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ABSTRACT:

We have systematically made the numerical exploration
about the perturbation extension of area-preserving mappings
to three-dimensional ones, in which the fixed points of area-
preserving are elliptic, parabolic or hyperbolic respectively.
It has been observed that: (i) the invariant manifolds in the
vicinity of the fixed point generally don't exist (ii) when
the invariant curve of original tw-dimensional mapping exists
the invariant tubes do also in the neighbourhood of the invar-
iant curve (iii) for the perturbation extension of area-pres-
erving mapping the invariant manifolds can only be generated
in the subset of the invariant manifolds of original two-dime-
nsional mapping, (iv) for the perturbation extension of area-
preserving mappings with hyperbolic or parabolic fixed point
the ordered region near and far from the invariant curve will
be destroyed by perturbation more easily than the other one,
This is a result different from the case with the elliptic
fixed point. In the latter the ordered region near invariant
curve is solid. Some of the results have been demonstrated
exactly.

Finally we have discussed the Kolmogorov Entropy of the
mappings and studied some applications.

INTRODUCT ION

Many studies of the measure-preserving mappings with even
dimension have been made in connection with various problems
in physics and astronomy, because Hamiltonian systems possess
always even dimension and one can use the KAM theorem. Rt
measure-preserving mappings with odd dimension do not seem to
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have been considered. Following a suggestion of M.Hénon,we
began to study in 1980. The first non-trivial case is dimen-
sion 3, Consider the linearized mapping in the vicinity of a
fixed point, at least one eigenvalue is real and the prod-
uct of all eigenvalues is equal to one, therefore, in gene-
ral, there are some eigenvalues whose moduli are larger than
one, Thus fixed points are generally unstable in the linear
approximation and we conjectured that the mapping is chaotic
in the whole domain of definition. We have systematically
made the numerical exploration about the perturbed extension
of area-preserving mappings to thiee-dimensiondl ones in which
the fixed points of areda-preserving mappings are elliptic,para-
bolic respectivelf.fbme of the mumerical results have been
proved theoretically.

Finally we have discussed the Kolmogorov entropy of the
mappings and studied some applications.

THE MAPPINGS

We study the following three-dimensional mappings which
are the perturbed extensions of area-preserving mappings with
elliptic, parabolic or hyperbolic fixed point respectively.

(1) The mapping T1

xn+1 =X, + yn + B sin Zn'
T1 Yp#1 = Yn + A sin X 41? (mod 2w)
Zn+1 =z, + C sin yn+1,

where A is a parameter, B,C the perturbation parameters, When

B=C = 0, the mapping T1 will be reduced to the standard

mapping, for 4 < A < O the origin is an elliptic fixed
point.
(2) The mapping T2
=x_ =-A 3 + B gi
Xn+1 n yn Sin Z.»
T _ 3 .
2(Vp41 T X, * YV, - Ay, +C sinx .,
Zpsl T 2Zp + D sin Yo + E. (mod 2m)

where A is a parameter, B,C,D,E, the perturbation parameters.
Vhen B=C =D = E = 0 the mapping Tz will become an area-
preserving mapping, for any A the fixed point (0,0) is para-
bolic type, the case A = 1 has been studied by Chirikov and
Simo [11],[ 2],
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(3) The mapping T3

= X_ cos - i + Z
X s( n ¢, y, sin ¢n) A cos n’

n+l
= <1 : .
T3 Yp41 = S (xn sin ¢n + y, cos ¢n)+B sin z ,
Zh4r T z, +C cos(xn+1 + yn+1) + D, (mod 2m)

¢ = (xrzl + yi)k,

where s,k are parameters, A, B,C,D the perturbation parameters.
For A= B=C=D =0, this is a hypertolic twist mapping whi-~
ch has been studied by Easton [3], The origin is a hyperbolic
fixed point,

NUMER ICAL RESULTS
The Mapping T1

As we do not know any theoretical conclusions, we start
with numerical exploration by LCN's (Lyapunov Characteristic

Mumbers) method [4]. We make a transversal ﬁxploration along
the y-axis, figure 1 is the plot of LCN's ri(Po)(i =1,2,3,
N = 105: the number of iterations, Po: initial point). We can

see that in almost all cases the LCN's possess approximately
the same values, however we find one particular set of values

N
r (P)) (P, = (0.1, -2.5, 0.0), i =1,2,3) of LCN's, whose ab-

solute values are much smaller.
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Fig.l:Variation of the Y{moooo(po)(i=1,2,3) of mapping T, (A=-1.5, B=0(8)
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Fig. 2: Variation of the -yl' (Po) of mapping 'I‘1 (A= -1.5,B =
003 ) as functions oxr the number N of iterations for
: . N - . :
initial point Pn (0.1,-2.5,0.0) (+Y1 (Po)' (A)Y, (po)
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According to the usual relation between the LCN's and
the ordered property of the orbit, we conjecture that the po-
int Po = (0.1,-2,5,0.0) may be on an invariant manifold. In
order to confirm it, we study the variations of rlz(Po)(i =
1,2,3) as functions of the number N of iterations upto N=106.

. . N _ s =
Figure 2 shows clearly that Limy +w'ri(Po)| =0 (i=1,2,3).

On the other hand, we plot the slice-cutting of mapping Ty
with the same initial point P0 = (0.1,-2.5,0,0) (see Fig. 3),
which are defined by

lzn - Ql < 0-011 Q = (k—s)“/4’ k = 172!"')9
-n'f_xn<_+1r, -1 f_ynf_+'n
n=1,2,,..,N
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Fig. 3:Sections of mapping Tt(A = -1.5, B= 0.03) by

z = (k-5w/4, k =1,2,,.,,9 with initial point
Po = (0.1, -2.5,0.0),
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Fig. 4: Enlargement of the leftmost island-tube in Figure 3.
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and we find that the orbit with initial point Po lies indeed
on invariant tubes which we shall call island-tubes.Figure 4
is the enlargement of the leftmost island-tube in Fig.3.Fig-
ure 5 displays the orbits near the island-tube studied above,
it also exhibits the self-similarity structure analogous to
that of the standard mapping, in the center of tube there must
be an invariant curve. But for the orbit with initial point

P, = (0.1, 0.1,0.0) which is near the origin, a very slow di-
ffusion away from the origin appears.

Fig. 5: Sections of mapping Tt(A =-1.5, B = 0.03).

Now a problem appears i.e. for the perturbed extension
of standard mapping the large ordered region in the neighbour-
hood of fixed point (0,0) of the standard mapping disappears,
but in the small island region far from the origin the invari-
ant manifolds survive? We think that perhaps it is related to
the variation of z. In order to confirm it, we add another
parameter D to control the variation of z i.e. we study the
following mapping [5].

Xp4y = %p + Yn + B sin Z.,
T1 yn+1 = ¥, + A sin X 41 (mod 2m)
Zn#l = Zp + C sin Yo+l + D,
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At first we analyse the existence of invariant curve.
Let

x = F(z),y = G(2)

be the invariant curve of the mapping Ti because C,D are
small, we obtain approximately

F(z) = 0, G(z) = - B sin z
therefore along the invariant curve, we have
= - Yoy ;
Az = Z 1 Zy,~ D-BC sin Z,-.

When D > BC, Az > 0 i.e. z varies between -T' and +T,
the invariant curve exists and there will exist the invariant
tubes surrounding it. When D ¢ BC, z tends to a fixed value
z¥,in this case the invariant curve degenerates to a point
and the image points of mapping in the neighbourhood of inva-
riant curve tend to the plane z = z*, As the mapping is meas-
ure-preserving,the diffusion along the plane z = z* will app-
ear. Figures 6,7, which are 9 slice-cuttings as defined in(1),
exhibit the above two cases respectively. Moreover, we study
the perturbed extension of quadratic area-preserving mapping
and obtain the analogous results [6].

Q9 Q Q
0.1
0t 1 Q
N
-0.1 :
0.1 0. 0.1

Fig.6: Sections of mapping Tl' for A=,-1.5,B=C=0.03,D= 0.00L
with initial point Po = (0.00, -0.01, 0.00).
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Fig.7:8ections of mapping T, for 4 = -1.,5, B=C
D = 0.0008 with initial point Po = (0.0, O

The Mapping T2
Using the same methods as studied in (1), we get the
criterion for the existence of invariant manifolds of mapp- -

ing T2 [73.

E > D(g/a)1/3)

When A = 1.5, B=C =D = 0, the results display the
self-similarity structure and a large ordered region in the
vicinity of parabollc fixed point (0,0) (see Figs. 8,9). For
A =1.,5, 9 = 0.03, E = 0,009 which satisfy the crite-
rion E > D(E/A)(1 3) we f1nd the invariant tube which is ge-
nerated by the 1nvar1ant curve of original two-dimensional
mapping (i.e. B=C =D =D = 0) (see Fig. 10). But for the
initial point (0,0,0) we do not get the invariant curve as
expected and a chaotic region appears (see Fig. 11). This re-
sult is different from the mapping Ti. Ve can find the small
island-tubes only if the perturbation parameters are very
anall (see Fig. 12).
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Fig.8: The mapping Ty for A = 1.5, B =
= (0.05, 0 00); (0.2,0.0): (0. 43 0.00):

initial points P0 =

(0.815,0.000).
015
0.0 Wm0
015
0.65 080 5
=D = E= 0,with in-

: The mapping Ty for A =1.5, B=C
itial points P0 = (0.815,0.003); (0.86775, 0.00000);
(0.815,0,008)

Fig.o
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Fig.11:

1.54
0 0 0 0
~-15
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Fig. 10: Sections of mapping Tp for A =1.5,B=C =D =
E = 0.009 with initial point PO = (0.08,0.00,0.00).
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fections of mapping T, for A =1.5,B=C =D = 0,03,
E = 0.009, with initial point Po = (0.00,0.00,0.00)
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Fig.12: Sections of mapping Ty for A = 1.5,B = C = D=0.0003,
E = 0.0004 with initial point Po = (0.86775, 0.00000,
0.00000).

The Mapping T3

This is a perturbed extension of hyperbolic twist mapp-
ing. Hadjidemetriou has studied a similar three-dimensional
mapping in connection with the evolution of an asteroid orb-
it passing through 3:1 resonance. When A = B=C =
D = 0, the mapping T3 will be reduced to the hyperbolic twist
mapping, the origin is a hyperbolic fixed point and it is not
analytic but belongs to cl class at the origin. Obviously it
is analytic in an annulus surrounding the origin and is sym-
metric with respect to the origin. For positive k, figure 13
shows the ordered, chaotic regions and hyperbolic structure
at the fixed point (0,0) and for negative k near the origin
there is a large chaotic region surrounded by the invariant
curves. For the perturbed extension T3 there exists a chaotic
cylinder surrounded by the invariant tori for both positive
and negative k (see Figs. 14,15) [8]. This result shows that
the ordered region near the fixed point (0,0) of hyperbolic
twist mapping is destroyed more easily than the one distant
from it, this is analogous to the mapping T,. For the dissi-
pative system, we study the perturbed extenSion of Henon map-
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Fig.13: The mapping '1‘3 for k = 1.5, s =1,05.

2 -1 0 1 2

Fig.14:Sections of mapping T3 for k =1.5,s =1.05,A = B=C=
0.03, D = ~0.04.
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Fig. 15: Sections of mapping T3 for k = -1.5, s =1,05, A =
B=C=0.03, D= -0.04.

ping, it seems that the strange attractor in Henon mapping is
destroyed by perturbed extension more easily than the invari-
ant manifold in standard mapping [ 9], this case is similar a
bit to that in the mappings T2 and T3.

In addition, we also discuss the variation of ordered re-
gion with the parameters for the above three kinds of mappings.
The conclusion is that the ordered region decreases when the
perturbation parameters increase.

From the above discussions we come to the following main
conclusions:

(i) For the perturbed extension the invariant manifolds in
the vicinity of fixed point generally do not exist.

(ii) When the invariant curve of perturbed three-dimensional
extension exists the invariant tubes do also in the neighbour-
hod of it.

85

https://doi.org/10.1017/50252921100065957 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100065957

(iii) For the perturbed extension of area-preserving mapp-
ings the invariant manifolds can only be generated in the
subset of invariant manifolds of original two-dimensional
mappings.

(iv) For the perturbed extension of area-preserving mappings
with parabolic or hyperbolic fixed point the ordered region
near and far from the invariant curve will be destroyed by
perturbation more easily than the other one, This result is
different from the case with elliptic fixed point. In the
latter, the ordered-region near invariant curve is solid.

Some Theoretical Results

In the above numerical explorations, an important resu-
1t is that when the invariant curve of perturbed three-dime-
nsional extension exists, the invariant tubes do also in the
neighbourhood of it, this conclusion is similar to the Moser's
existence theorem of invariant curves. Now we shall only give
a simple description of theoretical proof, the details of
proof can be referred in [10],[111].

We assume that there is an invariant curve for the three
dimensional analytical measure-preserving M. We consider a
family of mappings near the curve, which is of the form

X4 A(SYX + FO(S,X)
My 2
{51 S+B(S) + G_(S,X) (S mod 27, X ¢ R°)

where A'B'Go'Go are all of them 2w-periodic functions in S,

F_(8,%) = odix|f), 6, (8,%) = o(ix|h
where ||. || demotes the BEuclidean norm.
Analogous to the Birkhoff normalization of area-preser-

ving mapping, we can prove that the mapping Mt can be trans-
formed into the following form

by =¥+ E@) +E@,0,0)
M{: {6, =0 +g(r) +o(r,6,V)
ry =r +R(r,6,9)

Y,G,R are analytical functions on the domain
jIm ¢} < o, |Im 8] < p, lr—ro| <s, ¥r_ elab]

1T+ lo] + IR] < d and f,g are differentiable
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functions on the interval [a,bl. There is r, ¢ [a,b]l so that
g(ro) =m/n, m,n: integers and f(ro) satisfies inequalities

Ik x £(ry) + 2nm> c |k (e, > 0,n > 1) V(k,n) ¢ 2%/(0.0)

and f'(ro), g'({;) # 0. Then we can prove the existence of

periodically invariant curves in the vicinity of the invari-~
ant curve.

For the existence of invariant tori in the neighbourhood
of the invariant curve, as the number of the fast variables
or angles is less than the number of slow variables or actions,
we can not compensate the change of frequencies, due to the
average part of the perturbations, by correcting the initial
conditions in every approximation. This difficult implies the
intrinsic difference between the systems in which the number
of angles and actions are equal and the systems in which there
are more angles than actions, In order to overcome this diffi-
cult, at first we prove that there is a Cantor set with posi-
tive Lebesque measure in the frequency interval such that two
frequency of angles satisfy still irrational inequality in
every approximation. Py simulating the proof method of Moser's
existence theorem of invariant curves, we complete the proof
of existence of invariant tori.

THE KOLMOGOROV ENTROPY

It is well known that the Kolmogorov entropy is a good
indicator of chaos. Pesin's formula has given the relation
between the LCN's and the Kolmogorov entropy of a dynamical
system. Let p(P) denote the sum of all positive LCN's . The
formula states that the total entropy is given by

h =/ p(P)yu
v

where 1@ is the Lebesque measure v,

At first, we study the Kolmogorov entropy of the mapping
Ti and obtain

i
holim =1n [ |ABC cos x

viimog o COS ¥ 4.4 COS zk|

k+l

For the large B,C, the mapping T is ergodic, according
to the ergodic theorem, we can approximately replace

h & lim 1Tln f |ABC cos x

cos y cos z, |
i+e k=1 k+1 k

k+1

by 1 IZW fzn IZN

) 1n|ABC cos x cos y cos z|dxdydz
8w 0 0 0
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then we have

hxln]ﬂ

8

Figure 16 shows the good agreement between numerical and
analytical computations [12].

Moreover, we compute the Kolmogorov entropy of the mapp-
ing Tg. The results show that the hypertolicity of the fixed
point (0,0) i.e. the parameter s and the negative k play more
important role in generating the chaos than the other parame-
ters [131].

0 10 20 30 20

|ABC|

8

Fig. 16:Variation of the entropy h with the parameters B,C.
The crosses show the numerical estimations. The curve
gives the analytical results.

Finally, we apply the results of three-dimensional meas-~
ure-preserving mappings to the Couette-Taylor system in fluid
dynamics. Because the flow of incompressible fluid can be re-
lated to the measure-preserving mapping and the flow between
two rotating cylinders with an infinite length is circular
direction, it will correspond to a three-dimensional measure-
preserving mapping which is the composition of a two-dimens-
ional twist mapping and a one-dimensional one. The numerical
simulations display some experimental results. Feingold, Kada-
noff and Piro discuss the dynamics of a medium-sized particle
(passive scalar) suspended in a general time-periodic imcom-
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pressible fluid flow which can be described by three-dimensi-
onal measure-preserving mappings. For mappings with only one
action they find strong evidence for the existence of invari-
ant surfaces that survive the nonl inear perturbation in a
KAM-1like way. For the tw-action case the motion is confined
to invariant lines that break for arbitrary small size of the
nonl inearity [141].
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