — R1

Table 4. Details of GQLA simulations initiated with the random condition: δθ represents the thermal
boundary-layer thickness obtained using the slope method and rf indicates the number of convection rolls
yielded at a statistically stationary state.

results presented so far, an eight-roll-state initial condition (DNS-8) obtained from the
statistically converged flow field from DNS was used for the GQLA simulations. In the
results presented herein we use a ‘random’ initial condition as was used for the DNS: a
θ field consisting of random perturbations superimposed on the linear conductive profile
along with u = 0. So, we call this initial condition ‘random’. Here we show that the GQLA
regimes obtained for the random initial condition are consistent with those obtained for the
DNS-8 initial condition.

Table 4 tabulates the boundary-layer thickness, δθ , Nusselt number, Nu, and time- and
volume-averaged momentum dissipation, 〈ε〉. The number of convection rolls (rf ) yielded
in the simulations at statistically stationary states is also listed. The flow structures for these
GQLA simulations are shown by plotting the instantaneous contours of θ in figure 18.
Except for GQLA-3 and GQLA-8 cases, all other cases show good agreement with the
same quantities reported for the DNS-8 condition in table 1 and figure 2. Interestingly,
GQLA-3 yields six convection rolls unlike for the DNS-8 initial condition for which no
rolls were obtained. Capturing the convection rolls results in a significantly reduced Nu
and 〈ε〉, and a slightly larger δθ for the random condition compared with the DNS-8
condition for GQLA-3. The dominant wavenumber for thermal driving for this case is
kQ̂ = 3 for the random condition (not shown here) compared with kQ̂ = 4 for the DNS-8
condition. Clearly, the different initial conditions are the primary reason for the large
differences noted for the two GQLA-3 cases compared. The GQLA-3 case initiated with
the random condition is not influenced by the bias inherent in the DNS-8 initial condition,
and converges to a roll state satisfying k0 ≥ kQ̂, i.e. in the R2 regime of GQLA.

On the other hand, for GQLA-8, six (eight) convection rolls are obtained for the
random (DNS-8) initial condition. This results in a thinner thermal boundary layer
and a reduced Nu for the random initial condition compared with the DNS-8 initial
condition. Wavenumber k0 ≥ 6 is representative of the R3 GQLA regime (because
k0 = 6 ≥ 2kroll = 6 for this case). In contrast, GQLA-24 for the random initial condition
yields eight convection rolls as in the DNS. Interestingly, GQLA-12 and GQLA-16 yield
eight and six convection rolls, respectively, again highlighting the non-monotonic nature of
GQLA’s convergence to DNS with increasing k0, and also the flow’s sensitivity to initial
conditions. Clearly, all these three cases also belong to the R3 regime of GQLA.

The flow statistics are shown for the GQLA cases initiated with the random condition
in figure 19. Comparing with figure 5, GQLA-4 yields similar statistics irrespective of the
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Figure 18. Contours of instantaneous 0 ≤ θ ≤ 1 from the GQLA simulations initiated with the random
condition: (a) GQLA-0; (b) GQLA-3; (c) GQLA-4; (d) GQLA-6; (e) GQLA-8; ( f ) GQLA-12; (g) GQLA-16;
(h) GQLA-24.
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Figure 19. Wall-normal profiles of mean flow and Reynolds stresses from the GQLA simulations initiated
with the random condition: (a) 〈θ〉; (b) 〈u′u′〉; (c) 〈w′w′〉; (d) 〈θ ′θ ′〉. Corresponding GQLA k0 regimes are also
indicated.

initial condition indicating that this belongs to the same approximation regime, R2. The
GQLA-3 case (also belonging to the R2 GQLA regime) yields consistent statistics when
compared with GQLA-4 for the random condition in contrast to the DNS-8 condition.
Excellent agreement with DNS for one-dimensional statistics is obtained for GQLA-6,
GQLA-8, GQLA-16 and GQLA-24. The flow statistics diverge with respect to the DNS
for GQLA-12 considering that this case also yields eight convection rolls for the random
initial condition. Clearly, GQLA’s convergence with DNS is non-monotonic with increase
in k0 for both the initial conditions used in this work. Overall, in the absence of the initial
condition bias for the random initial condition, statistics obtained from GQLA are more
consistent compared with the DNS-8 condition for this flow.

For a random initial condition, the GQLA yields six convection rolls for k0 ≤ 8. On the
other hand, for the DNS-8 initial condition, GQLA yields six convection rolls in the R2
regime (k0 < 2kroll = 6), and depending on the initial roll state, yields eight convection
rolls for k0 ≥ 8 in the R3 regime of GQLA. Whether the capturing of the six convection
rolls for the DNS-8 condition by the GQLA in the R2 regime or in the R3 regime for
k0 = 6 (and also for k0 = 8 for the random condition) is related to the existence of the
multiple states remains an open question. Furthermore, the ability of the GQLA to capture
both six and eight convection rolls depending on the approximation regime (restriction
in nonlinearity) indicates that nonlinear triadic scale interactions could play an important
role in the emergence of the multiple states.
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