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1. Introduction

The purpose of this article is the study actions of discrete amenable groups into the
normalizer of a full group of an ergodic transformation on the Lebesgue space. The study
of such objects has been motivated by the theory of operator algebras, in particular, the
classification of group actions on von Neumann algebras.

The study of automorphism groups of operator algebras is one of the central subjects in
the theory of operator algebras, and the classification of automorphisms and group actions
has been developed since Connes’ seminal works [5, 6]. In particular, classification of
actions of discrete amenable groups on injective factors has been completed by many hands
[13-16, 18, 20, 21]. These works heavily depend on the type of factor involved. However,
we present a unified approach in [17] based on the Evans—Kishimoto method [9], and gave
a proof that does not depend on the type of the factor in question.

There are corresponding results in ergodic theory. The first result is due to Connes and
Krieger [7]. They developed the technique of applying ultraproducts to measure spaces and
their transformations, and classified transformations (that is, actions of Z) in the normalizer
of a full group of type II. The result of Connes and Krieger has been generalized in [2] in
the case of type II transformation and general discrete amenable groups, in [1] in the case
of type III, transformations (A # 0) and general discrete amenable groups, and finally in
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[3] in the case of type IIly transformation and general discrete amenable groups. These
results mentioned above depend on the type of the transformation, and it is natural to
expect that our unified approach [17] is valid for the classification of actions of discrete
amenable groups into the normalizers of full groups on Lebesgue spaces. In fact, the
answer is affirmative and this is the main result of this article.

This classification result is very similar to that of the classification of actions of discrete
amenable groups on injective factors. We will explain it in detail. Let (X, B, u) be a
Lebesgue space, T an ergodic transformation, and N[7T] the normalizer of a full group
[T]. Let « : G — N[T] be a homomorphism, which we call an action of G into N[T].
The invariant for « is a pair (N, mod(a)), where Ny = {g € G | g € N[T]} is a normal
subgroup of G and mod(«) is the fundamental homomorphism [11]. (See Theorem 2.4
below for the precise statement of the classification theorem.) However, the invariant of a
discrete group action « on a factor M is the triplet (Ny, mod(«), x («)), where N, = {g €
G | ag € Cnt, (M)} is a normal subgroup of G, mod(«) is the Connes—Takesaki module,
and y (o) is the characteristic invariant. (See [15, 17] for details on this notation.) Thus,
one can observe the similarity of both classification theorem.

It is also interesting to observe the difference between both classification theorems.
Namely, the characteristic invariant x (o) does not appear in the ergodic theoretical setting.
We consider the case of operator algebras first and explain how the characteristic invariant
appears. Let o be an action of a discrete group G on a factor M, and assume N, = {g €
G | o, € Int(M)} for simplicity. By the definition of N, we can choose u,, € U (M) with
oy = Ad u,, n € N,. However, there is no canonical choice of the unitary u,. Hence, we
do not have u;,u, = up, and ag(u,) =u eng-! in general. A characteristic invariant x (¢)
appears as a cohomological obstruction of these relations.

Next, we consider the ergodic theoretical case. Let R7 be a Krieger factor associated
with T. Then there are canonical homomorphisms R € N[T] — 0 € Aut(Rr), and
Sel[T]l— Us e UMRr) with Ad Us = 05 and Or(Us) = Ugpgp-1, S € [T], R € N[T].
If we lift an action o : G — N|[T] to that on R7, then the invariant of the lifted action
is given by (Ny, mod(x), 1), due to the above relation between 6 and Ug. Therefore, the
characteristic invariant is trivial in this case.

As we stated at the beginning of this section, our method for the proof of the classi-
fication theorem is the application of the Evans—Kishimoto type intertwining argument.
To apply it, we need the characterization of full groups and their closures given in [7,
10]. In the study of group actions on operator algebras, two classes of automorphisms
play important roles, that is, centrally trivial automorphisms and approximately inner
automorphisms. In our case, full groups and their closures correspond to centrally
trivial automorphism groups and approximately inner automorphism groups, respectively.
Another important tool is the Rohlin type theorem. Combining these results, we first
show the cohomology vanishing theorem by the Shapiro type argument in homology
theory. Then we obtain the classification theorem by applying the Evans—Kishimoto type
intertwining argument.

We expect that this work will shed new light on the relation between ergodic theory and
the theory of operator algebras. For example, our result is used in [4] to classify regular
subalgebras of type III injective factors.
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This paper is organized as follows. In §2, we collect basic facts which will be used in this
paper, and state the main results. In §3, we recall the ultraproduct construction of Connes
and Krieger, and Ocneanu’s Rohlin type theorem. In §4, we show the second cohomology
vanishing theorem. In §5, we apply the Evans—Kishimoto type intertwining argument [9]
and classify actions of discrete amenable groups into the normalizer of a full group.

2. Preliminaries

2.1. Full groups of ergodic transformations and their normalizers. In this subsection,
we collect known facts on full groups of ergodic transformations and their normalizers
which will be used in this article.

Let (X, B, u) be a non-atomic Lebesgue space with wu(X) = 1. (Throughout this
article, we treat only non-atomic Lebesgue spaces.) We denote by Aut(X, ) the set of
all non-singular transformations. Fix an ergodic transformation 7' € Aut(X, w). Let [T,
be the set of all non-singular bijection R : A — B for some A, B € 5 such that Rx €
{T"x},ez, x € A. Define the full group of T by [T] := [T]« N Aut(X, w), that is,

[T] ={R € [T], | the domain and the range of R are both X}.

We say E, F € B are T-equivalent if there exists R € [T], whose domain is E and range
is F. A set E € B is said to be T-infinite if there exists F C E such that u(E\F) > 0 and
F is T-equivalent to E. A set E € B is said to be T-finite if it is not 7-infinite.

When T is of type II, there exists a unique 7T-invariant measure m on X (m(X) < oo
when T is of type II; and m(X) = oo when T is of type Il). In this case, the following
two statements hold: (1) E € B is T-finite if and only if m(E) < o0; (2) E, F € B are
T-equivalent if and only if m(E) = m(F). When T is of type II;, we always assume pu is
the unique T-invariant probability measure.

When T is of type III, then any E € B with u(E) > 0 is T-infinite, and if E, F € B
satisfy w(E), w(F) > 0, then E and F are T-equivalent. (For instance, see [12, Lemma §].)

Let N[T] C Aut(X, n) be the normalizer of [T]. In the following, we use the notation
a(t) = ata~!fort € [T]and @ € N[T].

For @ € Aut(X, 1) and & € L (X, p), define &, (§) € L (X, 1) by

-1
0 (§)(x) = s<a—‘x)d(”;—:)<x>, fel'(X.p.
Then «, is an isometry of LY(X, ), and (aB)y = oy By holds for o, B € Aut(X, w).

Let M(X, ) (respectively Mi(X, n)) be the set of complex-valued measures
(respectively probability measures) which are absolutely continuous with respect
to u. For v e M(X, u), let ||v| = |v|(X), where |v| is the total variation of v. Then
M(X, ) is a Banach space with respect to the norm |[v|. For & € L' (X, n), let
ve(f) = fX £(x) f (x)du(x). Note that L' (X, ) and M (X, p) are isomorphic as Banach
spaces by & > vg. Via this identification, o (§) corresponds to o(vg) = vg o a ! In
what follows, we freely use this identification, and we simply denote o, (§) by a(§) for
& e Ll(X, ). Thus, £(A), A € B, means vg(A).

Recall the topology of N[T]introduced in [12]. For «t, 8 € Aut(X, ), {o # B} denotes
the set {x € X | ax # Bx}. We say a sequence {w,}, C N[T] converges to § € N[T]
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weakly if limy, o0 [0, (§) — B(§)|| =0 for all § € M(X, u). Define a metric d, by
du(e, B) := u({a # B}). We say {o,}, C N[T] converges to B € N[T] uniformly if
lim,, o dy (@n, B) = 0. This definition does not depend on the choice of equivalence
classes of i € M (X, w). Itis shown in [11] that [T'] is a Polish group under d,.

Now we gift N[T] with a topology as follows. We say a sequence {«,}, C N[T]
converges to 8 in N[T] if {a,}, converges to 8 weakly, and &, (r) converges to ﬁ(r)
uniformly for all ¢ € [T]. (In fact, we only have to require convergence for t € {T"},cz.)
This is the right topology for N[T]. In fact, this topology coincides with the u-topology
for a Krieger factor Ry constructed from (X, u, 7). So we also call this topology the
u-topology. It is shown that N[T] is a Polish group in the u-topology [12]. Indeed, let
{Ek},fil c L'(X, ) be a countable dense subset, and define a metric d on N[T] by

o]

1 e — BEOI 1 dy(@(Thy, B(T%)
d(a, = — — —~ .
@B = 2 T @0 — &0+ 22 T T 1 dy@(rh), AT

Then this d makes N[T] a Polish group, and the topology defined by d is nothing but the
u-topology on N[T].

We collect elementary results which will be frequently used in what follows. Since proof
is easy, we leave it to the readers.

LEMMA 2.1. The following statements hold.

(1) dyBa,0B) =d,(a, B), du(ab, BO) =dy(a, B), a,B,0 € N[T]. In partic-
ular, we have d,(a,id) =d,(id,a” ") =d,(@~!,id), and d,(a(t),a")) =
dy1) (@, t,a € N[T], t,t' €[T].

@) dy (@, B) < Vi — vall +di (@, B), v1, v2 € Mi(X, 1), &, B € NIT1.

(3) Letve Mi(X,un),A, B,C,D e B. Then we have

V((AU B)A(CU D)) <v(AAC) +v(BAD),
V(AN B)A(C N D)) <v(AAC) +v(BAD).
Recall the definition of the fundamental homomorphism [11]. Let X := X x R and

uy be the Lebesgue measure on R. For R € Aut(X, n) and t € R, define R, F, e
Aut(X, u x pr) by

é(x,u):(Rx,u—l du o R)()) F (e, 1) = (x, u+1).

Let (Y, vy) be the quotient space by T. Namely, let ks (T) be a measurable partltlon of
X which generates the o-algebra consisting of all T -invariant set Then ¥ = X /{(T)
and vy is a probability measure which is equivalent to u ® puz o7 ~!, where 7 : X — ¥
is a quotient map. The Lebesgue space (Y, vy) can be also obtalned by L>®(Y,vy) =
LoX, px po)"

Since T and F; commute, we get the ergodic flow (Y, vy, F;), which is called the
associated flow of (X, T'). Let

Autp(Y,vy) :={P € Awt(Y,vy) | PF, = F;P,t € R}.
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When R is in N[T], R induces mod(R) € Autp (Y, v), which is called the fundamental
homomorphism. If we lift R to an automorphism of a Krieger factor Ry, mod(R) is
nothing but a Connes—Takesaki module for R [8].

In this article, we do not use the above definition of mod(R) explicitly, and what we

need is the fact Ker(mod) = [T'] (closure is taken in the u-topology) and the surjectivity
of mod [10, 11].

2.2. Main results

Definition 2.2. Let G be a countable discrete group.

(1) A map (or 1-cochain) v : G — [T] is said to be normalized if v(e) = id. We denote
the set of all normalized maps from G into [T'] by C LG, [1).

(2) A cocycle crossed action of G into N[T] is a pair of maps « : G — N[T] and
¢:G x G — [T] such that agop = c(g, hogy, o, =id, c(e, h) = c(g, e) =1id.
When c(g, h) =id for all g, h € G, we say « is an action of G into N[T].

(3) Let (a,c) be a cocycle crossed action of G into N[T], and v € cl(G,[T).
A perturbed crossed action (,«, ,c¢) of (¢, ¢) by v is defined by

g 1= v(Q)ag,  ye(g, h) = v(g)dg(v(h))c(g, h)v(gh)™".

(4) Let o be an action of G into N[T]. We say amap v € CLG,[T)isa 1-cocycle for
« if v satisfies the 1-cocycle identity v(g)&;,(v(h)) = v(gh). It is equivalent to that
»O 18 an action.

(5) Let« and B be actions of G into N[T]. We say they are cocycle conjugate if there
exist # € N[T] and 1-cocycle v(-) such that o, = 9/389_1 for all g € G. If 0 is
chosen in [T'], then we say they are strongly cocycle conjugate.

Remark

(1) Let (a, ¢) be a cocycle crossed action of G. (Notion of a p-action is used in [3].)
By (agop)ay = ag(apay), we can deduce the 2-cocycle identity c(g, h)c(gh, k) =
g (c(h, k))c(g, hk).

(2) In many works, cocycle conjugacy is said to be outer conjugacy. In fact, we must
distinguish these two notions for group actions on operator algebras, However, in
ergodic theory, we do not have to distinguish them. (We have the canonical homo-
morphism u € [T] into the normalizer of a Krieger factor arising from (X, u, T).)

At first, we show the following theorem.

THEOREM 2.3. Let (a, c) be a cocycle crossed action of a discrete amenable group
into N[T] with ag & [T], g #e. Then c(g, h) is a coboundary, that is, there exists
v e CHG, [T]) such that vc(g, h) = id, equivalently ya is a genuine action of G. If c(g, h)
is close to id, then we can choose v so that it is also close to id.

See below for a more precise statement.
Let Ny :=={g € G | ag € [T]}, which is a normal subgroup of G. Our main result in
this article is the following.
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THEOREM 2.4. Let (X, ) be a Lebesgue space with u(X) = 1, T an ergodic transfor-
mation on (X, ). Let G be a countable discrete amenable group, and «, B actions of
G into N[T). Then a and B are strongly cocycle conjugate if and only if Ny = Ng and
mod(«) = mod(p).

If  and B are strongly cocycle conjugate, then it is obvious that Ny, = Ng and
mod(ag) = mod(Bg). (Amenability of G is unnecessary for this implication.) Thus, the
problem is to prove the converse implication, and a proof will be presented in subsequent
sections. Here we only state the following corollary, which can be easily verified by
Theorem 2.4.

COROLLARY 2.5. Let a and B be actions of G into N[T]. Then o and B are cocycle con-
Jjugate if and only if No=Ng and mod(og) = 6 mod(,Bg)Q_1 for some 6 € Autp (Y, vy).

Proof. Since the ‘only if” part is clear, we only have to prove the ‘if” part. Suppose Ny=Npg
and mod(ag) =6 mod(,Bg)H’1 for some 6 € Autp(Y, vy). By the surjectivity of mod
[10], we can take o € N[T] with mod(c) = 6. Then mod(e) = mod(aﬁga’l) holds,
and hence o, and U,Bgo_l are strongly cocycle conjugate by Theorem 2.4. O

3. Ultraproduct of a Lebesgue space and Rohlin type theorem
We recall the ultraproduct spaces in [7].

Let w € BN be a free ultrafilter on N. For sequences (A,),, (B,), C B, define an
equivalence relation (A,), ~ (By), by lim,—, w(A,AB,) =0. Let B® := {(A;), C
B}~. This definition depends only on the equivalence class of u, and B is a boolean
algebra.

Any @ € N[T] induces a transformation a® on B” by «®((A.),) := (¢(Ap))n- Let

B, :={AeB?:t°A=A,te[T]).

We denote by «,, the restriction of «® on B,,.

LetA = (A,) € By. Then lim,_,, x4, exists in weak- topology on L>°(X, v). By the
ergodicity of 7, this limit is in C, and does not depend on the choice of representative
A= (Ap). Thus, we can define 7 : B, — C by t(A) := lim,_,, x4,. We can see T o
o, =1 fora € N[T]. By [7, Lemma 2.4], for ¢ € N[T], , = id if and only if @ € [T].
In fact, we have a stronger result. For R € N[T], if there exists Ac B,, such that Rw}} =B
for any BC A, B e B,, then R, =id, and hence R € [T] [7, Lemma 2.3]. This means
that R, is a free transformation if R,, # id.

The main tool of this article is the following Rohlin type theorem, essentially due to
Ocneanu [18]. (The following formulation is presented in [17].)

THEOREM 3.1. Let («, ¢) be a cocycle crossed action of a discrete amenable group G into
NI[T] such that ag o, # id for all g # e. Let K € G, ¢ > 0, and S be a (K, ¢)-invariant
set. (The notation K € G means that K is a finite subset of G.) Then there exists a partition
of unity {Es}seS C By, such that:
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A A 1
(0 ZseSg T(agwEs AEgs) < 5¢2, geK;
-~ 1
(2) 2363\52’)71 T(Es) < 382,
where Sg := SN g*IS.

Note that we have gs € S,-1 = SN gSfors € S,.

The proof of [18] is based on the following two facts, that is, the freeness of actions on
central sequence algebras, and the ultraproduct technique. In our case, freeness holds as
we remarked before Theorem 3.1. Hence, the proof of [17, 18] can be applied in our case
by a suitable modification.

Remark. The formulation of our Rohlin type theorem is different from that of the Rohlin
theorem by Ornstein and Weiss [19]. The main reason is the use of the ultraproduct
technique. Using the ultraproduct technique, Ocneanu showed a very strong result in [18,
Lemma 6.3]. Namely, under the same assumption in Theorem 3.1, forany e ¢ A € G and
& > 0, he showed the existence of the partition of unity {El-}fv= o C By such that T(Ep) < §
and E; Nog o E; =P forany g € A,andi = 1,2, ..., N.(Thus, {og , E;}¢ea are disjoint
for any i =1, ..., N.) This lemma is an important step in constructing a Rohlin tower.
(Note that t o , = 7t for @ € N[T].) Combining with Zorn’s lemma, we can construct a
single Rohlin tower as in Theorem 3.1.

In what follows, we say « is an ultrafree action of G if g, #id forany g € G, g # e,
to distinguish from the usual freeness of actions on Lebesgue spaces.

LEMMA 3.2. Let A, B be finite sets, {Eq}aca C By a partition of X, and { Py p}acapep C
[T]. Choose representatives Eq = (E}}), such that E}; N El, =@ fora # d', | |,c4 E} =
X. Then for any ¢ > 0, ® € M{(X, ), there exists N € w, {Z}sea C B, RZ e€[T], ne
N, b € B, such that:

(1) (P, EIAE!) <e,neN,ved;

(2) ZXCE! PipZl CElL,neN;

3) V(ENZ)) <&, v(E}\PypZ}) <e,neN,ved;

(4) Ryx=Pypx,neN,x eZ].

Proof. Since P, E, = E, by [7, Lemma 2.4], there exists N € w such that

— _ £
Pu,,,(u)<<Eg ullJr, Ejj)\(E;} n() P EZ)) <3

beB beB
forne Nyae A,be B,v e .

LetY) := E, N (\pep Pa_’blE;’. Clearly we have Y}, P, Y]] C El. Moreover,

& & &
V(P ElAED) < > V(EMY!") < > V(EI\PapY)) = Pap(0) (P ES\Y)) < 5

a a a

acA “a
Dom(R(’)”h) =Y" by R(’)"hx = Pypx, x € Y. If X\Y" and X\R&hY" are T-equivalent,
then we can extend Ry, to an element R; € [T].

hold for n € N, v e ®. Let Y" :=| | Y]. Thus, we can define Rjj, € [T]. with
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At first, let us assume that Y” is T-finite. (Thus, so is RoY".) Such a case can happen
if T is of type II. Then X\Y" and X \R(')” ,Y" are T-equivalent. Hence, we can extend Ro
to Ry € [T]. Set Z} := Y'. Then all the statements in the lemma are satisfied.

Next, let us assume that Y" is T-infinite. (Hence, so is R(j,Y".) Take Wi C Y",
k € N, such that Wy, C Wy, Uk Wy = Y", and Y™\ Wy are T—inﬁr{ite for all k. Set Zg’k =
Yi N Wy. Of course, we have Z}, C Z}, 1, Uk Z3 = Y5, Uyea 20y =Y" N Wi =
Wi, and ZZ’k, Pa,bZZ’k C E}. Thus, {ZZ,k}HEA satisfies condition (2).

Take sufficiently large k such that

n\ 7n € n n &
V(¥ \Z, ) < o V(Pap Yy \PapZyy) < 5

fora € A,b € B,v € ®. Thenitis clear that {Z;”k} satisfies condition (3). By the choice of
(Wi}, X\ Lyea Z;”k D Y"\W; and X\R(’)”b Laea ZZ’k D R(’)"b(Y”\Wk). It follows that
X\ Lsea Z i and X\RG, |l,ca Z;; ; are both T-infinite and hence are equivalent. Thus,
Z, = Z,, satisfies all statements in the lemma. O

Now we can combine Theorem 3.1 and Lemma 3.2 as follows.

PROPOSITION 3.3. Let G be a discrete amenable group, and (o, ¢) an ultrafree cocycle
crossed action of G into N[T]. Let K € G and ¢ > 0 be given, and S a (K, &)-invariant
set. Let B, C be finite sets, {Psp}sespeB C [T] {v$}sescec € M1(X, w). Then for any
8 > 0, there exists a partition {Eslses CB of X, E; D Zg, and Ry € [T], b € B, such
that:

(1) Yes, Vs (@gEsAEg) < 5¢12, ¢ e K,ceC;

) ZSGS\SW Ve(Ey) <3e'/2,ge K, ceC;

(3) v(P,, EsAE) <8,s€S,beB,ceC;

4) PspZs CEs,s€8,beB;

(5) V{(EN\Zg) <8, Vi(Es\PspZs) <b8,5€ S,be B,ceC;

(6) Rpx =Pspx,se€S,be B, xeZ,

where Sy ;== SN g LS.

Proof. Let {ES}SAES c B, be a Roh}in partition as in Theorem 3.1. Since I(A) =
lim, 4 xa, for 124 = (Ay), € B, t(A) = lim,_, 4, v(A") for any v € M{(X, u). Choose
arepresentative E5 = (EY), such that E{ N EY, = 0, lses EF = X. By Theorem 3.1:
(D) limyg Yoes, V(@ EY AEG) < 5¢'/%, ¢ € K;

@ limyse Yess, , VE) < 3¢l/2, g e K

hold for any {v{}ses,cecc C M1(X, ). Thus, there exists N € w such that

Z vf(agEfAEgs) <512, gekK,ceC,

SES,

Z VE(EM) < 3e'?, geK,ceC
SES\S, 1
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for all n € Ni. By Lemma 3.2, there exists N> € o, Z} C E?, and RZ e [T], (n € Np),
such that

vE(PJEIAEY) <8, seS.beB,

PyZ! CE!, se€S,beB,

Vi(EY\ZY) <8, V{(EL\PspZ?) <8, seS,beB,ceC,
Rjx = Pgpx, se€S,beB,xeZ

for any n € Np. Fix n € N; N N2, and set E; := EY, Z; := Z{, R :== R;. Then these
Es, Z;, Ry are desired objects. O

4. Cohomology vanishing
At first, we show the following second cohomology vanishing result, which is shown in
[3, Theorem 1.3]. We present the proof for readers’ convenience.

THEOREM 4.1. Let T be a transformation of type Il or type III, and (y, c) a cocycle
crossed action of a discrete group G into N[T]. Then c(g, h) is a coboundary, that is,
there exists u € CY(G, [T]) such that ,c(g, h) = id.

Proof. Since T is of type Il or type III, there exists a partition {Ej}cc of X such that
each Ej is T-infinite. Let {fg1}g.nec C [T] be an array for {E,}ge, that is, {Egleec
is a partition of X and f,, € [T]« is a bijection from Ej onto Eg such that f, 5 frx =
fo k. Take Ug € [T], with Dom(vg) = ygE, and Ran(vg) = E,. Define v(g) € [T] by

fh,gvgyg(fe,h) on ygEj. Then we have ,yg : Ej — Ej, and ¥, (fnk) = fux for any
g, h, k € G. Replacing (y, ¢) with (¥, yc), we may assume y, E; = E; and )’/;(fh,k) =

Sk Since yoyn = c(g, h)yen, we also have c(g, h)Ey = Ej and c(g, h)(fiy) = fi,-
Next define u(g) € [T] by u(g) = c(g, l)_lfgl,l on E;. Note u(g) sends E; to Eg, and
hence so does , y,. Hence, for x € E|,

WVeurn® = u(g)vec(h, D" fryynx = u(g)yec(h, )™y fuyx
= u(@) Vg (c(h, 1) ey frix = u(@) Vg (clh, D)) e(g, h)Ven frix
= c(g. W)™ fontn Ve (c(h, 1))~ (g, W) Ven frrix
= c(g. k)" 7y (c(h, 1))~ (g, W) Veh fontni frix
= c(gh. D)™ fontavenx = u(gh)ygnx.

This implies that ,) is an action, and ,c(g, h) = u(g)yg(u(h))c(g, hu(gh)~! =id
holds. =

In Theorem 4.1, we have no estimation on the choice of u(g), even if c(g, h) is close
to id. The rest of this section is devoted to solving this problem. From now on, we always
assume that G is a discrete amenable group.

Forall g € G and S € G, fix abijection [(g) : S — S suchthatl(g)s = gsifgs € S.
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LEMMA 4.2. Let (v, c) be an ultrafree cocycle crossed action of G. For any ¢ > 0,
K €G, ue® e M(X,p), there exists w € C1(G, [T)) such that

dy(we(g, h),id) <e, g, heK,ved.

Moreover, for given € > 0, e € K € G, there exist § > 0 and S € G, which depend only
on K and ¢ > 0, such that if

le(g. @) — &1l <8, du(c(g. D). 1) <8, g heStehEved

for some cocycle crossed action (v, c), A € [T] and ® € M (X, ), then we can choose
w € CY(G, [T]) so that it further satisfies

lw(g)&) — & <& dow(@) (). 1) <&, geK,&vedteA.

Proof. Choose ¢’ > 0 with 11V/¢e' < ¢,and let S’ C G be a (K U K2, ¢)-invariant set and
§ = 8" U K. Choose 8 such that 58|S| + 11/¢' < .
By applying Proposition 3.3, we can take a Rohlin partition {E};cy C B, Zs C Ej,
w(g) € [T], g € K, such that:
(1) Eigys Dc(g.5) ' Zig)s g € KUK? 5 € 8
() V(Es\Zs) < 8, v(Eig)s\c(g, )" Zig)s) <8, 8 € KUK%: s € S, v e d;
(3)  v(c(gh, k) le(g, W) Pe(c(h, ) Egnk\Zgnr)) < 8, 8. h € K,k € S'gh N S'h,
ve d;
@) vic(gh, k) le(g, )y (En\Znk)) < 8,8, h € K,k € S'h,v € ®;
(5) v(Egnc(gh, k)~ e(g, h) 19 (c(h, k) Egnk) <8, 8. h € K,k € S'h,v € ®;
6) V(EgnAc(gh, k) (g, ) 'Egi) <8, 8. h e K, ke S'ghnNS'h,v e ¥;
(D Yresgnnsn ve@h, &) (g, ) (EguAygEnv)) < 5V, g, h € K, v e ®;
() Yresnsrigm-1 V(Es) < 3Je'ge KUK? v e d;
9 w(gx=c(g s) 'x,xe Zig)s-8 €K, s € 8.
Here we applied Proposition 3.3 for

B={c(g,s) ' |geK,seSU{c(gh,k) 'e(g. ) |g.he K, keS}
Ulc(gh, k) 'e(g, ) 7 (c(h, k) | g h € K, k € S’}

and

C=®U{w(c(gh k) e(g, ) (e, b)) |ve ®, g, he K, keS)
U v(e(gh, k) le(g, ) lyg) ve d, g, he K, keS')
Ufv(e(gh, k) le(g, )™ ) |ved, g, he K, keS').

We define w(g) =idif g € G.
Let

Wi = c(@h, k)™ Zgnx N c(gh, k) 'e(g, 1) v Znk
Ne(gh, k)~ c(g, i)™ Ty (c(h, k) Zgnk
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fork e S;,’h N S} and

_ 0
Wern= U Wens
ke, NS},

We can verify w(g)y,(w(h))c(g, hw(gh)~'=id on We s as follows. Take x € Wé(,)’h’k
Since x € c(gh, k)*lzg,,k, we have w(gh)~'x = c(gh, k)x. Thus, we have
Ve (g Mw(gh) ™ x = yg e(g, hc(gh, k)x.
Since x € c(gh, k)" tc(g, h) " 1ye Znk, yg—lc(g, h)c(gh, k)x € Zp; holds. Hence, we have
w(h)y, 'e(g, We(gh, kx = c(h, k) v e(g, hc(gh, k)x.
Since x € ¢(gh, k) (g, h)_l)’/z,(c(h, k) Z ghi
Ve(w(h))e(g, Hw(gh)™'x = 7y (c(h, k) te(g, h)c(gh, k)x € Zgnk
holds, and hence we have
w(@)ygc(h, )~y (g, Me(gh, k)x = c(g, k) yeeh, k)" yg e, hc(gh, k)x = x
by the 2-cocycle identity. These computations show
we(g, h) = w(@) T (wh))e(g, Hw(gh)™ =id

on W ;. Thus, we have {,c(g, h) #1d} C X\Wg .
We will show v(X\W, ;) < ¢ for v € ®. By condition (2), we have

V(Egm\c(gh, k)™ Zgni) <8, v e, g, he Kk Sy,
Forg,h e K,k € S’ghﬂS,’l,v e ®, we have

V(Egnk Ac(gh, k)~ e(g. 1)~ vy Zni)
< V(Egre(gh, k) (g, )" Egni) + v(c(gh, k) (g, h) ™ (Egnk AVe Znk))
<485+ v(c(gh, k)_lc(g, h)_l(EghkAnghk)) (by condition (6))
<8+ v(c(gh, k)~ e(g. h)  (Egnk Avg Enr))
+v(c(gh, k)" e(g. )T Y (Eni AZn))
< 28+ v(c(gh, k) ""e(g, B) " (Egnk Ave Enk))  (by condition (4))

and i N
V(EgnrAc(gh, k)~ "c(g, h)™ yg(c(h, k) Zgnk)
< V(Egnk Ac(gh, k) (g, B) ™' 7z (c(h, k) Egni)
+v(c(gh, k)~ e(g, W) g (c(h, ) (Egni AZgnk))
< 2§ (by conditions (5) and (3)).
Thus,

V(Egrk AW, 1) < V(Egni\c(gh, k)™ Zgnt) + v(Egme Ac(gh, k)~ (g, 1) e Zik)
+v(EgniAc(gh, k)~ e(g, ) ygeth, vy Zen)
< 58+ v(c(gh, k) 'e(g, B) " (Egnk AVe Enr))
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follows. Then
v(( U Eghk)AWg,h) < Z V(EghkAW;r),h,k)
keS., NS, keS;,NSs;,

gh
<581S14+ Y vle(gh, k)" e(g. h) (EgnAvg Em))
keS;,Ns;,

< 58|S| 4+ 5v’  (by condition (7))

holds.
Finally, we have

V(X\Wg,h)§v<x\ U Eghk>+v<< U Eghk>AWg,h>

keSéhﬂS}’, keS;hﬂS;,
= v( U Ek) + v(( U Eghk>AWg,,,>
kES\(S;,lmSEgh),l) kGS;,hﬂS;l
< Z V(E) + Z V(Ey) + 58|S| + 5ve
keS\S' _, kes\S'
8 (gh)

< 58|S|+ 11V (by condition (8))

< é.

(Note ghk € S;_l N Ségh)—' fork € S, N Séh') This inequality implies

dy(yc(g, h),id) <e forg,he K,ved.
Assume
leg, E) — £l <8, du(clg, WD), 1) <5, g heS,1€hEveD
We show
lw(e)©) —€ll <. do@@).1) <6, geK.EvedreA

Let Z :=| |,.g Zs. By the definition of w(g), w(g)Z = | |, c(g,s)~'Z; holds.
Then we have

lw(g)(€) — &l
=/X lw(g)(E)(x) — E(x)| dpu(x)

2/( y W@ £l + [ @@ - ol dnw
w(g

X\w(g)Z

= Z / lw(g) ' @) (x) — £E(x)] du(x)
(8971 Zi(g)s

ses’

+/ lw(g)(§)(x) — &x)| du(x).
X\w(g)Z
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Note

d o -1
w(g) (€)(x) = s(w(grlx)%(x)

(noc(g,s))

d
= £(c(g, 5)x) y (x) = c(g, ) (&) (x)
nw

for x € c(g, s)_lZl(g)S, when we regard & as an element of L' (X, it). Thus, the first term
is estimated as follows:

> [ lw(g)™ &) (x) — ()| dpu(x)
c(8.:9)7 Zy(gs

ses’

-y e(g ) E)0) — £ dp(x)
C(g,s)71 Zl(g)s

ses’

<3 lle(e. )@ — &l < 81SI.

ses’

To estimate the second term, one should note

E(X\Z2) =) E(ENZ) < 8IS, EX\w(@)2) =) E(E\c(g, )" Z;) < 81S|

ses’ ses’

by condition (2). Hence,

/ [w(g)(E)(x) —&(x)| du(x)
X\w(g)Z

< / w(g)(&)(x) du(x) +/ E(x) du(x)
X\w(g)Z

X\w(g)Z

d o -1
_ / é(w(g>-1x>%du<x> b EX\w(9)2)
X\w(g)Z 1%

= /X\Z E(x) du(x) + E(X\w(g)Z) = £(X\Z) + E(X\w(g)Z) < 2|S|8,

and we obtain ||lw(g)(§) — & < 38|5'| < e.
We next show
du(@(t),t) <e, geGved,tecA.

By the assumption

le(g, s)(V) — vl <8, dy(c(g. $)(1),1) <8, teA g seS ved,

dy(c(g, ) (1D, 1) = degy (15 (g, $)(1))
< lle(g, )W) — vl + dy(c(g, (1), 1) < 28

holds. We can further assume

V(EigsDe(g, )™ 1 Eggys) < 8, v(c(g, )1 (Eig)s AZiggys)) < 8

fort € A,s € 8, g € K in the choice of Z; and E;.
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—

Let Bg s = {c(g, s)~1(¢) = t}. Then we have V(X\Bgss) < 28, v e ®. We can see
w(g)(t) = (g, )1 (1) on c(g. $)~ Zi(gys N (g, $)t ™! Zig)s as above. Thus, w(g) () = t
holds on

U c(g, S)_IZ[(g)S Nec(g, S)t_lzl(g)s N Bgst-
ses’

We will show

v(X\ U c(g, S)_lzl(g)s Nc(g, S)l‘_lzl(g)s N Bg,s,;) < €.

ses’

At first, we have

V(Ei(g)s (c(g, 8) ™ Zigys Ne(gy )™ 17 Zig)s))
< V(Ei(g)sAc(g, ) Zigg)s) + V(Eigys (g, $) "t Zigg)s)
< 8+ V(EigsANelg, ) 1T Eygys) +v(c(g, ) T (Eig)s AZiggys))  (by (2))
< 3.

Thus,

V<X\ U (8. ) Ziggys Nelg, )17 Zygys N Bg,s,t)

ses’
=< V<X\ U c(g, S)_lzl(g)s Nc(g, S)_lt_lzl(g)s> + V(X\ U Bg,s,t)
ses’ ses’
<Y (Eigs A8, ) Ziggs N eg, )17 Zig)) + D v(X\Bg i)
ses’ seS’
<5818 <e
holds, and we obtain dv(@(t), t)y<eforge K,ve &, € A. O

LEMMA 4.3. Foranye € K € G and ¢ > 0, there exist S € G and § > 0 satisfying the
following property: forany u € ® € M(X, w), an ultrafree cocycle crossed action (y, c)
of G, and u € C'(G, [T)) with

dy (73 () 'u(g) u(gs),id) <8, g, seS,ved,
there exists w € [T] such that

dy(wlu(g)7p(w),id) <&, ved gek.
Proof. Let K € G, ¢ >0 be given. Take & > 0 such that 84/’ <e¢. Let S’ be a
(K, &')-invariant set and set S = S’ U K. Choose 8 > 0 such that 4|S’|5 + 8¢ < «.

Let a cocycle crossed action (y,c), ® € M(X, u), and u € cl(G, [T satisfying the
condition

dy P () u(e)u(gs),id) <8, g, seS,ved
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be given. By Proposition 3.3, choose a partition { Es}scs of X, Es D Z;, and w € [T] such

that:

(1) u(s)Zs C Es;

(2)  v(yg(E\Zs)) <8, v(Es\u(s)Zs) <6,g€ K,v € ®;

) U(@(M(S))ilu(g)il(Egs\ng)) <8, geK,seSg,ved,
) V(EgSA@(”(S))ilgflEgs) <8, g€ K,seSg,ved;

o) ZSGS’g V(Egs Ay Es) < 5\/?, geK,ved;

(6) ZSGS/\S;A V(Es) <3Ve, g€ K, v e ®;

(7 wx =u(s)x, x € Zs.

Let

Wy = | (7 () u(@)  u(gs) = id} Ny Ze N 75 u(s) ™ ulg) ™ Zys.

’
seSg

We can verify that w’lu(g))’/;,(u)) =1id on W, g € K, as in the proof of Lemma 4.2.
Next we show v(X\W,) < . We have

V(EgsAyeZs) S V(EgsAygEs) +v(VeEs\VeZs) < V(Egs Ay Eg) + 6
by condition (2), and
V(Egs AV (u(s)) " u(8) ™' Zgy)
< V(Egs AT (u(5)) " (@)™ Egs) + v(Tp ()™ u(g) ™ (Egs\ Zgs)) < 26
by conditions (3) and (4). Hence, we have
V(Egs A(vgZs N 75 (u(s)) ' u(g) " Egs)) < 38 + v(Egs Ay, Ey).
Then we have
v( U Eesd [ e Zs N7 ()™ uie) ™ Egs)>
s€S, ses),

<D V(Egs Ay Zs N7 (u(s) ' u(g) ™ Egs))

’
seSg

< D B8+ v(EgsAygEy)) < 31818+ 5Ve/

’
seSg

by condition (5). Hence, we get

v(X\ U ez y?;(u(s))lu(g)lEgAy))

SGS;),
< > v(Es>+v< U Eesr | 062 mfg<u(s)>—1u(g)—1Egs>)
sE.S"\SZ;_1 seSy seS,

< 3|55 + 8V’

https://doi.org/10.1017/etds.2023.122 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.122

Actions of discrete amenable groups into the normalizers 3305

by condition (6). By the assumption
dv()%(u(s))_lu(g)_lu(gs), id) <4, g,s€S,ved,
we have v(X\ Ucs o {7 u(s) " u(g) " 'u(gs) = id}) < |S|8. Hence,

V(X\W,) < 4|8'|8 + 8V < &
holds. O

THEOREM 4.4. Let (y, c) be an ultrafree cocycle crossed action of G. Then there exists
u € CY(G, [T)) such that uc(g, h) = 1id, and hence ,y is an action.

Moreover, for any e € K € G, ¢ > 0, there exists S € G, § > 0, which depends only
on K and ¢, or on cocycle crossed action (y, c¢), such that if

dy(c(g,h),id) <8, g, heS,ved
Jor some ® € M1 (X, ) with u € ®, then we can choose u € CY(G, [T)) so that
dy(u(g),id) <&, geK,ved.

Proof. At first, we treat a type Il or type III case.

Lete € K € G and ¢ > 0 be given, and take S € G and § > 0 as in Lemma 4.3. Assume
dy(c(g,h),id) <§ for g,heS,vede M(X,u). There exists v € CY(G, [T]) such
that ,c(g, h) = id by Theorem 4.1. Hence, c(g, h) = )’/}(v(h))_lv(g)_lv(gh) holds and

dy (7)) u(g) M u(gh),id) <8, g, heS,ved.
By Lemma 4.3, there exists w € [T] such that
dy(w™ (@) 7 (w),id) <&, ved, geKk.
Define u(g) := w_lv(g))@(w). Then we obtain d,, (u(g),id) < e forg € K, v € ¥, and
wc(8 ) = u(@) 7z u(h))c(g, Mu(gh) ™ = wv(@) 7 (w(h)c(g, Mv(gh)™'w = id.

Hence, we have proved the theorem for the type 1, and type III cases.

Next, we assume 7 is of type II;. In this case, we can assume that w is the unique
T-invariant probability measure and choose ® as ® = {u}. Let us take an increasing
sequence {K,}, € G and decreasing sequence {&,}, such that e € K, Ui‘il K, =G,
and Zn &, < 0. Take S, and §, for K,, and &, > 0 as in Lemma 4.3. We can choose S,
and 4, so that S;, C Sy+1, 6y > On+t1-

For given K € G and ¢ > 0, choose N € N such that K C Ky, ¢ > Z,fiN &k. By
Lemma 4.2, take Sy € G and 6y > 0 for Ky and ey > 0. Again by Lemma 4.2, we can
perturb (y, c¢) by some w € CY(G, [T)) so that

. . 8
du(we(g, h),id) <en, g heKy, d,(yc(g, h),id) < TN g, h € Sy.

Set

(N)

", en) == (wy,wo), un(g@ =1
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We will inductively construct a family of cocycle crossed actions (y™,¢,) and
normalized maps {u,} C C'(G,[T]),n > N, such that:
An) ™ en) = G,y w01
2.n) du(cn(g, h),id) <&y, 8, h € Ky;
3.n)  dyucn(g, h),id) < 8,/2, 8, h € Su;
(4.n)  dy(up(g),1d) < ey—1, 8 € Kn—1.
Here we regard yWN=D =y WMN) en (e, h) = en(g, h). Clearly we have (1.N), (2.N),
(3.N), and (4.N).
Assume we have done up to the nth step.
By Lemma 4.2, we choose u,,4+1 € CY(G, [T]) such that:

@n+ 1) dyliing1(ys" Gins1 (1)cn (g, Mitnt1 (§h) ™", id) < entr, g, h € Ky

b4+ 1)  dy(inr1(Q)ye" (n1(W))en (g Winr1(gh) ™", id) < 8,41/2, 8 h € Spp1.
By condition (b.n + 1), we have

— _ B B -~ B 8 1
dy (v (g1 () Vg 1(8) Vg1 (gh), ea(g, b)) < 2* . g heSuy.

Combining with condition (3.n), we get
o -1 _1 ,
dy (V" Gin 1 (B) ™ i1 ()™ tn41(gh), id) < 8y, .1 € Sy

By Lemma 4.3, there exists w €[7T] such that d,L(w_lith(g)ygf")(w),id) < g, for

g€ K,. Here set u,4+1(g) := w‘lﬁnﬂ(g)yéf")(w). Then we get condition (4.n + 1).
Define a cocycle crossed action (y®+D ¢,41) as condition (1.n 4 1). Then we get
conditions (2.n 4+ 1) and (3.n + 1) from conditions (a.n + 1) and (b.n + 1), respectively,
and the induction is complete.

Let v,(g) := tn(Qun—1(g) - - - un(g). We have (v, ¢,) = (5, y ™, y,cn) by the
construction. Fix L € N and take any g € K. By condition (4.n),

du(vn(g)v Vn-1(8)) :du(un(g)’ld) <é&u—1, n=L+1

holds. So {v,(g)}, is a Cauchy sequence and hence v,(g) converges to some v(g) € [T]
uniformly. Note that v, (g)~! converges to v(g)~! automatically, since u is the invariant
measure for [T]. Combining with condition (2.n), we obtain ,c(g, h) =id for all
g, hegG.

If g € Ky, then

n—1 n—1
dyy (0 (2), id) = dyy (Va(8), vn () < Y du(rr1(2) k() < D &k
k=N k=N

Hence, we have d,(v(g), id) < Z,fiN er <é¢e.Set S:=8yvUKpy,d:=min{dy/2, en}.
Ifd,(g,h) <dforg, h €S, then we have d, (v(g), id) < ¢ for g € K. Note that S and §
depend only on K and ¢. O
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5. Classification
LEMMA 5.1. Let a and B be actions of G into N[T] with mod(a,) = mod(B,). Then for
anye >0, K € G,ue ® e M(X, n), A E[T], there exists w € CY(G, [T such that:

(D Nwag®) = BBl <& g€ K, § €P;
(2)  dy(pog(t), Be(1)) <&, g€ K, 1 € A, v € D;
(3) letc(g, h) = w(g)o’t;,(w(h))w(gh)_l. Then

le(g, (&) —&ll <&, dulc(g, M), 1) <e, g heK,§vedteA
Proof. By enlarging K, we may assume e € K = K~! € G. Let
® = {Ben(&) | g.he K.E € @), A:={Bu(t)|g.hekK, teA)

By the assumption, ,Bgozg’1 € Ker(mod) = [T]. Hence, we can take w € C'(G, [T]) so
that

lweren &) — Ben(®)]] < ; dy (oaigh (1), Ban (1)) < ;

for g, € K, v, & € Ugeg Be(®), 1 € Ugek Bg(A). Obviously, we have conditions (1)
and (2).
Thenfor g, h € K, n € CB, we have

||wagwah(77) - ﬂgh(n)” = ||wagw05h(77) - wagﬁh(n)” + ”wagﬂh(n) - ﬁglgh(n)”
2
< Nwotn (1) = Ba | + lhoorg B () — BeBa(m)ll < 78
Thus,

llc(g, MBgn(m) = Ben(MIl < llc(g, MBgn () — (g, Myagn ()|

+ llc(g, Magn(m) — Bgn ()|l
3e

< —
7

holds for g, h € K, n € ®. Hence, we get ||c(g, h)(E) —&|| <3¢/Tforg,h e K,& € .
Forge K,¢ e]\,ve &D,Wehave

dy(c(g, W)malgh (1), Ben(®)) = dy (sl (1), Ben(t))
< dy (g (1), wig P (1)) + dy (g Br (1), B (1))

— N €
= d ) @ (D, Br(0) + =
w0 B, - — &
< gt ) woh (0, B0 + lluerg o) =Bl + 7
— ™ 2¢ 3¢
= dﬂg"(v)(w“h(f), Br(@®)) + = <=
By noting [|c(g, h)(v) — v]| < 3e/7 for g, h € K, v € ®, we have

dy (g, W) Ben(t), Ben(®)) < dy(c(g. 1)Ben(t), (g, W)imctgh ()
+ dy(c(g. Wmagh (1), Ben (1))
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3¢

< dc(g,h)—l(v)(@(t), wltgh (1)) + 7

- — 68
= dv(ﬂgh(t)’ wagh(t)) + 7 <ée
for ve ®, g,he K, t € A. Thus, dy(c(g, h)(1),7) <& holds for g, h e K, t € A,
veob. O

LEMMA 5.2. Let a and B be actions of G into N[T'] with mod(ag) = mod(B,). For any
e>0KEG, AE[T], ® € M (X, ), there exists v € C1(G, [T)) such that

loag(§) — Bs(E)l <&, geK,ved,
dy (yog (1), B;(t)) <e, geK,relAved,

dv(v(g)@(v(h))v(gh)_l, id)y<e, g, hekK,ved.

Proof. Let ® :={By(£) | g€ K, &€ @), A:={By(t)| g€ K,t €A} Choose § >0
and S for ¢/3 > 0 and K as in Lemma 4.2. By Lemma 5.1, there exists u € Cl(G, [TDH
such that

c(g, h) 1= u(@)dz (u(m)u(gh) ™",

luctg (§) — Bg(E)Il < g gek. e,

le(g. (&) &1 <8, g heSsed,

dy(c(g, (@), 1) <8, g heS tehved.
By Lemma 4.2, there exists w € C! (G, [T]) such that

dy(w(g)uag(w(h))c(g, h)w(gh)_l, id) < ; g, heK,ved
and
[o@® -l <. d@Eo.n <5 gek&vedreh
Let v(g) := w(g)u(g). Then we have
dy(v(g)ay (v(h)v(gh)~',id) <e, g heK,ved.

We can verify the first inequality as follows. For g € K, &£ € D,

loerg (&) — Be®)I] < w(@u(g)ag () — w(g)Be(E)l + Iw(g)Be (&) — B ()]
< 2—8 < €&
3
since B4(§) € ®. Similarly, we have
dy (a5 (1), B (1)) < dy(w(g)uttg (1), w(g)Be (1)) + dy (w(g)Be (1), Be(t))
< du(e) ) Gz (1), By (1)) + g
< lw(@) V) — vl| + dy (ag (1), B (1)) + § <e

forge K,te A,ved. O
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THEOREM 5.3. Let o and B be ultrafree actions of G into N[T | with mod(ag) = mod(Bg).
Then there exists a sequence {u, (-)} of I-cocycles for ag such that lim,,_, 4,0 = Bg in
the u-topology.

Proof. By Lemma 5.2, there exists a sequence {v,} C C (G, [T]) of normalized maps
such that lim,,_, o v, &g = B in the u-topology, and limy,—, oo d,, (v, (8)g (V4 (7)) vy (gh)~1,
id) = 0. Let ™ =, @ and ¢, (g, 1) = v, (8)&g (v (h))v,(gh)~!. By Theorem 4.4, there
exists a sequence {w,} C C'(G, [T]) such that

—

wn (@) (wa(M)en(g. Mwa(gh) ™' =1, lim_dy(wa(g), id) = 0.

Then it turns out that u, (g) := w,(g)v,(g) is a 1-cocycle for ag, and limy, o 4, = B,
holds in the u-topology. U

LEMMA 5.4. Let K € G and € > 0 be given. Then there exist S € G and § > 0 satisfying
the following: for any action y of G, a I-cocycle u(-) for y, ® € Mi(X, n) with p € ®
and A € [T] satisfying

lu(s)@) — &l <8, dy@()(@).1) <8, seS,EvedteA,
there exists w € [T] such that

d,,(u(g))?l,(w)w_l, D<e |lwE —€&ll <e,dy(w(),t) <e,ge K, E,ved,teA.

Proof. Take €1 > 0 with 88}/2 < &, and let S be a (K, ¢1)-invariant set. Choose § > 0
with 8e|/% 4 3|5]8 < &, 4/S|5 < .
By Proposition 3.3, take a partition {E}ses of X, Z; C E;, and w € [T] such that:

() u(s)Zs C Eg,s €5,

2) v(E\Zs) <68, v(Es\u(s)Zs) <8,s € S,ved;

3) v(u(gs)ye(Es\Zy)) < 8,8 € K, s € Sg,v € D;

(@) v(u(s)t_l(Es\Zs)) <é8,se S, teAved;

5) vu@s)E;AE;) <6,s € S,ved;

(6) V(EgsAyg(u(s))Egs) < 8,5 € Sg, v € ;

(1) v(EsAu(s)t™'Eg) <8,s€S,teA,ved;

) Zsesg u(gs)_l(v)(ygEsAEgs) < 5811/2, geK,ved;

) Tiesis,, VE) < 36, g € K;
(10)  wx = u(s)x, x € Zy.
In the following proof, the letters g, s, and v denote an elements in K, S, and &,
respectively. As in the proof of Lemma 4.2, we can see that

w(@) 7 wyw ™ x = u(@)yeu(s)y, 'ugs) 'x =x

forx € u(gs)Zgs Nu(gs)yeZs.
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We have

V(Egs Au(gs)Zgs Nu(gs)yvgZs))
S V(Egs\u(gs)Zgs) + v(Egs Au(gs)yg Zs)
<3+ V(EgsAu(gs)ygEs) + v(u(gs)yg (Es)\u(gs)ygZs) (by (2))
<28+ v(EgsAu(gs)Egs) + v(u(gs)(Egs AygEs))  (by (3))
<38+ u(gs) ' (W(Eg Ay Es)  (by (5)).

Thus,

v(X\ U u(en)Zee 0 u(gs)ygzs)

s€S,

<O\ || Eg) + Y v(Egs Au(gs) Zgs Nu(gs)ve Zs))

SES, SE€S,

< D v(ED+ DY B8+ u(gs) (W(EgAygEy))

SGS\Sg_l SES,

< 361> + 31516 + 56> = 8|2 + 3|S5 < &

holds. Hence, v({u(g))'?g(w)w_1 #1d}) < e for g € K and v € ®, which implies
dv(u(g))'/(\g(w)w_l, id)<s, geK,ved.

We next show |w(§) —&|| < eand d, (W(z), 1) <e.Let Z = |
of Lemma 4.2, we can see w(&)(x) = u(s)(&)(x) on u(s)Zs, and

Zs. As in the proof

seS

/ lw(&)(x) — E@)| du(x) < 2[S[8
X\wZ
by using conditions (2) and (10). If u(s) satisfies ||u(s)(§) — &|| < & for s € S, then

lw() =&l =Zf( = Iw(E)(x)—E(x)ldu(X)-l—/ lw(E)(x) —&)[ dpu(x)

ses X\wZ

< Z/ 1(s)(E)(x) — £C)] dpu(x) +21S18 < 3]SI < e

seS ($)Zs

holds for & € ®.

For te€ A CI[T] and x €u(s)ZsNu(s)t~'Z;, wlx=u@s)"'xez,nt 'z,
Hence, rw ™ x = u(s)"'x € tZ; N Z, and wrw ™ x = u(s)tu(s)~'x holds.

Then,

V(EsAu(s)Zs Nu(s)t~ 1 Zg)) < v(Es\u(s)Zs) + v(Es Au(s)t ) Zy)
<&+ v(ESAu(s)t_lES) + v(u(s)t_l(ES\Zs)) (by condition (2))
< 38 (by conditions (4) and (7)).
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Let us assume d,, (u/(s\)(t), t) < é.Hence, Ay, := {u’(\s)(t) = t} satisfies V(X \ A, ;) < 6.

Thus,
v(X\ U(u(s)ZS Nu@s)~ 'z, N AS,,))
seS
<) W(EsAW()Zs Nul(s)t T Z)) + Y v(X\Agy)
seS seS
<45|S| <¢
and we have v({w(?) # }) < ¢, equivalently d, (W(z), 1) < &. O

Remark. In Lemma 5.4, we can choose § and S so that § < 8’ and S’ C S for any given
8 >0and S’ € G.

Now we can classify ultrafree actions.

THEOREM 5.5. Let o and B be ultrafree actions of G into N[T | with mod(ag) = mod(Bg).
Then they are strongly cocycle conjugate.

Proof. Let {£}7° be a countable dense subset of My (X, ) with & = p. Take &, > 0
and K, € G such that Y ;2 &, < 00, & > &nt1, € € Ky, Ky C Kpp1, U Kn = G.
Then choose S, € G, §, > 0 for K, €, as in Lemma 5.4. We can assume S, C S,+1 and
Sn41 < 6p- (See the remark after Lemma 5.4.)

Set y, (O) = ayg, y; D.— = fB,, and construct actions é”) of G, v,(g), V,(g), wy, O, €
[T], @, C M1 (X, ), and A, € [T] as follows:
(L) 7" = Du(@wayvs' P wy s

2n) Op = wybh_2;

(B.n)  vu(g) = Up(8)Wn(vn—2(8));

@n Ny =7 V@)l < eng € Knk € Pui:

G du(r ), yg(”*“(r» <en g €Kyt €,

(6.n) ||yg"><s> STV <80m1/2.8 € Sam1 € € Uges,, v (@)

an i), yg" D) <801/, g € Surat € Uses, yg(z D(An—1).vE @yt
B.n)  dy(Vn(g),1d) < €p—2,8 € Ky—2,v € Py, (n = 2);

On)  Nwp ) —§ll <éen—2,§ € Py, (n = 2);

(10.n) dv(@(t)s 1) <é&n2,veED, 2,1t € A2, (n>2);

(1Ln) @, = {é:l}n 0 U {6, (gl)}n 0 ) {vn(g)(l")}geK,L;

(12.0)  Ap ={T"Y}__, U{0u(THY__, U {vn(2), va(8) ™ }gek, -

Ist step. Let0_1 = 6y = id, v_1(g) = vo(g) = id. By Theorem 5.3, take a 1-cocycle u(-)

for y =1 such that:

@) lavs @)~ v @)l < e1, g € Ki, & € Dy;
(b.2)  dy(uvs” YD), yO1)) < e1.g €Kit € Ao:
©2) layg " © =7 @®)l < 80/2. 8 € So. & € Uges, 7.0 (Po);

@1 dylur 0, 7O 0) < 80/2, g € Sov1 € Ugesy 7 (Ao, v € o
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Set w; = id, v1(g) = u1(g), and define

y) = vi(guwiy

91 = w10_1 = id,

1 (-1

D,,—1 _
Wy =u Vg

v1(g) == v1(g)wi(v_1(g) = u1(g)

as in conditions (1.1), (1.2), and (1.3), respectively. By conditions (a.1), (b.1), (c.1), and
(d.1), we get conditions (4.1), (5.1), (6.1), and (7.1), respectively. Define ®; and A
as in conditions (11.1) and (12.1), respectively. Then we have finished the 1st step of
the induction.

Assume that we have done up to the nth step. By Theorem 5.3, let us take a
y "~ D_cocycle u,41(-) such that:

@n+ 1D Ny v V€ = v E < ens1. 8 € Kng1, 6 € Oy
@n+2) duGu,ve V@O, 7" ©) < ent1, g € Kng1.t € An
-1
@n+ D) N vs" @ = 7" ©) < 81/2, g € Sur & € Uyes, 720 (Pn);

(dn+ 1) dyuvg"™ O, 1" ) < 80/2. 8 € Suit € Uges, Vg (An) v € Oy
en+ D N vs" @ = 7" © <80-1/2.8 € S8 € Uges,, v " (@n);

sl s =D
En+ D dol v O 7" 0) < 81m1/2,8 € Samist € Uges,, 7o (M),
Ve (b,,_l.

By conditions (6.n) and (e.n + 1), we have
lune1 @y ® =y ON < 8umrs geSimnte (J (@i
gESnfl
and hence

lunt1(e)(€) — &Nl <8u—1, g€ Su-1,.& € Pp1.
By conditions (7.n) and (f.n + 1),

—

——— D, D T
dy (1@ "0, 7" V@) <80ty geSimite | IV e @y,
geS,,_|

and hence
dv(un+l(g)(t), t) <bp—1, gE€Sp—1.teN—1,veE P,

By Lemma 5.4, there exists w1 € [T] such that

—

-1 -1 .
dy(unt1 (g)y;n )(wn—Q—l)wn_&l’ id) <éep—1, g€Ky—1,ve Py,

lwpr1(§) — &Il < &1, dv(w/ni(t)’t) <é&—1, &Eved, q,tekK, .

Set
. o (1) -1
Un+1(8) == unt+1(8)vg (Wnr)w, y,
Vén-H) = un+1yén_l) = 5n+1(g)wn+l)’;n_l)w;_|{1’

Opnt1 := Wyy10,-1.
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We clearly have conditions (l.n +1), Qrn+1), Grn+1), 8n+1), 9.n+1), and
(10.n + 1). From conditions (a.n + 1), (b.n + 1), (c.n + 1), and (d.n + 1), we obtain
conditions (4.n + 1), (5.n + 1), (6.n + 1), and (7.n + 1), respectively. We define @,
and A, as in conditions (11.n 4 1) and (12.n + 1), respectively. Then we have finished
the (n + 1)st step, and the induction is complete.
By the construction, we have
@n) _ -1 @n+1) _ -1
Vg ' = Vo (8)0magt,y, ", Ve = vZn+l(g)92n+1.3g02n+1~

We will show that sequences {62, },, {62n+1}n> {v2n(8)}n, and {v2,4+1(g)}, Will converge.
Fix k € Nand take & € {£}*_ .t € {T'};;j<. Forn > k + 2, we have &, 6,_»(§) € ®,_»,
0,-2(t) € Ay,—». Then

164(8) — Op—2®)l = W (Gr—2()) — Bu—2(E) |l < en—2,
16,1 &) — 0,5, @) = llw, ' &) — &l < en2.
and
dy (0 (1), Or—2(1)) = dy (W (O—2(1)), (1)) < €02

hold by conditions (9.n) and (10.n). It follows that {8;,}, and {62,+1}, are both Cauchy
sequences with respect to the metric d on N[T]. (See §2.1 for the definition of d.) Hence,
both {62,}, and {62,,41}, converge to some g, o1 € [T ], respectively, in the u-topology.

Fix [ € N and take any g € K;. Then for n > [ 4+ 2, we have v,_2(g), 1),,_2(g)’1 €
Np—2, vy—2(g)(n) € ®—2. Thus,

dy vy (), vn—2(8))
< dyy (5,(8) Wy (V—2(8))s Dn()vn—2(8)) + (U (8)Vn—2(8), va—2(g))
= dy Wy (v,-2(8)), Va—2(8)) + dy,_»(g)(w) (Dn(8), id)
< 2,2
and
du(Wn ()™ vp2(®)™h
< dp(@n (Vn—2(8) N ()™, Wp(Wn—2(8) ™) + dyu (W (V—2(8) ™), va—2(8) ™)
= dy(0p(8) ", id) + dyy (W (Va—2(8) "), va2(®) ™)
< 2&,-9

by conditions (8.n) and (10.n). Thus, both {v2,(g)}, and {v2,4+1(g)}n» are Cauchy
sequences with respect to d,,, and hence converge to some z¢(g), z1(g) € [T] uniformly,
respectively.

Summarizing these results, we have

lim y®" = Jim v2n (8)02n g0y, = z0(8)000te0,

n—oo ‘8
~ Qntl) _ 1 -1 —1
nllyolo Ve " = nli>nc}o U2n+l(g)92n+l/3g92n+1 = z1(g)o1Bg0, -

By conditions (4.n) and (5.n), we have z()(g)aoozgao_l = zl(g)al,Bgo*l_l. Hence, a and
B are cocycle conjugate. O
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Proof of Theorem 2.4. Let N := Ny = Ng, O := G/N,and & : G — Q be the quotient
map. Fix a section s : Q — G such that s(e) = e. Then «j() is an ultrafree cocycle
crossed action of Q. By Theorem 4.4, there exists v € C'(Q, [T]) such that ap =
v(p)ay(p) is a genuine action of Q. Here define v(g) := v(p)otn_1 € [T], where g = ns(p)
with p = m(g) and n € N. Then v(g)ag = v(p)as(p) = Ax(g)> and &y () is an action of
G. Thus, ay is strongly cocycle conjugate to & (g) for some ultrafree action & of Q. In
the same way, B, is strongly cocycle conjugate to Bn(g) for some ultrafree action 8 of Q.
Since mod(ap) = mod(ﬁp), @ and S are strongly cocycle conjugate as actions of Q by
Theorem 5.5, and hence also are as actions of G. Therefore, the two actions @ and 8 of G
are strongly cocycle conjugate. O
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