
J. Fluid Mech. (2022), vol. 936, A37, doi:10.1017/jfm.2022.93

A heavy body translating in a boundary layer:
‘crash’, ‘fly away’ and ‘bouncing’ responses
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The study concerns a slender, heavy body moving with streamwise velocity in a boundary
layer. Modelling assumptions on body size reduce the governing equations for the body
motion to a pair of nonlinear integro-differential equations (IDEs) which displays a wide
range of distinguished behaviours, including eventual collision with the wall (‘crash’),
escape to infinity (‘fly away’) and repeatedly travelling far from the wall and back again
without ever colliding or escaping (‘bouncing’). The paper gives a survey of the variety
of behaviour, as well as asymptotic analysis and insight into each category of fluid/body
interaction and the conditions under which crash, fly away and bouncing occur.
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1. Introduction

The problem being considered is on the dynamic interaction between a thin, heavy rigid
body moving through a boundary layer and the surrounding fluid, with the challenge
being to predict the body motion. This issue is important in the study of aircraft icing, a
phenomenon where ice particles in the boundary layer of an aircraft wing at high altitude
may adhere to the surface and inhibit the aerodynamics, in worst cases resulting in serious
accidents (Gent, Dart & Cansdale 2000; Schmidt, Young & Benard 2010; Purvis & Smith
2016; Norde 2017). Thus there is significant industrial interest in predicting the motion
and behaviour of such particles, which can vary widely in size, shape, speed and angle of
incidence, to improve anti-icing systems.

In the aircraft-icing context, the ice particles of concern are in many cases shards or ice
crystals and they tend to be isolated, entering the air boundary layer one by one. However,
the large range of variables involved requires the problem to be studied for many different
bodies in a variety of settings. The studies by Smith & Wilson (2011), Smith et al. (2019)
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and Smith & Ellis (2010) focus on irrotational flow, corresponding to a body far from the
wall, while more recent studies by Smith & Johnson (2016), Smith (2017), Palmer & Smith
(2019), Smith & Servini (2019), Palmer & Smith (2021) and Smith & Palmer (2019), as
well as the current, have considered bodies in a boundary layer or channel flow for which
there is substantial incoming vorticity. These predominantly analytical contributions are
the most relevant here. Other very interesting contributions on fluid/body interactions are
the experimental ones by Hall (1964), Einav & Lee (1973), Petrie et al. (1993), Schmidt &
Young (2009), Wang & Levy (2006) and the direct simulations by Palmer & Smith (2020),
Wang & Eldredge (2015), Wu et al. (2018), Eldredge (2008). See also the studies by Gavze
& Shapiro (1997), Kishore & Gu (2010), Frank et al. (2003), Loth & Dorgan (2009), Poesio
et al. (2006), Yu, Phan-Thien & Tanner (2007) in which particular attention is given to
whether a particle will move towards or away from the wall, and those by Dehghan &
Basirat Tabrizi (2014) and Portela, Cota & Oliemans (2002) which are concerned with
particles in turbulent flows. In previous analytical studies set in a boundary layer, the body
is sufficiently small as to be able to enter the near-wall layer in which viscous-inviscid
interaction occurs, while the present work will focus on bodies large enough for such
effects to be ignored. The body in this work is also taken to be undergoing streamwise
translation, a situation allowing for a large range of angles of incidence as the body enters
the boundary layer, which in the rest frame of the body means non-zero wall velocity.

The investigation will focus on nonlinear dynamic fluid/body interactions, in which
a thin body is nearly but not quite aligned with the surrounding boundary-layer flow,
and include vorticity. The Reynolds number and Froude number of interest here are
large. The use of the physically relevant assumption that the body is much heavier than
the surrounding fluid allows significant analytical progress to be made as the flow is
quasi-steady on the time scale of the interaction with the body, reducing the problem to
a set of nonlinear integro-differential equations (IDEs). This system has a diverse set of
interactive solutions, resulting in many outcomes for the long-term behaviour of the body.
The first half of the paper concerns ‘crash’ solutions, i.e. finite time collision (impact)
with the wall. This is done both for incoming uniform shear flow and for arbitrary velocity
profiles in a boundary layer, with the arbitrary case having already been discussed in
brief in Jolley, Palmer & Smith (2021). The latter half of this investigation will focus on
‘lift-off’, i.e. the body departing or otherwise not colliding with the wall; such phenomena
have been studied for inviscid settings by Smith & Wilson (2013) and Balta & Smith
(2018). It will transpire that the presence of vorticity causes a huge range of intriguing
behaviours which are qualitatively different from each other and from those found in
previous studies. Particular attention will be given to behaviours termed ‘fly away’, i.e.
departure of the body far from the wall, and ‘bouncing’, i.e. repeated departure followed by
return (without collision), although other interesting solutions do exist and are discussed
briefly.

The layout of the paper is as follows. Section 2 will set out the modelling of the
fluid and body motion and derive the nonlinear system to be studied in the remaining
sections. Section 3 and an accompanying appendix derive the asymptotic behaviour of the
fluid/body interaction in a crash scenario for the cases of constant vorticity and arbitrary
incoming velocity profile, respectively. Focusing on the constant vorticity case from then
on, § 4 analyses ‘fly away’ while § 5 focusses on ‘bouncing’, for which the modelling is
related to fly away, and § 6 provides a brief survey of other types of possible behaviour.
Section 7 provides further discussion, including parameter values and the checking of
assumptions, followed by conclusions.
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A heavy body translating in a boundary layer

Wall

CoM θ

X = 0

u = u0 (Y ) = AY + B

X = 1X = β

X = x/L

Y = y/Δ

h

Figure 1. Diagram (not to scale) showing the non-dimensional (and scaled) set-up: a thin body translates
upstream in the boundary layer of a much larger body, which acts as a stationary wall – in the rest frame of the
body, this results in a positive flow velocity B at the wall. The height of the body’s centre of mass (CoM) is
h(T) and the angle its chord line makes with the X-axis is θ(T); T denotes scaled time. The incoming velocity
profile is u = u0(Y) = AY + B.

2. The fluid–body interaction

The fluid–body interaction and the resulting governing equations are presented in full
in the current section. This is to set out a clear basis for the new interactive solutions
described in subsequent sections.

The scaling and governing equations of the problem are the same as those in Jolley
et al. (2021); however, approximating the oncoming boundary layer flow as initially
close to uniform shear will allow significant simplifications to the system in that paper
which, in turn, allows analysis of several new solution categories. The body here is
described by its mass, moment of inertia and underbody curve. It translates upstream
relative to the oncoming flow with speed uc, but we work in its rest frame (hence this
corresponds to a positive wall velocity of magnitude uc). The set-up is shown in figure 1.
The body is assumed to be both ‘small’ and ‘thin’, by which specifically we mean its
length L is much less than 1 and its thickness Δ is much less than L, where lengths
here are non-dimensionalised relative to l̂, the representative boundary layer length. The
thickness Δ is comparable with the thickness of the boundary layer. Here, we will use
non-dimensional scaled coordinates throughout, such that (x̂, ŷ) = l̂(LX, �Y), where ˆ
represents a dimensional quantity.

The body has two degrees of freedom in its motion: the height of its centre of mass
�h(T) and the angle its chord line makes with the X-axis, �θ(T). The aim of the problem
in the present study is to find the body motion (i.e. h(T) and θ(T)) under interaction with
the surrounding air flow. Hence it is necessary to compute the force and torque exerted on
the body by the flow.

The flow here is two-dimensional and incompressible, and non-dimensionalisation with
respect to l̂, representative boundary layer velocity Û, fluid density ρ̂F and kinematic
viscosity ν̂ gives a Reynolds number Re = Ûl̂/ν̂ which is large for parameter ranges of
interest, as discussed in the conclusion of the paper and in Appendix A. Relevant Froude
numbers similarly are large. Hence viscous and gravitational forces on the body are to
be neglected as a first-go model, an aspect which is discussed further in the appendix.
The scales of the problem (Δ = Re−1/2 � L � 1) allow it to be modelled by the inviscid
boundary layer equations (see (2.3)–(2.5) below), which, in turn, allows the pressure forces
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above the body to be negated also by identification with the free stream. Hence the only
force in play is the pressure force underneath the body, leading to the governing equations,

MhTT =
∫ 1

0
p dX, (2.1)

IθTT =
∫ 1

0
(X − β)p dX, (2.2)

where T is a non-dimensional time coordinate scaled to be order one relative to the
body motion, related to its dimensional counterpart by t̂ = (l̂/Û)�(ρ̂B/ρ̂F)1/2T , and
p = p̂/ρ̂FÛ2 is the pressure field under the body. The non-dimensional mass and moment
of inertia of the body are M = M̂/(ρ̂Bl̂2LΔ) and I = Î/(ρ̂Bl̂4L3Δ) (where ρ̂B is the
constant density of the body).

According to the time scale derived from (2.1)–(2.2), the body motion occurs
slowly in comparison with time variations in the fluid provided that ρ̂F/ρ̂B � (Δ/L)2.
The Navier–Stokes equations thus reduce to the inviscid quasi-steady boundary layer
equations,

uuX + VuY = −pX, (2.3)

0 = −pY , (2.4)

uX + VY = 0, (2.5)

where we require v(x, y, t) = (Δ/L)V(X, Y, T) owing to incompressibility. Viscous terms
are negligible despite the body width being comparable with that of the boundary layer
owing to its small horizontal length: while uyy/Re ∼ 1, the inertial terms and pressure
gradient are of size 1/L and are thus significantly larger. At any given time, the curve
describing the position of the underbody is given by

Y = F(X, T) = Fu(X) + h(T) + (X − β)θ(T), (2.6)

where β is the X-coordinate of the centre of mass, which allows the boundary conditions
to be formulated as

V(X, 0, T) = 0, (2.7)

V(X, F(X, T), T) = uFX, (2.8)

p(1, T) = 0, (2.9)

with Y = F(X, T) defining the unknown position of the underbody curve. The
requirements (2.7), (2.8) correspond, in turn, to tangential flow at the wall and the
kinematic boundary condition at the underbody surface. Condition (2.9) is the Kutta
condition ensuring that velocity is finite at the trailing edge. Because (2.3)–(2.5) are
hyperbolic, for the Kutta condition to be enforced, a relatively short Euler region must
be present ahead of the leading edge in which pressure and velocity change dramatically
in anticipation of the flow past the body (Jones & Smith 2003; Smith et al. 2003). The
flow is quasi-steady in this region, so Bernoulli’s theorem holds here as well as in the rest
of the flow, and we can relate the post-Euler flow to the pre-Euler by

1
2 u0(Y(0−))2 = 1

2 u(0+, Y(0+), T)2 + p(0+, T) = 1
2 u(X, Y(X), T)2 + p(X, T), (2.10)

on a streamline given by Y = Y(X). The incoming velocity profile u = u0(Y) is treated as
known.
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A heavy body translating in a boundary layer

This system can now be significantly reduced by the assumption that the incoming flow
is of the form u0(Y) = AY + B for some constants A and B. This is a good approximation
of a typical boundary layer profile in the near-wall region. (The case of a full boundary
layer will be discussed later in the paper.) For two-dimensional, quasi-steady, inviscid
flow, the vorticity equation reveals that the vorticity, equal at leading order to −uY when
scaled, is constant on streamlines, and because uY = A on all incoming streamlines, we
have uY = A everywhere. Thus, the horizontal velocity is of the form u = AY + b(X, T),
and by (2.10), choosing the wall streamline on which Y(X) = 0, the unknowns b and p are
related by

1
2 b(X, T)2 + p(X, T) = 1

2 B2. (2.11)

Assuming the flow at the trailing edge is fully forward, b(1, T) = B, by the Kutta condition
(2.9). The conservation of volume flux, q = ∫ F

0 u dY = (A/2)F2 + bF, can be used to
solve for b and p in terms of F,

b(X, T) =
A
2

(F(1, T)2 − F(X, T)2) + BF(1, T)

F(X, T)
, (2.12)

p(X, T) = 1
2

B2 − 1
2

⎛⎜⎝
A
2

(F(1, T)2 − F(X, T)2) + BF(1, T)

F(X, T)

⎞⎟⎠
2

. (2.13)

Substituting (2.13) into the body motion equations (2.1), (2.2), we arrive at a coupled
pair of ODEs, which can be solved numerically for given initial conditions. Numerical
solutions reveal a wide range of interesting behaviour, which can be split into the
categories of ‘crash’ solutions, in which the body makes contact with (impacts on) the
wall in finite time, and solutions in which the body height may tend to infinity or otherwise
never approach the wall. In § 3, we focus on the case of a crash, and analyse the asymptotic
behaviour of the system as contact with the wall is approached. Other classes of solution
are discussed in §§ 4, 5 and 6.

3. ‘Crash’ solutions

The first category of solution we will consider is ‘crash’ solutions, which are solutions of
the dynamical system (2.1)–(2.2), (2.13) for which the body collides with the wall in finite
time, i.e. there exists a point X0 and time T0 such that F(X0, T0) = 0. These solutions are
presented for an arbitrary incoming profile in Jolley et al. (2021) and agree with those
presented here; see Appendix B for completeness. However the method presented in that
paper cannot cope with solutions with regions of reversed flow and hence although the
method described here is less general, it is more powerful (revealing several new solution
categories) and its simplicity makes analysis and physical intuition more straightforward.

For instance, we can more easily study the conditions under which ‘crash’ and ‘fly
away’ might initially be set into motion. In general, the initial motion of the body is
sensitively shape-dependent, but the simple case of a flat body can provide intuition for
the circumstances under which the body will initially lift-off. Consider small perturbations
taken about the rest state of a flat body at zero angle of incidence, i.e. F(X, T) =
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h0 + ε̂(h1(T) + (X − β)θ1(T)), for arbitrary small parameter ε̂. Then

p = −ε̂B
(

A + B
h0

)
(1 − X)θ1, (3.1)

and hence by (2.1) and (2.2),

Mh1TT = −1
2

B
(

A + B
h0

)
θ1, (3.2)

Iθ1TT = −1
2

B
(

A + B
h0

)(
1
3

− β

)
θ1. (3.3)

Thus, θ1 is governed by a straightforward linear ordinary differential equation, while h1 can
be found easily from θ1. As A, B, h0 > 0, the stability is determined by the sign of β − 1/3.
Solving for h1 and identifying the fastest growing term yields the ‘lift-off’ criteria in the
three cases,

θ(0) + θT(0)/λ < 0, for β > 1/3, (3.4)

θT(0) < 0, for β = 1/3, (3.5)

hT(0) − IθT(0)

M(1/3 − β)
> 0, for β < 1/3, (3.6)

where λ = √
B(A + B/h0)(β − 1/3)/2I. These conditions and numerical results indicate

that the crucial factor in inducing lift-off is a sufficiently negative or decreasing initial
angle of the body, and similarly ‘crash’ solutions are strongly associated with initially
positive or increasing angle.

3.1. First stage
After an initial descent triggered by the sensitive early-time interaction described above,
the asymptotic behaviour of the body in approach to the crash can be determined as
follows. Let the contact point between the body and the wall be X = X0, and let the crash
occur at time T0. Then F(X0, T0) = 0 and FX(X0, T0) = 0, because the gap width must be
a minimum where the (smooth) body touches the wall. Considering X − X0, T − T0 to be
small, the underbody position curve can be expanded locally,

F(X, T) = 1
2 F′′

u(X0)(X − X0)
2 + h1(T) + (X0 − β)θ1(T), (3.7)

where h1, θ1 are the deviations of h, θ from their values h0 = h(T0), θ0 = θ(T0) at the time
of the crash. Assuming that h − h0, θ − θ0 are O(T0 − T)n say as the crash is approached,
such that F(X, T) is O(T0 − T)n, n > 0 in the X range X = X0 + O(T0 − T)n/2, we can
solve for n using the body motion equations to obtain n = 4/5. This value shows very
close agreement with numerical results (shown in figure 2) for the behaviour of h and θ as
a crash is approached.

3.2. Second stage
As the body continues to approach contact, its velocity becomes large because
hT = O(T0 − T)−1/5, which gives rise to a second time stage. In this second time
stage, the pressure force on the body is dominated by that arising from a small
region surrounding the contact point, dubbed the ‘inner’ region, for which X − X0 =
936 A37-6
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A heavy body translating in a boundary layer
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–0.2
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0.1
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0.3

0.4
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O(T0 – T )4/5 approximation

h(T )

O(T0 – T )4/5 approximation

θ(T )

Figure 2. First-stage numerical solutions of h and θ for a body with M = 1, I = 0.2, and sinusoidal shape
Fu(X) = −0.2 sin πX and incoming profile u0 = Y + 1 are shown in blue. Initial conditions are h(0) =
1, θ(0) = 0.2, hT (0) = −0.1, θT (0) = 0. Red shows a curve varying as (T0 − T)4/5 with the right-hand
end-point fixed to match the corresponding h or θ value there (and similarly in figures 3 and 4).

O(T0 − T)2/5. Defining the order unity time coordinate s = (T − T0)/τ for the relevant
time scale τ which is to be found, we rescale variables according to their first-stage
behaviour: τ 2/5ξ = X − X0, τ

4/5η = Y, τ−4/5ũ = u, τ−2/5ṽ = V, τ−8/5p̃ = p, τ 4/5φ(ξ, s)
= F(X, T) and τ 4/5(h̃, θ̃ ) = (h − h0, θ − θ0). This yields the inner region governing
equations:

ũũξ = −p̃ξ , (3.8)

0 = −p̃η, (3.9)

ũξ + ṽη = 0, (3.10)

and boundary conditions for tangential flow, kinematic requirement and matching
respectively

ṽ = 0, at η = 0, (3.11)

ṽ = ũφξ , at η = φ(ξ, t), (3.12)

ũ, ṽ, p̃ → 0 as ξ → ±∞. (3.13)

The flow here is effectively vorticity-free because ũη = Aτ 8/5. One may expect that
viscosity could come into play but, in fact, it remains small on this time scale (to be found
later) provided that Δ2L5 � ρ̂F/ρ̂B. Hence, this momentum equation can be integrated
to yield that ũ2/2 + p̃ is zero. As before, we can now use conservation of volume flux to
obtain

ũ = q(s)
φ(ξ, s)

, p̃ = −1
2

q(s)2

φ(ξ, s)2 , (3.14a,b)

for the volume flux q(s) (which is not scaled). By the expansion (3.7), the underbody
positioning φ(ξ, s) is of parabolic shape to leading order in this region,

φ = 1
2αξ2 + h̃(s) + (X0 − β)θ̃(s), (3.15)

where we have defined α = F′′
u(X0), effectively the curvature. The body motion is

governed entirely by the O(τ−8/5) inner pressure and hence the body motion equations
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can now be integrated directly over the inner region to obtain

Mh̃ss = −πq(s)2

2
√

2α
(h̃ + (X0 − β)θ̃)−3/2, (3.16)

Iθ̃ss = −πq(s)2

2
√

2α
(X0 − β)(h̃ + (X0 − β)θ̃)−3/2. (3.17)

It is now necessary to consider the outer region, where X − X0, Y are order unity and
the body is effectively in contact with the wall. Then (h, θ) = (h0, θ0) + τ 4/5(h̃, θ̃ ), but no
further scaling is required as other quantities remain order one. Then the new governing
equations are

uX + VY = 0, (3.18)

ετ−1us + uuX + VuY = −pX, (3.19)

0 = −pY , (3.20)

where ε = (L/Δ)(ρ̂F/ρ̂B)−1/2. We have included the unsteady term here in anticipation
of it coming into play shortly. The boundary conditions are those of tangential flow,
kinematics and the Kutta constraint,

V = 0, at Y = 0, (3.21)

V = ετ−1Fs + uFX, at Y = F(X, s), (3.22)

p = 0, at X = 1. (3.23)

The velocity can be expanded u = AY + b0(X, s) + O(τ 4/5) by (2.12), and then use of the
kinematic boundary condition (3.22) algebraically eliminates the vorticity term from the
x-momentum equation,

b0b0X + pX = ετ−1/5us. (3.24)

This can be integrated as before to yield a Bernoulli equation, but because the right-hand
side is much larger in the inner region than in the outer, we must consider separately
the cases of integrating across the inner region and that of integration only in the outer
region. Choosing τ = ε5/7, we find that this term makes an order-unity contribution when
passing over the inner region, which is related to the time derivative of velocity potential
that appears in the unsteady Bernoulli equation (effectively there is a jump in velocity
potential at the contact point). For this time scale, we then arrive at

1
2

b(X, s)2 + p(X, s) =

⎧⎪⎪⎨⎪⎪⎩
1
2

B2, X < X0,

1
2

B2 − ∫ ∞
−∞

(
q(s)

φ(ξ, s)

)
s

dξ, X > X0,

(3.25)

as the ‘modified’ Bernoulli equation. Having determined τ , it is clear that the flow is again
quasi-steady, so as in the first stage, the volume flux conservation can be exploited to
express b0 in terms of the underbody curve F0(X) = Fu(X) + h0 + (X − β)θ0 analogously
to (2.12). Choosing X = 1 in (3.25) to eliminate the pressure, we arrive at a first-order IDE

936 A37-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.93


A heavy body translating in a boundary layer

–35 –30 –25 –20
s s

–15 –10 –5 0

2

4

6h̃ θ̃

8

10

(a) (b)

–35 –30 –25 –20 –15 –10 –5 0

–10

–8

–6

–4

–2

0

2

O(|s|)4/5 approximation

O(|s|) approximation

h̃(s )
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Figure 3. Second-stage numerical solutions of h̃ and θ̃ for a body with M = 1, I = 0.2, Fu(X) = −0.2 sin πX
and incoming profile u0 = Y + 1 are shown in blue. For initial conditions, we take h̃, θ̃ large (10 and −10,
respectively) and h̃s, θ̃s small to match with the first stage. Red shows curves varying as (|s|)4/5 with the start
point fixed to match the initial conditions and yellow shows a curve varying as O(|s|) with the end-point fixed
similarly.

for q,

1
2

(
q(s)

F0(1)
− A

2
F0(1)

)2

= 1
2

B2 −
∫ ∞

−∞

(
q(s)

φ(ξ, s)

)
s

dξ. (3.26)

This can be solved numerically by matching q with the flow from the first stage to obtain
an initial condition at large negative s, thereby solving for velocity and pressure in both
the inner and outer regions. So at each time step, having computed q via (3.26), the body
motion equations can be numerically integrated to find h̃ and θ̃ . See figure 3 for results.
This again agrees closely with results shown in Jolley et al. (2021) for u0(Y) = 2 − e−Y .

The leading-order behaviour of this system on approach to a crash can be determined
analytically in similar style to the first stage. Assume as s → 0, where we define the time
when the body hits the wall to be zero, that h̃, θ̃ = O(sN) and k = O(sM). The integral term
in (3.26) cannot become large because the left-hand side is positive. Its leading-order term
is O(sM−N/2−1), which we expect to be large. Hence, it is possible to determine M = N/2
by equating this leading-order term of the integral to zero. By consideration of the body
motion equations, we come to the conclusion that N = 1 and M = 1/2, which agrees well
with the numerical results (shown in figure 3). The body now crashes into the wall with
finite velocity, and so the solution is complete. This value of N is in agreement with that
found in Smith & Wilson (2011).

4. ‘Fly away’ solutions

Several other interesting solutions to the fluid–body interaction (2.3)–(2.10) exist for which
the body never collides with the wall. This section will focus on ‘fly away’, where
the body tends to depart far from the wall, that is, h → ∞ as T → ∞, starting with
h = O(1) at T = 0. A previous work by Balta & Smith (2018) studied this
feature in a similar case with zero vorticity, and solution schemes described
in previous sections reproduce their findings that h → ∞, θ → −∞ parabolically
for T → ∞ for that zero vorticity case. However, for non-zero vorticity, fly
away solutions are completely distinct and, in fact, θ oscillates and remains
bounded. Some understanding of the cause of this distinction can be gained
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by inspecting the formulae (2.12) and (2.13) for velocity b and pressure p.
With zero vorticity, as the body tilts, the pressure gradient steepens, generally causing it
to tilt further. However, with non-zero vorticity A, it is clear that as θ → −∞, eventually
there will be a region of reverse flow at the leading edge and correspondingly pressure
reaches its maximum at the zero of b. Once the pressure reaches its maximum, the
continued steepening of the pressure gradient causes a shift in distribution eventually
altering the direction of rotation, causing the qualitative difference we see between these
solutions and those of Balta & Smith (2018). Because the arbitrary velocity profile scheme
discussed above does not apply to reverse flow, we return to the constant vorticity case for
which our results (2.12) and (2.13) describing velocity and pressure in terms of underbody
position still hold (flow is still fully forward in the pre-Euler region and at the trailing edge,
so this analysis still applies).

To consider behaviour following on from such initial lift-off over long times, let time
T = τ T̃ with τ � 1 and body height h = τ 2H2(T̃) + τH1(T̃) + H0(T), where the final
term varies on the short time scale, while the first two vary on long time only. We also
let θ = θ0(T) + O(τ−1) and seek to study the leading-order behaviour of the height h. By
(2.12), the x-dependent part of the velocity is then

b = A [θ0(1 − X) − Fu(X)] + B + O(τ−1), (4.1)

while from (2.13), the pressure is

p = −Aθ0(1 − X)(B − AFu(X)) − 1
2 A2θ2

0 (1 − X)2 + ABFu(X) − 1
2 AFu(X)2 + O(τ−1).

(4.2)
The body motion equations are then

M
(

d2H2

dT̃2
+ d2H0

dT2

)
= a0 + a1θ0 + a2θ

2
0 , (4.3)

I
d2θ0

dT2 = c0 + c1θ0 + c2θ
2
0 , (4.4)

where

a0 =
∫ 1

0
ABFu(X) − 1

2
A2Fu(X)2 dX,

a1 = −1
2

AB + A2
∫ 1

0
(1 − X)Fu(X) dX,

a2 = −1
6

A2, c0 =
∫ 1

0
(ABFu(X) − 1

2
A2Fu(X)2)(X − β) dX,

c1 = AB
(

−1
6

+ β

2

)
+ A2

∫ 1

0
Fu(X)(1 − X)(X − β) dX and

c2 = 1
2

A2
(

− 1
12

+ β

3

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

are constants. Solving (4.4) shows that θ0 is a periodic function, oscillating on the fast time
scale, and thus has a constant mean value 〈θ0〉 over a period in T . Then, after taking its
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Figure 4. A fly away case. The numerical solutions of h and θ for a body with M = 1, I = 0.2, Fu(X) =
−0.2 sin πX and incoming profile u0 = Y + 1 are shown in blue. Initial conditions are h(0) = 1, θ(0) =
−0.2, hT (0) = 0, θT (0) = 0. Red shows the parabolic approximation given in (4.6) (it overlaps very closely
with the blue curve).

mean, (4.3) can be straightforwardly integrated to obtain

H2 = 1
2M

(
a0 + a1〈θ0〉 + a2〈θ2

0 〉
)

T̃2. (4.6)

Provided the coefficient of T̃2 here is positive, this is a fly away solution. Figure 4 shows
that the solution from the full computation and the approximate parabolic curve from
(4.6) overlap very closely, which indicates firm agreement; θ(T) is also shown to be an
oscillating function of time as predicted analytically.

4.1. The θ0 limit cycle
Of natural interest is the question of how (or if) one can tell if fly away will occur
without running full simulations. In light of (4.6), it is clear that to do this requires an
understanding of the θ0 limit cycle and its mean and variance. Equation (4.4) can be
integrated to obtain

I
(

dθ0

dT

)2

= 2c0θ0 + c1θ
2
0 + 2

3
c2θ

3
0 + k, (4.7)

for some constant k, which is related to 〈θ0〉 by

〈θ0〉 = 1
T0

∫ T+T0

T
θ0 dT = 2

√
I

T0

∫ θmax

θmin

u√
2c0u + c1u2 + 2

3 c2u3 + k
du, (4.8)

where the minimum θmin and the maximum θmax of θ0 are functions of k in the sense that
they are the two real solutions to the equation 0 = 2c0θ0 + c1θ

2
0 + 2

3 c2θ
3
0 + k. Similarly,

the period T0 is given by

T0 =
∫ T+T0

T
dT = 2

√
I
∫ θmax

θmin

1√
2c0u + c1u2 + 2

3 c2u3 + k
du. (4.9)

It is not easy to determine the value of k as it depends on the behaviour of the system prior
to entry into the ‘large h’ regime. However, k can be easily bounded to force the cubic in
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(4.7) to have two real roots (else a limit cycle cannot exist), which in turn can produce a
range of viable 〈θ0〉 values. Because 〈θ0TT〉 = 0, we have

〈θ2
0 〉 = − 1

c2
(c0 + c1〈θ0〉) , (4.10)

which can be used to bound the parabola coefficient. Thus, although we cannot determine
the exact behaviour of the body for given initial conditions without running full
simulations, we will know the range of possible values of the parabola coefficient which
gives a range of possible behaviours, e.g. if the range is entirely positive, then fly away is
guaranteed following lift-off, and if not, there may exist some other types of solution such
as those discussed in §§ 5 and 6 below.

5. ‘Bouncing’ solutions

Numerical results reveal the existence of solutions for which h ‘bounces’, i.e. reaches large
values then comes back to O(1) repeatedly. We will show cases where H2 ≡ 0, and hence
a0 + a1〈θ0〉 + a2〈θ2

0 〉 = 0. To examine these, we need to take the analysis to the next order,
so let h = τH1(T̃) + H0(T) and θ = θ0(T) + τ−1θ−1(T). Proceeding as before, the body
motion equations at the next order are

M
d2H1

dT̃2
= k1

H1
+ a1〈θ−1〉 + 2a2〈θ0θ−1〉, (5.1)

I
d2θ−1

dT2 = k2(T)

H1
+ c1θ−1 + 2c2θ0θ−1, (5.2)

where

k1 = −
∫ 1

0

〈
(A [(1 − X)θ0 − Fu(X)] + B) [(1 − X)θ0 − Fu(X)]

×
(

A
2

[(1 − X)θ0 − Fu(X)] + B
)〉

dX, (5.3)

and

k2(T) = −
∫ 1

0
(A [(1 − X)θ0 − Fu(X)] + B) [(1 − X)θ0 − Fu(X)]

×
(

A
2

[(1 − X)θ0 − Fu(X)] + B
)

(X − β) dX, (5.4)

define k1, k2 as the coefficients above.

5.1. Analysis for small k1, k2

We will assume that k1 and k2 are small: this is partly to make progress and partly because
this has tended to be the case numerically. The possibility that k1,2 are not small will be
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addressed at the end of the subsection. Then, for H1 = O(1), we have the system

M
d2H1

dT̃2
= a1〈θ−1〉 + 2a2〈θ0θ−1〉, (5.5)

I
d2θ−1

dT2 = c1θ−1 + 2c2θ0θ1. (5.6)

Similarly to the previous solution, θ−1 is a periodic function and 〈θ−1〉 is a constant, which
indicates that H1 is parabolic to leading order. If the right-hand side of (5.5) is positive,
then this describes the solution for all time, and we see a weaker but similar fly away
solution. If it is negative, however, then H1 → 0 at some time T̃ = T̃1, and there is a second
solution when H1 is small. In this case, we rescale for small H1 by letting H1 = k3/2

1 y,
θ−1 = k−1/2

1 Θ and T̃ = T̃1 + k1t to find the new system

M
d2y
dt2

= 1
y

+ k1/2
1 C(t), (5.7)

I
d2Θ

dT2 = k2(T)

k1

1
y

+ c1Θ + 2c2θ0Θ, (5.8)

where we have also defined C as the right-hand side of (5.5) for convenience (C = C(t)
is not a constant in this boundary layer solution). The expansion y = y0 + k1/2

1 y1 + · · ·
yields

M
d2y0

dt2
= 1

y0
, (5.9)

M
d2y1

dt2
= −y1

y2
0

+ C(t). (5.10)

The solution to (5.9) is

y0 = y0 min exp

⎛⎝[
erfi−1

(√
2

πM
t

y0 min

)]2
⎞⎠ , (5.11)

where erfi−1 is the inverse of the imaginary error function. We can understand its
behaviour by integrating and considering its phase portrait,

M
2

(
dy0

dt

)2

= log |y0| + const. (5.12)

Here, starting from t = −∞, y0 decreases from ∞ close to linearly (like t(log t)1/2), passes
through a minimum point at (0, y0 min), then leaves symmetrically to +∞, so that y0 and
hence H1 apparently ‘bounces’. Numerical results from full simulations (shown in figure 5)
confirm this behaviour, and simulations of the reduced system (5.7) and (5.8) in figure 6
show that the effect of the bounce is ultimately to push θ−1 into a different limit cycle, so
that in the next excursion, although C is again constant, it takes a new value. This produces
repeated excursions of varying height and length, as observed numerically.

The ‘bouncing’ behaviour here should be observed regardless of the sizes of k1, k2,
provided they are similar in size; if k1,2/H1 is small, we see θ−1 oscillating and H1
decreasing parabolically, until H1 becomes small enough that k1/H becomes the dominant
term in (5.5), causing the body to ‘bounce’ and re-enter the parabolic regime.

936 A37-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.93


E.M. Jolley and F.T. Smith

200 400 600

T T
800 10000

10

20

30
h(T ) θ(T )

40

50

60

70(a) (b)

0 200 400 600 800 1000
–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

Figure 5. A bouncing case. The numerical solutions of h and θ for a body with M = 1, I = 0.2, Fu(X) =
−0.2 sin πX and incoming profile u0 = 3.2Y + 1 are shown in blue. Initial conditions are h(0) = 1, θ(0) =
−0.2, hT (0) = 0, θT (0) = 0.
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Figure 6. Bouncing. The results of a simulation for which θ0 is calculated using (4.4), and h and θ−1 are
calculated using (5.5) and (5.6). Values for k1,2 and C as well as initial conditions for θ0 are taken as constants
from full simulations. Because C is taken as constant, we see h repeats the same excursion – but in reality, the
shift in the θ−1 limit cycle would produce distinct excursions as shown in the full results of figure 5.

6. Other behaviour

The findings above point to further behaviours being possible in the current fluid/body
interactions. These behaviours are associated with interactions in which the scaled body
height h oscillates as discussed below in § 6.1, or an alternative crash effect occurs which
is described in § 6.2 or the scaled angle θ ceases to remain bounded as investigated in § 6.3
below.

6.1. Oscillating h solutions
These are solutions for which H2 ≡ H1 ≡ 0. In this case, h = H0(T) and θ = θ0(T) are
both periodic functions to leading order and h never becomes large nor crashes. This is
shown in figure 7. Because for these solutions h and θ are of comparable size, analysis is
difficult and less fruitful.
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Figure 7. An ‘oscillating h’ solution. The numerical solutions of h and θ for a body with M = 1, I = 0.2,
Fu(X) = −0.2 sin πX and incoming profile u0 = 4Y + 1 are shown in blue. Initial conditions are h(0) =
1, θ(0) = −0.2, hT (0) = 0, θT (0) = 0.
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Figure 8. An ‘alternative crash’. The numerical solutions of h and θ for a body with M = 1, I = 0.2, Fu(X) =
−0.2 sin πX and incoming profile u0 = 5Y + 1 are shown in blue. Initial conditions are h(0) = 100, θ(0) =
−0.2, hT (0) = 0, θT (0) = 0.

6.2. Parabolic crash
If h is large in the initial conditions, strong negative parabolas can be realised. The body
then crashes with 〈h〉 approximately linear, and h, θ oscillating. This is shown in figure 8.
On smaller scales such that the effect of H0 is visible, the 4/5 behaviour of § 3 is still
shown, but on large scales, it cannot be seen in comparison to the large linear term in h.

6.3. The θ escape solutions
Using (4.4) to examine the phase portrait for θ0, it is clear that there should also exist some
‘escape’ solutions, in which θ0 → ∞. These can be realised if starting with large h. This
also eventually causes a crash as the body turns on its side, but it might be physically
questionable as large values of θ are not necessarily compatible with the small angle
approximation that is used in the definition of the body curve. A numerical simulation
of this case is shown in figure 9.
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Figure 9. A ‘θ -escape’ solution. The numerical solutions of h and θ for a body with M = 1, I = 0.2, Fu(X) =
−0.2 sin πX and incoming profile u0 = Y + 1 are shown in blue. Initial conditions are h(0) = 100, θ(0) =
0.2, hT (0) = 0, θT (0) = 0.

7. Discussion and conclusions

The work has focussed on dynamic fluid–body interaction near a wall with substantial
incoming flow vorticity, as is appropriate for the boundary layer setting. Modelling
assumptions that the body is thin and in the appropriate range of lengths, as well as heavy,
allowed the reduction of the problem to a coupled pair of nonlinear IDEs. Numerical
solutions confirmed and explained by accompanying analysis have revealed that the
possible behaviours of the body are wide-ranging and heavily shape-dependent, and in
particular, the solutions can be split into two categories. The first class of solutions is
so-called crashes, for which the asymptotic dependency of the body height and angle on
time has been determined in the limit of a crash, through two time stages. The final result
that the body velocity is constant at the onset of a crash agrees with the results of the
zero-vorticity study by Smith & Wilson (2011), as would be expected because the effect of
vorticity on the leading order pressure contribution in this limit is negligible. The problem
here differs from their work also in the assumption that the body is heavy which allows for
modelling the flow as quasi-steady and, in turn, causes the need for two time stages. The
crash problem has also been treated for arbitrary incoming velocity profile, with analysis
and numerics indicating that any velocity profile, provided it is fully forward, yields the
same local body motion asymptotically for a crash scenario, as we might expect given the
underbody comes close to the wall in this case.

Several reasons for concentrating mostly on the constant vorticity case here are notable.
Physically the fluid–body interaction for a body outside the boundary layer or in the outer
reaches of a boundary layer are covered by Balta & Smith (2018). The interaction for
constant vorticity describes the opposite regime where the body lies in the depths of
the boundary layer, closer to the wall. Mathematically, the case of constant vorticity is
simpler and clearer than the full case. We tackled it in this work for clash phenomena
and then readily extended that to the case of a full boundary layer in an appendix. The
constant-vorticity case also readily allows interesting new phenomena, namely fly away
and bouncing as well as other phenomena, to be identified subsequently.

In contrast to the crash solutions, the present range of interesting non-crash behaviours
involving oscillation of the body angle is unique to flows with vorticity and thus in stark
contrast to Balta & Smith (2018). The presence of vorticity necessitates that as the body
angle decreases, the pressure will eventually reach its maximum point and eventually
cause the body to tilt the other way, causing an oscillating body angle. (Without vorticity,
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pressure cannot reach this point and so this oscillation then never happens.) Not only does
this oscillation give rise to a wider range of behaviours, but it is perhaps more physically
realistic because it does not result in nominally infinite values of the scaled body angle.
A natural question for further work would be whether, as for crashes, the same qualitative
behaviour is observed regardless of the velocity profile. It is already clear that the presence
of vorticity changes the body behaviour substantially in these cases, and in reality, one
would expect vorticity to eventually decrease as the body rises sufficiently far from the
wall. To numerically solve for fly away cases in an arbitrary velocity profile would require
adaptation of the modelling in Appendix B to accommodate reverse flow, i.e. potential
changes in the sign of the square root in (B1). Smith & Palmer (2019) consider reverse
flow and separation in a related setting.

On physical parameter values, in realistic ranges, the typical ice particles are of length
10−3 m to 10−5 m and the sizes of the non-dimensional numbers involved are 106 for the
Froude number and 104 to 106 for the global Reynolds number, with the representative
particle Reynolds number being 102 to 103. Thus, concerning the Froude number, the
typical body weight is very small compared with the pressure forces. The weight would be
expected to have only a longer-term influence on the present solution behaviours. Further
details on icing conditions and the ranges of parameters are given in Norde (2017), Palmer
& Smith (2019), while, concerning the Reynolds number, viscous effects are considered
in Appendix A.

There are no existing experiments, as far as we know, on bouncing or fly away
phenomena, for example, or on crash responses in detail. Both categories of solution
have important industrial applications in the field of aircraft icing. Understanding what
kind of bodies under what circumstances are likely to collide with an airplane wing is
crucial for the development of icing protection systems. Understanding the position and
behaviour of those that do not crash is important as their presence may influence the
behaviour of other bodies in multi-particle simulations, as well as the use of knowing
which bodies do not crash for ice protection. In a similar vein, the behaviour of the body
following a crash would be an interesting question for further work, as well as conducting
multi-particle studies as in Smith & Ellis (2010) and Smith et al. (2019). Other extensions
to the analysis not yet mentioned include accounting for three-dimensional bodies and flow
and the inclusion of thermodynamic properties (melting/freezing) of ice.
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Appendix A. Viscous effects

The main text is concentrated on inviscid theory as a first model to gain some
understanding and predictions of the fluid–body interaction. It is equally interesting, not to
say important, to consider possible viscous effects even though they may be negligible for
the interaction where the flow remains attached at the underbody and at the wall. Viscous
effects are nominally negligible in the main momentum balance (2.3) because of the large
global Reynolds number Re. Thin viscous sublayers are nevertheless generated on the
underbody surface and on the wall over the length scale L of the body (and likewise on
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the overbody), these sublayers having typical thickness Re−1/2L1/2 because the velocity u
is of order unity, in non-dimensional terms. The sublayer thickness is thus �L1/2 which is
small relative to the representative gap width Δ.

The viscous sublayer flows are classical boundary layers, controlled by the boundary
layer equations subject to the pressure gradients induced in the gap flow and to the
no-slip conditions at the underbody surface. The pressure gradients tend to be weak
at first when a body is relatively far from the wall but after that, they can strengthen,
generally being favourable upstream of the position of minimum gap width and adverse
downstream. The sublayers should therefore remain attached upstream but may separate
downstream eventually as impact is approached. Similar considerations apply to the
viscous sublayer at the wall. There is less likelihood of separation at the wall however
owing to the positive wall velocity there. On the underbody, if separation occurs, it
seems likely to only alter the effective shape ‘felt’ by the gap flow quantitatively but not
qualitatively. A minimum gap width arising ahead of the separation point seems physically
sensible.

Close to impact during a crash, as the first stage in § 3.1 comes to an end, the minimum
gap thickness decreases like (T0 − T)4/5 multiplied by Δ. The thin sublayer, however,
is subjected to increased pressure variations then and, as a result, its local thickness
decreases like (T0 − T)3/5 but multiplied by the small constant �L1/2. So the latter
thickness remains negligible even during the second stage of § 3.2. A similar comment
applies to the examples of bouncing. This assumes that any downstream separation is
not of excessively large scale and does not disturb the effective local underbody shape
significantly. Further, in the crash example, the implication is that viscous effects are likely
to become leading-order effects only over a time scale much smaller than that of the second
stage owing to the �L1/2 factor; the local y-thicknesses involved then are also considerably
smaller than those holding in the second stage. The process suggested by these scale
arguments points to viscous influences emerging as leading-order influences when the
underbody comes very much closer to the wall, as in the nonlinear viscous–inviscid
interaction discussed recently by Palmer & Smith (2021) for near-wall flows deep inside a
boundary layer.

The downstream separation mentioned in either of the two paragraphs immediately
above can be modelled in several ways. One is as a marginal separation when it first
appears in the context of the first paragraph. Another is as a free streamline phenomenon
in regard to the first or second paragraph when the separation is considerable. Finally,
and perhaps most rationally, there is the approach developed by Palmer & Smith (2021)
where the interactive boundary layer equations are used to describe the entire fluid flow
in the gap; this captures the separation and corresponding reversed flow fully although the
present parameter range is different owing to the wall-velocity scale for example.

The above assumes laminar flow in the sublayer(s). If the sublayer flow is
instead transitional or turbulent, then separation tends to be suppressed to an extent
depending, in the turbulent regime, on the turbulence intensity. If that intensity is
sufficiently large (Scheichl, Kluwick & Smith 2011), then separation can be suppressed
completely.

Appendix B. ‘Crash’ solutions for a boundary layer profile

This short section confirms the applicability of the theory to an arbitrary incident velocity
profile in a boundary layer (Jolley et al. 2021), along with indicating applicability to other
underbody shapes.
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Figure 10. Blue shows first-stage numerical solutions of h and θ for a body with M = 1, I = 0.2 and elliptical
shape Fu(X) = −0.2(1 − 4(x − 1/2)2)1/2, with incoming flow profile u0 = 2 − exp(−Y). Initial conditions
are h(0) = 1, θ(0) = 0.2, hT (0) = −0.1, θT (0) = 0. Red shows a curve varying as (T0 − T)4/5 with the end
point fixed to match the corresponding h or θ value there.

Beginning with the first stage, where the Bernoulli equation (2.10) holds, we find the
generalization of the relation (2.13) to be

F(X, T) =
∫ F(1,T)

0

u0(a)

(u0(a)2 − 2p(X, T))1/2 da. (B1)

This gives an expression for the pressure p in terms of underbody positioning F, which then
allows the body motion equations to be solved numerically. In the event of the crash, we
still find that h, θ have an asymptotic dependency of O(T − T0)

4/5 in the general boundary
layer case, a feature which is confirmed again by numerical results, as shown in figure 10.
The results in the figure are for an elliptical underbody shape rather than the sinusoidal
form considered earlier. The findings here suggest that neither the detailed body shape (if
smoothly convex downwards) nor the incoming velocity profile have substantial effects on
the long-term qualitative behaviour.

The body then moves into the second stage, much as in § 3, and all the same scalings
still apply in both the inner and outer regions. It can be shown that τ = ε5/7 is still the
relevant time scale, even though we are unable to tidily eliminate the VuY inertial term in
the outer region as we could in the constant vorticity case to obtain the modified Bernoulli
equation (3.25). Instead we have

1
2 u(X, Y, s)2 + p(X, s) =

{
1
2 u0(Y)2, X < X0,

1
2 u0(Y)2 − ∫ ∞

−∞ ũs dξ, X > X0,
(B2)

with τ = ε5/7 as anticipated.
In the inner region, the expression (3.14a,b) for velocity in terms of volume flux and

underbody positioning still holds. Concerning the outer region, volume flux conservation
acts to close the system, which yields

F(1, s) =
∫ F−(s)

0

u0(Y0)(
u0(Y0)2 − 2

∫ ∞
−∞ ũt dξ

)1/2 dY0, (B3)

where F−(s) is the Y-value of the continuation of the body streamline into the Euler region.
Here, (B3) is an IDE for the volume flux in terms of h̃ and θ̃ , and thus can be used to
integrate the body motion equations.
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Figure 11. Second-stage numerical solutions of h̃ and θ̃ for a body with M = 1, I = 0.2, Fu(X) = −0.2(1 −
4(x − 1/2)2)1/2 and incoming profile u0 = 2 − exp(−Y) are shown in blue. For initial conditions, we take h̃, θ̃

large (10 and −10, respectively) and h̃s, θ̃s small to match with the first stage. Red shows curves varying as
(|s|)4/5 with the start point fixed to match the initial conditions and yellow shows a curve varying as O(|s|)
with the end-point fixed similarly.

The same argument as in § 3 determines the asymptotic dependency of the system on
s. The denominator must not become complex so assuming h, θ = O(sN) as s → 0 yields
k = O(sN/2) once more. Consideration of the body motion equations then yields N = 1 as
before. This is confirmed by numerical results: see figure 11, which again is for an ellipse
rather than a sinusoidal underbody. Thus, throughout the motion of the body up to the
crash, there is no leading order qualitative alteration arising from the incoming velocity
profile or the smooth underbody shape.
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