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Abstract

Open conjectures state that, for every x ∈ [0, 1], the orbit (xn)∞n=1 of the mean-median recursion

xn+1 = (n + 1) ·median(x1, . . . , xn) − (x1 + · · · + xn), n � 3,

with initial data (x1, x2, x3) = (0, x, 1), is eventually constant, and that its transit time and limit functions
(of x) are unbounded and continuous, respectively. In this paper, we prove that for the slightly modified
recursion

xn+1 = n ·median(x1, . . . , xn) − (x1 + · · · + xn), n � 3,

first suggested by Akiyama, the transit time function is unbounded but the limit function is discontinuous.

2020 Mathematics subject classification: primary 37E15; secondary 11B75.
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1. Introduction

The mean-median map (MMM) enlarges a finite nonempty real multiset [x1, . . . , xn] to
[x1, . . . , xn, xn+1], where xn+1 is the unique real number which equates the (arithmetic)
mean of the latter multiset and the median of the former multiset:

〈x1, . . . , xn, xn+1〉 =Mn, that is, xn+1 = (n + 1)Mn − Sn, (1.1)

where 〈x1, . . . , xn〉, Mn and Sn denote the mean, the median and the sum of the
elements of [x1, . . . , xn], respectively. The median Mn of the multiset [x1, . . . , xn] is,
as ordinarily known, the middle number in the sorted multiset if n is odd, and the
mean of the middle pair otherwise.

Given an initial multiset [x1, . . . , xn0 ], n0 ∈ N, iterating the map generates an orbit
(xn)∞n=1 which is conjectured to stabilise, that is, to be eventually constant.

STRONG TERMINATING CONJECTURE [9]. The MMM orbit of every initial multiset
stabilises.
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FIGURE 1. Graphs of τ (left) and m (right).

It is known that the median sequence (Mn)∞n=n0
associated to the orbit is monotonic

[4, Theorem 2.1], and converges once a repeated orbit point appears above (below)
a median in the nondecreasing (nonincreasing) case [4, Theorem 2.4]. Such repeated
points are observed to be ubiquitous [4, paragraph preceding Section 3], suggesting
the following weaker version of the above conjecture.

WEAK TERMINATING CONJECTURE [4]. The median sequence of every initial
multiset converges.

Despite intensive research effort [3–10], these terminating conjectures, as well as
two additional conjectures to follow, are still open even in the case of the smallest
nontrivial initial multisets: those of size three. The fact that the MMM commutes
with elementwise affine transformations [4, Section 3] makes the orbit of every such
multiset affine-equivalent to that of a univariate initial multiset [0, x, 1], for some real
number x ∈ [ 1

2 , 2
3 ] which we call the initial condition. We associate to this multiset

the transit time τ(x) ∈ N>3 ∪ {∞} of its MMM orbit—the time step at which the orbit
stabilises—and the limit m(x) ∈ R of its median sequence. These functions, sketched
in Figure 1, are conjectured to possess the following properties.

UNBOUNDEDNESS CONJECTURE [5]. The function τ is unbounded.

CONTINUITY CONJECTURE [4]. The function m is continuous.

A sufficient condition for the appearance of a repeated point—which guarantees
convergence of the median sequence—is available for bounded rational orbits. Such
an orbit is forced to repeat if its time-dependent effective exponent—the largest
exponent of 2 in the denominators of existing points—grows sublogarithmically over
time [6, (2.2)]. From (1.1), it is apparent that after each iteration, this exponent
either stays unchanged or increases by 1. Thus, for a sublogarithmic growth, the
increments must occur sufficiently infrequently. This infrequency of increments,
although well supported by computational evidence, seems to originate from an
arithmetical phenomenon which is very difficult to elaborate rigorously.
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FIGURE 2. Graphs of τA (left) and mA (right) in (0, 1) with bounds given in the main theorem.

To eliminate this difficulty, Akiyama [1] suggested modifying the recursion (1.1)
into

xn+1 = nMn − Sn, (1.2)

thereby introducing a new variant of the MMM, which we call the Akiyama MMM,
whose rational orbits have a constant effective exponent. Naturally, for the Akiyama
MMM, there are analogous terminating conjectures; these are also open. However, for
this map, clearly, every bounded rational orbit stabilises.

As we shall see, the Akiyama MMM has the same smallest nontrivial form of
initial multisets, namely [0, x, 1], whose transit time τA(x) ∈ N>3 ∪ {∞} and limit
mA(x) ∈ R are defined analogously for x ∈ (−∞, 1), and are sketched in Figure 2. For
these functions, one naturally questions the analogous unboundedness and continuity
conjectures. The main purpose of this paper is to prove analytically that the former
holds, whereas the latter fails. More precisely, we will prove the following theorem.

THEOREM. If x ∈ (0, 1), then

τA(x) �
2
x
+ 3 and mA(x) � 2x − 1,

where equality holds if and only if x is a unit fraction (that is, a positive fraction with
unit numerator).

The first inequality clearly implies the unboundedness of τA. Since mA(0) = 0, the
second inequality implies that mA is discontinuous at x = 0.

Our proof of this theorem is methodologically similar to that of the bounds for the
transit time and limit of the so-called normal form of the original MMM [7, Theorem
6.2]; we first show that every orbit begins with a predictable phase whose length
depends on an arithmetical property of the initial condition. The bounds for τA and
mA in the theorem can then be inferred, respectively, from the number of existing
points and the location of the median at the end of the phase.

The simultaneous occurrence of the unboundedness of the transit time and the
discontinuity of the limit function is unsurprising. Indeed, in the original MMM, we
have pointed out that these will be two interrelated consequences if a local functional

https://doi.org/10.1017/S0004972722001290 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001290


[4] The Akiyama mean-median map 301

orbit is found to be divergent [7, Theorems 5.4 and 5.6]. While such divergence has
not been found in the original MMM, we find it near x = 0 in the Akiyama MMM.

Let us now describe the structure of this paper. In the next section, we define the
Akiyama MMM more formally and discuss its basic properties. There are properties
which are the same as those of the original MMM (the proofs of which are thus
omitted): the median sequence is monotonic (Proposition 2.2), a repeated orbit
point guarantees convergence and two equal consecutive medians cause stabilisation
(Proposition 2.3). There is also a different property: the map commutes with scalar
multiplications, but not with nonidentity translations (Proposition 2.1). In Section 3,
we present our main result, namely an explicit description of the predictable phase
for every initial condition (Lemma 3.1) from which the above theorem then follows.
Finally, the graphs in Figure 2 suggest the presence of symmetry around x = 1

2 ; a brief
discussion on this in Section 4 concludes the paper.

2. Preliminaries

The Akiyama MMM is a self-map on the space of finite nonempty real multisets.
The image MA(ξ) of such a multiset ξ is obtained by increasing the multiplicity of the
real number

MA(ξ) := |ξ|M(ξ) − S(ξ)

in ξ by one, where |ξ|, M(ξ) and S(ξ) denote the cardinality, median and sum of
elements of ξ, respectively. Employing the additive union notation [2, page 50], we
write

MA(ξ) := ξ � [MA(ξ)].

Generally, the map MA does not commute with elementwise affine transformations
(see [4, Theorem 2.2]). However, it commutes with elementwise scalar multiplications.

PROPOSITION 2.1. For every a, b ∈ R with a � 0, we have

MA(aξ + b) = (aξ + b) � [aMA(ξ)],

and, in particular,

MA(aξ) = aMA(ξ), (2.1)

that is, MA commutes with elementwise scalar multiplications.

PROOF. Since M(aξ + b) = aM(ξ) + b and S(aξ + b) = aS(ξ) + |ξ|b, the map MA
increases in the multiset aξ + b the multiplicity of the number

|aξ + b|M(aξ + b) − S(aξ + b) = |ξ|[aM(ξ) + b] − [aS(ξ) + |ξ|b]

= a[|ξ|M(ξ) − S(ξ)]
= aMA(ξ),

proving the first identity. Setting b = 0 gives the second identity. �
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Under iterations of MA, every initial multiset ξn0 = [x1, . . . , xn0 ], n0 ∈ N, is asso-
ciated to a sequence of multisets (ξn)∞n=n0

, an orbit (xn)∞n=1 and a median sequence
(Mn)∞n=n0

, where

ξn+1 =MA(ξn), xn+1 = MA(ξn) and Mn :=M(ξn) for every n � n0.

Moreover,

xn+2 = (n + 1)Mn+1 − nMn for every n � n0, (2.2)

an expression of an orbit point as an affine combination of the last two medians.
Exactly as in the original MMM [4, Theorem 2.1], we deduce from (2.2) that the median
sequence is monotonic.

PROPOSITION 2.2. The median sequence (Mn)∞n=n0
is monotonic.

Loosely speaking, an Akiyama MMM orbit reaches stabilisation in a similar way as
an original MMM orbit: the orbit first generates a repeated point which guarantees the
convergence of the median sequence [4, Theorem 2.4]. (In the case of x1, . . . , xn0 ∈ Q,
since the effective exponent is constant, convergence implies stabilisation.) Once one
of these repeated points is reached by the median sequence, two equal consecutive
medians are created; as is apparent from (2.2), this causes stabilisation. Formally, we
have the following result.

PROPOSITION 2.3.

(i) If n � n0 is such thatMn =Mn+1, then xj =Mn+1 for every j � n + 2.
(ii) The nondecreasing (nonincreasing) median sequence converges if there exist

i, j, s ∈ N with i � j and s � n0 such thatMs � xi = xj (Ms � xi = xj).

The orbits of a singleton multiset [x], a two-element multiset containing a zero
[0, x], and a multiset of two equal elements [x, x], where x ∈ R, are straightforward to
compute; these are (x, 0, 0,−x, 0), (0, x, 0,−x, 0) and (x, x, 0, x), respectively, where the
overlines denote infinite repetitions. The smallest nontrivial initial multisets are those
of the form [x, y], where x, y are nonzero and x < y. By (2.1), these are represented
by multisets of the form [x, 1], x < 1, whose limit mA(x) and transit time τA(x) are
plotted in Figure 2. For these multisets, the median sequence is nonincreasing. It is
straightforward to show that MA([x, 1]) = [0, x, 1]; in this sense, the smallest nontrivial
initial multisets of the original and Akiyama MMMs have the same form.

3. Main result

We are now ready to present our main result. For x ∈ (0, 1), we show that the orbit
of the smallest nontrivial initial multiset [x, 1] begins with a predictable phase: an
initial segment of length 2� + 2, where � := �1/x	 � 2, in which every term has an
explicit formula. (Here, �1/x	 denotes the smallest integer not less than 1/x.) In this
phase, the first four terms are given by (xn)4

n=1 = (x, 1, 0, 2x − 1), as easily verified,
and the rest by the following lemma. Moreover, the phase is immediately followed by
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FIGURE 3. The orbit of [x, 1] for x = 1/11 (left) and for x = 2/21 ∈ (1/11, 1/10) (right). The first four
terms are shown in dark blue, the terms prescribed by Lemma 3.1 in light blue, the unprescribed terms in

purple and the term from which the orbit stabilises in green. (Colour available online.)

stabilisation—hence the available formulae describe the entire orbit—if and only if x
is a unit fraction, that is, the reciprocal of �. See Figure 3.

LEMMA 3.1. Let xn be the nth term of the orbit of the multiset [x, 1], where x ∈ (0, 1).

(i) If x = 1/� for some integer � � 2, then xn = −(n − 4)x for every n ∈ {5, . . . , 2� + 2}
and xn = 2x − 1 for every n � 2� + 3. Thus, mA(x) = 2x − 1 and τA(x) = 2� + 3.

(ii) If x ∈ (1/�, 1/(� − 1)) for some integer � � 2, then xn = −(n − 4)x for every
n ∈ {5, . . . , 2�},

x2�+1 = (�2 − 2� + 3)x − � and x2�+2 = (�2 − � + 2)x − � − 1. (3.1)

Moreover, mA(x) < 2x − 1 and τA(x) > 2� + 3.

PROOF. Let x ∈ [1/�, 1/(� − 1)) for some integer � � 2. First, suppose � = 2. Then
x ∈ [ 1

2 , 1). If x = 1
2 , then (xn)∞n=1 = ( 1

2 , 1, 0, 0,− 1
2 ,−1, 0), satisfying property (i).

Otherwise, (xn)6
n=1 = (x, 1, 0, 2x − 1, 3x − 2, 4x − 3), satisfying property (ii).

Therefore, it remains to prove the lemma for � � 3. In this case, we have x ∈ (0, 1
2 ).

We divide the proof into two parts.

Part I: Formulae for x5, . . ., x2�. Let us prove that for every n ∈ {5, . . . , 2�}, we have

xn = −(n − 4)x (3.2)

by strong induction on n. First, since x ∈ (0, 1
2 ), then x4 < x3 < x1 < x2, so

M4 = 〈x3, x1〉 = x/2 and

x5 = 4M4 − S4 = 4 · x
2
− 3x = −x,

proving that the statement holds for n = 5.
Next, let r ∈ {5, . . . , 2� − 1} be such that xn = −(n − 4)x for every n ∈ {5, . . . , r}. We

shall prove that xr+1 = −(r − 3)x, dividing the proof into two cases.

Case I: r ∈ {5, . . . , � + 1}. Since x < 1/(� − 1), then

x4 − xr = (2x − 1) + (r − 4)x � (2x − 1) + [(� + 1) − 4]x < 0, that is, x4 < xr,
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so

x4 < xr < xr−1 < · · · < x5 < x3 < x1 < x2,

from which we can see that if r is odd,

Mr−1 =

⎧⎪⎪⎨⎪⎪⎩
〈xr−2, xr−4〉 if r ∈ {5, 7},
〈x(r+3)/2, x(r+1)/2〉 if r � 9,

and Mr =

⎧⎪⎪⎨⎪⎪⎩
x3 if r = 5,
x(r+3)/2 if r � 7,

and otherwise

Mr−1 =

⎧⎪⎪⎨⎪⎪⎩
x3 if r = 6,
x(r+2)/2 if r � 8,

and Mr =

⎧⎪⎪⎨⎪⎪⎩
〈x3, x5〉 if r = 6,
〈x(r+4)/2, x(r+2)/2〉 if r � 8.

Case II: r ∈ {� + 2, . . . , 2� − 1}. Since 1/� � x < 1/(� − 1), then

x4 − x�+1 = (2x − 1) + [(� + 1) − 4]x < 0, that is, x4 < x�+1

and

x�+2 − x4 = [(� + 2) − 4]x − (2x − 1) � 0, that is, x�+2 � x4,

so

xr < · · · < x�+2 � x4 < x�+1 < x� < · · · < x5 < x3 < x1 < x2,

from which we can see that

Mr−1 =

⎧⎪⎪⎨⎪⎪⎩
〈x(r+3)/2, x(r+1)/2〉 if r is odd,
x(r+2)/2 otherwise,

and Mr =

⎧⎪⎪⎨⎪⎪⎩
x(r+3)/2 if r is odd,
〈x(r+4)/2, x(r+2)/2〉 otherwise.

In both cases,Mr−1 = −(r − 6)x/2 andMr = −(r − 5)x/2, so

xr+1 = rMr − (r − 1)Mr−1 = r
(
− r − 5

2
x
)
− (r − 1)

(
− r − 6

2
x
)
= −(r − 3)x,

as desired.

Part II: Formulae for x2�+1 and x2�+2. From the previous part,M2�−1 = x�+1. Moreover,
since

x2� < · · · < x�+2 � x4 < x�+1 < x� < · · · < x5 < x3 < x1 < x2,

thenM2� = 〈x4, x�+1〉. Therefore,

x2�+1 = 2�M2� − (2� − 1)M2�−1 = �x4 − (� − 1)x�+1 = x4 − (� − 1)(x�+1 − x4) < x4,
(3.3)

so thatM2�+1 = x4, implying

x2�+2 = (2� + 1)M2�+1 − 2�M2� = (� + 1)x4 − �x�+1. (3.4)

Next, we split into two cases.
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Case I: x = 1/�. In this case, x4 = x�+2 = −(� − 2)x. Substituting this and x�+1 =

−(� − 3)x into (3.3) and (3.4) gives x2�+1 = −(2� − 3)x and x2�+2 = −(2� − 2)x, extend-
ing (3.2). Moreover, since x2�+2 < x2�+1 < x4, then M2�+2 = 〈x�+2, x4〉 = x4 =M2�+1,
so, by part (ii) of Proposition 2.3, we have xn = x4 = 2x − 1 for every n � 2� + 3. This
means mA(x) = 2x − 1 and τA(x) = 2� + 3, completing the proof.

Case II: x ∈ (1/�, 1/(� − 1)). Substituting x4 = 2x − 1 and x�+1 = −(� − 3)x into (3.3)
and (3.4) gives (3.1). Moreover,

x2�+2 = (�2 − � + 2)x − � − 1 = 2x − 1 + �(� − 1)x − � < 2x − 1 = x4,

because �(� − 1)x − � < 0 as x < 1/(� − 1). Consequently,M2�+2 <M2�+1, so mA(x) <
M2�+1 = 2x − 1 and τA(x) > 2� + 3, completing the proof. �

To show how our main theorem follows from Lemma 3.1, let x ∈ (0, 1). If x = 1/�
for some integer � � 2, then, by Lemma 3.1, we have mA(x) = 2x − 1 and τA(x) =
2� + 3 = 2/x + 3. Otherwise, x ∈ (1/�, 1/(� − 1)) for some integer � � 2, so by Lemma
3.1, mA(x) < 2x − 1 and τA(x) � 2� + 3 = 2/(1/�) + 3 > 2/x + 3.

4. Remarks on symmetries

One of the most striking features of Figure 2 is the presence of symmetries,
particularly around x = 1

2 . In this closing section, we briefly explain the symmetry
near x = 1

2 in the light of what has been done for the original MMM [7].
As in [7], we now regard [x, 1], x ∈ (0, 1), as a multiset of univariate

piecewise-affine continuous real functions [in this case, Y1(x) = x and Y2(x) = 1];
we refer to such a multiset as a bundle [7, Section 2.2]. Observing that

MA([x, 1]) = [x, 1, 0] and MA([x, 1, 0]) = [x, 1, 0, 2x − 1],

it is natural to regard MA as a self-map on the space of nonempty bundles with
pointwise action.

The point 1
2 is an X-point [7, Section 2.2]: a transversal intersection of two bundle

functions, namely Y3(x) = 0 and Y4(x) = 2x − 1 (see Figure 4). Let

Ω := [Y3, Y4, Y1]

be the subbundle containing these two functions and the function Y1 immediately
above the X-point. Notice that for

f (z) = z − 2x + 1 and μ(x) = 1 − x, (4.1)

the subbundle Ω satisfies

Ω( μ(x)) = [ μ(x), 2μ(x) − 1, 0] = [1 − x,−2x + 1, 0] = f ([0, 2x − 1, x]) = f (Ω(x)).

Moreover, it is possible to show that the multiset of all functions Y satisfying the same
identity, Y( μ(x)) = f (Y(x)), is precisely

Ψ :=
{
αmin{Y3, Y4} + βmax{Y3, Y4} + γY1 : α + β + γ = 1

}
,
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FIGURE 4. The bundle [x, 1, 0, 2x − 1] and its medianM4 in purple. (Colour available online.)

that is, the multiset of all affine combinations of the functions min{Y3, Y4}, max{Y3, Y4}
and Y1, the minimum and maximum being defined pointwise [7, Lemma 5.1]. One
shows that

Y5 = 4M4 − 3M3 = 0 ·min{Y3, Y4} + 2 ·max{Y3, Y4} + (−1) · Y1 ∈ Ψ.

Moreover, for every n � 5, the fact that Y5, . . . , Yn ∈ Ψ implies Yn+1 ∈ Ψ, since

Yn+1 = nMn − (n − 1)Mn−1

is an affine combination of Mn and Mn−1, each of which is either a function in
the multiset [Y5, . . . , Yn] � [min{Y3, Y4}, max{Y3, Y4}, Y1] or the mean of two such
functions. This inductively proves that Yn ∈ Ψ for every n � 5 (see [7, Lemma 5.2]).

In other words,

Yn( μ(x)) = f (Yn(x))

for every n � 5, where f and μ are given by (4.1). Since μ : (0, 1
2 ]→ [ 1

2 , 1) is a bijection,
the transformation f connects the dynamics at every initial condition x ∈ (0, 1

2 ] to that
at a unique initial condition μ(x) ∈ [ 1

2 , 1). In particular, for every x ∈ (0, 1
2 ],

τA( μ(x)) = τA(x) and mA( μ(x)) = f (mA(x)),

that is,

τA(1 − x) = τA(x) and mA(1 − x) = mA(x) − 2x + 1,

explaining the symmetry seen in Figure 2.
The symmetry also means that the bounds in our main theorem—although already

sufficient to achieve the goal of this paper—can be improved to

τA(x) �

⎧⎪⎪⎨⎪⎪⎩
2/x + 3, if x ∈ (0, 1

2 ]

2/(1 − x) + 3, if x ∈ ( 1
2 , 1)

and mA(x) �

⎧⎪⎪⎨⎪⎪⎩
2x − 1 if x ∈ (0, 1

2 ],
0 if x ∈ ( 1

2 , 1),

where equalities in (0, 1
2 ] occur at unit fractions, whereas those in [ 1

2 , 1) occur at
fractions whose numerator and denominator differ by 1. These two families of fractions
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form two sequences, converging to the points 0 and 1 where mA is discontinuous, along
which τA becomes arbitrarily large.
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